
The PMS and ISP descriptive systems
for computer structures*

by C. GORDON BELL and ALLEN NEWELL

Carnegie-Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

In this paper we propose two notations for describing
aspects of computer systems that currently are handled
by a melange of informal notations. These two nota-
tions emerged as a by-product of our efforts to produce
a book on computer structures (Bell and Newell, 1970).
Since we feel i t is slightly unusual to present notations
per se, outside of the context of particular design or
analysis efforts that use them, it is appropriate to
relate some background history.

The higher levels of computer structure-roughly,
all aspects above the level of logical design-are
becoming increasingly complex and, as a result, de-
veloping into serious domains of engineering design.
By serious we mean the growth of techniques of
analysis and synthesis, with a body of codified tech-
nique and design experience which professional de-
signers must assimilate. In the present state, most
knowledge about the technologies for computer archi-
tecture is embedded in particular studies for particular
computer systems. Nothing exists comparable to the
array of textbooks and systematic treatments of
logical design or circuit design.

We started off simply to produce a set of readings
in computer systems, motivated by this lack of syste-
matic treatment and the inaccessibility of good exam-
ples. As we gathered material we became impressed
(depressed is actually a better term) with the diversity

*This paper is taken from Chapters 1 and 2, substantially
compressed and rewritten, of a book, Computer Structures,
Readings and Examples (Bell and Newell, McGraw-Hill, 1970),
which is about to be published. All figures in the paper have been
reproduced with the permission of McGraw-Hill. The research in
this paper was supported by the Advanced Research Projects
Agency of the Ofice of the Secretary of Defense (F 44620-67-C-
0058) and is monitored by the Air Force Office of Scientific
Research. This document has been approved for public release
and sale; its distribution is unlimited.

of ways of describing these higher levels. The amount
of clumsy description-downright verbosity-even in
purely technical manuals acted as a further depressant.
The thought of putting such a congeries of descriptions
between hard covers for one person to peruse and
study was almost too much to contemplate. We began
to rewrite and condense many of the descriptions. As
we did so, a set of common notations developed.
Becoming aware of what was happening, we devoted a
substantial amount of attention and effort to creating
notational systems that have some consistency and,
hopefully, some chance of doing the job required.
These are the PMS descriptive system for what we
will call the PMS level of computer structure (essen-
tially the information flow level), and the ISP descrip-
tive system fo; defining the programming level in
terms of the logic level (actually, the register-transfer
level).

Thus, these two notations were developed to do a
descriptive task-to be able to write down the informa-
tion now given in the basic machine manual in a
systematic and uniform way for all current computers.
They were to provide a complete defining description
for complete systems, such as the IBM 7090 or the
SDS 930. Hence, the essential constraints for the
notations to satisfy were ones of completeness, flexi-
bility, and brevity (i.e., high informational density).

We think the two notations meet these requirements.
They have not yet been used in a way that meets
additional requirements that we would all put on
notational systems; namely, that there be analysis and
synthesis techniques developed in terms of them.*

* There is currently a thesis in progress establishing a substantial
amount of standard analysis at the PMS level. In addition, there
exists at least one simulation system at the register-transfer level
(Darringer, 1969) that bears a close kinship to ISP. Finally, one
new computer, the DEC PDP-11, reported in this conference
(Bell, et al., 1970), was designed using PMS and ISP as the
working notations.

352 Spring Joint Computer Conference, 1970

use by many people. Thus, they are undoubtedly
imperfect in a number of ways (even beyond the usual
questions of taste in notation, which always prevents
uniform agreement and satisfaction).

By way of justification let us simply note the many
places where pure descriptions (without analysis or
synthesis techniques) are critical to the operation of
the computer field. The programming manual serves
as the ultimate educational and reference document
for all programmers. Professional papers reporting on
new computing systems give descriptions of the overall
configuration; currently these are done by informal
block diagrams. Each manufacturer adopts descriptive
names of its own choosing, often for marketing purposes,
to describe the components of its systems in sales
brochures-e.g., selector, channel, peripheral processor,
adapter, bus. During negotiations for the purchase or
sale of computer system, overall descriptions (at the
PMS level, as it turns out) are passed between manu-
facturer and pdtential customer. Large amounts of
rough performance analyses are based on such abbre-
viated system descriptions. In the classroom (and
elsewhere) systems are presented briefly to make
particular points about design features. A user, even
though he knows the order code of a machine, needs to
learn the configuration available a t a given installation
(which, again, is a description a t the PMS level). The
list could be extended somewhat further, but perhaps
the point is made. There is a substantial need for a
uniform way of describing the upper levels of computer
structures, not just for computer design, but for
innumerable other purposes of marketing, use, com-
parison, education, e t ~ .

With this preamble, let us describe the two nota-
tions. Notations are not theoretically neutral. That is,
they are based on a particular view of the systems to
be described. Thus, to understand PMS and ISP we
give briefly this view of computer systems. This ma-
terial is elementary and known, a t least implicitly, to
all computer designers. But it serves to provide the
rationale for the notations and to locate them with
respect to other descriptions of computer systems.
After we have given some of this background, we will
describe, first, PMS and then ISP. The two descriptive
However, the gains to the computer field simply from
the use of good descriptive notations are immense.
Thus, we think that these two notations should be
put forward to the computer community, both for
criticism and as one concrete proposal for the adoption
of a uniform notation.** The present notations are
quite new and have hardly been thoroughly tested in

** A standards committee might be set up for dealing with these
system levels and their description.

systems have a common base of conventions, but i t is
simpler to treat them separately, especially when
being informal. We will use the PDP-8 as an example
for both PMS and ISP, since it is small enough to be
completely described within the confines of this paper.
At the end, in order to give some indication of gener-
ality, we will treat briefly the CDC 6600.

Our treatment here of these notations is essentially
informal and heuristic. A complete treatment, as well
as many examples, can be found in the forthcoming
book (Bell and Newell, 1970).

HIERARCHICAL SYSTEM LEVELS

A computer system is complex in several ways.
Figure 1 shows the most important. There are a t least
four levels that can be used in describing a computer.
These are not alternative descriptions. Each level
arises from abstraction of the levels below it.

A system (at any level) is characterized by a set of
components, of which certain properties are posited,
and a set of ways of combining components to produce
systems. When formalized appropriately, the behavior

Structures: Ne twrk /N --
Conputer/C

; Coyyrsts: Procerrorr/P, Men- : oraer !I. SwitcherlS. Controlr lK, ' Tranrducerr/T. Data Operatorr/D,

g Li"k./L.

cmponenrr: reg i r te r r , ' ' t ransfers, c o n y o l r , data

operators (+. -, e t c .)

C i rcu i ts : caunterr , con-
- .-
s ta te
System
Level

A conponents

s t a t e r , i r
puts. Out'

DU(I

Figure 1-Hierarchy of computer structures

PMS and ISP Descriptive Systems 353

of the systems is determined by the behavior of its
components and the specific modes of combination
used. Elementary circuit theory is the prototypic
example. The components are R's, L's, C's and voltage
sources. The mode of combination is to run wires
between the terminals of components, which corre-
sponds to an identification of current and voltage a t
these terminals. The algebraic and differential equa-
tions of circuit theory provide the means whereby the
behavior of a circuit can be computed from the proper-
ties of its components and the way the circuit is con-
structed.

There is a recursive or nested feature to most system
descriptions. A system, composed of components
structured in a given way, may be considered a com-
ponent in the construction of yet other systems. There
are primitive components whose properties are not
explicable as the resultant of a system of the same
type. For example, a resistor is usually not explained
by a subcircuit, but is taken as a primitive. Some-
times there are no absolute primitives, it being a matter
of convention what basis is taken. For example, one
can build logical design systems from many different
primitives (AND and NOT; NAND; OR and NOT;
etc.).

A system level, as we have used the term in Figure
1, is characterized by a distinct language for repre-
senting and analyzing the system (that is, the compo-
nents, modes of combination, and laws of behavior).
These distinct languages reflect special properties of
the types of components and of the way they combine.
Within each level there exists a whole hierarchy of
systems and subsystems. However, as long as these
are all described in the same 1 a n g ~ a g e e . g . ~ a sub-
routine hierarchy, all given in machine assembly
languagethey do not constitute separate system
levels.

The circuit level, and the combinatorial switching
sublevel and sequential switching sublevels of the
logic level, are clearly defined in the current art. The
register-transfer level is still uncertain because there is
neither substantial agreement on the exact language
to be used for the level, nor on the techniques of
analysis and synthesis that go with it. However, there
are many reasons to believe it is emerging as a distinct
system level.

In the register-transfer level the system undergoes
discrete operations, whereby the values of various
registers are combined according to some rule, and
then stored in another register (thus "transferred").
The law of combination may be almost anything, from
the simple unmodified transfer (A + B) to logical
cl jmbination (A t B A C) to arithmetic (A + B + C).
'I hus, a specification of the behavior, equivalent to

the boolean equations of sequential circuits or the
differential equations of the circuit level, is a set of
expressions (often called productions) which give the
conditions under which such transfers will be made.

There have been a number of efforts to construct
formalized register transfers systems. Most of them
are built around the construction of a programming
system or language that permits computer simulation
of systems on the RT level (e.g., Chu, 1962; Darringer,
1969). Although there is agreement on the basic
components and types of operations, there is much
less agreement on the representation of the laws of
the system.

