
PMS: A Notation To 
Describe Computer Structures 

by Mario Barbacci, C. Gordon Bell 
and Daniel Siewiorek 

INTRODUCTION 

The PMS notation was developed to describe the 
physical structure of computer systems in terms of a small 
number of elementary components for textbook (Bell and 
Newell, 197 1). 

There are seven basic component types, each 
distinguished by the kinds of operations (function) it 
performs: 

Memory, M. A component that holds or stores 
information (i.e., i-units) over time. Its operations are 
reading i-units out of the memory, and writing i-units into 
the memory. Each memory that holds more than a single 
i-unit has associated with it an addressing system by means 
of which particular i-units can be designated or selected. A 
memory can also be considered as a switch to a number of 
sub-memories. The i-units are not changed in any way by 
being stored in a memory. 

Link, L.  A component that transfers information (i.e., 
i-units) from one place to  another in a computer system. It 
has fixed terminals. The operation is that of transmitting an 
i-unit (or a sequence of them) from the component at one 
terminal to the component at the other. Again, except for 
the change in spatial position, there is no change of any sort 
in the i-units. 

Control, K. A component that evokes the operations of 
other components in ihe system. All other components are 
taken to  consist of a set of discrete operations, each of 
which - when evoked - accomplishes some discrete 
transformation of state. With the exception of a processor, 
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P, all other components are essentially passive and require 
some other active agent (a K) to set them into small 
episodes of activity. 

Switch, S. A component that constructs a link between 
other components. Each switch has associated with it a set 
of possible links, and its operations consist of setting some 
of these links and breaking others. 

Transducer, T. A component that changes the i-unit used 
to encode a given meaning (i.e., a given referent). The 
change may involve the medium used to encode the basic 
bits (e.g., voltage levels to magnetic flux, or voltage levels to  
holes in a paper card) or it may involve the structure of the 
i-unit (e.g., bit-serial to bit-parallel). Note that T's are 
meaning preserving, but not necessarily information 
preserving (in number of bits), since the encodings of the 
(invariant) meaning need not be equally optimal. 

Data-operation, D. A component that produces i-units 
with new meanings. It is this component that accomplishes 
all the data operations, e.g., arithmetic, logic, shifting, etc. 

Processor, P. A component that is capable of 
interpreting a program in order to execute a sequence of 
operations. It consists of a set of operations of the types 
already mentioned - M, L, K, S, T and D - plus the 
control necessary to  obtain instructions from a memory 
and interpret them as operations to be carried out. 

Components of the seven types can be connected to 
make stored program digital computers, abbreviated by C. 
For instance, the classical configuration for a computer is: 

Here PC indicates a central processor and Mp a primary 
memory, namely, one which is directly accessible from a P 
and holds the program for it. T (input/output device) is a 
transducer connected to the external environment, 
represented by X. (The colon-equals (:=) indicates that C is 
the name of wha t  follows to the  right.) 

The classic diagram had four components, since it 
decomposed the PC into a control and an arithmetic unit: 

where the heavy information carrying lines are for 
instructions and their data, and the dotted lines signify 
control. Diagrams such as these correspond roughly to the 
conventional, simplified block diagrams of computers. Thy 
following one from the MIT Whirlwind computer is one of 
the earliest. Later we will diagram Whirlwind in PMS 
notation. 

Often logic operations were lumped with control, 
instead of with data operations - but this no longer seems 
to be an appropriate way to functionally decompose the 
system. 

Arithmetic element 

Difference I Product Sum 

Takes instructions 
from storage then 
directs all other 

Storage 

elements properly 
(Positive or neg.) 

