A panel session—Computer structure—Past, present

and future
Possibilities for Computer Structures 1971*

by C. GORDON BELL and ALLEN NEWELL

Carnegie-Mellon University

What computer structures come into existence in a
given epoch depends on the confluence of several
factors:

The underlying technology—its speed, cost, re-
liability, etc.

The structures that have actually been conceived.
The demand for computer systems (in terms of
both economics and user influence).

One ignores any of these factors at one’s peril. In
particular, with technology moving rapidly, a real
limitation exists on our ability as designers to discover
appropriate structures that exploit the new trade-offs
between the various aspects of a computer system.

The design of computer structures is not a systematic
art. So new is it, in fact, that in a recent book (Bell
and Newell, 1971) we found ourselves dealing with
basic issues of notation. We are still a long way from
concern with the sort of synthesis procedures that
characterize, say, linear circuit design. However, the
immaturity is dictated, not so much by youth (after
all we have been designing computers for almost 30
Yyears), as by the shifts in technology that continually

* The ideas expressed in this presentation have emerged from a
aumber of overlapping design efforts, mostly around CMU and
DEC, but occasionally elsewhere (e.g., at Newcastle-on-Tyne,
t‘he ARPA list processing machine effort, and the effort at the
Stanford AI project). Consistent with this being a short note,
we have attempted to indicate the individuals involved in these
eflorts at appropriate places in the text. But we wish here to
lf'knowledge more generally the contribution of all these indi-
viduals. The preparation of this paper was supported by the
Advanced Research Projects Agency of the Office of the Secretary
of !)efcnse (F44620-70-C0107) and is monitored by the Air Force
).ﬂ\('e of Scientific Research. The paper is to be published in the
"’Wrt'dings of the FJCC, 1971 and may not be copied without
PeTmission.

387

throw us into previously uninhabited parts of the space
of all computer structures. Whatever systematic tech-
niques start to emerge are left behind.

This note comments on several possibilities for com-
puter structures in the next half-decade. Given the un-
familiarity that we all have with the region of computer
space into which we are now moving, there can be no
systematic coverage. Neither is it appropriate simply to
reiterate what would be nice to have. Such an exercise
is not responsive to the new constraints that will limit
the new designs. Such constraints will certainly con-
tinue to exist, no matter how rapidly logic speed rises
and logic costs fall. In fact, it is useful to view any
prognostication of new computer structures (such as
this paper) as an attempt to reveal the nature of the
design constraints that will characterize a new epoch of
technology.

We will discuss five aspects of computer structures.
Mostly, these represent design features that we think
have a good possibility of becoming important in the
next few years, though we have reservations on one.
We have been actively engaged (with others) in working
on particular structures of the type we present. Qur
selection of these is not a denial that other quite
different structures might also be strong contenders for
dominance during the next several years. Indeed,
according to the point made earlier, with strong shifts in
technology no one can know much about the real
potentialities for new structures. Thus, that we have
been working on these particular structures provides,
mainly, a guarantee that we have thought hard enough
about their, particulars to have some feeling for the
design limitations in their local vicinity.

Minicomputer mulliprocessor structures

Consider the multiprocessor structure of Figure 1.
There are p central processors (Pc¢) and m primary
memories (Mp). We ignore, in this discussion, the
remaining structure that connects the secondary
memories and i/o. The switch (Smp) is effectively a
crossbar, which permits any of the processors access
to any of the memories.

388 Fall Joint Computtr Conference, 1971

primary memory
simple switches

1
Mp <
Smp Crosspoint switch
m
M
P]

1] Data operations
for address
translation

Da Da \
Local wemory and ifo
l central processors
T Mp Pc Pc
/ Secondary ‘ LI
Terminals @ rx
1
P
b
. Stp
T Ms |2
t
—
Unibusses for connectin

Ms and other i/o

Figure 1-—Smp (crosspoint) for connecting p central processors
(Pc) from primary memories (Mp)

There is nothing new per se about a multiprocessor
structure. Many dual processors exist, as do genuine
multiprocessors whose additional processors (beyond
one Pc¢) are functionally specialized to i/o and display.
General multiprocessors have been proposed and a
very few have come into existence (e.g., the Burroughs
D825). But they have not attained any substantial
status. The main technological reasons appear to be
(1) the cost and reliability of the Smp and (2) the rela-
tive cost of many processors. Software (i.e., operating
systems) is also a critical difficulty, no doubt, but not
one that appears yet to prohibit systems from coming
into existence.

