
Open Systems in TLA

Mart́ın Abadi and Leslie Lamport

2 February 1994

Abstract

We describe a method for writing assumption/guarantee specifica-
tions of concurrent systems. We also provide a proof rule for reasoning
about the composition of these systems. Specifications are written in
TLA (the Temporal Logic of Actions), and all reasoning is performed
within the logic. Our proof rule handles internal variables and both
safety and liveness properties.

1 Introduction

An open system is one that interacts with an environment that neither it nor
its implementor controls. To deduce useful properties of a system, we must
specify its environment. No system will exhibit its intended behavior in the
presence of a sufficiently hostile environment. For example, a combinational
circuit will not produce an output in the intended range if some input line,
instead of having a 0 or a 1, has an improper voltage level of 1/2. The
specification of the circuit’s environment must rule out such improper inputs.
An open system calls for an assumption/guarantee specification, asserting
that the system satisfies a guarantee only as long as its environment satisfies
an assumption [9].

In this paper, we study how to specify open systems and how to reason
about their composition. A companion paper considers the different prob-
lems that arise when a given system is decomposed into components [1].
Decomposition and composition are both discussed in more detail in [4].

The setting for our work is temporal logic, where specifications are for-
mulas and programs are viewed as lower-level specifications. A specification
Sl implements another specification S iff Sl ⇒ S is valid. We write specifi-
cations in such a way that the parallel composition of specifications S1 and
S2 is S1 ∧ S2.

In our approach, a system guarantee M and an environment assumption
E are temporal-logic formulas. The corresponding assumption/guarantee
specification is also a formula that we write E +−� M . Section 3 defines +−�
and discusses this form of specification.

1

c ✲
System
C d

System
D✛

Figure 1: A simple example.

To show that a composition of open systems satisfies a specification S,
we must prove a formula of the form (E1

+−� M1) ∧ . . . ∧ (En
+−� Mn) ⇒ S,

where S may again be an assumption/guarantee property. Unfortunately,
it is not obvious how to reason about the composition of systems described
by assumption/guarantee specifications. The basic problem is illustrated by
the simple case of two systems, one guaranteeing Mc assuming Md, and the
other guaranteeingMd assumingMc. Since each system guarantees to satisfy
the other’s environment assumption, we would like to conclude that their
composition implements the specification Mc ∧Md unconditionally, with no
environment assumption. Can we? We attempt to answer this question by
considering two simple examples, based on Figure 1.

In the first example, M0
c asserts that c always equals 0, and M0

d as-
serts that d always equals 0. We can implement the corresponding assump-
tion/guarantee specifications with two processes Πc and Πd. Process Πc

starts with c equal to 0 and repeatedly sets c to the current value of d. It
obviously guarantees M0

c assumingM0
d . Process Πd is analogous; it guaran-

tees M0
d assuming M0

c . Clearly, the composition of Πc and Πd keeps c and
d both equal to 0, implementing M0

c ∧M0
d .

In the second example, M1
c asserts that c eventually equals 1, and M1

d

asserts that d eventually equals 1. Process Πc also guarantees M1
c assuming

M1
d , and process Πd also guarantees M1

d assuming M1
c . However, since the

composition of Πc and Πd leaves c and d unchanged, it does not implement
M1

c ∧M1
d .

Our conclusion in the first example does not depend on the particu-
lar choice of processes Πc and Πd. We can deduce directly from the as-
sumption/guarantee specifications that the composition must implement
M0

c ∧ M0
d , because the first process to change its output variable would

violate its guarantee before its assumption had been violated. This argu-
ment does not apply to the second example, because violating M1

c and M1
d

are sins of omission that do not occur at any particular instant. A property
that can be made false only by being violated at some instant is called a
safety property [6]. As the examples suggest, reasoning about the composi-
tion of assumption/guarantee specifications is easiest when assumptions are
safety properties.

2

Our rules for reasoning about the composition of assumption/guarantee
specifications are embodied in the Composition Theorem of Section 5. For
such a theorem to be of any value, it must be accompanied by a precise
logic for writing specifications and a method for verifying its hypotheses.
The logic we use is TLA, the Temporal Logic of Actions [10]. We prove
propositions helpful in verifying the hypotheses of the theorem for TLA
specifications. Together with these propositions, the Composition Theo-
rem allows us to reason about open systems using well-established, effective
methods for reasoning about complete systems.

With the Composition Theorem, it is trivial to prove that the conjunc-
tion of the assumption/guarantee specifications M0

c
+−� M0

d and M0
d

+−� M0
c

implies M0
c ∧M0

d . As a less trivial example, in the appendix we sketch the
proof that the composition of two queues implements a larger queue.