Pushbuttons 
I v1 

~ T l p e  ~ n p u t  I I 2:::: 1 I output J preparation 

Now we associate local control of each component with 
the appropriate component to  get: 

data I 
- D I X 

instmeripm-- 1 ."I I 
-I 

where the heavy lines carry the information in which we are 
interested, and the dotted lines carry information about 
when to evoke operations on the respective components. 
The heavy information carrying lines between K and Mp are 
instructions. Now, suppressing the K's, then lumping the 
processor state memory, the data operators, and the control 
of the data, operators and processor state memory to form 
a central processor, we again get: 

Computer systems can be described in PMS at varying 
levels of detail. For instance, we did not write in the links 
(L's) as separate components. These would be of interest 
only if the delays in transmission were significant to the 
discussion at hand. Similarly, often the encoding of 
information is unimportant; then there is no reason to show 
the T's. The same statement holds for K's. Sometimes one 
wants to show the locus of control, say when there is one 
control for many components, as in a tape controller. But 
often this is not of interest. 

Components are themselves decomposable into other 
components. Memories are composed of a switch (the 
addressing switch) and a number of submemories. Thus a 
memory is recursively defined as either a memory or a 
switch to other memories. The decomposition stops with 
the unit-memory, which is one that stores only a single 
i-unit, hence requires no addressing. Likewise, a switch is 
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often composed of a cascade of 1-way to  n-way switches. 
For example, the switch that addresses a word on a 
multiple-headed disk might look like: 

The first S(random) selects a specific Ms.disk drive unit; 
the second S (random) is a switch with random addressing 
that selects the head (the platter and side); S(1inear) is a 
switch with linear accessing that selects the track; and 
S(cyc1ic) is a switch with cyclic addressing that finally 
selects the M(word) along the circular recurring track. Note 
that the switches are realized by differing technologies and 
thus have varying performance. 

Various notational conventions designate specifications 
for a component, e.g., Mp for a functional classification, 
and S(cyc1ic) for a type of switch access function in the 
case of rotating memory devices like drums. There are 
many other additional specifications one wants to give - a 
single general way of providing additional specifications is 
used so that if X is a component, we can write: 

to indicate that X is further specified by attribute al  having 
value vl , attribute a2 having value v2,  etc. Each parameter 
(as we call the pair a:v) is well defined independently of 
what other parameters are given; hence there is no  
significance td the order in which they are written, or the 
number which have to  be written. 

The following PMS diagrams describe actual computer 
systems at varying degrees of detail. The Whirlwind 
computer is represented as: 

T.console 

K -  s3:~- ~ ( ~ a p e r  tape; reader1 punch)- 

: K - ~ ( ' ~ l e x o w r i t e r ;  10 char/s) 
2 2 K- T(CRT; d i sp lay ;  area':s2 1 10 i n  )- 

K-T(1ight ; pen)+ 
I 

K-T(fi1m; camera)* L 

K-S-Ms JA:B; drum; td:16-17600 ps;  [ s ;  12 x 2048 W;  16 b/w 

magnetic tape; 
I 

30 in /sec;  (2+1 - 
index) b/char; 100 char/in 1 

'M (toggle switch; 8 ~ s / w ;  32 w; 16 b/w) 
2 ~ c ( ~ ~  kop/s; 16 b/w; 1 instruction/w; 1 address/instruction; M. 

processor state (3 w); technology; vacuum tube; 1948 1966) 
%(fixed; from: PC: to: 8 K; concurrency: 1) 
4 ~ p ( # 0 : 1  core; 8 ps/w; 1024w; 16 b/w; taccess: 2 ~ s )  

Note that most of the important attribute: value 
characteristics about the machine are given. In addition, it 
might be noted that the machine has only limited 
processor/input-output concurrency due to  the switching 
structure. 

At a somewhat higher level, PMS is useful for describing 
the structure and the interaction of various larger 
components in a computer network. The IBM two 
computer, ASP system can be represented as: 

r ~ ( . 2 5  -. I )  megabyte) 1 
Pio.. . Pc('1BM sy;tem/360 Model 65,  75) I 

Ms(disk). . .  Ms(magnetic tape ) . . .  T 

P ~ o . .  . 
I 
Hp((.l -- . 5 )  megabyte) - 
Pio.. . Pc('1BM ~ystem/360 Model 40 ,  50) 

i ( card) .  . . T i l i n e ;  pr in ter ) .  ... $(typewriter 
I I I 

Here, we have not described several of the important 
characteristics such as the link bandwidth, and various 
characteristics of the interconnected computer although we 
could have. 

