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What computer structures come into existence in a 
given epoch depends on the confluence of several 
factors: 

The underlying technology-its speed, cost, re- 
liability, etc. 
The structures that have actually been conceived. 
The demand for computer systems (in terms of 
both economics and user influence). 

One ignores any of these factors a t  one's peril. In 
particular, with technology moving rapidly, a real 
limitation exists on our ability as designers to discover 
appropriate structures that exploit the new trade-offs 
between the various aspects of a computer system. 

The design of computer structures is not a systematic 
art. So new is it, in fact, that in a recent book (Bell 
and Kewell, 1971) we found ourselves dealing with 
basic issues of notation. We are still a long may from 
Concern nyith the sort of synthesis procedures that 
characterize, say, linear circuit design. However, the 
immaturity is dictated, not so much by youth (after 
all we have been designing computers for almost 30 
Years), as by the shifts in technology that continually 

' The idem expressed in this presentation have emerged from a 
umber of overlapping design efforts, mostly around CMU and 
I)EC, but occasionally elsewhere (e.g., at Newcastle-on-Tyne, 
the ARPA list ~rocessing machine effort, and the effort at the 
Stanford A1 ~roject).  Consistent with this being a short note, 
fc have attempted to indicate the individuals involved in these 
efforts at appropriate places in the text. But we wish here to 
'~knowledge more generally the contribution of all these indi- 
viduals. The preparation of this paper was supported by the 
Advanced Research Projects Agency of the Ofice of the Secretary 
"f hfense (F44620-70-C0107) and is monitored by the Air Force 
0h-e of Scientific Iicscarch. The paper is to be published in the 
l ' rw#dinga of the FJCC, 1971 and may not be copied without 
Rrmiseion. 

throw us into previously uninhabited parts of the space 
of all computer structures. Whatever systematic tech- 
niques start to emerge are left behind. 

This note comments on several possibilities for com- 
puter structures in the next halfdecade. Given the un- 
familiarity that we all have with the region of computer 
space into which we are now moving, there can be no 
systematic coverage. Neither is it  appropriate simply to 
reiterate what would be nice to have. Such an esercise 
is not responsive to the new constraints that will limit 
the new designs. Such constraints will certainly con- 
tinue to exist, no matter how rapidly logic speed rises 
and logic costs fall. In fact, it  is useful to view any 
prognostication of new computer structures (such as 
this paper) as an attempt to reveal the nature of the 
design constraints that will characterize a new epoch of 
technology. 

We d l  discuss five aspects of computer structures. 
Mostly, these represent design features that we think 
have a good possibility of becoming important in the 
next few years, though we have reservations on one. 
We have been actively engaged (with others) in working 
on particular structures of the type we present. Our 
selection of these is not a denial that other quite 
different structures might also be strong contenders for 
dominance during the next several years. Indeed, 
according to the point made earlier, with strong shifts in 
technology no one can know much about the real 
potentialities for new structures. Thus, that we have 
been working on these particular structures provides, 
mainly, a guarantee that we have thought hard enough 
about their, particulars to have some feeling for the 
design limitations in their local vicinity. 

Minicomputer multiprocessor structures 

Consider the multiprocessor structure of Figure 1. 
There are p central processors (PC) and m primary 
memories (Mp). We ignore, in this discussion, the 
remaining structure that connects the secondary 
memories and i/o. The switch (Smp) is effectively a 
crossbar, which permits any of the processors access 
to any of the memories. 
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Figure 1 - a m p  (crosspoint) for connecting p central processom 
(PC) from primary memories (Mp) 

There is nothing new per se about a multiprocessor 
structure. Nany dual processors exist, as do genuine 
multiprocessors whose additional processors (beyond 
one PC) are functionally specialized to i/o and display. 
General multiprocessors have been proposed and a 
very few have come into existence (e.g., the Burroughs 
D825). But they have not attained any substantial 
status. The main technological reasons appear to be 
(1) the cost and reliability of the Smp and (2) the rela- 
tive cost of many processors. Software (i.e., operating 
systems) is also a critical difficulty, no doubt, but not 
one that appears yet to prohibit systems from coming 
into existence. 