In Section 2, we review TLA and our method of specifying components.
Much of this section also appears in [1]. Section 3 defines the operator +−�,
and Section 4 defines some additional operators. The Composition Theorem
is given in Section 5. The main body of the abstract concludes with Sec-
tion 6, which discusses related work. The example in the appendix illustrates
how the concepts and results fit together.

2 Preliminaries

2.1 Review of the Syntax and Semantics of TLA

A state is an assignment of values to variables. (Technically, our variables
are the “flexible” variables of temporal logic that correspond to the variables
of programming languages; they are distinct from the variables of first-order
logic.) A behavior is an infinite sequence of states. Semantically, a TLA
formula F is true or false of a behavior; we say that F is valid, and write
|= F , iff it is true of every behavior. Syntactically, TLA formulas are built
up from state functions using Boolean operators (¬, ∧, ∨, ⇒ [implication],
and = [equivalence]) and the operators ′, ✷, and ∃∃∃∃∃∃, as described below.

A state function is like an expression in a programming language. Se-
mantically, it assigns a value to each state—for example 3 + x assigns to
state s three plus the value of the variable x in s. A state predicate is a
Boolean-valued state function. An action is a Boolean-valued expression
containing primed and unprimed variables. Semantically, an action is true
or false of a pair of states, with primed variables referring to the second
state—for example, x + 1 > y′ is true for 〈s, t〉 iff the value of x + 1 in s
is greater than the value of y in t. A pair of states satisfying action A is
called an A step. We say that A is enabled in state s iff there exists a state
t such that 〈s, t〉 is an A step. We write f ′ for the expression obtained by
priming all the variables of the state function f , and [A]f for A ∨ (f ′ = f),

3

so an [A]f step is either an A step or a step that leaves f unchanged.
As usual in temporal logic, if F is a formula then ✷F is a formula that

means that F is always true. Using ✷ and “enabled” predicates, we can
define fairness operators WF and SF. The weak fairness formula WFv(A)
asserts of a behavior that either there are infinitely manyA steps that change
v, or there are infinitely many states in which such steps are not enabled.
The strong fairness formula SFv(A) asserts that either there are infinitely
many A steps that change v, or there are only finitely many states in which
such steps are enabled.

The formula ∃∃∃∃∃∃x : F essentially means that there is some way of choosing
a sequence of values for x such that the temporal formula F holds. We think
of ∃∃∃∃∃∃x : F as “F with x hidden” and call x an internal variable of ∃∃∃∃∃∃x : F . If
x is a tuple of variables 〈x1, . . . , xk〉, we write ∃∃∃∃∃∃x : F for ∃∃∃∃∃∃x1 : . . . ∃∃∃∃∃∃xk : F .

Intuitively, a variable represents some part of the universe and a behavior
represents a possible complete history of the universe. A system Π is repre-
sented by a TLA formula M that is true for precisely those behaviors that
represent histories in which Π is running. We make no formal distinction
between systems, specifications, and properties; they are all represented by
TLA formulas, which we usually call specifications.

2.2 Specifying Components and Complete Systems

A system guarantee should describe what we want the system to do, without
saying anything about what the environment does. Similarly, an environ-
ment assumption should describe only the environment’s behavior, not the
system’s. We can consider an open system and its environment to be sep-
arate components that together form a complete system. We now explain
how to specify such a component in TLA.

For simplicity, in this abstract we describe only the special case where the
visible variables of the component’s specification can be partitioned into a
tuplem of output variables and a tuple e of input variables. We also consider
only interleaving specifications, which assert that inputs and outputs do not
change simultaneously. The full paper discusses other specification styles.

The specificationM of a component has the “canonical form” ∃∃∃∃∃∃x : Init∧
✷[N]v ∧ L, where:

v is the tuple 〈m, x〉. Thus, the specification allows any step that does not
change the component’s output variables m or internal variables x;
such a step represents an act of the component’s environment.

Init is a predicate that describes the initial values of the component’s output
variables m and internal variables x.

4

N is the “next-state” action that describes the steps performed by the com-
ponent. In an interleaving representation, the component’s inputs and
outputs cannot change simultaneously, so N implies e′ = e.

L is the conjunction of fairness conditions of the form WF〈m, x〉(A) and
SF〈m, x〉(A).

This formula asserts that there exists a sequence of values for x such that
Init is true for the initial state, every step of the behavior is an N step or
leaves v unchanged, and L holds.

A complete system is one with a single component and no input vari-
ables, so its specification has this same form with v the tuple of all relevant
variables.

2.3 Conditional Implementation

A specification M l implements a specification M iff every behavior that
satisfies M l also satisfies M , that is, iff M l ⇒ M is valid [10]. Instead of
proving that a specificationM l implements a specificationM , we sometimes
want to prove the weaker condition that M l implements M assuming a
formula G. In other words, we want to prove G ⇒ (M l ⇒ M), which is
equivalent to G∧M l ⇒M . The formula G may express one or more of the
following:

• A law of nature. For example, in a real-time specification, G might
assert that time increases monotonically.

