7/

SRM,/16

THE UNIVERSITY OF NEWCASTLE UPON TYNE

COMPUTING LABORATORY

A Switch for Connecting Computer Components

C.G. Bell
H.C. Lauer
B. Randell

3rd June, 1971

In a PDP-11 system as currently defimed by DEC [1,2],
there is exactly one central processor which communicates with
many peripheral devices and memory units over a single bus,
called the Unibus. The system architecture, however, provides
no means for connecting several processors together into one
system, In this memo, we discuss the possible design of a
"gwitch" to accomplish this connection.

The design is motivated by several considerations. On
one hand, we want & switch which allows several devices to have
access to shared devices on a word-by-word basis. In this
sense, the switch is a dynamic one, and the term "multiplexor"
might be more characteristic of its function. On the other
hand, we require a switch which allows the static recordfiguration
of computer components into one or several computer systems. In
this sense, the term "configurator" might be more appropriate.

For both aesthetic and practical reasons, we require that
the switch be as general as possible without sacrificing
performance, that it be both reliable and failure-tolerant, that
it be easily expandable to accommodate more components, and that
it demand few, if any, hardware modificatioms to standard PDP-11
components, It became apparent, when the authors were
investigating various possible designs, that a switch which
preserves the logical structure of the Unibus would be both
elegant and practical.

In the following material, we will review some of the
considerations which led to our design. Then we will discuss
the design itself and comment on its implications.

Functional Requirements

The switch design was originally motivated by the needs of
two research projects, but its applications are manifold. In
the proposed project on Highly Reliable Computer Systems at the
University of Newcastle, multiple processor systems, networks
of separate but cooperating computers,and systems which share only
e few components must be investigated. We prefer not to let the
research be prejudiced by a given kind of hardware configuration.
Furthermore, we must have the ability to remove a faulty
component and to service it "off-line" with whatever other
components are needed to service it, whilst the remainder of the
system operates normally, protected from the repairing and testing.
The Netrwork Project at Carnegie-Mellon University requires the
ability to allocate a subset of the components to & user for
testing parts of operating systems on "bare hardware", isolated
and protected from the other components. In both projects, the
switch must permit systems with more than one processor. It
must also provide the ability to test new, undebugged hardware
without interfering with other work,

The possible epplications of the switch beyond these two
research projects are too numerous to mention, As a static
switch, igs principal benefit is in systems where reconfiguration
and/or expension is done frequently. In its dynamic function
a8 a multiplexor, it will enable the single-processor PDP-11
system to be expanded into a multiple-processor system.

Because the static function of the switch ig to pariition
the set of components into separate, possibly untested,systems
it must pot be under the control of any of the switched devices,
', it should bs ragarded as & "manual' switch with
wly long periods {i.s,, 4~hour or more) between
roconfigurations, The problem of connecting and disconnseting
components under program control in a multiple processor
system i8 an interesting one, but it can and should bs
investigeted separately, The "manual” character of our switch
providesz the necessary protection when the mechanisms of sny
component (except, possibly, the switch itself) fail due to
hardware or program faults.

In addition to connecting components into systems, we
will also demand that our switch facilitate the renaming of
thege objects, For sxample, if all of the core memory were
divided between two separate systems, each gystem might want
its address space t0 begin with location zero and increase
linesgrly, The switch must map the logical memory names from
the two systems into the absolute memory addresses recognised by
the hardware components, As with the setting of the switch
itself, this mapping must be static and not und=r programmed
control of any component in order to protect the hardware
contiguration from faults. Thus this mappicg 18 qult= dlistinet
from th: program-conbroilsd mapping functions, such as
provided by paging end segmsntation fuc’lities, that wmight be
used in the gystem or svetsms that are configured with the switch.
(The des’ign of such program—controlled mapping tunciions, with
particular xsferspcs to the problems of tolerating hardwars
faults and progrem bugs, is ons of the toplcs that will be
tackled in the projectsd researct projsct on highly rsliable
sy ehews, |