Both of these technical factors appear to be changing 
sufficiently to finally usher in multiprocessor systems 
of substantial scope. The cost of the processor is 
changing most rapidly a t  the minicomputer end of 
the scale. Thus, we expect to see minicomputer multi- 
processors systems before those with large work-length 
PC's. An additional impediment for large PC's is the 
bandwidth reqhired through the switch, which is sub- 
stantially less for 16b/w machines than for 32-64b/w 
machines both in terms of cost and reliability. 

As a basis for discussing detailed technical issues, let 
us describe a multiprocessor system involving the 
DEC PDP-11. Variant designs of this system have 

been proposed both at  CAIU and at  Sc\\.ca.utl+,M,. 
Tyne.* A set of p PDP-11's have access to A M.1 ,;! 
m Alp's aggregating 221 8b bytes.** Each PC n\nir1taln, 
its address space of 216 bytes, but an address Ill:hl,l,,r;,: 

component (Da) associated with each PC pc'r111it.v :, 
address space to be distributed as 23 independent Iq,..., 
of 2*3 bytes each. The details of this addressing, t hollpfr 
important, need not be discussed here. Similarly, ~ l ~ , .  
details of the Smp need not be discussed. En& l l r l i  

through the Smp is essentially a unibus (the bus of t irp 
PDP-11, see Bell et al., 1969). Connections arc m:& 
on a memory access basis, so that the a PC bron(l(.ir.*r.l 
d's address to all Alp's and the connection is made t o  thr 

recognizing Mp for the data transfer. 
The three critical questions about the Smp arc I ~ A  

performance, measured in terms of PC effectivenc.ria. 
its reliability and its cost. Figure 2 gives the calculsttri 
expected performance (Strecker, 1970) in terms of tord 
effective memory cycle access rate of the PC's (\vIiw 
number is shown along the abscissa). Each instructior~ 

memory 
accesses/  , 

m h e r  o f  Processors 

Figure 2-Performance of a multiprocessor computer with Id 
independent AIp's. 

are in preparation. 
** Addressing in the PDP-11 is by bytes, though it is prcfcrnljlc "' 
view i t  as a 16b machine. 
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sr,t ti,, '.,, one to five memory accesses. The curve is 
, t,.rizrd by the number of 3Ip's (m= 1 G  here), , ,..,.,.l(. of the 311) (350 ns here) and the delay 
%. ,,*,sll tllc h\yit~h (190 ns here). 'l'he criteria we have 
,m,j f,,r i(jml performance is p stand-alone computers 
, , r t ,  r;\vitclri~rg delays. Thus, the loss is due to both 
, .,, llll,g &.lay and multi-PC interference. The param- 
,,. ,. Fl lc~~rn  iire attainable with today's technology. 

nit)rr of memory references per processor de- 
ns the number of processors increase, since the 

.r:x,~]ntiorr nssu~nes a reference to any J I p  is equally 
- L,.~!.. '1')p reliability cannot yet be estimated ac- 
. ,rn!,.ly, but appears to be adequate, based on a com- 
tfat.st count. The cost per PC is of the order of one 
c l . , n r ~ ~ ~ r  to one times the PC, measured in amounts of 
1 *I,. [or n lGXlG switch. Thus, the Srnp cost is ap- 
~scn.~n\)k, but not prohibitive. 

\t'hnt docs one obtain with such a structure? Basi- 
.n!fy, I'r cycles have been traded for (1) access to a 
:htgc~ memory space and (2) 3Ip-level interprocessor 
rcst~~~il~~r~icntion. These benefits come in two styles. 
* ' s t ~ h d l y ,  the Smp permits configuration of the 
I'r'n with various amounts of memory and isolation. 
\n important design feature, not stressed above, is 
Itat the P D F l l  components remain essentially 

ut~n~tdified, so that they can be moved in and out of the 
* ? r t o n  nt will. This feature extends to permitting the 
*birtion and extraction of components to the system 
wlr~lr in operation. Dynamically, the Smp permits the 
rt of processors to cooperate on various tasks and to 
h ~ ~ x ,  the system overhead for input/output and 
**,*n~ting systems programs. Coupled with this is 
w w m  access to the secondary memory and peripheral 
I*n* of the systems, permitting substantially lower 
ta'tal Wtem cost as opposed to p independent systems.* 