The state system representation is also at the logic
level, but it has been put off to one side in Figure 1.
The state system is the most general representation of
discrete system available. A system is represented as
capable of being in one of a set of abstract states at
any instant of time. (For digital systems the set is
finite or enumerable.) Its behavior is specified by a
transition function that takes as arguments the current
state and the current input and determines the next
state (and the concomitant output). A digital computer
is, in principle, representable as a state system, but
the number of states is far too large to make it useful
to do so. Instead, the state system becomes a useful
representation in dealing with various subparts of
the total machine, such as the sequential circuit that
controls a magnetic tape. Here the number of states is
small enough to be tractable. Thus, we have placed
state systems off to one side as an auxiliary to the
logic level.

The program level is not only a unique level of
description for digital technology (as was the logic
level), but it is uniquely associated with computers,
namely, with those digital devices that have a central
component that interprets a programming language.
There are many uses of digital technology, especially
in instrumentation and digital controls which do not
require such an interpretation device and hence have
a logic level but no program level.

The components of the program level are a set of
memories and a set of operations. The memories hold
data structures which represent things both inside
and outside of the memory, e.g., numbers, payrolls,
molecules, other data structures, etc. The operations
take various data structures as inputs and produce
new data structures, which again reside in memories.
Thus the behavior of the system is the time pattern
of data structures held in its memories. The unique
feature of the program level is the representation it
provides for combining components-that is, for
specifying what operations are to be executed on what
data structures. This is the program, which consists of

354 Spring Joint Computer Conference, 1970

a sequence of instructions. Each instruction specifies
that a given operation (or operations) be executed on
specified data structures. Superimposed on this is a
control structure that specifies which instruction is to
be interpreted next. Normally this is done in the order
in which the instructions are given, with jumps out of
sequence specified by branch instructions.

In Figure 1 the top level is called the Processor-
MemorySwitch level, or PMS level for short. The
name is not recognized, nor is any other, since the
level exists only informally. Nevertheless, its existence
is hardly in doubt. I t is the view one takes of a com-
puter system when one considers only its most aggre-
gate behavior. I t then consists of central processors,
core memories, tapes, discs, input/output processors,
communication lines, printers, tape controllers, busses,
Teletypes, scopes, etc. The system is viewed as process-
ing a medium, information, which can be measured in
bits (or digits, characters, words, etc.). Thus the
components have capacities and flow rates as their
operating characteristics. All details of the program
are suppressed, although many gross distinctions of
encoding and information type remain, depending on
the analysis. Thus, one may distinguish program from
data, or file space from resident monitor. One may
remain concerned with the fact that input data is in
alphameric and must be converted into binary, or is in
bit serial and must be converted to bit parallel.

We might characterize this level as the "chemical
engineering view of a digital computer," which likens
i t more to a continuous process petroleum distilling
plant than to a place where complex FORTRAN
programs are applied to matrices of data. Indeed, this
system level is more nearly an abstraction from the
logic level than from the program level, since it returns
to a simultaneously operating flow system.

One might question whether there was a distinct
systems level here. In the early days of computers
almost all' computer systems could be represented as in
the diagram in MIT's Whirlwind Computer program-
ming manual in Figure 2: the four classic boxes of
memory (storage), control, arithmetic, and input/
output (separated, in the figure). But current time-
sharing and multiprocessing systems are orders of
magnitude more complex than this, and it is known
that the structure at this level has a determining
influence on system performance. (See the PMS diagram
for the 6600 in Figure 6, by no means the most complex
of current systems.)

With this total view of the various systems levels
we can locate both PMS and ISP. PMS is, of course, a
systems level of its own, namely, the top one. ISP is a
notation for describing the components and modes of
combination of the programming level in terms of the

Figure 2-Simplified computer block diagram Whirlwind I
(courtesy of M.I.T.)

f 1 I

next level down, i.e., in terms of the register transfer
level. That is, the instructions, operations and inter-
pretation cycle are the defining components of the
programming level arid must be given in terms of a
more basic systems level. The programming level
itself consists of programs written in the machine code
of the system. In essence, a register-transfer description
of a processor is an interpreter program for interpreting
the instruction set. The interpreter describes the actual
hardware of the processor. By carefully structuring a
register-transfer description of a processor, instructions
are precisely defined.

Thus, ISP is an interface language. Similarly, inter-
face definitions exist at all levels of a system hierarchy,
e.g., between the circuit level and the logic level.
Normally, it is not necessary to have a special language
for the interface; e.g., one simply writes a circuit
description of an AND-gate. But with the programming
level, it is most useful not to use simply a register
transfer language, but to introduce a special notation
(i.e., ISP). This will become clear when we describe
ISP.

PMS and ISP are also strongly related in that ISP
statements express the behavior of PMS components.
Thus, for every PMS component there are constructs
in ISP that express its behavior; and each ISP state-
ment implies particular PMS structures.

A word should be said about antecedents. The PMS
descriptive system is close to the way we all talk
informally about the top level of computer systems;
no one effort in the environment stands out as a pred-
ecessor. Some notations, such as CPU (for central
processing units), have become widespread. We clearly
have assimilated these. Our modifications, such as PC
instead of CPU, are dictated entirely by the attempt
to build a consistent notation over the whole range of
computer systems. With respect to ISP, we have been
heavily influenced by the work on register transfer
languages.* The one that we used most as a kernel

ARTTINETIC
FLP(EYT

4 COhTROL STOPAGF

A

ic 11 41 It
It A

nIGIT TRANSFFR RIJS

- + INPIIT OIITPIIT

PMS and ISP Descriptive Systems 355

from which to grow ISP was the work of Darringer
and Parnas (Darringer, 1968). In particular, their
decision to work within the framework of ALGOL
suited our own sensibilities, even though the final
version of ISP departs from a sequential algorithmic
language in a number of respects.

PMS LEVEL OF DESCRIPTION

Digital systems are normally characterized as
systems that a t any time exist in one of a discrete set
of states, and which undergo discrete changes of state
with time. Nothing is said about what physical state
corresponds to a system state; or the behavior of
compopents that transform the system from one state
to another. The states are given abstract labels: S1,
Sz, The transitions are provided by a state-transi-
tion table (or state diagram) of the form: if the system
is in state Si and the input is Ij, then the system is
transformed to Sk and evokes output 02. The "state-
system" view captures what is meant by a discrete (or
digital) system. Its disadvantage is its comprehensive-
ness, which makes i t impossible to deal with large
systems because of their immense number of states (of
the order 101°' states for a big computer).

Existing digital computers can be viewed as discrete
state systems that are specialized in three ways. First,
the state is realized by a medium, called information,
which is stored in memories. Thus, a processor has all
its states made explicit in a set of registers: an ac-
cumulator, an address register, an instruction register,
status register, etc. No permanent information is
kept in digital devices except as encoded in bits or
some other information unit base in a memory. Sequen-
tial logic circuits that carry out operations in the
system may have intermediate non-staticized states
(e.g., during a multiply instruction), but these are
only temporary. Second, the current digital computer
systems consist of a srriall number of discrete sub-
systems linked together by flows of information. The
natural representation of a digital computer system is
as a graph which has component systems a t the nodes
and information flows as branches. This representation
as an information flow network with functionally
specialized nodes is a real specialization. Finally, each
component in a digital system has associated with it a
small number of discrete operations for changing its
own state or the state of neighboring components. The

* We have not been influenced in a direct way by the work of
Iverson (Falkoff, Iverson and Sussenguth, 1964) in the sense of
patterning our notation after his. Nevertheless, his creation of
a full description of the IBM System/360 system in APL stands
as an important milestone in moving toward formal descriptions
of machines.

total behavior of the system is built up from the
repeated execution of the operations as the conditions
for their execution become realized by the results of
prior operations.

To summarize, we want a way of describing a system
of an interconnected set of components, which are
individual devices that have associated with them a set
of operations that work on a medium of information,
measured in bits (or some other base). For the PMS
level we ignore all the fine structure of information
processing and consider a system consisting of compo-
nents that work on a homogeneous medium called
information. Information comes in packets, called
i-units (for information units) and is measured in bits
(or equivalent units, such as characters). I-units have
the sort of hierarchical structure indicated by the
phrase: a record consists of 300 words; a word consists
of 4 bytes; a byte consists of 8 bits. A record, then,
contains 300 X 4 X 8 = 9600 bits. Each of these
numbers-300, 4, 8-is called a length.

Other than being decomposable into a hierarchy of
factors, i-units have no other structure at the PMS
level. They do have a referent-that is, a meaning. At
the PMS level we are not concerned with what is
referred to, but only with the fact the certain com-
ponents transform i-units, but do not modify their
meaning. These meaning-preserving operations are the
most btisic information processing operations of all-
and provide the basic classification of computer
components.

PMS primitives

There are seven basic component types, each distin-
guished by the kinds of operations it performs:

Memory, M. A component that holds or stores
information (i.e., i-units) over time. Its operations
are reading i-units out of the memory, and writing
i-units into the memory. Each memory that holds
more than a single i-unit has associated with it an
addressing system by means of which particular
i-units can be designated or selected. A memory can
also be considered as a switch to a number of sub-
memories. The i-units are not changed in any way
by being stored in a memory.
Link, L. A component that transfers information
(i.e., i-units) from one place to another in a computer
system. I t has fixed terminals. The operation is
that of transmitting an i-unit (or a sequence of
them) from the component at one terminal to the
component at the other. Again, except for the change
in spatial position, there is no change of any sort in
the i-units.