Similarly, lower level features can be shown as in the 
mapping structure between a processor and its memory: 

translation) t L(address) t 

M(content; 8 - 16 words) 

Again, a diagram might also include the information rate 
and width of the links, and the access time of the memory. 

At a much lower level of detail, the PMS names 
adequately and clearly describe the structures of registers 
and switching circuits. Most combinational circuits 
correspond'to data-operations D's or switches S's, and 
combinational circuit design consists of making more 
complex D's and S's. Sequential circuits take small amounts 
of memory M, and proceed to build controls K's. At a 
higher level more complex sequentially controlled P's are 
formed from D's and K's. Finally, the special name of P's 
and C's are used for particular structures. 

Reference 
[I] Bell, C. G .  and A. Newell, Computer 

Structures: Readings and Examples, 
McGraw-Hill, 197 1. 
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Appendix 2 

ISP: A Notation To Describe 
A Computer's Instruction Sets 

by Mario Barbacci, C. Gordon Bell, 
and Daniel Siewiorek 

The ISP (for Instruction Set Processor) notation was 
developed for a text [Bell&Newell, 197 I ]  to precisely 
describe the programming level of a computer in terms of 
its Memory, Instruction Format, Data Types, Data 
Operations, Interpreting a Specific Instruction Set. 

The behavior of a processor is determined by the nature 
and sequence of its operations. This sequence is given by a 
set of bits in primary memory (a program) and a set of 
interpretation rules (usually in the central processor). Thus, 
if we specify the nature of the operations and the rules of 
interpretation, the actual behavior of the processor depends 
on the initial conditions and the particular program. 

Computers are usually described in terms of the 
following relatively fixed format: 

Memory.- Physical components whch hold information 
encoded in data. 

Primary-memory.-Contains program and its data. 

Processor-state.-Registers accessible to the program 
- i.e. general registers and program location counter. 

Console-state.- Lights and switches enabling 
communication with the processor. 

Input/Output-state.- Controller registers accessible 
to the program. 

Data-Types.- Described in terms of registers which 
could carry information. 

Data-Operations.- Defining operations that can be 
carried out in terms of data-types. 

Instruction-Format.- Specific instances of data-types. 

Interpreter.- The mechanism of the processor which 
fetches, decodes, and executes the instructions. 

Instruction-Set.- Definition of the particular 
instructions that the processor executes. 

DEC PDP-8 ISP Description 

Primary Memory, Mp 
Memory \ Mp [0:7777 4 81 (0: 11) extended memory nol 

included; 

Processor State.Interrupt handling is not included 

~ c & m u l a t o r \ ~ ~  (0: 1 1) 
Link.bit\L Link bit, extension to 

the Accu~ulator for 
overflow and carry; 

Program.counter\PC (0: 11) 
Run I when PC is inter- 

preting instructions or 
"running"; 

Console State 
Data.Switches (0: 11) 

InputlOutput State 
1O.pulse. 1 
I 0  .pulse.:! 
I 0  .pulse.4 

Instruction Format 
Instruction.register\IR (0: 11) 

data entered via 
console; 

pulses to I/O devices; 

0, direct; I ,  indirect 
memory reference; 
0 selects page 0; 1 
selects this page; 

selects an inputloutput 
device 
these 3 bits control the 
selective 
generation of pulses to 
I/O devices; 

current page number 

I;zstruction Interpretation Process 
Interpreter := (Run* PC operates while Run 

bit is set to 1 
IR i- Mp [PC] ; PC t PC+ 1 ; next instruction fetch 
Execute.instruction; next instruction execution 
Interpreter) interpretation cycle 

loop 
Effective Address Calculation Process 
Direct.address\DA ( 0: 11 ) := ( 

(PO *DA :=OOPage.address); (7PO+DA := This. 
page0 Page.address) ) 