''w)~ed jor multiprocessors 

.\ key design parameter in multiprocessor organiza- 
t*felq, ~ l c h  as the one above, is the delay through the 
'*"'.)lI measured relative to the performance of the 
'I:)'. :llld I'c's. The total instruction (e.g., for a memory 
b''*.~% iostruction) of a PC can be partitioned as: 

'n nlmbnt memory technology overlap is possible 
'P!\r(~'ll I'c and Mp since accessed information is 
*\alid)le before the rewrite cycle is completed. HOW - 
''I latter goal were aU that were required, then one might 
*ec "wh'r expensive alternatives. However, a price must be 
Pt4 vstern overhead for less general coupling and the trade-off 
' Ier  f r t m  clenr. In fact, we are not justifying the design here, 
I 1  - " " ~ 1 ~ 1 ~  Presenting a concrete example. 

much this can be exploited in a multiprocessor depends 
on t.Smp. Thus, the relevant t .hlp is that which would 
obtain in a non-switched system. I 

Current technology makes all the above terms 
comparable, from 50-500 nanoseconds. Thus, varia- 
tions of a factor of 2 in any of the component terms can 
have a determining effect on the design. Most important 
here is that t.Smp can easily become large enough to 
make t.instruction(with Smp) twice t.instruction(with- 
out Smp). 

The cache appears to offer a solution to this problem 
within the currently emerging economic design param- 
eters. The basic concept of a cache is well established.* 
To review: a cache operates by providing a small high 
access content addressed memory (Mxache) for 
recently accessed words. Any reference to  Mp first 
interrogates hl.cache to see if the information is there, 
and only if not is an access made to h tp .  The basic 
statistical regularity of system performance underlying 
the cache is that words recently accessed will be accessed 
again. This probability of reaccess depends of course on 
the size of the past maintained. Available statistics 
show that if a few thousand words of cache can be kept, 
then well over 90 percent of the Mp accesses will be 
found in the cache, rather than having to go to Mp it- 
self. If technology provides a steep trade-off between 
memory size, memory cycle time and cost per word, 
then a cache is a valuable structure. 

If we associate the cache with the PC, as in Figure 3, 
then the net effect of the cache is to decrease t.Pc (for 
fixed compytational power delivered). In organizations 

Figure 3-Multiprocessor computer with cache associated 
with each PC. 

-.- 

* The first machine really to use a cache was the 360/85 under 
the name of "buffer memory" (Conti, 1969). Wilkes (1965) 
termed it the "look-aside" memory. "Cache" seems by now an 
accepted desijpation. 

b 
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such as the 360/85 this permits balance to be achieved 
between a fast PC and a slower Alp. In the case of 
multiprocessor, this permits the delay of Smp to be of 
less consequence (for aggregated t.Smp and t.Mp 
play the same role as does t.JIp in a uniprocessor 
system). 

There is a second strong postive effect of caches in a 
multiprocessor organization of the kind under discus- 
sion. As the graph of Figure 2 shows, performance is a 
function not only of the delay times, but of the fre- 
quency of accessing conflicts. These conflicts are a 
monotone function of the traffic on the switch, in- 
creasing sharply as the traffic increases. The cache on 
the PC side of switch operates to decrease this traffic, as 
well as to avoid the delay times. There is one serious 
problem regarding the validity of the data in a system 
such as Figure 3, where multiple instances of data co- 
exist. In a system with p caches and an Mp, it is con- 
ceivable that a single address could be assigned p + l  
different contents. To avoid this problem by assuring a 
single valid copy would appear to require a large amount 
of hardware and time. Alternatively, the burden might 
be placed on the operating system to provide special 
instructions both to dump the cache back into Rip and 
to avoid the cache altogether for certain references. 