Both of these technical factors appear to be changing
sufficiently to finally usher in multiprocessor systems
of substantial scope. The cost of the processor is
changing most rapidly at the minicomputer end of
the scale. Thus, we expect to see minicomputer multi-
processors systems before those with large work-length
Pc¢’s. An additional impediment for large Pc’s is the
bandwidth required through the switch, which is sub-
stantially less for 16b/w machines than for 32-64b/w
machines both in terms of cost and reliability.

As a basis for discussing detailed technical issues, let
us describe a multiprocessor system involving the
DEC PDP-11. Variant designs of this system have

been proposed both at CMU and at Newcastle.on.
Tyne* A set of p PDP-11’s have access to a set .
m Mp’s aggregating 2% 8b bytes.** Each Pc maintam,
its address space of 2!® bytes, but an address mapping
component (Da) associated with each Pe permity 1.,
address space to be distributed as 2* independent pugrs
of 28 bytes each. The details of this addressing, though
important, need not be discussed here. Similarly, the
details of the Smp need not be discussed. Each link
through the Smp is essentially a unibus (the bus of the
PDP-11, see Bell et al., 1969). Connections are mujr
on a memory access basis, so that the a PC broadcust«
d’s address to all Mp’s and the connection is made to the
recognizing Mp for the data transfer.

The three critical questions about the Smp are ita
performance, measured in terms of Pec effectivenesa,
its reliability and its cost. Figure 2 gives the caleulated
expected performance (Strecker, 1970) in terms of total
effective memory cycle access rate of the Pc’s (whose
number is shown along the abscissa). Each instruction

memory
accesses/
sec

6 1
x 10

9

8

7

ﬁ t.switch delay: 190 as

51 t.cycle(Mp): 600 ne
t.access(Mp): 350 ns

4 pc: PDP 11/23

K, number Mp: 16

[

T 10 15 20 25 30 35 49

Mumber of Processors

Figure 2—Performance of a multiprocessor computer with 18
independent Mp’s.

* The original design was proposed by W. Wulf and W. Broadles.
based on a switch design by Bell and Broadley; 8 second mote
general design was proposed by C. G. Bell, H. Lauer and B
Randall at Newcastle-on-T'yne; the version deseribed here i by
C. G. Bell, W. Broadley, S. Rege and W. Wulf. No publixhed
deseriptions are yet available on any of the designs, though some
are in preparation. - ble to
** Addressing in the PDP-11 is by bytes, though it is preferabie
view it as a 16b machine.

Computer-Structures 389

seepiires one to five memory accesses. The curve is
- +ameterized by the number of Mp’s (m=16 here),
. pevele of the Mp (350 ns here) and the delay
p_.,.«;gl‘x the switeh (190 ns here). The criteria we have
wwi for ideal performance is p stand-alone computers
«:th no switching delays. Thus, the loss is due to both
. «:tehing delay and multi-Pe interference. The param-
.cta shown are attainable with today’s technology.
1% number of memory references per processor de-
covames 215 the number of processors increase, since the
.alculation assumes a reference to any Mp is equally
_xelv. The reliability cannot yet be estimated ac-
«~srately, but appears to be adequate, based on a com-
jrarnt count. The cost per Pe is of the order of one
quarter to one times the Pe, measured in amounts of
t.qe for 8 16X16 switch. Thus, the Smp cost is ap-
peeciable, but not prohibitive.