• An interface refinement, where G expresses the relation between a low-
level tuple l of variables and its high-level representation as a tuple h
of variables.

• An assumption about how reality is translated into the formalism of
behaviors. In particular, G may assert the interleaving assumption
Disjoint(v1, . . . , vn), which means that no two of the tuples of vari-
ables vi change simultaneously:

Disjoint(v1, . . . , vn)
∆=

∧
i�=j

✷[(v′i = vi) ∨ (v′j = vj)]〈vi, vj〉

Conditional implementation, with an explicit formula G, is needed only for
open systems. For a complete system, the properties expressed by G can
easily be made part of the system’s specification. For example, the system
can include a component that advances time. In contrast, it can be difficult
to include G in the specification of an open system.

5

2.4 Safety and Closure

A finite sequence of states is called a finite behavior. For any formula F
and finite behavior ρ, we say that ρ satisfies F iff ρ can be extended to
an infinite behavior that satisfies F . A safety property is a formula that is
satisfied by an infinite behavior σ iff it is satisfied by every prefix of σ [6]. It
can be shown that, for any TLA formula F , there is a TLA formula C(F),
called the closure of F , such that a behavior σ satisfies C(F) iff every prefix
of σ satisfies F . Formula C(F) is the strongest safety property such that
|= F ⇒ C(F).

When writing a specification in the form Init ∧✷[N]v ∧ L, we expect L
to constrain infinite behaviors, not finite ones. Formally, this means that
the closure of Init ∧✷[N]v ∧L should be Init ∧✷[N]v. Proposition 1 shows
that this is the case when L is the conjunction of fairness properties (under
reasonable assumptions). It is an immediate consequence of a result proved
in [2].

Proposition 1 If L is the conjunction of a countable number of formu-
las of the form WFw(A) and/or SFw(A) such that A implies N , then
C(Init ∧✷[N]v ∧ L) = Init ∧✷[N]v.

Some of our results have hypotheses of the form |= C(M1)∧. . .∧C(Mn)⇒
C(M). The obvious first step in proving such a formula is to compute the
closures C(M1), . . . , C(Mn), and C(M). We can use Proposition 1 to com-
pute the closure of a formula with no internal variables. When there are
internal variables, the following proposition allows us to reduce the proof of
C(M1)∧ . . .∧C(Mn)⇒ C(M) to the proof of a formula in which the closures
can be computed with Proposition 1.

Proposition 2 Let x, x1, . . . , xn be tuples of variables such that for each i,
no variable in xi occurs in M or in any Mj with i �= j.
If |=

n∧
i=1

C(Mi) ⇒ ∃∃∃∃∃∃x : C(M), then |=
n∧

i=1

C(∃∃∃∃∃∃xi :Mi) ⇒ C(∃∃∃∃∃∃x :M).

3 Assumption/Guarantee Specifications

An assumption/guarantee specification asserts that a system guarantees M
under the assumption that its environment satisfies E, where M and E are
component specifications of the type described in Section 2.2. Perhaps the
most obvious form for this assumption/guarantee specification is E ⇒ M .
Another appealing form is E −� M , which asserts that M holds at least as
long as E does [5]. Instead, we take as the specification the formula E +−� M ,
which we define to mean that, for any n, if the environment satisfies E
through “time” n, then the system must satisfy M through “time” n+1.

6

More precisely, E +−� M is true of a behavior σ iff E ⇒M is true of σ and,
for every n ≥ 0, if E holds for the first n states of σ, then M holds for the
first n+1 states of σ. (The formula E +−� M can be expressed in terms of
the primitives ′, ✷, and ∃∃∃∃∃∃.)

The formulas E ⇒M and E −� M are both weaker than E +−� M , since
they allow behaviors in which M is violated before E or at the same time
as E, respectively. An implementation could exploit the extra freedom of
E ⇒M only by predicting in advance that the environment will violate E.
Similarly, the extra freedom of E −� M could only be useful if the system
could react instantaneously to its environment. Therefore, the specifications
E ⇒ M , E −� M , and E +−� M all allow the same implementations. We
take E +−� M to be the form of assumption/guarantee specifications because
it leads to the simpler rules for composition.