In a recent attempt to design a large computer for use 
in artificial intelligence (C.ai), we considered a large 
multiprocessor system (Bell and Freeman, 1971; 
Barbacci, Goldberg and Knudsen, 1971; McCracken 
and Robertson, 1971).* The system is similar to the one 
in Figure 1;  in fact, the essential design of the Smp for 
the minicomputer-multiprocessor came from the C.ai 
effort. C.ai differs primarily in having 10-20 large Pc's 
with performance in the 5X lo7 operation/sec class (e.g., 
the cache-based PC being designed at  Stanford, which 
is aimed a t  lOXPc(PDP-10) power). An essential 
requirement for this large multiprocessor was the use of 
caches for each PC in the manner indicated. 

Why then are caches not needed on the minicomputer- 
multiprocessor? Interestingly enough, there are three 
answers. The first is that the performance of mini- 
computers is sufficiently low, relative to the switch 
and the Jfp, so that reasonable throughput can be 
obtained without the cache. The second is that the 
first answer is not quite true for the PDP-11 PC. To 
achieve a reasonable balance in our current design 
requires an upgrading of the bus driving circuits on the 

hImy people a t  CkIU participated in the C.ai effort; a list 
can be found in the reports referenced. Furthermore, the C.ai 
effort was itself imbedded in a more general design effort initiated 
by the Information Processing Technology Office of ARPA and 
was affected by a much wider group. 

PDP-11.** The third answer is that the benefitx ttIrt 
accrue from a cache in fact hold for nhironq,l,r,.,, .. 
well. Recently a study by Bell, Cassasent and I!:,,,,, 
(1971) showed that a system composed of a cache on,] 
fast minicomputer PC was able to attain a f i ~ , . f , d ~ j  

increase in power over a PDP-8. The cost of the rb+ 

was comparable to the PC, yielding a substantin1 w: 
gain (i.e., for a minimal system the power incren~td k , ~  
j while the cost doubled). Thus, caches ~ o u l d  tla,  

doubtedly further improve the design of Figure I at 

lower cost. Alternatively, one could simply add nrm 
PC's, rather than increase the cost of the PC by o cache 

itf ultiple cache processors 

One additional design feature of the C.ai is worth 
mentioning, in addition to its basic multiproccrurlr 
structure and cache structure vis-a-vis the Smp. 

The general philosophy of the multiprocessor is that 
of functionally specialized Pc's working into a very 
large Jlp. In the context of artificial intelligcncc, 
functional specialization of the entire PC to a corn. 
pletely specific system (such as the language, Ihp) 
seems required to exploit algorithm specilaizntion " 
Thus, we engaged in the design of two moderate a i m 1  
Pc's, one for Lisp and one for a system building syntcrn 
called L* (Sewell, JIcCracken, Robertson and f h  
Benedetti, 1971). 

Figure 4 shows the basic PAIS organization of one cd 
these processors (actually the one of L*, but it nurkn, 
little difference to the discussion a t  hand). Thc im 
portant feature is the use of multiple caches, OW fw 
data and one for the microprogram. Two gains arc to I* 
obtained from this organization. On the perfornlancw 
side, the gain is essentially a factor of 2, arising from, 
the inherent parallelism that comes from the lo<.k.*W 
between the data and instruction streams. The cache 
indicated by the design decision to permit the mifri3- 
code to be dynamic. Thus, the second gain is in * 
placing a deliberate system programming organiznllffl 
for changing the microcode with the statistical stnlrt'lw 
of the cache, thus simplifying considerably t h  t d  
system organization (including the operating W t c r * )  

** Modification of these circuits constitutes the primer. rn(*hf~* 
tion of the PDP-11 PC for participation in the system. 1 7 ~  **:' 
other modification is the use of tn-0 bits in the progrnnl at'' * 
work to indicate extended addressing. 
* The argument is somewhat complex, involving t h v  fnl" " ' 
specialization to artificial intelligence per se (and in p;~rtit 'dnr ' 
list processing) does not produce much real specializatlo~~ 01 hU6 
ware. Not until one moves to a completely pnrticular  will*'^* 
of internal data types and interpretation algorithm cnrr"'* 

specialization occur. 
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Figure 4-Multiple (two) cache system 
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r 
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The gains here are not overwhelming. But in the 
I i~ht  of the many single cache organizations (Conti, 
IfWi!)) and non-cache dynamic microprogramming 
urg~inizations (Husson, 1970; Tucker and Flynn, 1971) 
Iwing proposed, it seems worth pointing out. The 