Effective.address\EA (0: 11 ) := ( 
(,IB*EA := DA); direct memory refer- 

ence 
( IB* indirect memory refer- 

ence 
(DA ? lO$8  ~ D A < 1 7 & 8 *  

hip [DA] t Mp [DA] + 1); next auto indexing 
EA := Mp [DA] ) ); defines the effective 

address 
Instruction Set and Instruction Execution Process 
Execute.instruction := ( 
(OP = o* 

A c t  AC A M ~ [ E A ] ) ;  logical and 
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(OP= 1 " L O A C t  LOAC + 
Mp P A 1  1; two's complement add 

(OP = 2 * Mp [EA] t Mp [EA] 
+ 1; next index and skip if 0 

(Mp [EA] =O *PC t PC t 1)); 
(OP = 3 =+Mp [EA] c AC; AC 
+ 0); deposit and clear AC 

(OP =4=+Mp [EA] +PC; 
next PC t EA + 1); jump to subroutine 

(OP = 5 +PC+ EA); jump 
(OP = ~j*(IO.Pl.bit * microprogrammed to 

1O.pulse. 1 t 1); next generate 3 pulses to an 
(10.P2.bit =?rIO.pulse.2 110 device addressed by 
t 1); next IO.select 

(10.P4.bit *IO.pulse.4 t 
1) ); 

(OP = 7=+operate instruction. Does not include the EAE 
option. 

( - J R ( 3 )  * 
(IR (4;6) = 1*AC+ 7AC); 
(IR (4;6) = 2 * A C t  0); 
(IR (4;6 ) = 3* AC t 

7777 $8); 
(IR (5;7)  = 1 * L t  7L); 
(IR (5;7) = 2 * L t 0 ) ;  
(IR (5;7) = 3*L t l ) ;  next 
(IR(8:lO) =2*LO AC 
+ L O  AC*2 {rotate} ); 

(IR (8: lO)  = 3*LOAC 
t L  0 AC*4 {rotate) ); 

(IR @: lo )  = 4*LO AC 
c L  0 AC s 2 {rotate} ); 

(IR (8:lO) = 5 * L O  AC 
+ L O  ACf4 {rotate) ); next 

(IR (11)  * L O A C t  
L 0 AC+ 1)) 

operate group I 
complemen t AC 
clear A C 

set AC to ones 
complement link bit 
clear L 
set L to I 

rotate left 

rotate twice left 

rotate right 

rotate twice righ t 

increment AC, end of 
group 1 

( I 3 )  A I 1 * group 2 
Skip.condition := (IR (5) A 

AC (0 )  ) v(IR (6hAC=O) 
A(IR (7) AL) (IR (4 )  

AC t 0); clear A C 
(Skip.condition @ IR (8) *PC 
+PC + 1); next skip 

(IR ( 9 )  *AC t AC v Data. 
switches); next "read" console switches 

(IR ( lo)*  R u n t  0)) ;  halt, end of group 2 
) end op operate 
1 instruction end of 

instruction execution 
process 

Memory 
Memory components or information carriers are 

hierarchically organized information structures, in which 
each level consists of a number of subcarriers, all identically 
organized. This decomposition eventually yields elementary 
carriers that can not be further decomposed (e.g., a bit 
carrier). Almost all information in computers is organized 
in these terms, for instance, a memory consists of a number 
of words, each of a number of characters, each of a number 
of bits. 

Carriers are defined in ISP by a name and description 
of their structure, where the number of subcarriers at each 
level of decomposition is given by bracketed lists of names 
(if specific names are associated with the subcarrier) or 

constants, much like array declarations in Algol, e.g.: 

AC (0: 11 ) AC is the name of a carrier, a register 
12 bits wide, named from 0 to 11 (from left to right). 
The ":" or range operator is used to denote an 
abbreviated list of elements. 