What does one obtain with such a structure? Basi-
+ally, Pe cycles have been traded for (1) access to a
atger memory space and (2) Mp-level interprocessor
cammunication. These benefits come in two styles.
soatistically, the Smp permits configuration of the
Pe's with various amounts of memory and isolation.
An important design feature, not stressed above, is
hat the PDP-11 components remain essentially
unmaodified, so that they can be moved in and out of the
svatem at will. This feature extends to permitting the
sddition and extraction of components to the system
«hile in operation. Dynamically, the Smp permits the
=1 of processors to cooperate on various tasks and to
decrease the system overhead for input/output and
vperating systems programs. Coupled with this is
rummon access to the secondary memory and peripheral
tarts of the systems, permitting substantially lower
total system cost as opposed to p independent systems.*

Caches for multiprocessors

A key design parameter in multiprocessor organiza-
P8, such as the one above, is the delay through the
~\ n!‘v)x, measured relative to the performance of the

e :n}xd Pe’s. The total instruction (e.g., for a memory
A res instruction) of a Pc can be partitioned as:

t.instruction = t.Pc+t.Smp—+t.Mp

In . . .

- current memory technology overlap is possible

LA J > : . o . .
‘een Pe and Mp since accessed information is

“ailable before the rewrite cycle is completed. How
—

[} .

hii.:b\: I;mer goal were all tha't were required, then one might

bt ";8:.! expensive alternatives. }{owev?r, a price must be

o ‘n.m‘uln‘ overhead for less general coupling and the trade-off

ety clear, I.n fact, we are not justifying the design here,
P presenting a concrete example.

much this can be exploited in a multiprocessor depends
on t.Smp. Thus, the relevant t.Mp is that which would
obtain in a non-switched system. i

Current technology makes all the above terms
comparable, from 50~500 nanoseconds. Thus, varia-
tions of a factor of 2 in any of the component terms can
have a determining effect on the design. Most important
here is that t.Smp can easily become large enough to
make t.instruction(with Smp) twice t.instruction(with-
out Smp).

The cache appears to offer a solution to this problem
within the currently emerging economic design param-
eters. The basic concept of a cache is well established.*
To review: a cache operates by providing a small high
access content addressed memory (M.cache) for
recently accessed words. Any reference to Mp first
interrogates M.cache to see if the information is there,
and only if not is an access made to Mp. The basic
statistical regularity of system performance underlying
the cache is that words recently accessed will be accessed
again. This probability of reaccess depends of course on
the size of the past maintained. Available statistics
show that if a few thousand words of cache can be kept,
then well over 90 percent of the Mp accesses will be
found in the cache, rather than having to go to Mp it-
self. If technology provides a steep trade-off between
memory size, memory cycle time and cost per word,
then a cache is a valuable structure.

If we associate the cache with the Pe, as in Figure 3,
then the net effect of the cache is to decrease .Pc (for
fixed computational power delivered). In organizations

Mp

¢+ e

* Smp

Mp O =

[|

M.cache M.cache
Pe Pc

Figure 3—Multiprocessor computer with cache associated
with each Pc.

* The first machine really to use a cache was the 360/85 under
the name of “buffer memory” (Conti, 1969). Wilkes (1965)
termed it the “look-aside’” memory. “Cache” seems by now an

accepted designation.
1Y

390 Fall Joint Computer Conference, 1971

such as the 360/85 this permits balance to be achieved
between a fast Pc and a slower Mp. In the case of
multiprocessor, this permits the delay of Smp to be of
less consequence (for aggregated t.Smp and t.Mp
play the same role as does t.Mp in a uniprocessor
system).

There is a second strong postive effect of caches in a
multiprocessor organization of the kind under discus-
sion. As the graph of Figure 2 shows, performance is a
function not only of the delay times, but of the fre-
quency of accessing conflicts. These conflicts are a
monotone function of the traffic on the switeh, in-
creasing sharply as the traffic increases. The cache on
the Pe side of switch operates to decrease this traffic, as
well as to avoid the delay times. There is one serious
problem regarding the validity of the data in a system
such as Figure 3, where multiple instances of data co-
exist. In a system with p caches and an Mp, it is con-
ceivable that a single address could be assigned p+1
different contents. To avoid this problem by assuring a
single valid copy would appear to require a large amount
of hardware and time. Alternatively, the burden might
be placed on the operating system to provide special
instructions both to dump the cache back into Mp and
to avoid the cache altogether for certain references.