1 ronccpt could be extended to more than two caches in 
computers that are pipelined, where additional paral- 
lrli~m is available in the controls. 

u.cache 
microprogram 
(interpreter) 

Htgider fransjer modules 

M. cache 
Instructions ,data 

(ML program) 

Some time ago Wes Clark (1967) proposed a system 
d organization that he called Macromodules. These 
traded speed and cost to obtain true Erector set con- 
rtructability. For a given domain of application, 
namely sophisticated instrument-oriented laboratory 
cxprimentation, a good case could be made that the 
trade-off was worthwhile. The modules essentially in- 
wpornte functions a t  the register-transfer level of 
twqmter structure, thus providing a set of primitives 
mlwtnntially higher than the gates and delays of the 
h i c  circuit level. 

.\lore recently, another module system has been 
'watd, called Register-Transfer-Modules (RTMIS)* 
thll and Grason, 1971). RTM's differ from Xlacro- 
n'ddcs at several design points, being cheaper (a 
b r h r  of 5 ) )  slower (a factor of 2), harder to wire, and 
h r c  Permanent when constructed. On some dimensions 
'P K. ,  ('heckout time) not enough evidence is yet avail- 
"'h 'J'hus, they occupy a different point in a design -- 
' A h  called the PDP-16 by DEC. 

8. 

space of R T  modules. For our purposes here these two 
systems can be taken together to  d e h e  an approach 
to a class of computer systems design. 

Register transfer modules appear to be highly 
effective for the realization of complex controls, e.g., 
instrument controls, tape and disk controls, printer 
controls, etc. They appear to offer the first real oppor- 
tunity for a rationalization of the design of these 
aspects of computer systems. Their strong points are 
in the rationalization of the control itself and in the 
flexibility of data structures. 

An extremely interesting competition is in the offing 
between minicomputers and register transfer modules.* 
As the price of the minicomputer continues to drop, it  
becomes increasingly possible simply to use an entire 
C.mini for any control job. The advantages are low cost 
through standarization and hence mass production. To 
combat this the modular system has its adaptation to a 
particular job, especially in the data flow part of the 
design, thus saving on the total amount of system 
required and on the time cost of the algorithm. 

An important role in this competition is played by 
memory. If substantial memory is required, its cost 
becomes an important part of the cost of the total 
system. An Mp essentially requires a PC and lo! a 
minicomputer has been created. Stated another may: 
a minicomputer is simply a very good way to package a 
memory. Consequently, RT modules cannot compete 
with minicomputers in a region of large Alp. This 
extends to task domains that require very large amounts 
of control, since currently a memory is the most cost 
effective way to hold a large amount of control informa- 
tion. Thus, the domain of the RT modules appears to be 
strongly bounded from above. 

An interesting application of the above proposition 
can be witnessed in the domain of display consoles. 
First, substantial memory is required to  hold, the in- 
formation to be displayed. Thus, in essence, small 
computers (P.display-Mp) have been associated with 
displays. A few years back costs were such as to force 
time-sharing\; each P.display serviced several scopes. 
But the ratio is finally coming down to 1-1, leading to 
simplification in system organization, due to the elimin- 
ation of a level of hierarchical structure. 

Our argument above, however, has a stronger point. 
Namely, a minicomputer (namely, a PC-1Ip organiza- 
tion) will dominate as long as there is already the 
requirement for the memory. Thus, the specialized dis- 
play processors are giving way to general organizations. 
In fact, it is as effective to use an off-the-shelf mini- 

* Actually there may be a third contender, microprogrammed 
controllers. 

processor state 

control , 
DM 

arithmetic unit 
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computer for the display processor as one specially 
designed for the purpose. Our own attempt to show 
this involves a PDP-11 (Bell, Reddy, Pierson and 
Rosen, 1971). 