Stepctur= of th- Switch

Given that a collection of processgors, memori-s< ano
peripherald control units are to be comnnected together, any of
several acceptsd methods might be used, Figure 1 deplcts a
gystem in which each peair of communicating components is
connected by a separate, physical link, e.g, the Modular One
syatem, The nmotation used is the PMS-notation of Bell and
New=11[3],

P - Central Processor

Mc - Primary memory

K - Controller for slow I/0 device (e.g. card reader)
Ki - Controller for fast device (e.g. disk)

Figure 1

Nots that a distinction has been made between "sglow" peripheral
controllers (K,) and "fast” ones (K%). The slow controllers
are incapable of transferring information to and from memory
directlys; they must interrupt a processor to accomplish this
function, Thus, there are no links from any K to any M .

The fast devices, such as disks and tapes, can be P
programmed to transfer data to or from memory directly, hence
the links between each K, and M. Thers must also be links
between the K, and the processors P, for the purpose of
transmitting control information,

If there are p processors, m memorieos, k fast controllers,
and k silow controllers, then the number of ca%les and connection
pairs reguirad is

p* (k+k+m +m*k
1 z

1
Each is expensive and a source of unreliability.
(Not shown are the comnections necessary for communication among
the processors themsclves, The PDP-11 provides no such facility
and it would be impractical to alter the processors to allow direct
communication, However, special slow controllers can be built
to relay messages and interrupts between processors, thereby
providing a convenient communication mechanism within the philosophy
of the existing systsm.)

In order to provide the facilities we require for
reconfiguration, the system of Figure 1 would require a toggle
in each link to allow it to be "cut" (i.e., to forbid any
communication over it) manually. It would also require a
rotary switch, or its electronic equivalent, to perform the
renaming funciion. This rotary switch would specify thke sets
of addresses by which each device on a link would address the
other., The dynamic function of the switch is
implemented by machinery in each component to resolve conflicts
in simultaneous communications over more than one link.

A second method of connecting components is via the
distributed crossbar network, as illustrated in Figure 2 and
as found en the IBM System/360 Model 67 and other systems. The

M
b~
—
M
P
S X
M
P
) K
i t
| s
J »
~K
X ?
g]
»]
.
8 e 4
P P
< [+
Figure 2

junctions showa in the figure as "T-junctions" actually loop
into each device, I.e., the vertical line from a P is
actually represented by a set of cables, the first from P to
the first Ks, the second from that Kh to the next, and socon,
to comnect all Ks7 Kf, and Mp. Thus the number of cables
and connection paivrs is

pr(k, + kot m) + k*m
the same as before,

In this configuration, the static function of the switch
is implemented by a toggle and rotary switch in each
horizontal line, while the dynamic function is implemented as
in Figure 1,

In Figures 1 and 2, the switching machinery is distributed
over the various components being switched. A third alternative
is to centralize the switching function into one module to which
all components would be connected. TFigure 3 illustrates
such a scheme in which the vertical lines are trunk lines and
the horizontal lines are the links to the individual components.
The trunks are capable of setting up a conversathion between any
pair of components capable of maintaining one by making the
connections at the appropriate crosspoints (marked by "x" in the
figure).

% — o x

M | y !
k H‘&) N
K 4 i %
. !

‘ %, r ¥ |
2 sif ‘|
3 % l |

figure_&

The making and breaking of these connections in response
to requests from components fulfills the dynamic function of the
switch. The static function is accomplished by permitiing or
prohibiting such connections. Thus, for example, the set of
components can be partitioned into two disjoint systems by
allocating trunks to the partitions and only permitting
connections to be made between a component and a trunk in the
same partition.

The number of cables and connection pairs in this
configuration is
m+ p+ k + ko,

a considerable saving over the prev1ous examples.