As suggested by the discussion in Section 1, composition works well only
when environment assumptions are safety properties. Because E +−� M is
equivalent to C(E) +−� (C(M) ∧ (E ⇒ M)), we can in principle convert
any assumption/guarantee specification to one whose assumption is a safety
property. (A similar observation appears as Theorem 1 of [3].) However, this
equivalence is of intellectual interest only. In practice, we write the environ-
ment assumption as a safety property and the system’s fairness guarantee
as the conjunction of properties EL ⇒ WFv(A) and EL ⇒ SFv(A), where
EL is an environment fairness assumption. We can still apply Proposition 1
because, if C(P ∧ L) = P and L implies R, then C(P ∧R) = P [2, Proposi-
tion 3].

4 Additional Temporal Operators

We now define two additional temporal operators. The first is useful in
stating the Composition Principle; the second is an auxiliary operator im-
portant in verifying the hypotheses of the Composition Principle. Both can
be expressed in terms of the primitives ′, ✷, and ∃∃∃∃∃∃, but we define them
semantically.

4.1 +

The formula E+v asserts that, if the temporal formula E ever becomes false,
then the state function v stops changing. More precisely, a behavior σ
satisfies E+v iff either σ satisfies E, or there is some n such that E holds for
the first n states of σ, and v never changes from the (n+1)st state on. When
E is a safety property in canonical form, it is easy to write E+v explicitly.

We need to reason about the + operator only to check hypotheses of
the form |= C(E)+v ∧ C(M l) ⇒ C(M) in the Composition Theorem. We
can check such a hypothesis by calculating C(E)+v explicitly. While this

7

approach is viable, it is required only for noninterleaving specifications.
Proposition 3 below provides a better way of proving these hypotheses for
interleaving specifications.

4.2 ⊥
The specification M of a component can be made false only by a step that
changes the component’s output variables. In an interleaving representation,
we do not allow a single step to change output variables of two different
components. Hence, if E and M are specifications of separate components,
we expect that no step will make both E and M false. More precisely, we
expect E and M to be orthogonal (⊥), where E ⊥M is true of a behavior
σ iff there is no n ≥ 0 such that E andM are both true for the first n states
of σ and both false for the first n+1 states of σ.

We can use orthogonality to remove + from proof obligations:

Proposition 3 If E, M , and R are safety properties, and v is a tuple of
variables containing all variables that occur free in M , then |= E ∧R⇒M
and |= R⇒ E ⊥M imply |= E+v ∧R⇒M .

To apply this proposition, we must prove the orthogonality of component
specifications. We do this for interleaving specifications with the following
result.

Proposition 4
If |= C(E) = InitE ∧ ✷[NE]〈x, e〉

|= C(M) = InitM ∧ ✷[NM]〈y, m〉
then
|= (∃x : InitE ∨ ∃y : InitM) ∧ Disjoint(e, m) ⇒ C(∃∃∃∃∃∃x : E) ⊥ C(∃∃∃∃∃∃y :M)

Proposition 5 of [1] is a consequence of these two propositions.
If no step falsifies both E and M , and M remains true as long as

E does, then M must remain true at least one step longer than E does.
Hence, E ⊥ M implies the equivalence of E −� M and E +−� M . In fact,
(E +−� M) = (E −� M) ∧ (E ⊥M) is valid.

5 The Composition Theorem

Suppose we are given n devices, each with an assumption/guarantee specifi-
cation Ej

+−� Mj . To verify that the composition of these devices implements
a higher-level assumption/guarantee specification E +−� M , we must prove∧n

j=1(Ej
+−� Mj)⇒ (E +−� M). We use the following theorem:

8

Composition Theorem If, for i = 1, . . . , n,

1. |= C(E) ∧
n∧

j=1

C(Mj) ⇒ Ei

2. (a) |= C(E)+v ∧
n∧

j=1

C(Mj) ⇒ C(M)

(b) |= E ∧
n∧

j=1

Mj ⇒ M

then |=
n∧

j=1

(Ej
+−� Mj) ⇒ (E +−� M).

To discharge the hypotheses, we use Propositions 1 and 2 to eliminate
C’s, and Propositions 3 and 4 to eliminate the +v. The example in the
appendix illustrates how the propositions are applied.

Observe that the hypotheses all have the form |= P ∧ ∧n
j=1Qj ⇒ R.

Each formula P ∧ ∧n
j=1Qj is the conjunction of the specifications of compo-

nents that together form a complete system. In fact, simple logical manipu-
lation shows that this formula is equivalent to a canonical-form specification
of that complete system [1]. Thus, each hypothesis asserts that a complete
system satisfies a property R. In other words, the theorem reduces reasoning
about assumption/guarantee specifications to the kind of reasoning used for
complete-system specifications.

This theorem also allows us to prove conditional implementation results
of the form |= G ∧ ∧n

j=1(Ej
+−� Mj) ⇒ (E +−� M); we just let M1 equal G

and E1 equal true, since true +−� G equals G. For interleaving specifications,
we can in general prove only conditional implementation, where G includes
disjointness conditions asserting that the outputs of different components
do not change simultaneously.