356 Spring Joint Computer Conference, 1970

Control, K. A component that evokes the operations
of other components in the system. All other com-
ponents are taken to consist of a set of discrete opera-
tions, each of which-when evoked-accomplishes
some discrete transformation of state. With the
exception of a processor, P, all other components
are essentially passive and require some other active
agent (a K) t'o set them into small episodes of ac-
tivity.
Switch, S. A component that constructs a link
between other components. Each switch has asso-
ciated with it a set of possible links, and its opera-
tions consist of setting some of these links and
breaking others.
Transducer, T. A component that changes the i-unit
used to encode a given meaning (i.e., a given
referent). The change may involve the medium
used to encode the basic bits (e.g., voltage levels to
magnetic flux, or voltage levels to holes in a paper
card) or it may involve the structure of the i-unit
(e.g., bit-serial to bit-parallel). Note that T's are
meaning preserving, but not necessarily information
preserving (in number of bits), since the encodings
of the (invariant) meaning need not be equally
optimal.
Data-operation, D. A component that produces
i-units with new meanings. I t is this component

that accomplishes all the data operations, e.g.,
arithmetic, logic, shifting, etc.
Processor, P. A component that .is capable of inter-
preting a program in order to execute a sequence of
operations. I t consists of a set of operations of the
types already mentioned-M, L, K, S, T and D-
plus the control necessary to obtain instructions from
a memory and interpret them as operations to be
carried out.

Computer model (in PMS)

Components of the seven types can be connected to
make stored program digital computers, abbreviated by
C. For instance, the classical configuration for a com-
puter is:

C : = M p - P C - T - X

Here PC indicates a central processor and Mp a primary
memory, namely, one which is directly accessible from
a P and holds the program for it. T (input/output
device) is a transducer connected to the external
environment, represented by X. (The colon-equals
(:=) indicates that C is the name of what follows to
the right.)

The classic diagrams had four components, since it
decomposed the PC into a control and an arithmetic
unit :

where the heavy information carrying lines are for seems to be the appropriate way to functionally de-
instructions and their data, and the dotted lines compose the system.
signify control. Now we associate local control of each component

Often logic operations were lumped with control, with the appropriate component to get:
instead of with data operations-but this no longer

PC :=

7 Mpy~-+ instruct ions

PMS and ISP Descriptive Systems 357

where the heavy lines carry the information in which
we are interested, and the dotted lines carry informa-
tion about when to evoke operations on the respective
components. The heavy information carrying lines
between K and Mp are instructions. Now, suppressing
the K's, then lumping the processor state memory,
the data operators, and the control of the data, opera-
tors and processor state memory to form a central
processor, we again get :

Computer systems can be described in PMS at
varying levels of detail. For instance, we did not
write in the links (L's) as separate components. These
would be of interest only if the delays in transmission
were significant to the discussion at hand, or if the
i-units transmitted by the L were different from those
available a t its terminals. Similarly, often the encoding
of information into i-units is unimportant; then there
is no reason to show the T's. The same statement
holds for K's-sometimes one wants to show the
locus of control, say when there is one control for

many components, as in a tape controller; but often
this is not of interest. Then, there is no reason to show
K's in a PMS diagram.

As a somewhat different case, it turns out that D's
never occur in PMS diagrams of computers, since in
the present design technology D's occur only as sub-
components of P's. If we were to make PMS-type
diagrams of analog computers, D's would show exten-
sively as multipliers, summers, integrators, etc. There
would be few memories and variable switches. The
rather large patchboard would be represented as a
very elaborate manually fixed switch.

Components are t(hemse1ves decomposable into
other components. Thus, most memories are composed
of a switch-the addressing switch-and a number of
submemories. Thus a memory is recursively defined as
either a memory or a switch to other memories. The
decomposition stops with the unit-memory, which is
one that stores only a single i-unit, hence requires no
addressing. Likewise, a switch is often composed of :L

cascade of 1-way to n-way switches. For example, the
switch that addresses a word on a multiple-headed
disk might look like:

I S (random) - S (random) -S'(linear) - S (cyc 1ic)---M(word)
\ \ \ \ 1

The first S(random) selects a specific Ms.diskudriveu
unit; the second S(random) is a switch with random
addressing that selects the head (the platter and side) ;
S(1inear) is a switch with linear accessing that selects
the track; and S(cyc1ic) is a switch with cyclic address-
that finally selects the M(word) along the circular
recurring track. Note that the switches are realized by
differing technologies. The first two S (random) 's are
generally electronic (AND-OR gates) with selection
times of 10 -- 100 microseconds, or perhaps electro-
mechanical (relay). The S(1inear) is the electromechani-
cal action of a stepping motor or a pneumatic driven
arm which holds the read-write heads-the selection
time for a new track is 50 -- 500 milliseconds. Finally,
the S(cyc1ic) is determined by the rotation time of
the disk and requires from 16 -- 60 milliseconds,
depending on the speed (3600 -- 1000 revolutions/
minute). This decomposition capability allows us to
be able to describe components with varying precision
and accuracy.

The control element of a computer is often shown
as being associated with the processor-not to the

control of a disk or magnetic tape, such a K is often
more complex. When we suppress detail, controls often
disappear from PMS diagrams. Alternatively, when we
agglomerate primitive components. (as we did above
when combining Mp and K(Mp) to be just Mp) into
the physically distinct sub-parts of a computer system,
a separate control, K, often appears. The functionally
and physically separate control* has evolved in the
last decade. These controls, often larger than a PC,
are sometimes computers with stored control programs.
When we decompose such a control there are: data
operations (D) for calculating addresses or for error
detection and error correction data; transducers (T)
for changing logic signal levels and information flow
widths; memory (M) as it is used in D, T, K, and for
buffering; and finally a large control (K) which coordi-
nates the activities of all the other primitives.

* A variety of names for K's are used, e.g., controller, adapter,
selector, interface, buffer multiplexor, etc. Often these names
reflect other funct,ions performed by the device.

358 Spring Joint Computer Conference, 1970

The components are named according to the function
they perform and they can be composed of many
different types of components. Thus, a control (K)
must have memory (M) as a subcomponent, and a
memory, M, may have a transducer (T) as well as a
switch (S) as subcomponents. All of these subcompo-
nen t~ , of course, exist to accomplish the total function
of the component, and do not make the component
also some other type. For instance, the M that does a
transduction (T) from voltages on its input wires to
magnetism in its cores and a second transduction from
magnetism to voltages on its output wires does not
thereby become a transducer as far as the total system
functioning is concerned. To the rest of the system
all the M can do is to remember i-units, accepting and
delivering them in the same form (voltages). We
define for each component type both a simple com-
ponent and a compound component, reflecting in
part the fact that complex subsystems can be put
together to perform a single function from the view-
point of the total system. For example, a typewriter
may have 4 - 6 simple information transduction
channels using video, tactile, auditory, and paper
information carriers.

PMS notation

Various notational conventions designate specifica-
tions for a component, e.g., Mp for a functional classi-
fication, and S(cyc1ic) for a type of switch access
function in the case of rotating memory devices like
drums. There are many other additional specifications
one wants to give. A single general way of providing
additional specifications is used so that if X is a com-
ponent, we can write:

to indicate that X is further specified by attribute al
having value vl, attribute a2 having value vz, etc. Each
parameter (as we call the pair ai vi is well defined inde-
pendently of what other parameters are given; hence,
there is no significance to the order in which they are
written, or to the number which have to be written.

According to this notation we should have written
M (function : primary) or S(access-function: random)
rather than Mp or S(random). There are conventions
for abbreviating and abstracting parameters to avoid
such a lengthy description. Alternative ways of writing
Mp are:

M (function: primary) complete specification
M (primary) drop the attribute, function,

since it can be inferred from
the value

M.primary use the value outside the pa-
renthesis, concatenated with a
dot

M.P use an explicitly given abbre-
viation, namely, primary/p
(only if it is not ambiguous)

MP drop the concatenation marker
(the dot), if it is not needed to
recover the two parts (all
components are given by a
single capital letter-here M)

Each of these rules corresponds to a natural tendency
to abbreviate when redundant information is given;
each has as its condition that recovery must be possible.

In the full description (Bell and Newell, 1970) each
component is defined and given a large number of
parameters, i.e., attributes with their domain of values.
Throughout, the slash (/) is used to introduce abbre-
viations and aliases as we go.* Any list of parameters
does not exhaust those aspects of a component that
one might ever conceivably want to talk about. For
instance, there are many quite distinct dimensions for
any component in addition to the information dimen-
sion: packaging, physical size, physical location,
energy use, cost, weight, style and color, reliability,
maintainability, etc. Furthermore, each of these
dimensions includes an entire set of parameters, just
as the information dimension breaks out into the set
of parameters illustrated in the figures. Thus the
descriptive system is an open one and new parameters
are definable at any occasion.

The very large number of parameters provides one
of the major challenges to creating a viable scheme to
describe computer systems. We have responded to this
in part by providing automatic ways in which one can
compress the descriptions by appropriate abbreviation
-while still avoiding a highly cryptic encoding of
each separate aspect. Abstraction is another major
area in which some conventions can help to handle
the large numbers of parameters. For instance, one
attribute of a processor is the time taken by its opera-
tions. This attribute can be defined with a complex
value :

Pc(operation-times : add : 4 ps, store : 4 ps, load : 4 ps,
multiply: 16 ps, ...)