Not shown in Figure 3, but very necessary, is the
arbitration mechanism which resolves conflicts when there
are several requests on each trunk line, The PDP-11 Unibus
is essentially a trunk line, and such a mechanism is contained
in (but not functionally integral with) the procsssor. This
suggests an alternate version of Figure 3 which is more in
keeping with the PDP-11 system structure, as illustrated in
Figure 4, The control units labelled K, are these arbitration
mechanisms, and are capable of resolving conflicts on each
vertical Unibus. Still necessary is the mechanism for
resolving conflicts on the horizontal links, These are

labelled K but are physically and functionally part of ihe
switch, ¢

As with Figure 3, the number of cables and connections
is

=]
+

=]
+
=
+

|
|
|
|
|

-
—X
" 4

i

N

O

=
3

‘,.,A;.% e
L

=
L.
N

. ¥ <
. | !
: ;
K ‘ K
£ l Ef 7‘;:(’ - i
K l ;,Jf s K
; o
% | n
k o A——
I
P P
) Figure 4,)

Characteristics of the Unibus

In order to be able to understand the funciions of
the various parts of the switch, a short review of the
PDP-11 Unibus structure is in order, There are several
different kinds of lines on a Unibus to carry different
kinds of signals. These lines include:

1) Address Lines

2) Data Lines

3) Centrol Lines

4) The Interrupt Line
5) Request Lines

6) Grant Lines

All of these are arranged in a linear fashion with the bus
arbitration control unit at one end and an electrical
termination at the other end. A central processor is connected
to the Unibug through the arbitration unit, but all other
devices (i.e., memoriss,controllers, etc.) are connect:d in a
uniform way. The appropriate lines from each device are
connected in parallel across all of the Unibus Lines except

the grant lines. The grant lines loop into each device and
signals are transmitted in a pass—~the-pulse manner. Thus,

a Unibus has the structure of Figure 5,

Address _
e 7 s R
h_'—} Data v e . P
> 1 Control v« o o g
P —KB - ki sp——Lnterzupt. - » -— £
¢ | g i Reques?d | o« oo,
1 i_ii;am;.. e s,
1 ?E i |
\ il
!Eﬁi i electrical
I;HI | termination
il
%Msl l
Device Dzvice
(K or M) (K ox M)
Pignre 5,

A component connected to the Unibus can be either
active, passive, or both. An active device is one which can
request control of +the bus, place an address on ihe address
lines (thereby broadcasting i% to all devices), and e’+her
transmit or receive data or sxercisze a control function. A
passive device is one which cannot request conirol of the
bus; it can only rscognize addresses and sither accept or
return data. In the PDP-17 system, a central procassor is
a strictly active device, while a core memory is strictly
passive, The controllers for peripheral devices (i,e. Kand
Ks)are both active and passive: +they are active in the
sense that once they ars operating they can move data to and
from core directly or fransmit interrupts on the interrupt line;
they are passive in the sense that their ccntrol registers are
treated just like memoxy cells,

The arrows in Figure 5 indicate the possible directions
of information flow on the Unibus. Since active and passive
devices may be connected in any order, addresses must be
transmitted in both directions. The data lines are naturally
two—way since any active device can either read or write.

Of the various control lines, some are bidirectional, some

are unidirectional from the bus arbitration controller to
devices, and some are unidirectional from devices to the bus
arbitration controller. The interrupt line is unidirectional
from the devices; 1i.e., only the processor can recognize an
interrupt. An active device which requires the use of the
bus must transmit its request to the bus controller on one

of the unidirectional request lines. When the controller
grants the request, it replies on the corresponding grant line.
This signal is passed sequentially from device to device until
it is interce pted by the requesting device. Thus if two
devices have requests on the same request line, the one nearer
the processor gains control.

The granting of requests depends, in part, upon the
internal priority of the processor. I.e., a request from a
device for control of tle bus ishonoured only if it is a higher
priority than that of the priority register in the processor.
Because of tle nature of the grant lines, devices nearer the
processor are of higher priority than those farther away. I.e.,
they are able to intercept the appropriate grant signal as it
passes by.

This mechanism insures that at most one of the active
devices is in control of the Unibus at any one time, and that
conflicting requests are resolved.

The Horizontal Links

We have seen that the Unibus structure provides the
necessary conflict resolution machinery on the vertical lines of
Figure 4 (provided, of course, that the devices retain their
Unibus compatability). There are two other kinds of conflicts
which must still be resolved: 1) the case when requests on two
vertical Unibuses are made to the same device; and 2) the
case when a device requesting control of a Unibus has several to
choose from. These must be handled by the parts of Figure 4
labelled K, and which, for want of a better name, we call the
basic modules of the switch.