Among the corollaries of the Composition Theorem are ones that allow
us to prove that a lower-level specification implies a higher-level one. The
simplest such result has as its conclusion |= (E +−� M l) ⇒ (E +−� M). This
condition expresses the correctness of the refinement of a system with a fixed
environment assumption.

Corollary If E is a safety property and

(a) |= E+v ∧ C(M l)⇒ C(M)

(b) |= E ∧M l ⇒M

then |= (E +−� M l)⇒ (E +−� M).

9

6 Conclusion

We have shown how to write assumption/guarantee specifications in TLA:
we simply specify the environment and the system as separate components,
and combine the specifications with the operator +−�. We compose assump-
tion/guarantee specifications with the familiar operator ∧. The Composition
Theorem then gives a rule for proving properties of large systems by rea-
soning about their components; it deals with both fairness properties and
hiding.

Our work was preceded by results in a long list of publications, de-
scribed next. Like ours, most previous composition theorems were strong,
in the sense that they could handle circularities for safety properties. Our
approach differs from earlier ones in its general treatment of fairness and
hiding. The first strong composition theorem we know is that of Misra and
Chandy [12], who considered safety properties of processes communicating
by means of CSP primitives. They wrote assumption/guarantee specifica-
tions as Hoare triples containing assertions about history variables. Pandya
and Joseph [13] extended this approach to handle some liveness properties.
Pnueli [14] was the first to use temporal logic to write assumption/guarantee
specifications. He had a strong composition theorem for safety properties
with no hiding. To handle liveness, he wrote assumption/guarantee specifi-
cations with implication instead of +−�, so he did not obtain a strong compo-
sition theorem. Stark [15] also wrote assumption/guarantee specifications as
implications of temporal formulas and required that circularity be avoided.
Our earlier work [3] was semantic, in a more complicated model with agents.
It lacked practical proof rules for handling fairness and hiding. Collette [7]
adapted this work to Unity. Abadi and Plotkin [5] used a propositional logic
with agents, and considered only safety properties.

So far, we have applied our Composition Theorem only to toy examples.
Formal reasoning about systems is still rare, and it generally occurs on a
case-by-case basis. When the specification of a component is used only to
verify a specific system, there is no need for a general assumption/guarantee
specification. For most practical applications, decomposition suffices. When
decomposition does not suffice, the Composition Theorem makes reasoning
about open systems almost as easy as reasoning about complete ones.

10

A Appendix: The Queue Example

A.1 An Informal Description of the Queue

In our example, we consider systems that communicate by using a stan-
dard two-phase handshake protocol [11] to send values over channels. The
state of a channel c is described by three components: the value c.val that
is being sent, and two bits c.sig and c.ack used for synchronization. We
let c.snd denote the pair 〈c.sig , c.val〉. We also write c for the triple
〈c.sig , c.ack , c.val〉. Figure 2 shows the sequence of states assumed in send-
ing the sequence of values 37, 4, 19, The channel is ready to send when
c.sig = c.ack . A value v is sent by setting c.val to v and complementing
c.sig . Receipt of the value is acknowledged by complementing c.ack .

We consider an N -element queue with input channel i and output chan-
nel o. It is depicted in Figure 3. To describe the queue, we introduce the
following notation for finite sequences: |ρ| denotes the length of sequence ρ,
which equals 0 if ρ is empty; Head(ρ) and Tail(ρ) as usual denote the head
(first element) and the tail of sequence ρ, if ρ is nonempty; and ρ◦τ denotes
the concatenation of sequences ρ and τ . Angle brackets are used to form
sequences, so 〈 〉 denotes the empty sequence and 〈e〉 denotes the sequence
with e as its only element. With this notation, the queue can be written as
in Figure 4, where large angle brackets enclose atomic operations.

We will define QM to be the TLA formula that represents this queue
process. It will be the queue’s guarantee—a component specification, of the
sort described in Section 2.2. It is impossible to implement this guarantee if
the environment does not obey the communication protocol. For example,
in a lower-level implementation, reading the input o.ack and setting the out-
puts o.sig and o.val would be separate actions. If the environment changed

initial
state

37
sent

37
acked

4
sent

4
acked

19
sent

c.ack : 0 0 1 1 0 0 . . .
c.sig : 0 1 1 0 0 1 . . .
c.val : − 37 37 4 4 19 . . .

Figure 2: The two-phase handshake protocol for a channel c.

✲

✛

i.snd

i.ack

✲

✛

o.snd

o.ack
Queue

Figure 3: A queue.