In a recent attempt to design a large computer for use
in artificial intelligence (C.ai), we considered a large
multiprocessor system (Bell and Freeman, 1971;
Barbacci, Goldberg and Knudsen, 1971; McCracken
and Robertson, 1971).* The system is similar to the one
in Figure 1; in fact, the essential design of the Smp for
the minicomputer-multiprocessor came from the C.ai
effort. C.ai differs primarily in having 10-20 large Pc’s
with performance in the 5X 107 operation/sec class (e.g.,
the cache-based Pc being designed at Stanford, which
is aimed at 10XPc(PDP-10) power). An essential
requirement for this large multiprocessor was the use of
caches for each Pe¢ in the manner indicated.

Why then are caches not needed on the minicomputer-
multiprocessor? Interestingly enough, there are three
answers. The first is that the performance of mini-
computers is sufficiently low, relative to the switch
and the Mp, so that reasonable throughput can be
obtained without the cache. The second is that the
first answer is not quite true for the PDP-11 Pe. To
achieve a reasonable balance in our current design
requires an upgrading of the bus driving circuits on the

® Many people at CMU participated in the C.ai effort; a list
can be found in the reports referenced. Furthermore, the C.ai
effort was itself imbedded in & more general design effort initiated
by the Information Processing Technology Office of ARPA and
was affected by a much wider group.

PDP-11.** The third answer is that the benefits thqs
accrue from a cache in fact hold for minicomputers ,.
well. Recently a study by Bell, Cassasent and Hate
(1971) showed that a system composed of a cache an,} A
fast minicomputer Pc was able to attain a fivefuls
increase in power over a PDP-8. The cost of the carte
was comparable to the Pec, yielding a substantial pes
gain (i.e., for a minimal system the power increased by
5 while the cost doubled). Thus, eaches would yg.
doubtedly further improve the design of Figure 1 a¢ o
lower cost. Alternatively, one could simply add moee
Pc’s, rather than increase the cost of the Pc by a cache

Multiple cache processors

One additional design feature of the C.ai is worth
mentioning, in addition to its basic multiprocesser
structure and cache structure vis-a-vis the Smp,

The general philosophy of the multiprocessor is that
of functionally specialized Pc’s working into a very
large Mp. In the context of artificial intelligence,
functional specialization of the entire Pe¢ to a com-
pletely specific system (such as the language, Lisp)
seems required to exploit algorithm specilaization *
Thus, we engaged in the design of two moderate sized
Pc’s, one for Lisp and one for a system building system
called L* (Newell, McCracken, Robertson and De-
Benedetti, 1971).

Figure 4 shows the basic PIS organization of one of
these processors (actually the one of L*, but it makes
little difference to the discussion at hand). The im-
portant feature is the use of multiple caches, one fue
data and one for the microprogram. Two gains are to be
obtained from this organization. On the performance
side, the gain is essentially a factor of 2, arising from
the inherent parallelism that comes from the lockstep
between the data and instruction streams. The cache is
indicated by the design decision to permit the mics
code to be dynamic. Thus, the second gain is in re:
placing a deliberate system programming organization
for changing the microcode with the statistical structure
of the cache, thus simplifying considerably the total
system organization (including the operating system/

** Modification of these circuits constitutes the primary ““"l'r“f’
tion of the PDP-11 Pc for participation in the system. The ces
other modification is the use of two bits in the program stal-#
work to indicate extended addressing. .
* The argument is somewhat complex, involving the !gﬂ“ ¢! ,“
specialization to artificial intelligence per se (and in p.ﬂl‘""”l'“
list processing) does not produce much real specialization ul
ware. Not until one moves to a completely particular gpecili cve
of internal data types and interpretation algorithma can effectsy
specialization occur.

calp@®

Computer Structures 391

M.cache
Instructions,data
(ML program)

M.cache
microprogram
(interpreter)

DM
arithmetic unit
processor state

control

Figure 4—Multiple (two) cache system

The gains here are not overwhelming. But in the
light of the many single cache organizations (Conti,
1%9) and non-cache dynamic microprogramming
organizations (Husson, 1970; Tucker and Flynn, 1971)
being proposed, it seems worth pointing out. The
concept could be extended to more than two caches in
computers that are pipelined, where additional paral-
lelism is available in the controls.