In order to specify the basic modules, we must first
consider the structure of the horizontal links. Unless we are
prepared to modify each device (Mp. K.orKk) which we connect
to the switch, we had better guarantee that "the electrical and
logical characteristics of these links ar identical to those of
the Unibus, at least so far as the individual devices are
concerned. One way to do this (indeed, the traditional way in
hardware design) is to tailor each horizontal link to the device
it serves. The alternative, more in keeping with the PDP-11
design philosophy, is to guarantee that each horizontal link
always looks like a Unibus.

This has many advantages. For exampl=z, all horizontal
links are identical and thus independent of the {ype of
devices connected. Furthermore, all standard PDP-11 devices
can be connected without modification. More important, the
connections of a horizontal link to the various vertical
links can have a form very much like the connection of a
Unibus to various devices. Thus, the arbitration machinery for
resolving conflicts on a horizontal link can have much the
same form as that of , the Unibus arbitration control.
(Unfortunately, it does not yet appear that we can use KB
directly).

Another advantage of making each horizontal link icok
like a Unibus is that several devices can be counected to one
link, as in Figure 6.

M, M, M |‘_-"”"7
| i

»
——

Figure 6.

This is exactly the way multiple devices are connected in she
existing PDP-11 system. It makes possible a subsbtantisl
reduction in the number of horizontal links, and thevefore _n
the number of basic modules in the switch.

' ' ’ (Note that in configurawiops
such as those of Figures 1 and 2, special controllers, called
I1/0 controllers or multiplexors, are introduced to permit the
connection of several devices to one node of a bus. Figure 7
depicts a conventional way of doing this in the system of
Figure 2.)

to other
devices

/__/\/"‘/\

——
VV—-J
from the
P
C
Figure 7.

An observation to bz made is that the essential
difference between the horizontal and vertical links is that
the vertical links terminate in the bus arbitration mechanism
(i.e., , or the left end of Figure 5) while the horizontal
links terminate with an electrical termination (the right end
of Figure 5). Thus while each type of link is a Unibus,

they represent "opposite ends" of the Unibus.

We can now summarize the structure of the switch as a
device for connecting Unibuses while maintaining their logical
and electrical characteristics, The dynamic function of the
switch, i.e., as a muitiplexer of communications among system
components, is served by the Unibus architecture itself.

The static function, that of permitting or prohibiting
connections and of renaming componente, is served by toggles
at each of the crosspeints. The resulting switch combines
the full flexibility of +the Unibus itself with the
requirements of multiple processor systems, shared devices,
and arbitrary reconfigurability.

Addressing and the Static Function

When any device has control of a Unibus and it wants to
communicate with another, it broadcasts the address of the
second on the address lines., All devices inspect that address,
but onrly its owner replies, thereby establishing the communication
link. This is complicated by our switch structure. For
example, addresses broadcast on a vertical link must be
recognized by the appropriate crosspoint and be rebroadcast on

the proper horizontal link, At the same time, that crosspoint
must establish a connection so thatv the two buses look like a
single continuous Unibus. Consequently, there is a heavy

responsibility within each basic module for recognizing and
rebroadcasting addresses,

How this is implemented often imposes serious constraints
on the flexibility of the system and the type of development
which can be carried out on it. We require a scheme which
i¢ both general and rational and which provides maximum
flexibility with device name assignments. Giving all
components fixed, unique, addresses in a uniform name space
is a general schems, but it poses mwany problems similar to

those of absolute addresses in software. I.e., eve time

b
wa want to change something, it is necessary to track down all
of *he instances of its name. Since these can be buried in

both programs and data, it is an impossible task.