11

Process Queue:
output var i.ack , o.sig initially 0,

o.val ;
internal var q initially 〈 〉;
input var i.sig , i.val , o.ack ;
cobegin

loop ✂
✂✂

❇
❇❇

if (i .ack �= i .sig) ∧ (|q| < N)
❇
❇❇

✂
✂✂

endloopthen q := q ◦ 〈i .val 〉;
i .ack := 1− i .ack

‖

loop ✂
✂
✂

❇
❇
❇

if (o.ack = o.sig) ∧ (|q| > 0)

❇
❇
❇

✂
✂
✂

endloop
then o.val := head(q);

q := tail(q);
o.sig := 1− o.sig

coend

Figure 4: A queue process.

o.ack between these actions, the implementation could violate the require-
ment that it change o.val only when o.ack = o.sig . This problem is not an
artifact of our particular representation of the queue; actual hardware imple-
mentations of a queue can enter metastable states, consequently producing
bizarre, unpredictable behavior, if their inputs are changed when they are
not supposed to be [11]. An implementable specification of the queue must
include an assumption QE asserting that the environment obeys the com-
munication protocol.

A.2 The Queue as a Complete System

Before defining QM and QE , we write a TLA specification of the complete
system comprising the queue and its environment.

A channel is initially ready for sending, so the initial condition on wire
c is the predicate CInit(c) defined by

CInit(c) ∆= (c.sig = c.ack = 0)

The operations of sending a value v and acknowledging receipt of a value on
channel c are represented by the following Send(v, c) and Ack(c) actions.

Send(v, c) ∆= ∧ c.sig = c.ack
∧ c.snd ′ = 〈v, 1− c.sig〉
∧ c.ack ′ = c.ack

Ack(c) ∆= ∧ c.sig �= c.ack
∧ c.ack ′ = 1− c.ack
∧ c.snd ′ = c.snd

12

✲

✛

i.snd

i.ack

✲

✛

o.snd

o.ack
Queue

S
e
n
d
e
r

R
e
c
e
i
v
e
r

Figure 5: The complete system of queue plus environment.

To represent the queue as a complete system, we add an environment that
sends arbitrary natural numbers over channel i and acknowledges values on
channel o. The resulting complete system is shown in Figure 5.

The TLA formula CQ specifying the queue is defined in Figure 6. It has
the canonical form ∃∃∃∃∃∃x : Init ∧✷[N]v ∧ L, where:

x is the internal variable q, which represents the sequence of values received
on the input channel i but not yet sent on the output channel o.

Init is written as the conjunction InitE ∧ InitM of initial predicates for
the environment and the queue. (We arbitrarily consider the initial
conditions on a channel to be part of the sender’s initial predicate.)

N is the disjunction of two actions: QM , describing the steps taken by the
queue, and QE ∧ (q′ = q), describing steps taken by the environment
(which leave q unchanged). Action QM is the disjunction of actions
Enq and Deq . An Enq step acknowledges receipt of a value on i and
appends the value to q; it is enabled only when q has fewer than N
elements. A Deq step removes the first element of q and sends it on o.
Action QE is the disjunction of Put , which sends an arbitrary number
on channel i, and Get , which acknowledges receipt of a number on
channel o.

v is the tuple 〈i, o, q〉 of all relevant variables. (Informally, we write 〈i, o, q〉
for the concatenation of the tuples i, o, and 〈q〉.)

L is the weak-fairness condition WF〈i, o, q〉(QM), which asserts that a queue
step cannot remain forever possible without occurring. It can be shown
that a logically equivalent specification is obtained if this condition is
replaced with WF〈i, o, q〉(Enq) ∧ WF〈i, o, q〉(Deq).

Formula CQ gives an interleaving representation of a queue; simulta-
neous steps by the queue and its environment are not allowed. Moreover,
simultaneous changes to the two inputs i.snd and o.ack are disallowed, as
are simultaneous changes to the two outputs i.ack and o.snd .

13

InitE
∆= CInit(i) Environment

ActionsPut ∆= (∃v ∈ Nat : Send(v, i)) ∧ (o′ = o)
Get ∆= Ack(o) ∧ (i′ = i)
QE

∆= Get ∨ Put

InitM
∆= CInit(o) ∧ (q = 〈 〉) Queue

ActionsEnq ∆= ∧ |q| < N
∧ Ack(i) ∧ (q′ = q ◦ 〈i.val〉)
∧ o′ = o

Deq ∆= ∧ |q| > 0
∧ Send(Head(q), o) ∧ (q′ = Tail(q))
∧ i′ = i

QM
∆= Enq ∨ Deq

ICL ∆= WF〈i, o, q〉(QM) Complete
System
Specification

ICQ ∆= ∧ InitE ∧ InitM

∧ ✷

[
∨ QE ∧ (q′ = q)
∨ QM

]
〈i, o, q〉

∧ ICL
CQ ∆= ∃∃∃∃∃∃ q : ICQ

Figure 6: The specification CQ of the complete queue.