Register transfer modules

Some time ago Wes Clark (1967) proposed a system
of organization that he called Macromodules. These
traded speed and cost to obtain true Erector set con-
structability. For a given domain of application,
mxme!y sophisticated instrument-oriented laboratory
experimentation, a good case could be made that the
trade-off was worthwhile. The modules essentially in-
corporate functions at the register-transfer level of
computer structure, thus providing a set of primitives
mh.smntially higher than the gates and delays of the
logic circuit level,

More recently, another module system has been
¢reated, called Register-Transfer-Modules (RTM'S)*
‘Bell and Grason, 1971). RTM’s differ from Macro-
modules at several design points, being cheaper (a
factor of 5), slower (a factor of 2), harder to wire, and
:“‘"c permanent when constructed. On some dimensions
'*-&., checkout time) not enough evidence is yet avail-

able T . e .
v -—~._£S_' they occupy a different point in a design

* Also called the PDP-16 by DEC.

space of RT modules. For our purposes here these two
systems can be taken together to define an approach
to a class of computer systems design.

Register transfer modules appear to be highly
effective for the realization of complex controls, e.g.,
instrument controls, tape and disk controls, printer
controls, etc. They appear to offer the first real oppor-
tunity for a rationalization of the design of these
aspects of computer systems. Their strong points are
in the rationalization of the control itself and in the
flexibility of data stractures.

An extremely interesting competition is in the offing
between minicomputers and register transfer modules.*
As the price of the minicomputer continues to drop, it
becomes increasingly possible simply to use an entire
C.mini for any control job. The advantages are low cost
through standarization and hence mass production. To
combat this the modular system has its adaptation to a
particular job, especially in the data flow part of the
design, thus saving on the total amount of system
required and on the time cost of the algorithm.

An important role in this competition is played by
memory. If substantial memory is required, its cost
becomes an important part of the cost of the total
system. An Mp essentially requires a Pc and lo! a
minicomputer has been created. Stated another way:
a minicomputer is simply a very good way to package a
memory. Consequently, RT modules cannot compete
with minicomputers in a region of large Mp. This
extends to task domains that require very large amounts
of control, since currently a memory is the most cost
effective way to hold a large amount of control informa-
tion. Thus, the domain of the RT modules appears to be
strongly bounded from above.

An interesting application of the above proposition
can be witnessed in the domain of display consoles.
First, substantial memory is required to hold the in-
formation to be displayed. Thus, in essence, small
computers (P.display-Mp) have been associated with
displays. A few years back costs were such as to force
time-sharing’ each P.display serviced several scopes.
But the ratio is finally coming down to 1-1, leading to
simplification in system organization, due to the elimin-
ation of a level of hierarchical structure.’

Our argument above, however, has a stronger point.
Namely, a minicomputer (namely, a Pc-Mp organiza-
tion) will dominate as long as there is already the
requirement for the memory. Thus, the specialized dis-
play processors are giving way to general organizations.
In fact, it is as effective to use an off-the-shelf mini-

* Actually there may be a third contender, microprogrammed
controllers.

392 Fall Joint Computér Conference, 1971

computer for the display processor as one specially
designed for the purpose. Our own attempt to show
this involves a PDP-11 (Bell, Reddy, Plerson and
Rosen, 1971).

There is an additional reason for discussing RT
modules, beyond their potentiality for becoming a
significant computer structure. They appear to offer the
impetus for recasting the logic level of computer
structure. The register transfer level has slowly been
gathering reality as a distinct system level. There
appears to be no significant mathematical techniques
associated with it. But in fact the same is true of the
logic level. All of the synthesis and analysis techniques
for sequential and combinatorial circuits are essentially
beside the point as far as real design is concerned.
Only the ability to evaluate—to compute the output
given the input, to compute loadings, etc.—has been
important. Besides this, what holds the logic level
intact is (1) a comprehensible symbolism, (2) a clear
relation of structure to function so a designer can
create useful structures with ease, and (3) a direct cor-
respondence between symbolic elements and physical
elements.