An alternative scheme is to provide an address translation
mechanism as part of each crosspoint mechanism or basic module.
Then each horizontal 1ink would have the same small, but
fixed, set of names assignad to it. Whenever an address is
broadcast on a vertical link, the basic module rebroadcasts
a translated version on the horizontal link. The actual
mapping function is specified in part of the static or manual
setting of the switch., This has several advantages. First,
identical devices can be connected to diffevent horizontal links
and can be replaced by "off-the-shelf” spares when faulty; no
renaming 1s necessary at replacement time. Second, if the
switch is used to partition vhe set of components into several
svstems, each can have whatever naming conventions it chooses.
In particular, two suck systems can be made completely identical,
in particular with respsct to the names of their components,

While it would be convenient to have separate address
recognition and mapping Facilities at each crosspoint (as in
Figuwe 8a), this would be expensive and impractical. A
suitable compromise has & uniform facility across an entire
herizontal link within the switch, 0f course, it is still
necessary to havs a toggie at each crosspoint in order to permit
or forbid connections. Figure 8b illustrates the basic module
ef a horizontal lirk in which the address mapping (symbol D,,
meaning data operation in the PMS notation) is implemented.

Vertical Unibuses within the

e e

—__switch
e TN

! :

™~ .

D
l ™~ ~d !
i

Unibus

Note: Data cperation "D " is the address mapping function.

(a)

]
: , l |
ibus L |

| -D, \S;\,\ Sz\II \St\l |

Note: D, is as above, S, is the toggle which permits or
prohibits connections.

(b)

Figure 8.

With this arrangement, the devices connected to one
horizontal Unibus can be connected or disconmected from
any vertical Unibus as a group, and they can be renamed
within the system as a group. The actual range of the
address mechanism has not yet been resolved. Cleariy,
it must be capable of recognizing the addresses of one
memory module and translating them into hardware addresses,
presumably starting at zero. But if peripheral devices
could also be connected to the same Unibus, it might be
desirable to recognize and map a second range of addresses,
as well,

Dvnamic behaviour of the Switch

The basic module in the switch is the set of cross-
point connections and the address mapping for ome horizontal
Unibus, i.e., Figure 8L, Expandability is achieved in the
vertical direction by duplicating these modules. As we
will see below, expandability in the horizontal direction
(i.e., in the number of processors) will be more difficult
because of implementation reasons.

The basic module must perform different functions on the
different lines of the Unibus in response to the signals on
those lines. These functions will be grouped into +three
categories:

1) +o connect & vertical Unibus to a horizontal Unibus
when an appropriate address appears on the vertical lines
and tc resolve conflicts among the latter;

2) to connect a request line (see Figure 5) from a davice on
the horizontal bus to the corresponding line on an
appropriate vertical bus, thereby transmitting the requestd
to a processor - bus controller; and

%) to connect a horizontal bus to a vertical bus in respons:
to the granting of a request,

Our basic zruvie is thst whenever a connection is made, the
horizoental and vertical link together present the appearance

of one Unibus. Whenevzr a connection of the thivd ftype is nmaca,
the horizontsl and veriical links present the appearance of one
vertical Unibus. capable of being connected to another

herizontal link, If there are p processors, hence p vertical
buses, and m + k herizontal buses, then the number of
communication paths which can be established simultaneousiv is

min (p, m + k).

Figure 9 illustrates three simultaneous conversations, one
between a processor and memory, the second between a processor
and & slow controilex, and +the third between a fast controiler
and a memory. The dashed lines represent the apparent Unibuses

 type 1
—_— —— —— — ;;3;;/ connections

|~ type 3
£ connections

Figure 9.

created by the type 1 and type 3 connections. Note what
the rightmost processor is temporarily unable to use if-
Unibus while the K ~ M conversation is taking plac:=,
This is the same circumstance as occurs in single—
processor PDP--11 systems,

Connections of type 1) are the simplest. For ecach
vertical bus which is presenting an address and approprlat-
control signals, the basic module selects one according to
some priority or round-robin rule, ignoring all iines fox
which the crosspoint toggles forbid a connection. It
then connects the data lines for two-way informetion
transfer and velays the appropriate control signals te sad
from the horizontal bus, The connection is broken aft.-
the data transfer is completed.