There is an additional reason for discussing R T  
modules, beyond their potentiality for becoming a 
significant computer structure. They appear to offer the 
impetus for recasting the logic level of computer 
structure. The register transfer level has slowly been 
gathering reality as a distinct system level. There 
appears to be no significant mathematical techniques 
associated with it. But in fact the same I's true of the 
logic level. All of the synthesis and analysis techniques 
for sequential and combinatorial circuits are essentially 
beside the point as far as real design is concerned. 
Only the ability to evaluate-to compute the output 
given the input, to  compute loadings, etc.-has been 
important. Besides this, what holds the logic level 
intact is (1) a comprehensible symbolism, (2) a clear 
relation of structure to function so a designer can 
create useful structures with ease, and (3) a direct cor- 
respondence between symbolic elements and physical 
elements. 

R T  modules appear to have the potential to provide 
all three of these facilities a t  the register transfer level 
(rather than the sequential and combinatorial logic 
level). The ability to evaluate is already present and 
has been provided in several simulators (e.g., Darringer, 
1969; Chu, 1970). The module systems provide the 
direct correspondence to physical components, which is 
the essential new ingredient. But there is also emerging 
a symbolism with clear function-structure connections, 
so that design can proceed directly in terms of these 
components. For the Macomodules of Clark one can 
actually design directly in terms of the modules. With 
our RTJIs we have been able to adapt the PJIS  nota- 
tion (Bell and Newell, 1971) into a highly satisfactory 
symbolism* I t  is too early to see clearly whether this 
conceptual event will take place. If i t  does, we should 
see the combinatorial and sequential logic levels shrink 
to a smaller, perhaps even miniscule, role in computer 
engineering and science. Actually, even if these modules 
do not cause such an emphatic shift in digital design, 
i t  is almost safe to predict this change solely on the 
basis of minicomputers and microprogrammed con- 
trollers being used for this purpose. This will lead to a 
decrease in the need for, and interest in, conventional 
sequential and combinatorial logic design. 

I 

A cautiotrary note on  microprogramming 

With the right shaped trade-off function on memory 
speeds, sizes and costs relative to logic, microprogram- 

* Cnlled Chartran in DEC mnrketing terminology. See Bell and 
Grason (1971) for examples. 

ming becomes a preferred organization, I)c.c*ntl,. ,,( 

regularity in design, testability and design ~ I ~ . , ~ I  ,: . , 
that i t  offers. ;\Icmories of 10j bits must I,r llvll,l.r!,,. ,. 
speeds comparable to logic and at  s ~ h s t : \ ~ t  i ; t l l y  I < ,  -, :. 

cost per effective gate. With only 10' I)its t l I l h r l .  r, 
enough space for the microcode of a large I>(-. 1f ,,,,t,, 

is too slow or too costly, the resulting I J ~ . ' ~  5,,1 , 
cannot compete with conventional hard\vin.(] I),. . . 
terms of computational-power/dollar. 

The conditions for n~icroprogramming* fir..;[ I,,., :,; , 
satisfied with read-only memories (circa 1 ' 3 ~ ) .  I !! , 

first major experiment, the I B l I  System, :M, t.;rii,. , 
of hardware was used a t  different p e r f o r ~ n : ~ ~ ~ ~ ~ ~ ~  I,.\ - , 
of the series, all of i t  lI.ro. Some of tllc nlcbr~;t*.s-. 
permitted augmentation, and in fact this ft..l:l,+c 

attained some significant use, e.g., the RUSII $:. 

of Alan Babcock (a Joss-like commercial t inl("t~~r::.~ 
system based on PL/I) which is able to hc Iwth t ~ ~ i  

effective and interpretive by putting parts of 1 1 1 ~  I I , !~ ,  

preter into the 3I.microprogram of the 3Cfl;.io. 
More recently read-write memories ha\.(* lwv.~rw 

available a t  speeds and costs that satisfy the c.on~l~rrw~r 
for microprogramming. This leads, almost nutcmar. 
ically, to  dynamic microprogramming, in \\ hi141 f i l l  

user is able to modify the microcode under prturw., 
control. This allon-s his program to be cscw~tr~l b! 

higher speeds. The effect is not quite to nurkv 
microcode the new machine language, for tllc t r : r ~ l - ~ ~ ~ ~  
still do not permit 106-lo7 bits of .\I.pp, K I I I ~ . I I  as 

required for full sized programs. Thus, tllc orlw*; 
functional concept of microprogramrnirlr: r m - ~ : f - r  
operative: a programmed interpreter and in-tr118 ! & * *  

set for another machine language, which 
much larger Alp. 