RT modules appear to have the potential to provide
all three of these facilities at the register transfer level
(rather than the sequential and combinatorial logic
level). The ability to evaluate is already present and
has been provided in several simulators (e.g., Darringer,
1969; Chu, 1970). The module systems provide the
direct correspondence to physical components, which is
the essential new ingredient. But there is also emerging
a symbolism with clear function-structure connections,
so that design can proceed directly in terms of these
components. For the Macomodules of Clark one can
actually design directly in terms of the modules. With
our RTMs we have been able to adapt the PMS nota-
tion (Bell and Newell, 1971) into a highly satisfactory
symbolism* It is too early to see clearly whether this
conceptual event will take place. If it does, we should
see the combinatorial and sequential logic levels shrink
to a smaller, perhaps even miniscule, role in computer
engineering and science. Actually, even if these modules
do not cause such an emphatic shift in digital design,
it is almost safe to predict this change solely on the
basis of minicomputers and microprogrammed con-
trollers being used for this purpose. This will lead to a
decrease in the need for, and interest in, conventional
sequential and combinatorial logic design.

\

A cautionary note on microprogramming

With the right shaped trade-off function on memory
speeds, sizes and costs relative to logic, microprogram-

* Called Chartran in DEC marketing terminology. See Bell and
Grason (1971) for examples.

ming becomes a preferred organization, becaus of 1,
regularity in design, testability and design flevt. -,
that it offers. Memories of 10° bits must be availyt.. .
speeds comparable to logic and at substantially |.«..
cost per effective gate. With only 10* bits there ;s .
enough space for the microcode of a large Pe. If 111, o4
1s too slow or too costly, the resulting Pe's ain: ,
cannot compete with conventional hardwired ey
terms of computational-power/dollar.

The conditions for microprogramming®* first bu . .
satisfied with read-only memories (circa 1965). Iy .
first major experiment, the IBM System, 360, a vari+ s
of hardware was used at different performance lry- ,
of the series, all of it M.ro. Some of the memiruws
permitted augmentation, and in fact this featise
attained some significant use, e.g., the RUSH aystc o
of Alan Babcock (a Joss-like commercial timceshar:g
system based on PL/I) which is able to be both riwe
effective and interpretive by putting parts of the intes
preter into the M.microprogram of the 360,50.

More recently read-write memories have becons
available at speeds and costs that satisfy the conditioes
for microprogramming. This leads, almost automat.
ically, to dynamic microprogramming, in which tis
user is able to modify the microcode under prograr
control. This allows his program to be exccuted at
higher speeds. The effect is not quite to make the
microcode the new machine language, for the trades
still do not permit 10°~107 bits of M.up, which
required for full sized programs. Thus, the orngna
functional concept of microprogramming retiaite
operative: a programmed interpreter and instruet.e
set for another machine language, which occupirs
much larger Mp.

All this story is a rather straightforward illustrate«
of the principle that computer structures are n strnie4
function of the cost-performance trade-offs within &
given set of technologies. Different regions in the sja «
of trade-offs lead, not to parametric adjustments :n
given invariant computer structure, but to qualitatas e
different structures. i

The cautionary note is the following. In our head ¢ ¢
plunge to discover the new organizations that sevis b
be effective in a newly emerging trade-off regin v
must still attempt to separate out the gains to be res>
from the various aspects of the new system-
new components, from the newly P”’P‘"‘f"’
tions, ete. The fAurry of work in dynamic mu'rni'f""si""‘f
ming seems to use to be suffering somv\\l‘nm i L, *:
regard. The proposed designs (c.g., se¢ Tucker a2
Flynn, 1971) appear to be conventional punit™

ve

froaen 22

"y LI X)

.) (32600 et
* The microprocessor must operate at & speed of 4 ta 100

processor being interpreted.

Computer Structures 393

scmopuiters with wide unencoded words.* They compare
Lesy farerably against existing systems (e.g., members
¢ the #db weries), but when the performance gains are
swes el they appear to be due almost entirely to the
) mn-qmm-nlry, rather than to any organiza-
st gans (g Tucker and Flynn, 1971).* The cost
¢ the< systems is usually missing in such analyses.

High per-
formance
technology Mini-
microprocessor Model 50 computer
< ter ofinstractions 8 11 (6) 5
vt el bt 512 224 (128) 80
Cte 10 9 (6) i
< e OTY RCCCSSES)
s gy bandwidth 640~3840 16 16
e gabita pec)
temer {:.¢ 10 iterations 4.3 191 70
' m\
Lasar 1o UR high 4.3 65(4) 3.5
pvrformance technology
C e}

¢ iadientes improvement in coding over Tucker and Flynn.