That :is, the value is a list of times for each separate
operation. One might also give only the range of these
numbers; this is done by indicating that the value is a
range :

Pc(operation-time: 4 - 16 ps).

*There is no difficulty distinguishing this use from the use of
slash as division sign-the latter takes priority, since i t is the
more specific use of the slash.

PMS and ISP Descriptive Systems 359

Similarly, one could have given typical and average values whenever desired, is that it keeps the number
times (under some assumed frequency mix of instruc- of attributes that have to be defined small.
tions) :

Pc(operation-times : 4 ps) A PMS example using the DEC PDP-8
Pc(operation-times : average : 8.1 ps).

The advantage of this convention, which permits Figure 3 gives the detailed PMS diagram of an
descriptions of values to be used in place of actual actual, small, general purpose computer, the DEC

'DM01 Data

M u l t i p l e x o r ;

r a d i a l :

from: 7 P,K; so: MP I
- ~ ~ - ~ ~ ~ e l e t ~ ~ e ; 10 char/s; 8 b/char; 64 char) -

K T(card; reader; 2001800 card/min) +

K-T(card; punch; 100 card/min) +

char/col
2

d isp lay ; area: 10 r I 0 i n 15 x 5 in2]-

K-T(l ight; pen)<d

r (T(Dataphone; 1.2 -4.8 kb /s) -

K (# l :lo)-L!analog; ou tpu t ; 0 - -10 v o l t s) +

K-5-;(#0:63; analog; inpu t ; 0 - -10 v o l t s) +

-I(-- S- K(#0:63; Teletype; 110, 180 b/s)-

;JS/W; l eng th : 260 f t ; 350 char / in ; 3 d c h a r I -

P(display: '338) T(#O:3; CRT; d isp lay : area: 10 x I 0 in2) -

L 1 ~ (# 0 : 3 ; l i g h t ; pen)+

T
T(#0:3; push but tons; console)+

l ~ c [~ . a b o r a t o r y T.console

Instrument Ms #0:1; LINC,tape; addressable magnetic tape: -
Computer/L INC [6.25 kw/s: 2" w

T(U0: 15; knobs, analog; inpu t)+
2

I
T(CRT; d isp lay ; 5 X 5 i n 1-r
T (d i g i t a l ; Input , ou tpu t) -

~ (' ~ a t a Terminal Panel; d i g i t a l ; input . ou tpu t) -

'Mp(core; 1.5 l d w ; 4096 w; (12 + I)b)

a ~ (l ~ e m o r y Bus)

'PC(I - 2 " / i n s t r u c t i o n : data: w , i.bv; 12 b/w: M.procrssor s t a t e f 2 ' e W 3 1) w: technoloay: t r a n s i s t o r s ;

antecedents: POP-5; descendants; PDP-8s. PDP-81, PDP-L)
K 2

' ~ (' 1 / 0 Bus; from; PC; to; 64 K)

'K!I - 4 i n s t r u c t i o n s ; H .bu f fe r (l char-2 w))

Figure 3-DEC LINC-8-338 PMS diagram

360 Spring Joint Computer Conference, 1970

LINC-8-338, which is a PDP-8 with a LINC processor
and a type 338 display processor. We will concentrate
on the notation, rather than discussing substantive
features of the system. A simplified PMS diagram of
the system shows its essential structure:

This shows the basic Mp-PC-T structure of a C with
the addition of secondary memory (Ms) and two
processors, one of which, Pc('LINC), has its own Ms.
Two switches are used: the I/O-bus which permits
access to all the devices, and a direct access path to
Mp via PC for high data rate devices. There %re many
other switches in the actual system as one can see
from Figure 3; for example, Mp is really 1 to 8 sepa-
rate modules connected by a switch S to PC. Also
there are many T's connected to the input-output
switch, S, which we collapsed as a single compound T ;
and similarly for S(direct memory access).

Consider the Mp module. The specifications assert
that it is made with core technology, that its word
size is 13 bits (12 data bits plus one other with a
different function); that its size is 4096 words; and
that its operation time is 1.5 ps. We could have written
the same information as:

M(function: primary; technology :core; operation-time :
1.5 ps; size: 4096 w; word: (12 + 1) b)

In Figure 3 we wrote only the values, suppressing the
attributes, since moderate familiarity with memories
permits an immediate inference about what attributes
are involved. As another example, we did not specify
the function of the additional bit in the word when
we wrote (12 + 1) b. Informed readers will assume
this to be a parity bit, since this is the common reason
for having an extra bit in a word. If the extra bit had
some unusual function, then we would have needed to
define it. That is, in the absence of additional informa-
tion, the most common interpretation is to be as-
sumed.

In fact, we could have been even more cryptic and
still communicated with most readers:

M.core (1.5 ps/w; 4 kw; 12 b),

corresponding to the phrase, "A 12 bit, 1.5 ps, 4k

core store". 4 ltw stands for 4 X 1024 = 4096; how-
ever, if someone who was less familiar took it to be
4 X 1000 = 4000 no real harm would be done.

Consider the magnetic tapes for PC. Since there are
eight possible tapes that make use of the same con-
troller, K, through a switch, S, we label them #O
through #7. Actually, # is an abbreviation for the
index attribute whose values are integers. Since the
attribute is a unique character, we do not have to
write #:3 (although we could). The additional param-
eters give information about the physical attributes of
the encoding. These are alternative values and any
tape has only one of them. A vertical bar (I) indicates
this (as in BNF notation for grammars). Thus, 751112
in/s says that one can have a tape with a speed of 75
inches per second or one with 112 inches per second,
but not a tape which can be switched dynamically to
run at either speed.

For many of the components no further information
is given. Thus, knowing that M.magnetic,tape is
connected to a control and from there to the PC tells
generally what that K does. I t is a "tape controller"
which evokes all the actions of the tape, such as read,
write, rewind; and therefore these actions do not have
to be done by PC. The fact that there is only one K
for many Ms's implies that only one tape can be
accessed at a time. Other information could be given,
although that just provided is all that is usual in
specifying a controller in an overall description of a
system.

We have used several different ways of saying the
same thing in Figure 3 in order to show the range of
descriptive notations. Thus, the 64 Teletypes are
shown by describing a single connection through a
switch and putting the number of links in the switch
above the connecting line.

Consider, finally, the PC in Figure 3. We have given
a few parameters: the number of data types, the num-
ber of instructions, and the number of interrupts.
These few parameters hardly define a processor. Several
other important parameters are easily inferred from
the Mp. The basic operation time in a processor is a
small multiple of the read time of its Mp. Thus it is
predictable that PC stores and reads information in
2 X 1.5 ps (one for instruction fetch, one for data
fetch). Again, where this is not the case (as in the CDC
6600) it is necessary to say so. Similarly, the word
size in the PC is the same as the word size of the Mp-
12 data bits. More generally, the PC must have instruc-
tions that take care of evoking all the components of
the PMS structure. These instructions of course do
not use the switches and controls as distinct entities;
rather, they speak directly to the operation of the
M's and T's connected via these switches and controls.

PMS and ISP Descriptive Systems 361

Other summary parameters could have been given
for the PC. None would come close to specifying its
behavior uniquely, although to those knowledgeable
in computers still more can be inferred from the
parameters given. For instance, knowing both the
data types available in a PC and the number of instruc-
tions, one can come very close to predicting exactly
what the instructions are. Nevertheless, the way to
describe a PC in full detail is not to add larger and
larger numbers of summary parameters. I t is more
direct and more revealing to develop a description a t
the level of instructions, which is the ISP description.

In summary, a descriptive scheme for systems as
complex and detailed as digital computers must have
the ability to range from extremely complete to highly
simplified descriptions. It must permit highly com-
pressed descriptions as well as extensive ones and
must permit the selective suppression or amplification
of whatever aspects of the computer system are of
interest to the user. PMS attempts to fulfill these
criteria by providing simple conventions for detailed
description with additional conventions that permit
abbreviation and abstractions, almost without limit.
The result is a notation that may seem somewhat
fluid, especially on first contact in such a brief intro-
duction as this. But once assimilated, PMS seems to
allow some of the flexibility of natural language within
enough notational controls to enhance communication
considerably.

ISP LEVEL OF DESCRIPTION

The behavior of a processor is determined by the
nature and sequence of its operations. This sequence
is determined by a set of bits in Mp, called the pro-
gram, and a set of interpretation rules, realized in the
processor, that specify how particular bit configurations
evoke the operations. Thus, if we specify the nature
of the operations and the rules of interpretation, the
actual behavior of the processor depends solely on the
particular program in Mp (and also on the initial state
of data). This is the level at which the programmer
wants the processor described-and which the pro-
gramming manual provides-since he himself wishes to
determine the program. Thus the ISP (Instruction
Set Processor) description must provide a scheme for
specifying any set of operations and any rules of
interpretation.

Actually, the ISP descriptive scheme need only be
general enough to cover some broad range of possi-
bilities adequate for past and current generations of
machines along with their likely descendants. As with
the PMS level, there are certain restrictions that can

be placed on the nature of a computer system, spe-
cializing it from the more general concept of a discrete
state system. For the PMS level, it processes a medium,
called information; it is a system of discrete components
linked together by information transfers; and each
component is characterized by a small set of operations.
Similarly, for the ISP level we can add two more such
restrictions, which will in turn provide the shape of
its descriptive scheme.