A.3 The Component Specifications

We now describe the queue and its environment as separate components,
specified in canonical form. For the queue component, the tuplem of output
variables is 〈i .ack , o.snd〉, the tuple e of input variables is 〈i .snd , o.ack〉,
and the specification is

IQM ∆= InitM ∧ ✷[QM]〈i .ack , o.snd , q〉 ∧ ICL

QM ∆= ∃∃∃∃∃∃ q : IQM
(1)

The specification of the environment as a separate component is

QE ∆= InitE ∧ ✷ [QE]〈i .snd , o.ack〉 (2)

A.4 Implementing a Queue

The complete system composed of two queues in series and their environ-
ment, shown in Figure 7, implements a single larger queue and its environ-
ment. In Figure 8, the specification CDQ of the composite system is defined

14

✲

✛

i.snd

i.ack ✛

✲z.snd

z.ack
Queue1

S
e
n
d
e
r

✲

✛

o.snd

o.ack
Queue2

R
e
c
e
i
v
e
r

Figure 7: A complete system containing two queues in series.

ICDQ ∆= ∧ InitE ∧ Init [1]
M ∧ Init [2]

M

∧ ✷



∨ QE ∧ 〈q1, q2, z〉′ = 〈q1, q2, z〉
∨ Q[1]

M ∧ 〈q2, o〉′ = 〈q2, o〉
∨ Q[2]

M ∧ 〈q1, i〉′ = 〈q1, i〉



〈i, o, z, q1, q2〉

∧ ICL[1] ∧ ICL[2]

CDQ ∆= ∃∃∃∃∃∃ q1, q2 : ICDQ

Figure 8: Specification of the complete double-queue system of Figure 7.

in terms of the formulas from Figure 6. We let F [e1/v1, . . . , en/vn] denote
the result of substituting each expression ei for vi in a formula F , and let

F [1] ∆= F [z/o, q1/q], F [2] ∆= F [z/i, q2/q], F [dbl] ∆= F [(2N + 1)/N]

The composite system implements a (2N + 1)-element queue; formally,
CDQ ⇒ CQ[dbl] is valid. This result is proved by standard TLA reasoning
using a simple refinement mapping [10].

A.5 Composing Open Queues

In Section A.4, we specified the composition of two queues with their en-
vironment directly as a complete system, and stated that it implements a
larger queue with its environment. We now consider open queues, described
by assumption/guarantee specifications. Using the Composition Theorem,
we show that the composition of two open queues implements a larger open
queue.

The assumption/guarantee specification of the queue of Figure 3 is
QE +−� QM , where QM and QE are defined in (1) and (2) of Section A.3.
The assumption/guarantee specifications of the two queues in Figure 7 are
obtained from QE +−� QM by substitution; they are QE [1] +−� QM [1] and

15

QE [2] +−� QM [2]. We want to show that their composition implements the
(2N +1)-element queue specified by QE [dbl] +−� QM [dbl]. The obvious thing
to try to prove is

(QE [1] +−� QM [1]) ∧ (QE [2] +−� QM [2]) ⇒ (QE [dbl] +−� QM [dbl]) (3)

We could prove this had we used a noninterleaving representation of the
queue. However, (3) is not valid for an interleaving representation, for the
following reason. The specification of the first queue does not mention o,
and that of the second queue does not mention i. The conjunction of the
two specifications allows an enqueue action of the first queue and a de-
queue action of the second queue to happen simultaneously, a step that
changes i.ack and o.snd simultaneously. But, in an interleaving represen-
tation, the (2N + 1)-element queue’s guarantee does not allow such a step,
so (3) must be invalid. Another problem with (3) is that the conjunction of
the component queues’ specifications allows a step that changes z.snd and
o.ack simultaneously. Such a step satisfies the (2N + 1)-element queue’s
environment assumption QE [dbl], which does not mention z , so (3) asserts
that the next step must satisfy its guarantee QM [dbl]. However, a step
that changes both z.snd and o.ack violates the second component queue’s
environment assumption QE [2], permitting the component queue to make
arbitrary changes to o.snd in the next step. A similar problem is caused by
simultaneous changes to i.snd and z.ack .

We prove that the composition implements the larger queue under the
assumption that the outputs of two different components do not change
simultaneously. Thus, we prove

G ∧ (QE [1] +−� QM [1]) ∧ (QE [2] +−� QM [2]) ⇒ (QE [dbl] +−� QM [dbl]) (4)

where G is the formula

G
∆= Disjoint(〈i .snd , o.ack〉, 〈z .snd , i .ack〉, 〈o.snd , z .ack〉)

The proof is outlined in Figure 9.