*1tere appents also to be some confusion in the application of the
s microprogram’” to some of the proposed systems. The
dctsation given by Wilkes (1969) is functional: a micropro-
es=med Pe is one whose internal control is attained by another
yeerwat, Punicroprogram, Thus, it is the cascade of two proc-
swata one being the interpreter for the other. Certain struc-
=ral {eatures characterize current P.microprograms: wide words;
= pature of the operations (control of RT paths); parallel
svoration of operations, and explicit next-instruction addressing
@ avoid machinery in the P.microprogram). Many of the
#* 4wl dynamic programming systems maintain some of the
st+ s tural features, e.g., wide words, but drop the functional
ezt This is, of course, essentially a terminological matter.
'twever, we do think it would be a pity for the term micro-
Ll amfniug to attach to certain structural features, independent
*# Laction, rather than to the functional scheme of cascaded
:"»uwrn-, one the interpreter for the other.

\ racraprogranined processor design using 1971 logic and
:"""""," technology was compared with IBM’s 1964 Solid Logic
;}:":‘;L(f}; .a‘r;d core mermory used in the 360 Model 50. Since
o f'u mology (50 nanosegonds/64 bits) was a factor of
‘5‘- ;! - 'u\su-r than the Model 50 (2000 nanoseconds/32 bits)
. “;hvrl;".‘"ﬁmm{ncd processor was somewhat (only a factor of
N k venwsing the faster technology the microprogrammed

vrer s tmes for multiplication given by Tucker and Flynn
"’t stmit the same ns Model 50.

. .7;‘_’!‘:’?"’“‘5“2 ‘tnble of a Fibonacci number benchmark given
- v;m:,:i,"“d' F l_\"nn sh.ows that the main advantage of micro-
. ,‘,"“"""{‘ 13 with high performance technology. A micro-
i va arl oo I;ﬂm(-ssor has about the same number of instruc-
S (i,”“ r 0!’ memory accesses. Due to the poor encoding
o ’n;: ‘u microprogram l:l%{es more bits (hence possibly
. "‘. - By having a (~o.m|’):1rut|vely high memory bandwidth
“ute the loop rapidly, but given a model 50 or a mini-

Eer o, . .
e netructed with a 50 ns memory the execution times
st the sgame.

Actually, there are signs of the watchmaker’s delusion
(Simon, 1969). A watchmaker, Tempus, attempted to
construet watches out of very small components, but
every time the phone rang with an order he was forced
to start over. He got very few watches completed.
His friend, Hora, decided first to build springs, releases,
escapements, gears, etc., and then larger assemblies of
these. Though he, too, was often called to the phone,
he quite often had time to complete one of these small
assemblies, and then to put these together to obtain an
entire watch.

To apply the moral: Large systems can only be
built out of components modestly smaller than the
final system itself, not directly out of much smaller
components. The dynamic microprogramming pro-
posals take as given the same micro-components as
have existed priorly (gates and registers). They do not
propose any of the intermediate levels of organization
that are required to produce a large system. Thus, e.g.,
when they propose to put operating systems directly
in microcode they are close to the watchmaker’s
delusion. Insofar as the response is ‘“But of course we
expect these intermediate levels of organization to
exist,” then their proposals are radically incomplete,
since the operative concepts of the design are missing.

The situation is even a little worse, for unlike con-
ventional machine language organizations, micro-
programmed processors are usually oriented to highly
special technology, have multiple automatic units that
have to be operated in parallel, can even perform in a
non-deterministic manner, are location sensitive, and
provide a combinatorially larger instruction set.
Effective compilers and performance-monitoring soft-
ware will be mandatory before users can effectively
gain any order-of-magnitude increase in performance
latent in the basic organization. Furthermore, since
these processors are so technology oriented, it is difficult
to guarantee that they will have successors or be mem-
bers of compatible families.

\

CONCLUSION

We have touched on a number of aspects of current
research in computer structures that appear to have
possibilities for being important structures in the next
half decade. Qur examples—and our style of discussing
them—suggest several basic points about the design of
computer structures. Some of these have been stated
already in earlier sections, but it seems useful to list
them all together:

(1) Computer design is still driven by the changes in
technology, especially in the varying trade-offs.