The first specialization is that a program can be
conceived as a distinct set of instructions. Operation-
ally, this means that some set of bits is read from the
program in Mp to a memory within P, called the
instruction register, M.instruction/M.i. This set of
bits then determines the immediately following se-
quence of operations. Only a single operation may be
determined, as in setting a bit in the internal state of
the P; or a substantial number of operations may be
determined, as in a "repeat" instruction that evokes
a search through Mp. In a typical one or two address
machine the number of operations per instruction
ranges from 2 to 5. In any event, after this sequence
of operations has occurred, the next instruction to be
fetched from Mp is determined and obtained. Then,
the entire cycle repeats itself.

The above cycle of activity is just the interpretation
cycle, and the part of the P that performs it is the
interpreter. The effect of each instruction can be ex-
pressed entirely in terms of the information held in
memories at the end of the cycle (plus any changes
made to the outside world). During execution, opera-
tions may have internal states of their own as sequen-
tial circuits which are not represented as bits in memo-
ries. But by the end of the interpretation cycle, what-
ever effect is tjo be carried on to a later time has been
staticized in bits in some memory.*

The second additional specialization is on the data
operations. A processor's total set of operations can be
divided into two parts. One part contains those neces-
sary to operate other components given in the PMS
diagram-links, switches, memories, transducers, etc.
The operations associated with these components and
the extent to which they can be indirectly controlled
from P are highly constrained by the basic nature of the

* This description holds true for a P with a single active control
(the interpreter). Some P's (e.g., the CDC 6600) have several
active controls and get involved in "overlapping" several in-
structions and in reordering operations according to the data
and devices available. With these, a more complex statement
is required to express the same general restriction we have been
stating for simple P's: that the program can .be decomposed into
a sequence of bit sets (the instructions), each of which has local
cont,rol over the behavior of the P for a limited period of time,
with all inter-instruction effects being stat,icized as bits in M's.

362 Spring Joint Computer Conference, 1970

components and their controls. The second part con-
tains those operators associated with a processor's D
component. So far we have said nothing at all about
them, except to exclude them completely from all PMS
components except P. These are the operations that
produce bit patterns with new meaning-that do all
the "real" processing-or changing of information.*
If it weren't for data operators, the system would
only just transmit information. As we noted in our
original definitions, a P (including a D) is the only
component capable of directly changing information.
A P can create, modify, and destroy information in a
single operation. As we noted earlier, D's are like the
primitive components in an analog computer. Later,
when we express instruction sets as simple arithmetic
expressions, the D's are the primitive operators, e.g.,
+, -, X , /, X2n, A , V , @, and concatenation (n),
which are evoked by the instruction set interpreter
part of a processor.

The specialization is that all the data operations
can be characterized as working on various data-types.
For example, there is a data-type called the signed-
integer, and there are data operations that add two
signed-integers, subtract them, multiply them, take
their absolute value, test for which of two is the greater,
etc. A data-type is a compound of two things: the
referent of the bit pattern (e.g., that this set of bits
refers to an integer in a certain range); and the repre-
sentation in the bit pattern (e.g., that bit 31 is the
sign, and bits 30 to 0 are the coefficients of successive
powers of 2 in the binary representation of the integer).
Thus, a processor may have several data-types for
representing numbers : unsigned-integers, signed-inte-
gers, singletprecision-floating-point, double-precision-
floating-point, etc. Each of these requires distinct
operations to process it. On occasion, operations for
several data-types may all be encoded into a single
instruction from the programmer's viewpoint, as when
there is an add instruction with a data-type sub-field
that selects whether the data is fixed or floating point.
The operations are still separate, no matter how
packaged, and so their data-types remain distinct.

With these two additional specializations-instruc-
tions and data-types-we can define an ISP description

* I n principle, this view that only D components do "real"
processing is false. I t can be shown that a universal Turing
Machine can be built from M, S, L, and K components. The
key operation is the write operation into M, which suffices to
construct arbitrary bit patterns under suitably controlled
switches. Hence, arbit,rary data operations can be built up. The
stated view is correct in practice in that the data operations
provided in a P are highly efficient for their bit transformations.
Only the foolish add integers in a modern computer by table
look up.

of a processor. A processor is completely described at
the ISP level by giving its instruction-set and its
interpreter in terms of its operations, data-types and
memories.

Let us first give the instruction-set. The effect of
each instruction is described by an instruction-ex-
pression, which has the form:

condition + action-sequence.

The condition describes when the instruction will be
evoked, and the action-sequence describes what trans-
formations of data take place between what memories.
The right arrow (--+) is the control action (of a K) of
evoking an operation.

Since all operations in a computer system result in
modifications of bits in memories, each action in a
sequence has the form:

memory-expression + data-expression

The left arrow (t) is the transmit operation of a
link, and corresponds to the ALGOL assign operation.
The left side must describe the memory location that
is affected; the right side must describe the informa-
tion pattern that is to be placed in that memory
location. The details of data-expressions and memory
expressions are patterned on standard mathematical
notation, and are communicated most easily by ex-
amples. The same is true of the condition, which is a
standard expression involving boolean values and
relations among memory contents.

There are two important features of the action-
sequence. The first is that each action in the sequence
may itself be conditional; i.e., of the form, "condition
-+ action-sequence." The second is that some actions
are sequentially dependent on each other, because the
result of one is used as an input to the other; on other
occasions a set of actions are independent, and can
occur in parallel. The normal situation is the parallel
one. For example, if A and B are two registers, then

exchanges the contents of A and B. When sequence is
required, the term 'next' is used; thus,

(A t B; next B + A) ;

transfers the contents of B to A and then transfers it
back to B, leaving both A and B holding the original
contents of B (equivalent to A +- B).

An ISP example using the DEC PDP-8 PC

The memories, operations, instructions, and data-
types all need to be declared for a processor. Again

PMS and ISP Descriptive Systems 363

these are most easily explained by example, although is a memory called AC, with 12 bits, labeled from 0 to
full definitions exist (Bell and Newell, 1970). Conse- 11 from the left. Comments are given in italics*-in
quently, let us examine the ISP description of the PC this case that AC is called the accumulator (by the
of the PDP-8, given in Figure 4. designers of the PDP-8). Alternatively, we could have

used the alias or abbreviation convention:
Processor state AC (0 : 11 j/Accumulator(O : 11).
We first need to specify the memories of the PC in

detail, providing names for the various bits. Thus, *There are a few features of the notation, such as the use of
italics, which are not easily carried over int,o current computp
character sets. Thus, the ISP of Figure 4 is a publicatiori language. AC(0: 11) the accumulator

DEC PDP-8 ISP Descr ipt ion

PC State

AC4: I I>

L

PC4: I I>

Run

I n t e r r u p t s t a t e

IO~ulse, l ; IO&ulseJ; 10+ulse&

Mp State
Extended memory i s not included.

n[o:7777,1(o:1 I>

PageJl[O: l77,kO:l I> :- H[O: 177,]4: l l>

Auto,index[O:7]4: I I> :- PagegClO,: 1 7 8] 4 : 1

Accunu Zator

Link bit/AC extension for o v e r f l m and carry

Program Countel.

I when PC i s i ~ t e r p r e t i n g instructions or "running"

I when PC can be interrupted; under programed ca t roZ

I0 pulses t o 10 devices

special army o f d irec t ly addressed memory registers

special army when addressed indirec t ly , i s incremented

PC Console State
Keys for s tar t , stop, continue, e-ns (load from memory), and deposit (store i n memory) are not included.

Oata switches4:11> data entered v ia console

Instruction F o m t

I n s t r u c t l o n / l d : 11>

o p d : 2> :- i d : 2 >

i n d i r e c t g i t / i b :- id>

p * 9 e 9 9 i t / p :- i<4>

page.,address4:6> := id:Il>

t h i s 4 a g e d : 4 > :- PC04:4>

P C ' 4 : 1 I> :- (PC<O:II>

I O & e l e c t d : Y :- i<j:[b

i o g l g i t :- i<l I>

i o g 2 Q l t :- i<I@

i o g b J ~ 1 t :- I+>
S M :- 1<5>

sza :- id>
sn l :- i<h

op code

0, d irec t ; 1 indirect menory reference

0 ee lec ts page 0; 1 eelects t h i s page

selects a T or Ms device

Effective Address ~a l kZa t ion Process

z<O:II> :- (

-,i b + z";

i b (lo8 r z" 17) + (n[zl0] ,n[zw] + I ; next) ;
8

I b + n[zM])

zl<O:l l> :- (7 i b -, zll; i b +n[zU])

z l W : l I> :- (page,D,bl t + t h i ~dagegpage~address ;

-page,O,b i t + hpage,sddress)

these 3 b i t s con t rd the se lec t ive genemtion o f -3 vol t s ,
0.4 ps pulses t o 1/0 devices

p b i t for skip on minus AC, opemte 2 group

p b i t for skip on s e m AC

p b i t for skip on .ton zero Link

auto indesing

direct addresi.