All this story is a rather straightfor\vnrtl ill~mtra?r.~ 
of the principle that computer structures tin1 t i  *!r4*J 

function of the cost-performance trade-offs \ \ ~ ~ h l f ~  
given set of technologies. Different rcgions ill t h '  * 

of trade-offs lead, not to parametric ndjustrl~c~r~~-* * 
given invariant computer structure, but to (ill:lllrar '. " 
different structures. 

The cautionary note is the follo\ving. 111 our Ilr's41' * 
plunge to discover the new 0rganiz:ition~ t h t  u'"'L' " '  

be effective in a newly emerging trntl(1-ofl ~ l * "  "' 
nlust still attempt to separate out the g~rill* 11) In' "'-'* 
from the various aspects of the new sy~t('l1l - fr'i' l '  '"" 
new components, from the nc\sly prol)o*'~l "'S'''.''' 

tions, etc. flurry of \vork in clynanlic n l i ~ ' r c ~ i l r ' ~ "  '" 

ming seems to use to be suffering sor~l('\\ll:~~ I" " " 
regard. The proposed designs (e.g., Mh(' ' l "~~" '  "" 
Ii'lynn, 1971) appear to be convcntiolll~l ""'"""r" 
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Iligh per- 
formance 

technology hlini- 
microprocessor Model 50 computer 

.--- 

' +-.dir.ntcs irnprovcrnent in coding over Tucker and Flynn. 

g? , -rr  n l q * . : ~ ~ ~  nlso to be some confusion in the application of the 
r . m  .qi~~rroprogram" to some of the proposed system. The 
k + . ~ , ~ t m t  dvrn by Wilkes (1969) is functional: a micropro- 
~ r . n t i n l  I'r is onc whose internal control is attained by another 
F W - I ~ ,  I'.lntrroprograrn. Thus, it is the cascade of t x o  proc- 
I . -  ;a cmc. I r w ~ :  the interpreter for the other. Certain strut- 
* -3.i frnturca rhnracterize current P.microprogram: wide words; 
*k ~.rtlrn. of the operations (control of R T  paths); parallel 
* * * ~ ~ o I I  01 r~pcrntions, and explicit next-instruction addressing 
+1 ~ v l ~ t d  machinery in the P.microprogram). Many of the 

;* . t*r4 tl.vnnmic programming systems maintain some of the 
*Q.=lwal f t - ~ ~ t ~ ~ r r s ,  e.g., wide words, but drop the functional 
W:-<t 'I'frir iu. of course, essentially a terminological matter. 
1' * r t t r ,  wr do think it would be a pity for the term micro- 

< r * : f l l l ~ ~ ~  to attach to certain structural features, independent 
-' f . ~ l t l l o ,  rather than to the functional scheme of cascaded 
&*--m, one the interpreter for the other. 

r:.rmq)rwramrned processor design using 1971 logic and 
'"t*m t ( ~ ( . h ~ l o g y  was compared with IBM's 1964 Solid Logic 
r r * ~ J ~ ~ r L ~ \ .  and core memory used in the 360 Model 50. Since 
'" ta *IT td~nology  (30 nanoseconds/64 bits) was a factor of 
"'. .' U' fmtcr than the Model 50 (2000 nanoseeonds/32 bits) 
''* rt.~*rlbl)r~)mammd processor was somewhat (only a factor of 
6, 1 '"'I r I : w ~  twing the faster technology the nlicroprogrammed 

T' ' * * w  6 clrllcs for multiplication given by Tucker and Flynn 
*"' *lw,llt the fiarnc 11s .\lo&l 50. 

f L  f8*llg,uit~~ tnble of a Fibonacci number benchmark given 
' ' 4 - L c  r I'lynn shows that the main advantage of micro- 
'' w*rr l r l~ l l l~  is with high wrforrnance technology. A micro- 
'* *'rrrar'r~4 Imwssor has about the same number of instruc- 
$ 4  -4 *!&,I ~ ~ u n l i ~ c r  of memory accesses. Due to the poor encoding 
' .':* r ' f l r * l ~ p  11 mirropmgrnn~ t:~kes morc bits (hence possibly 

Y . I  '' ) il:rvi~tg :c coi~l~x~rutively high memory bandwidth ' 

' ' '' lltcb tllc loop rapidly, but given a model 50 or a mini- r 
r' *" trlmtructcd with n 50 ns memory the execution times 

ffv Ur'lIt 1 1 1 ~  same. 