LY

394 Fall Joint Computer Conference, 1971
A]

(2) Distinct regionsin the space of trade-offs lead to
qualitatively different designs.

(3) These designs have to be discovered by us (the
computer designers), and this can happen only
after the trade-off characteristics of a new region
become reasonably well understood.

(4) Thus, our designs always lag the technology
seriously. Those that are reaching for the new
technology are extremely crude. Those that are
iterations on existing designs, hence more
polished, fail to be responsive to the newly
emerging trade-offs.

(5) Since the development cycle on new total systems
is still of the order of years, the only structures
that can be predicted with even minimal con-
fidence are those already available in nascent
form. The multiprocessor, cache and RT module
organizations discussed earlier are all examples
of this.

(6) The design tools that we have for discussing
(and discovering) appropriate designs are weak,
especially in the domain over which the struc-
tures under consideration here have ranged—
essentially the PMS level. :

(7) In particular, there is no really useful language
for expressing the trade-offs in a rough and
qualitative way, yet precisely enough so that the
design consequences can be analyzed.

(8) In particular (as well), design depends ultimately
on having conceptual components of the right
size relative to the system to be constructed:
small enough to permit variety, large enough to
permit discovery. The transient character of the
underlying space (the available space of com-
puter structures) reinforces the latter require-
ment. The notion of M.cache is an example of a
new design component with associated functions,
not available until a few years ago. Even this
small note shows it to be a useful component in
terms of which designs can be sought. The
potential conceptual revolution hiding in the RT
modules provides another example.

REFERENCES

M BARBACCI H GOLDBERG M KNUDSEN

A LISP processor for C.ai

Department of Computer Science Carnegie Mellon University
1971

C G BELL R CADY H MCFARLAND B DELAGI

J O'LAUGHLIN R NOONAN W WULF

A new architecture for mini~computers—The DEC PDP-11
AFIPS Conference Proceedings Vol 36 Spring Joint Computer
Conference 1970

C .G BELL D CASSASENT R HAMEL

The use of the cache memory in the PDP-8/F minicomputer
AFIPS Proceedings of the Spring Joint Computer Conf,
1971

C G BELL P FREEMAN et al

A computing environment for Al research

Department of Computer Science Carnegie-Mellon Univerity
1971

C G BELL J GRACON

The register transfer module design concept

Computer Design pp 87-94 May 1971

C G BELL A NEWELL

Compuler structures

MecGraw-Hill 1971

C G BELL D R REDDY C PIERSON B ROSEN

A high performance programmed remote display terminal
Computer Science Department Carnegie-Meilon University 197)
(For IEEE Computer Conference 1971)

Y CHU

Introduction to computer organization

Prentice-Hall 1970

W A CLARK

Macromodular computer systems

AFIPS Proceedings Spring Joint Computer Conference pp 335%-
336 1967 (This paper introduced a set of six papers by Clark and
his colleagues pp 337-401)

C J CONTI

Concepts for buffer storage

IEEE Computer Group News March 1969

J A DARRINGER

The description, simulation and automatic implemenatlation of
digital computer processors

PhD dissertation Carnegie-Mellon University 1969

S S HUSSON

Microprogramming: Principles and practice x
Prentice-Hall 1970 i
D MCCRACKEN G ROBERTSON
An L* processor for C.at

Department of Computer Science Carnegie-Mellon University
1971

A NEWELL D MCCRACKEN G ROBERTSON

L DEBENDETTI

L*(F) manual

Department of Computer Science Carnegie-Mellon University
1971

H A SIMON

The sciences of the artificial

MIT PRESS 1969

W Strecker

Analysis of instruction execution rates in multiprocessor compub®
system

PhD dissertation Carnegie-Mellon University 1970

A TUCKER M J FLYNN

Dynamic microprogramming: Processor organization and
programming i

Communications of the ACM 14 pp 240-250 April 1971

M V WILKES

Slave memones and dynamic storage allocation oy 21
IEEE Transactions on Computers Vol EC-14 No 2 pp 2ithat
1965

M V WILKES

The growth of interest in microprogramming: A literature Ldaid
Computing Reviews Vol 1 No 3 pp 139-145

et