u microcoded instruction or inetzwction b i t (8) within an instruction

364 Spring Joint Computer Conference, 1970

Instruction Interpretation Pmcess

Run A 1 Clnterrupt,request A I n t e r r u p ~ s t a t e) + (

i n s t r u c t i o n cH[PC]; PC *PC + 1; next

Run A Interrupturequest A In te r rup t -s ta te + (

H[O] +PC; Interrupt,state + 0 ; PC + I)

Instruction Se t and Instruction Execution Process

Instruction,executlon :- (

and (:- op - 0) + (AC c AC A H[z]);

tad (:- op - 1) + (LoAC t L o A C + H[z l) ;

i s z (: - op - 2) -+ (Hlz '] + HCzl + I; next

(N z ' l - 0 1 + PC t Illr
dca (: -op - 3) + (Y z l + A t ; A c t - 0) ;

jms (:- op - 4) + (H[zl +PC; next PC + z + 1) ;
jmp (:- op - 5) -, (PC c 2);

i o t (:- op - 6) + (

iapl,bit + IO,puIs&l c I; next

lo,p2Jit * lO&ulse> +I; next

i o U p 4 g i t -, IOgulse,4 + I) ;

opr (:* op - 7) +Operate,execution

)

no interrupt interpreter

fetch

execute

interrupt in terpre ter

ZogicaZ and

two ' s complement add

index and skip i f zero

deposit and clear AC

t o subroutine

jwnp
v i n out transfer, microprogmmned t o genemte up t o 3 pulses

t o an i o device addressed by r0,select

the operate instruction i s defined below
end Instruction execution

Opemte Instruction Se t
h e micmpmgramned operate instructions: operate group I , opemte group 2, and extended ari thmetic are defined as a separate
instruction s e t .

Operate-execut ion :- (

c l a (:- i<4> - 1) -, (At + 0); clear AC. Comnon t o aZZ opemte instructions.
opr-l (:- I& - 0) -+ (opemte group I

c l l (:- i<b - 1) -D (L + 0); next y clear l ink
cma (:- id> - 1) -+ (AC +, AC); u comp lement AC
cml (:- I(]>- I) + (L clL); next IL complement L

lac (:- i<ll>- I) - + (L a c + L a c + I) ; newt y increment AC
ra t (:- idl :10> - 2) -1 (LWC +LoAC x 2 { ro ta te)) ; v rotate l e f t
r t l (:- i<B:lO> - 3) + (L a c + L a c X z2 [r o t a t e l) ; y rotate twice l e f t
r a r (:- iQ):10> 1 4) + (L a c + L a c / 2 [ro ta te)) ; y rotate right
rtr (:- i<s : lO> - 5) + (L a c + L a c / 22 [r o t a t e l)) ; y rotate twice right

oprJ (:- 1<3,11> - 10) + (operate group 2

sk ip cond l t l on @ (I < & - 1) -, (PC t PC + 1); next v PC,' skip t e s t
sklp cond l t l on :- ((sma A (AC < 0)) v (sza A (At - 0)) v (sn l A L))

os r (:= I<p - 1) + (AC t ACv Data switches); P "or0 switches
h l t (:= ! d o > - 1) + (Run t o)) ; P hal t or stop

EAE t:- 1 0 , 1 1 > - 11) +EAF~~nstruct iongxecution) optional EAE description

Figure 4-l)EC PIIP-8 ISP Description

AC corresponds to an actual register in the PC. How- Having defined a second memory, L (which has only
ever, the ISP does not imply any particular implemen- a single bit), one could define a combined register,
tation, and names may be assigned to various sets of LAC, in terms of L, and AC, as:
bits purely for descriptive convenience. The colon is LAC(L, 0 : l l) := LOAC.
used to denote a range or list of vslues. Alternatively,
we could have listed each bit, separating the bit names The colon-equal (:=) is used for definition, and the

by commas, as: middle square box (0) denotes concatenation. Note
that the bit named L of register LAC corresponds to

AC(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). the I bit L register.

PMS and ISP Descriptive Systems 365

Memory state

In dealing with addressed memory, either Mp or
various forms of working memory within the processor,
we need to indicate multidimensional arrays. Thus,

gives the primary memory as consisting of 7777* (i.e.,
base 8) words of 12 bits each, being addressed as
indicated. Such an address does not necessarily reflect
the switching structure through which the address
occurs, though it often will. (Needless to say, it re-
flects only addressing space, and not how much actual
M is available in a PMS structure.) In general, only
memory within the processor will occur as operands of
the processor's operators. The one exception is primary
memory (Mp), which is defined as a memory ex-
ternal to a P, but directly accessible from it.

In writing memories it is natural to use base 10 for
all numbers and to consider the basic i-unit of the
memory to be a bit. This is always assumed unless
otherwise indicated. Since we used base S numbers
above for specifying the addressing range, we indicated
the change of number base by a subscript, in standard
fashion. If a unit of information other than the bit
were to be used, we would subscript the angle brackets.
Thus,

Mp[0: 77778](0: I),,

reflects the same memory. The choice carries with it,
of course, some presumption of organization in terms
of base 64 characters-but this would show up in the
specification of the operators (and is not true, in fact
of the PDP-8). We can also have multi-dimensional
memories (i.e., arrays), though no examples are used
in Figure 4. These just add the extra dimensions with
an extra pair of brackets. For example, a more precise
description would have used :

to mean S memory fields, each field with 32 pages,
each page with 128 words and each word with 12 bits.

Instruction format

I t is possible to have several names for the same
set of bits; e.g., having defined instruction (0: 11) we
define the format of the instruction as follows:

op(0 : 2) : = instruction (0: 2)
indirectubit : = instruction(3)
pageU0,bit : = instruction(4)
page,address(O : 6) : = instruction(5 : 11)

The colon-equal (: =) is used to assign names to various
parts of the instruction. In effect, this is a definition
equivalent to the conventional diagram for the in-
struction :

Notice that in page,address the names of all the bits
have been shifted, e.g., page,address(4) : = instruc-
tion(9).

In general, a name can be any combination of upper
and lower case letters and numerals; not including
names which would be considered numbers (integers,
mixed numbers, fractions, etc.). A compound name
can be sequences of names separated by spaces () or
a hyphen. In order to make certain compound names
more recognizable, a space symbol (& may optionally
be used to signify .the non-printing character.

0 P

The instruction set

page address

With all the registers defined, the instructions can
be given. These are shown on the second page of Figure
4. The second page is a single expression, named
Instruct io~execution, which consists of a list of
instructions. These are listed vertically down the
page for ease of reading. Each instruction consists of a
condition and an action sequence, separated by the
condition-arrow (+). In this case the condition is an
expression of the form (op = octal-digit). Since op is
instruction(0:2), this expresses the condition that the
operation code of the instruction has a particular
value. Each condition has been given a name in pass-
ing; e.g., 'and' is the name of (op = 0). This provides
the correspondence between the operation code and
the mnemonic name of the operation code. If this
correspondence had been established elsewhere, or if we
didn't care what numerical operation code the "and"
instruction is, we could have written:

0 3 4 5 1 1

I t pageuOUbit

indirec t ub i t

and + (AC + AC A M[z])

We would not have known what condition the name
'and' stood for, but could have surmised (with little
difficulty) that it was simply an equality test on the
operation code. Or we could define it elsewhere as:

and : = (op = 0)

366 Spring Joint Computer Conference, 1970

Most generally the form of an instruction is written as:

Here, we simultaneously define the action of the tad
instruction, its name, an abbreviation for the name,
and the conditions for tad's execution. The first paren-
theses are, in effect, a remark to allow an in-line
definition.

The instructions in the list constitute the total
instruction repertoire of the PC. Since all the condi-
tions are disjoint, one and only one condition will be
satisfied when a given instruction is interpreted,
hence one and only one action sequence will occur.
Actually, all operation codes might not be present, so
there would be some illegal op codes that would evoke
no action sequence. The act of selection is usually
called operation decoding. Here, ISP implies no par-
ticular mechanism by which this is carried out.

It might be wondered why the conventions are not
more stylized-e.g., some sort of table with mnemonic
names in one column, bits of the operation code in
another, etc. Though standard processors would fit
such a stylized scheme, many others would not-e.g.,
microprogram processors. By making the ISP descrip-
tion a general expression for evoking action-sequences
we obtain the generality needed to cover all varia-
tions. (Indeed, you will notice that the PDP-8 ISP is a
single expression, and that it incorporates two micro-
programmed instructions with no difficulty.)

For the action-sequence standard mathematical
infix notation is used. Thus we write

This indicates that the word in Mp at address z (deter-
mined by the expression on page 1 of Figure 4) is
anded with the accumulator and the result left in the
accumulator. Each processor will have a basic set of
operations that work on data-types of the machine.
Here the data-type is simply the 12 bit word viewed
as an array of bits.

Operators need not necessarily involve memories
actually within the PC (the processor state). Thus,

expresses a change in a word in Mp directly. That
this must be mechanized in the PDP-8 by means of
some temporary register in PC is irrelevant to the
ISP description.

We also use functional notation, e,g.,

replaces the contents of the AC with its absolute value.

Effective address calculation

In the examples just given we used z as the address
in Mp. This is the effective address (simplified) and is
defined as a conditional expression (in the manner of
ALGOL or LISP) :

z(0: 11) : = (m indirect-bit -+ z';

indirect-bit -+ Mp[z'])

The right arrow (-+) is the same conditional sign used
in the main instruction, similar to the "if . . . then
. . ." of ALGOL. The parentheses are used to indicate
grouping in the usual fashion. However, we arrange
expressions on the page to make reading easier.