16

1. C(QE [dbl]) ∧ C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ QE [1] ∧QE [2]

Proof: We use Propositions 2 and 1 to remove the quantifiers and clo-
sure operators from the left-hand side of the implication. The resulting
formula then asserts that a complete system, consisting of the safety parts
of the two queues (with their internal state visible) together with the en-
vironment, implements QE [1] and QE [2]. The proof of this formula is
straightforward.

2. C(QE [dbl])+〈i, o, z〉 ∧ C(QM [1]) ∧ C(G) ∧ C(QM [2]) ⇒ C(QM [dbl])
2.1. C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ C(QE [dbl]) ⊥ C(QM [dbl])

2.1.1. C(IQM [1]) ∧ C(IQM [2]) ⇒ ∃ q1, q2 : Init [1]
M ∧ Init [2]

M

Proof: Follows easily from Proposition 1 and the definitions.
2.1.2. C(QM [1]) ∧ C(QM [2]) ⇒ ∃ q1, q2 : Init [1]

M ∧ Init [2]
M

Proof: 2.1.1 and Proposition 2 (since any predicate is a safety prop-
erty).

2.1.3. Q.E.D.
Proof: 2.1.2, the definition of G, and Proposition 4 (since disjoint-
ness is a safety property).

2.2. C(QE [dbl]) ∧ C(G) ∧ C(QM [1]) ∧ C(QM [2]) ⇒ C(QM [dbl])
Proof: We use Propositions 2 and 1 to remove the quantifiers and
closures from the formula. The resulting formula is proved when proving
the safety part of step 3.

2.3. Q.E.D.
Proof: 2.1, 2.2, and Proposition 3.

3. QE [dbl] ∧G ∧QM [1] ∧QM [2] ⇒ QM [dbl]

Proof: A direct calculation shows that the left-hand side of the implica-
tion implies CDQ , the complete-system specification of the double queue.
We already observed in Section A.4 that CDQ implements CQ [dbl], which
equals QE [dbl] ∧QM [dbl].

4. Q.E.D.
Proof: 1–3 and the Composition Theorem, substituting

M1 ← G M2 ← QM [1] M3 ← QM [2] M ← QM [dbl]

E1 ← true E2 ← QE [1] E3 ← QE [2] E ← QE [dbl]

Figure 9: Proof sketch of (4).

17

References

[1] Mart́ın Abadi and Leslie Lamport. Decomposing specifications of con-
current systems. Submitted for publication.

[2] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real
time. Research Report 91, Digital Equipment Corporation, Systems
Research Center, 1992. An earlier version, without proofs, appeared in
[8, pages 1–27].

[3] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1):73–132,
January 1993.

[4] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. Research
Report 118, Digital Equipment Corporation, Systems Research Center,
1993.

[5] Mart́ın Abadi and Gordon Plotkin. A logical view of composition and
refinement. Theoretical Computer Science, 114(1):3–30, June 1993.

[6] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[7] Pierre Collette. Application of the composition principle to Unity-like
specifications. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAP-
SOFT’93: Theory and Practice of Software Development, volume 668
of Lecture Notes in Computer Science, pages 230–242, Berlin, 1993.
Springer-Verlag.

[8] J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors. Real-Time: Theory in Practice, volume 600 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1992. Proceedings of a
REX Real-Time Workshop, held in The Netherlands in June, 1991.

[9] Cliff B. Jones. Specification and design of (parallel) programs. In
R. E. A. Mason, editor, Information Processing 83: Proceedings of
the IFIP 9th World Congress, pages 321–332. IFIP, North-Holland,
September 1983.

[10] Leslie Lamport. The temporal logic of actions. Research Report 79,
Digital Equipment Corporation, Systems Research Center, December
1991. To appear in Transactions on Programming Languages and Sys-
tems.

[11] Carver Mead and Lynn Conway. Introduction to VLSI Systems, chap-
ter 7. Addison-Wesley, Reading, Massachusetts, 1980.

18

[12] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.
IEEE Transactions on Software Engineering, SE-7(4):417–426, July
1981.

[13] Paritosh K. Pandya and Mathai Joseph. P-A logic—a compositional
proof system for distributed programs. Distributed Computing, 5(1):37–
54, 1991.

[14] Amir Pnueli. In transition from global to modular temporal reason-
ing about programs. In Krzysztof R. Apt, editor, Logics and Models
of Concurrent Systems, NATO ASI Series, pages 123–144. Springer-
Verlag, October 1984.

[15] Eugene W. Stark. A proof technique for rely/guarantee properties. In
S. N. Maheshwari, editor, Foundations of Software Technology and The-
oretical Computer Science, volume 206 of Lecture Notes in Computer
Science, pages 369–391, Berlin, 1985. Springer-Verlag.

19