For descriptive purposes there is an abbreviatian or 
alias operator "\", which is used as a delimiter for a list of 
names, all of which are thus made equivalent, e.g.: 

Accumulator \ AC (0: 11) is a valid definition o f  
the carrier, but now it can be referred to as either 
"Accumulator" or "AC" indistinctly. 

Memory \Mp [O:7777 $81 (0: 11) square brackets 
are used to specify those dimensions where the 
accessing is done through some "addressing" (switch- 
ing) scheme. The memory consists of 4096 words, 
each of 12 bits, named, from left to right: 0, 1, . . ., 
11. Constants are, by default, decimal numbers, un- 
less otherwise specified by the $ (base) operator. 

Elements are specified by "names" (numbers do not 
indicate relative position), therefore, it is legal to describe a 
7 bit register as: 

R (A;15;B;13;1 l;9: 10)  

The only concession to  the use of numbers as both 
names and position indicators is by using the range (":") 
operator, whereby, the abbreviated lists consist of the 
bounds and all integers in between, with the implication 
that these consecutive numbers also name consecutive 
(from left to right) elements. 

Carriers do not necessarily have bits as their most 
elementary components; in fact, a carrier can be denoted as 
a structure of elements each of which can assume values out 
of some arbitrary alphabet (the alphabet for bits being "0" 
and "1 "). This is denoted by appending, to the carrier 
definition, a base (" 4 ") operator and a "size" (i.e. the size 
of the alphabet) operand, e.g.: 

A (0: 3)  $ 16 is a register of 4 elements; each one 
can assume as value a hexadecimal digit. 

TR ( 0: 7 ) 4 3 a ternary register, 8 characters long, 
the characters are named TR ( 0 ) ... TR ( 7 ) . 

Data operators 
Data operators produce bit patterns with new mean- 

ing, they do the real processing by transforming infor- 
mation. Data operators work on data types (which are 
composed of a value or meaning and a representation or 
encoding of information). Associated with the data types 
we have carriers, the physical components used in storing 
and transmitting the data types. 

Data operations create information (instances of data 
types) with new meaning, in which process they may des- 
troy some existing information. The data operators take 
their inputs (data type carriers), operate on the data and 
present the result as output (the resulting data type car- 
rier). Data operators are essentially intercarrier communi- 
cation networks, whose complexity varies from a simple 
transfer path to combinational networks to  more complex 
transformations involving sequences of simpler operations. 

Data operators in ISP include the following classes: 



Operation sequences 
In ISP, concurrency of actions is the rule rather than 

the exception, and it is reflected in the used of the ";" as a 
delimiter for lists of concurrent actions. Sequencing is ex- 
pressed by using the term "next" as a delimiter for lists of 
sequential actions. Complex concurrent and sequential 
activities can be described in terms of simpler activities 
using "next", ";", "(", and ")" in a recursive way, e.g.: 

I R c  Mp [PC] single action 

I R t M p [ P C ]  ; P C c P C +  1 concurrent actions 
I R t  Mp [PC] ; PC t PC + 1; next Processor.state t 1 

action sequence of two steps in parallel 
followed by a third step 

(IR cMp[PC]  ; PC t PC + 1; next Processor.state 
t l);(AC t 0; MQ t AC) concurrent action 
sequences 

(OP = 2 *Mp [EA] t Mp [EA] + 1 ; next (Mp [EA] = 
O*PC c PC + 1) ) conditional action sequences 
can be defined in terms of conditional action 
sequences. Parenthesis are used to indicate the 
scope of  the conditional activities. 

Instruction expressions 
Instructions are described by instruction expressions 

(conditional actions) of the form: 

condition *action-sequence 

where the condition (a Boolean expression which is either 
true or false) describes when the instruction will be evoked, 
and the action sequence describes what transformations 
take place between what memories. 