Connections of type 2) are more complicated. Any
request for bus control (i.e. either a non-processor regu-:*
or a priority interrupt request) from any devicz on a
horizontal Unibus must be routed to the bus arbitration
controller on one of the vertical lines. Clearly, if a
certain crosspoint connection is not permitied (by vir+ue of
the toggle setting), the request cannot be routed that wayv,
However, it may be desirable that the request be restricted
to one of a subset of processors for which the connection Is
enabled. For this reason, we need another set of toggles

- 14 -

at the crosspoints to permit or forbid the routing of bus
requests through them,

Typically, there will be more than one vertical bus
to which a bus request can be connected. The basic
module must then dioose one of these, presumably based on
the priority of the various processors. Thus, it must
have access to the three priority bits of each processor
state word. These are, apparently, not difficult to get,
but they must be routed to the switch on separate wirss
since there is no room for them on the Unibus. When a
choice is made, that request line is connected to the
request line of the vertical Unibus. Alternatively, an
"address" mapping structure for translating interrupts fromw
the horizontal to vertical Unibus can be implsmented,

This would be conceptually similar to (but much simplex
than) the address recognition facilities of Figurs 8b,

Connections of type 3) now become relatively
straight-forward. When a bus controller grants a regusst,
it sends out a pulse on a bus grant line (see Figure 5%,
This is relayed from device to device, or basic module to
basic module, until it reaches the requestor. Thus a
basic module must be prepared to accept and divert a bus
grant signal whenever its horizontal Unibus has the
corresponding request line raised, When it does so, it
connects the address, data, interrupt, and control linus
of the horizontal bus to those of the vertical bus.

An important constraint is placed on connecting e
a horizontal Unibus those active devices which can iniwiate
their own data transfers (i.e., the K). Since thess
devices broadcast addresses, they will be inspected by all
other devices on that Unibus, plus all of the devices on a
vertical bus to which a type 3 connection has been made
(including the other crosspoints on that vertical bus),
This can lead to confusion in short order if a device on
the horizontal bus happened to have the same hardware
address as specified by D, in some other basic module. In
fact, any attempt by K, to communicate with a device on the
same horizontal bus will be troublesome because the address
translation mechanism (i.e,, the Da of Figure 3b) will not
be invoked. This problem can be solved by alwaysz assigning
fast controllers to different horizontal Unibuses from any
devices with which it corresponds,

Control of the Switch

The switch we have just described serves both "dynamic”
and "static" functions. Its dynemic functionsg are controllsd
by the requests and communications on the various Unibusee.
and the speeds of these functions are the speedsz of the
Unibus operations (i.es,.u 100 nsec). The static functions
are embodied in the crosspoint toggles and address maps, and
they are under the direct control of an operater. Thus
switching rates are of the order of minutes, hours, or days.

- 15 -~

There are several interesting methods of providing
operator control of the switch. Any of them can be
implemented independently from the switch itself if the
controls take the form of logic signals to basic switch
modules, (I.e., for each crosspoint, logic signals
indicate whether or not the "toggle" is closed and whether
or not bus requests may pass through that crosspoint).
Similarly, other logic signals should indicate which range
of addresses is to be accepted by that module. The function
of whatever control panel is chosen is to produce those logic
signals, preferably only in the right combinations.

A simple control panel would consist of toggle
switches for the crosspoints and rotary switches for the
address selection. This has the disadvantage that reliability
of the switch becomes limited by the reliability of these
mechanical components and that there is no protection against
improper settings (in the address translation). An
apparently more reliable form of switch is the plastic
cylinder containing magnets used on the IBM 2314 disk drives.
These are less prone to faults because there are no moving
parts, and they can be made relatively idiot-resistant by
encoding distinct mappings into separate cylinders so that
duplication is impossible.

Both schemes involve manually setting up the configuration
whenever necessary. This would probably be practical when
the number of links, both horizontal and vertical, is small.
But as this number grows, the set-up time, cost, and
complexity go up rapidly. The task of manually setting the
switch becomes much like that of programming machines with
plugboards. Furthermore, it becomes practically impossible to
reconfigure one subset of components while a disjoint subset
is running, for fear of throwing the wrong switch.

An alternative scheme is to use a small, dedicated
computer to control the gwitch. It would set the various
toggle and address translation functions as registers in its
own environment., Properly programmed, such a processor would
insure that all of the settings were consistent and would
provide a convenient way of reconfiguring the components
attached to the switch.