As the expression for z shows, we permit conditional
within conditionals, and also the nesting of definitions
(z is defined in terms of a variable z'). Again, we should
emphasize that the structure of such definitions may
reflect directly the underlying hardware organization,
but i t need not. When describing existing processors
the ISP description often does or can be forced to
reflect the hardware. But if one were designing a
processor, then ISP expressions would be put down as
design objectives to be implemented in a register
transfer structure, which might differ considerably.

Special note should be taken of the opr instruction
(op = 6) in Figure 4, since it provides a micropro-
gramming feature. There are two separate options
depending on instruction(3) being 0 or 1. But common
to both of these is the operation of clearing the AC
(or not), associated with instruction (4). Then, within
one option (instruction(3) = 0) there are a series of
independently executable actions (following the clear-
ing of L); within the other (instruction(3) = I) ,
there are three independently settable control actions.
The nested conditionals and the use of 'next' to force
sequential behavior make it easy to see exactly
what is going on (in fact a good deal easier than de-
scribing it in natural language, as we have been doing).

The instruction interpreter

From the hardware point of view, an interpreter
consists of the mechanisms for fetching a new instruc-
tion, for decoding that instruction and executing the
operations so designated, and for determining the
next instruction. A substantial amount of this total
job has already been taken care of in the part of the
ISP that we have just explained. Each instruction
carries with it a condition that amounts to one frag-
ment of the decoding operation. Likewise, any further
decoding of the instruction that might be done in
common by the interpreter (rather than by the indi-

PMS and ISP Descriptive Systems 367

vidual operation circuits) is implied in the expressions
for each instruction, and by the expression for the
effective address. The interpreter then fetches the
next instruction and executes it.

I n a standard machine, there is a basic principle
that defines operationally what is meant by the "next
instruction." Normally the current instruction address
is incremented by one, but other principles are used
(e.g., on a processor with a cyclic Mp). In addtion,
several specific operations exist in the repertoire that
can affect what program is in control. The basic prin-
ciple acts like a default condition-if nothing specific
happens to determine program control, the normal
"next" instruction is taken. Thus, in the PDP-8 we
get an interpretation process that is the classic fetch-
execute cycle :

Run -+ (instruction +- Mp[PC]; PC + PC + 1;

next Instruction,execution)

The sequence is evoked so long as Run is true (i.e.,
its bit value is I). The processor will simply cycle
through the sequence, fetching, t,hen executing the
instruction. In the PDP-8 there exists a halt operation
that sets Run to be 0, and the console keys can, of
course, stop the computer. I t should be noted t,hat
this ISP description does not include console behavior,
although it could.

The ISP description does not determine the way the
processor is to be organized t'o achieve this sequencing,
or to take advantage of the fact that many instructions
lead to similar sequences. All it does is specify what
operations must be carried out for a program in Mp.
The ISP description does specify the actual format of
the instruction and how it enters into the total opera-
tion, although sometimes indirectly. For example, in
the case of the and operation (op = O), the definition
of AC shows that the AC does not depend on the
instruction and the definition of z shows that z does
depend on other fields of the instruction (indirect,bit,
page,O,bit, page,address). Likewise, the form of the
ISP expression shows that AC and PC both enter into
the instruction implicitly. That is; in the ISP descrip-
tion all dependence on memory is explicit.*

Data-types and data operations

Each data-type has a set of operations that are
proper to it. Add, subtract, multiply and divide are
all proper to any numerical data-type, as well as
absolute value and negation. Xot all of these need
exist in a computer just because it has the data-type,
since there are several alternative bases, as well as
some levels of completeness. For instance, notice that
the PDP-8 first of all does not have multiply and
divide (unless one has its special option), thus having a
relatively minimal level of arithmetic operations; and
second, it does not have a subtract operation, using a
two's complement add, which permits negation (-AC)
to be accomplished by complementation (AAC)
followed by add 1.

The PDP-8, unlike larger C's, does not have several
data representations for what is, externally considered,
the same entity. An operator that does a floating add
and one that does an integer add are not the same.
However, we denote both by the same symbol (in
this case, +), indicating the difference parenthetically
after the expression. Alternatively, the specification
of the data-type can be attached to the data. Thus,
in the IBM 7094 we would see the following add
instructions :

Add/ADD t (AC t AC + M[e]);
Add and Carry Logical/ACL -+ (AC + AC + M[e]{sl)).

Floating add/FAD -+ (AC +- AC + M[e]{sf}) ;
Un-normalized floating add/UFA -+

(AC t AC + M[e]{suf)) ;

Double precision floating add/DFAD -+

(ACMQ +- ACMQ + M[elOM[e + l l{dfl) ;

Double precision un-normalized floating add/DUFA -+
(ACMQ t ACMQ + M[e]uM[e + l l{duf))

The braces {) differentiate which operation is
being performed. Thus above, the data-type* is en-
closed in the braces and refers to all the memory
elements (operands) of the expression. Alternatively,
we also use braces as a modifier to signify the encoding
of the i-unit. For example, a fixed point to floating
point data conversion operation would be given:

* This is not correct, actually. In physically realizing an ISP
description, additional memories may be utilized (they may even
be necessary). I t can be said that the ISP description has these
memories implicitly. However, it is the case that a consistent
and complete description of an ISP can be made without use
of these additional memories; whereas with, say, a single address
machine, it does not seem possible to describe each ir~struction
without some reference to the implicit memories-as we see in the
effective address calculatior~ procedures where definitions look
much like registers.

We also use the braces as a modifier for the operation
type. For example, shifting (left or right) can be a

* The conventior~s for naming data-types is a co~lcatenatiorl of
precision, a name and a structure. Examples irlclrtde i/integer;
di/double integer; div/doable integer vector; single floating/sf;
suf/single urmormalized floating; bv/boolean vector; ch.string/
character string.

368 Spring Joint Computer Conference, 1970

multiplication or division by a base, but it is not
always an arithmetic operation. In the PDP-8, for
instance, we had

LOAC + LOAC X 2(rotate} ;

where the end bits L and AC(l1) are connected when
a shift occurs (the operator is also referred to as a
circular shift), or equivalently

(LOAC + LDAC X 2; AC(l1) + L).

In general, the nature of the operations used in
processors are sufficiently familiar that no definitions
are required, and they can all be taken as primitive.
I t is only necessary to have agreed upon conventions
for the different data representations used. In essence,
a data-type is made up recursively of a concatenation
of subparts, which themselves are data types. This
concatenation may be an iteration of a data-type to
form an array.

If required, an operation can be defined in terms of
other (presumably more primitive) operations. I t is
necessary, of course, first to define the data format
explicitly (including perhaps some additional memory).
Variables for the operands are permitted in the natural
way. For example, binary single precision floating
point multiplication on a 36 bit machine could be
defined in terms of the data fields as follows:

sf mantissa/mantissa : = (0 : 27)
sf sign/sign : = (0)
sf exponent/exponent : = (28 : 35)
sf exponent,sign := (28)
xl + x2 X x3{sf) := (XI mantissa := x2 man-

tissa X x3 mantissa;
xl exponent := x2 ex-

ponent + x3 exponent; next
x l : = normalize(x1) {sf))

where normalize is:

xl +- normalize(x2) (sf} : = (
(xl mantissa = 0) -+ (xl exponent : = 0)
(x2 mantissa # 0) A (x2(0) = x2(1)) -+ (

xl mantissa := x2 mantissa X 2;
xl exponent : = x2 exponent-1 ; next
x l : = normalize (x2){sf}))

Three additional aspects need to be noted with
respect to data-types; two substantive, one notational.
First, not everything one does with an item of data
makes use of all the properties of its data-type. For
example, numbers have to be moved from place to
place. This operation is not a numerical operation,
and does not depend on the item being a number.
Second, one can often embed one kind of operation in
another, so as to coalesce- data-types. An example is

encoding the Mp addresses into the same integer
data-type as are used for regular arithmetic. Then
there need be no separate data-type for addresses.*

The notational aspect is our use in ISP of an mne-
monic abbreviation scheme for data-types. We have
already used sf for single-precision-floating-point. More
generally, an abbreviation is made up of a letter show-
ing the length, a letter showing the type, and a letter
showing the structure. The simple naming convention
does not take into account all we know about a data-
type. The information carrier for the data is only
partially included in the length characteristic. Thus
the carrier should also include the data base and the
sign convention for representing negative numbers,
(e.g., sign-magnitude) .

PMS structure of the CDC 6600 series

A simplified PMS structure of the C('64001'6600) is
given in Figure 5. Here we see the C(io; #1: 10) each
of which cali access the primary memory (Mp) of the
central computer (Cc). Figure 5 shows why one con-
siders the 6600 to be a network. Each Cio (actually a
general purpose, 12 bit C) can easily serve the spe-
cialized Pio function for Cc. The Mp of Cc is an Ms
for a Cio because the Cio cannot execute programs
from this memory. By having a powerful Cio more
complex input-output tasks can be handled without Cc
intervention. These tasks can include data-type con-
version, error recovery, etc. The K's which are con-
nected to a Cio can also be less complex.