Since all operations in a computer result in modi- 
fications of bits in memories, each action in a sequence takes 
the following form: 

memory-expression t data-expression 
the data-expression, patterned after standard mathematical 
notation, describes the transformation of information (if 
any) and the information pattern that is to be placed in the 
memory described by the memory-expression, e.g.: 

(OP = 2*AC c AC A Mp [EA] ) If the contents of 
carrier OP is equal to 2 then the action is 
performed. 

Modifying data operations 

Expressions can be followed by a modifier, providing 
more information about the meaning and interpretation of 
the operands and operators. A modifier consists of a data 
type name or an operation mode enclosed in curly brackets 
" {" and ")",e.g.: 

L OAC t LOAC * 2 {shift) 
LOAC + LOAC * 2 {rotate) 
A + B + C (1's complemenf) 
A t B + C {2's complement) 
A t ( ( B + C {l's complement) ) * 2 {shift) ) 

The instruction format 

The instruction register, because of its important 
function, has (usually) a more complicated structure than 
most other internal registers (not physically, but by the 
meaning assigned to its components). It is always divided in 
fields, with proper names that provide information to  the 
programmer about their function during the interpretation 
cycle. Thus, we have operation codes, addresses (with 

modifiers: modes, bases, indexes), device selectors and 
commands for i/o instructions, micro-commands for micro- 
operation instruction, etc. This factorization of the register 
bits is not unique to the instruction register, for instance we 
may refer to  the sign of the accumulator register by its own 
name, or to fields in the processor state register (a register 
containing a selected subset of the processor status infor- 
mation). 

These subfields are declared in terms of the main 
register, but are used as if they were independent registers, 
with their own structure and naming conventions, e.g.: 

1nstruction.Register \ IR (0:  1 1)the instruction regis- 
ter is declared as part of the processor state 

0peration.code \ O P ( 0 : 2 )  := IR (0:2) the 
operation code field consists of the first three 
bits o f I R  

1ndirect.address.bit \ IB := IR (3) the fourth bit 
o f  IR specifies the addressing mode 

PageO.bit \ PO := IR ( 4 )  the fifth bit of IR 
selects the page in memory 

Page.address (0 :6 )  := IR ( 5: 11 ) the last seven bits 
of IR define the page address 

1O.select (0: 5) := IR (3: 8) the device selection 
field. Subfields can overlap. 

The interpretation cycle 

During the execution of the program, some set of bits 
(an instruction) is read from Mp to a memory within PC, 
called the instruction register. This set of bits then deter- 
mines the immediately following sequence of operations. 
After this sequence has occurred, the next instruction to be 
executed is determined and obtained, and the entire cycle 
repeats itself. This interpretation cycle is performed by a 
part of the processor called the interpreter. The effect of 
each instruction can be expressed entirely in terms of the 
information stored in memories at the end of the cycle 
(plus any changes made to the outside world). 

During execution, operations may have their own 
internal states, as sequential circuits, which are not repre- 
sented as bits in memory. But at the end of the cycle, 
whatever effect is to be carried on to  a later time has been 
staticized in bits of some memory. 

This modularization of the description allows the 
designer to divide the processor in conceptually in- 
dependent units (the actual hardware may or may not be 
structured in that way). 

1nstruction.Interpreter := ( Run* Fetch; next In- 
s t r u c  tion.Execution; next Instruction. 
Interpreter 
) this sequence activates the Fetch and Instruc- 
tion.Execution processes and loops i.e. the 
Interpretation cycle 

Fetch := ( IR t Mp [PC] ; PC c PC + 1) the instruc- 
tion fetch process 

1nstruction.Execution := ( 
(OP=O*. . . . ); 

. . . . . . . . . .  
(OP = 7*. . . . )  
); defines each instruction in terms of the 
operation code to which it responds. 
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