Actually, there are signs of the watchmaker's delusion 
(Simon, 1969). A watchmaker, Tempus, attempted to 
construct watches out of very small components, but 
every time the phone rang \\-it11 an order he was forced 
to start over. He got very few watches completrd. 
His friend, Hora, decided first to build springs, releases, 
escapements, gears, etc., and then larger assemblies of 
these. Though he, too, was often called to the phone, 
he quite often had time to complete one of these small 
ass~mblies, and then to put these together to obtain an 
entire watch. 

To apply the moral: Large systems can only be 
built out of components modestly smaller than the 
final system itself, not directly out of much sn~allcr 
components. The dynamic microprogramming pro- 
posals take as given the same micro-components as 
have existed priorly (gates and registers). They do not 
propose any of the intermediate levels of organization 
that are required to produce a large system. Thus, e.g., 
when they propose to put operating systems directly 
in microcode they are close to the watchmaker's 
delusion. Insofar as the response is "But of course we 
expect these intermediate levels of organization to 
exist," then their proposals are radically incomplete, 
since the operative concepts of the design are missing. 

The situation is even a little worse, for unlike con- 
ventional machine language organizations, micro- 
programmed processors are usually oriented to highly 
special technology, have multiple automatic units that 
have to be operated in parallel, can even perform in a 
non-deterministic manner, are location sensitive, and 
provide a combinatorially larger instruction set. 
Effective compilers and performance-monitoring soft- 
ware will be mandatory before users can effectively 
gain any order-of-magnitude increase in performance 
latent in the basic organization. Furthermore, since 
these processors are so technology oriented, it is difficult 
to  guarantee that they will have successors or be mem- 
bers of compatible families. 

\ 

CONCLUSION 

We have touched on a number of aspects of current 
research in computer structures that appear to have 
possibilities for being important structures in the next 
half decade. Our examples-and our style of discussing 
them-suggest several basic points about the design of 
computer structures. Some of these have been stated 
already in earlier sections, but it seems useful to list 
them all together : 

(1) Computer design is still driven by the changes in 
technology, especially in the varying trade-offs. 
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Distinct regions in the space of trade-offs lead to 
qualitatively different designs. , 

These designs have to be discovered by us (the 
computer designers), and this can happen only 
after the trade-off characteristics of a new region 
become reasonably well understood. 
Thus, our designs always lag the technology 
seriously. Those that are reaching for the new 
technology are extremely crude. Those that are 
iterations on existing designs, hence more 
polished, fail to be responsive to the newly 
emerging trade-offs. 
Since the development cycle on new total systems 
is still of the order of years, the only structures 
that can be predicted with even minimal con- 
fidence are those already available in nascent 
form. The multiprocessor, cache and R T  module 
organizations discussed earlier are all examples 
of this. 
The design tools that we have for discussing 
(and discovering) appropriate designs are weak, 
especially in the domain over which the struc- 
tures under consideration here have ranged- 
essentially the PMS level. 
In particular, there is no really useful language 
for expressing the trade-offs in a rough and 
qualitative way, yet precisely enough so that the 
design consequences can be analyzed. 
In particular (as well), design depends ultimately 
on having conceptual components of the right 
size relative to the system to be constructed: 
small enough to permit variety, large enough to 
permit discovery. The transient character of the 
underlying space (the available space of com- 
puter structures) reinforces the latter require- 
ment. The notion of M.cache is an example of a 
new design component with associated functions, 
not available until a few years ago. Even this 
small note shows it to be a useful component in 
terms of which designs can be sought. The 
potential conceptual revolution hiding in the R T  
modules provides another example. 
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