This use of a computer is closely related to another
use suggested for the PDP-11, namely that of "driving" the
operator's console,. Since the leads to lights and switches
on a PDP-11 control panel terminate at a plug on the back of
the machine, they can be connected to the dedicated machine,
Then it becomes possible to control several CPU's at once and
to cause complicated operator procedures to be executed with
a single command. The potential in this form of control
for both the switch and the processors is enormous,

- 16 -

Comments

In order to keep costs, performance, and reliability
within reasonable bounds, it is necessary, in part, to
minimize the number of connections and drivers between
Unibus or twisted pair signals and logic signals within
a board. Since each Unibus has 56 signals in it, the
cost of these connections could go up very rapidly. Thus,
although we have conceptually drawn our horizontal and vertical
links as Unibuses, we will implement several crosspoints

within one circuit board. However it is done, failures of
any part of the switch must be made to look like the
failure of a horizontal or vertical link. Then that

link can be "removed" by reconfiguring the system, and repairs
can be made at a later time. Similarly, it should be
possible to connect or disconnect a Unibus without turning
power off in the whole switch,

It would be desirable to make the switch expandable in
both the horizontal and vertical directions, This is
relatively easy in the vertical direction if the vertical
Unibuses come out of the top of the switch in the form of a
standard PDP-11 Unibus connection. Then another switch
could be plugged in. Expansion in the horizontal direction
is a more difficult problem, and is one we have not solved.
It is complicated by the observation that looking into the
switch from a horizontal link, we see a Unibus arbitration
mechanism, If we expanded in the horizontal direction, the
intermediate switches would have to be different from the
end switch, as only one could present that appearance.

It is probably possible for deadlocks 1o occur in the
switch as the design stands now. These would happen when
communications would travel up one bus to a device while it
is interrupting the processor in another bus, Certainly,
the attempts to gain expandability in the horizontal dixection
and to connect switches together would compound thess probl-msz,
We have not studied them seriously, but we believe that they
can be readily solved.

Note that there is nothing about this design that
either demands or prohibits any PDP-11 processor from having
private devices, not under the control of the switch.
Furthermore, there is nothing to demand that a vertical
Unibus terminate at a processor; all that is necessary i
bus arbitor, KB' Thus a configuration such as Figure 10 is
possible,

- 17 -

L L i ! l
l
| |
The Switch
K K | |
£ iy
[|
| |
X
5 | |
l I
L - . L T ~
M,— M, —
K, — K, —
K
KB I|<]B l B
P P P
< [oF [+
Figure 10
In this figure, two processors each have a private memory and
a private slow device (say a teletype). One processor has
neither, The fourth vertical Unibus has no processor (i.e.,

a "null processor") and is included to provide extra bandwidih
to support the communication between fast devices and memory.
In this way, a disk or drum does not need to lock out a
processor from its own Unibus, as it does in Figure 9.

We made but brief mention of the problem of communication
and interrupts between processors., This can be done easily,
efficiently, and cheaply by building special devices (KI) to
connect to two Unibuses at the same time. Then one
processor interrupts another by writing to the register of K
over its Unibus. It then raises an interrupt on the other
Unibus, which is answered by the second processor, This is
illustrated in Figure 11.

- 18 -

Unibus 2

‘ ///‘? interrupt
K

I
\ K———- write to K, Unibus 1

Figure 11

Calendar clocks and interval timers can also be connected to
Unibuses and provide interrupts in the same way.

Acknowledgements

This memo is the result of discussions among the authors
and with J. Eve, C.R. Snow, A.J. Mascall, J. Givens, K. Herron
and others during Professor Bell's recent visit to Newcastle.

References

1. Digital Equipment Corporation, PDP-11 Handbook, Second Edi+ion
1969.

2, G.G. Bell, et al, "A new architecture for mini-computers-
' The DEC PDP-11", Proceedings of the Spring
Joint Computer Conference, 1970, pp 659-675.

3. G.G. Bell and A. Newell, Computer Structures: Readings and
Examples, McGraw-Hill, 1971.