A detailed PMS diagram for the C('6400, '6416,
'6500, and '6600) is given in Figure 6. The interesting
structural aspects can be seen from. this diagram. The
four configurations, 6400 - 6600, are included just by
considering the pertinent parts of the structure. That

~ i o p ~ : 10)
J u

per iphery

Figure A-CDC 6600 PMS diagram (simplified)

* However logical such a course may seem, it is not always done
this way. For example, the IBM 7090 (and other members of that
family) have a 15 bit address data type and a 36 bit integer data
type, with separate operations for each.

PMS and ISP Descriptive Systems 369

M('Barre11 workins: low: 51 hlw:,l @s/w)

I I T('0ead S t a r t Console)-

~ (4 K: 16 HS)-HS~ (#0: 15)

L(#2,3,4: t o : 'Extended Core Coupler)

'Mp(core: 1.0 *s/w: 4096 w: 12 b/w)

"S(t ime m u l t i p l e x : .2 w s w : 12 b/w)

3Pc('Per iphera l and Contro l Processor: #0:9; t ime m u l t i p l e x : . l *s/w: 1 address / ins t ruc t ion :

12 b/w; Mps('~ roqram Counter. Accumulator) 1.2 w / i n s t r u c t i o n)

4 ~ p (c o r e : 1.0 ps/w; 4096 w: (5 x 12) b/w)

 time m u l t i p l e x : 0.1 ~ s / w : 60 b/w)

"Ms ('Extended Core Storaqe/FCS: 3.2 ws/w: (125952 1 8) w: (8 x (60, 1 p a r i t y)) b/w)

7See Chapter 39 f o r operat ion.

'Only present i n CDC 6500

NO C ('Centra l) i n CDC 6416: CDC 6500 and CDC 6400 do not have coreboar board), separate D's,

and M (' i n s t r u c t i o n Stack).

Pc('6600; 15, 30 b / i n s t r u c t i o n : techno1ogy: t ransis tor : - 1964: data: si,bv,w,sf,dl - -
Mps(f l i p f l o p : -16 w)-S('Swi tchboard) O (' S h i f t)

D('Poolean)

D(# l : 2: 'increment)

D ('Branch)

D('Add: 0.3 ps)

D('Long Add)

D(#1:2: M u l t i p l y ; 1 +s)

-
D('Div ide: 2.9 *s)

content addressable;

Figure 6-CDC 6600 PMS Diagram

is, a 6416 has no large PC; a 6400 has a single straight- The implementation of the 10 Cio's can be seen
forward PC; a 6500 has two PC's; and the 6600 has a from the PMS diagram (Figure 6). Here, only 1
single powerful PC. The 6600 PC has 10 D's, so that physical processor is used on a time shared basis. Each
several parts of a single instruction stream can be 0.1 ps a new logical P is processed by the physical P.
intwpreted in parallel. A 6600 PC also has considerable The 10 Mp's are phased so that a new access occurs
M.lmffer to hold instructions so that PC need not each 0.1 ps. The 10 Mp's are always busy. Thus, the
wait for Mp fetches. information rate is (10 X 12) b/ps or 120 megabit/%

370 Spring Joint Computer Conference, 1970

This structure for shifting a new PC state into position 64 telegraph lines to be connected to a Cio; and
each 0.1 ps has been likened by CDC to a barrel. Ms(disk) with four simultaneous access ports, each a t

The T's, K's and M's are not given in the figures, 1.68 megacharls data transfer rate; and a capacity of
although i t should be mentioned that the following 168 megachar; a Ms(magnetic tape) with a K(#l:4)
units are rather unique: a K for the management of and S to allow simultaneous transfers to 4 Ms; the

COC 6400, 6500, 6600 Centra l Processor ISP Oescri p t Ion

PC State

P<17:(n Program counter

k i n arithmetic registers. X[I:5], are impl ic i t l y loaded from
M p when A[l:S] are loaded. ~ [6 : 7] are impl ic i t l y stored i n
Mp when A[6: 71 are loaded.

B registers are general arithmetic registers, and can be used
as index registers.

Run I i f interpreting instructions, not under progmm control.

EM4 7 : 0> Exit mode b i t s

Indef i n I teaperand-rnode :- EH<14>

The above desoription i s incomplete i n that t h e above 3 mode's a l u m a ~ i m conditions t o t m p PC a t @ERA]. rapping occurs i f
a alarm condition occurs "and" the mode i s a one.

main core memory of 2'' w , (256 kwl

ECS/Extended Core Storage Program can only transfer data between
M p and Ma. Program cannot nr executed i n Ms.

reference (or relocation) address register t o map a logical Mp'
in to physical Mp

f ield length - the bourds register which l imi t s a program's
access t o a mnge of Mp'

reference or relocation register for Me(Eztended Core Stomge)

f ield length for ECS

a b i t denoting a s ta te when memory,mapping i s invalid

Memry Mapping Process
This process maps or relocates a logical program, a t location @', and &' , in to physical M p and Ms.

Hpl [X] := ((X < F L) -rHp[X + RAI) ; logical Mp '
(X 2 FL) -r (Run +O; Address&ut&fY range + 1))

n s D [XI :- ((x < FLECS) +~SCXI+ RAECSI); logical Me '
(X 2 FLECS) + (Run +O; A d d r e s ~ o u t y o f ~ r a n g e t 1))

Exchange jump storage aZZocation map a t Zocntion, n within Mp:
The following Mp" array i s reserved when PC s ta te i s stored, ad switched t o another job. The exchange jwnp instruction i n
a Peripheral and Control Processor enacts the operation: IMp1'+ Up; Mp t Mp"1 .

Hp"[n]<53:0> := PoA[Olo0000008

Hp"[n+I]<53 :0> := RAoA[l]oB[I]

Hp"[n+2]<53:0> :* FLaA[2joB[2]

Hp1'[n+3]<53:0> := EnoA[3]oB[3]

Mp"[n+4] := RAECSu4[4]oB[4]

Mp"[n+S] :- FLECSd[5]oB[5]

Hp"[n+6]<35:0> := A[6]oB[6]

MpM[n+71<35:0> := A[710B[71

Mp"[n+108:n+178]:= X[O:7]

Figure 7-CDC 6400, 6500, 6600 Central Processor ISP Description

PMS and ISP Descriptive Systems 371

T(direct; display) for monitoring the system's opera- ISP OF THE CDC 6600

tion; K's to other C's and Ms's; and conventional The ISP description of the PC is given in Figure 7.
T(card reader, punch, line-printer, etc.). The PC has a straightforward scientific calculation

Instruction Format

atthouqh 30 b i t s , most i71structions are 15 b i t s ; see
Instrurt ion Interpretat ion Process

operation code or function

fmi<s:O> :- fmoi extended op code

iq:n; := l n s t r u c t i o n Q 3 : 2 l >

J-?:0> := i n s t r u c t i o n ~ 0 : 1 8 >

C.2 : O j := inst ruct ion<l7:15>

J k 4 : 0:. :- j&

~ < 1 7 : O> := instruct ion<.l7:0>

IongJns t ruc t ion := ((f m c l o8) v

(50 , fm - 53) v

(60 < fm - 63) . I

(70 < fm . 73))
short,instruction :- -. long i n s t r u c t i o n

spec i f ies a reg is ter or an extension t o op code

s p e c i f i e s a reg is ter

s p e c i f i e s a reg is ter

a s h i f t constant 16 b i t s)

an 18 b i t address siae constant

30 b i t i n s t m c t i o n

15 b i t ins t ruc t ion

Instruction Interpretat ion Process
A 15 b i t (s h o r t) or 30 b i t (l o n y) inetruction i s fetched from Mpl[P]<p x 1 5 + i5 - i : p x 1 5 ' where p = 3, 2, 1, or 0. A 30
h i t ins t ruc t ion cannot be stcred across ra or,! bounriaries (or i n 2 , Mp' loca t ions) .

p i 1 >4 a pointer t o 1 5 b i t quarter word which has ins t ruc t ion

p 4 - p - 1 : next

(p - 0) A long,instructlon .Run . -0 ;

(p 1 0) A long,instruction - (

i n s t r u c t i o n .14:O> ' - M ~ ' [P I ' (~ X 15 + 1 4) : (~ X 15) .;
p s-p - I) ; next

Instruction,execution; next

(p - 0) . (p 3; P . P + 1))

Inst ruct ion L'e t an i Ins t m?t lor. Frecution Process
Opernn i "etches or s tcres batween Mp' and X [i] n r m r 1l . i loa!:ng or storing reg is ters A [I] . If (0 . i .- 61 a fetch from
:!r,'[,?l i TI , ' . . i ,~ : . :;' ; ' 2 (' 1 7 ::tore i s ma& t o , ! + ' I A ~ :I I. Tie Ieszrivt ion Ioes not rieecrihe Ad~ireesYout,of-range case, ,;. ::. t... I : . , l ! :'::(, I null o p r n t i o n .

I ns t ruc t ion .~execu t ion :- (

.'k t A I i 1 r': .A

U S A ~ + KO (fm - 50) -+ (A [i] 1 - A [j] t K; next F e t c h d t o r e) ;

USA(~j + K" (fm - 51) + (A[I] t B [J 1 + K; next Fetch,Store);

"SAi XJ + K" (fm - 5 2) +(A [l I +-X[J]<17:O> + K; next ~ e t c h d t o r e) ;

ItSAi xJ + ~ k " (fm - 53) - t (A [i] t X [j] 4 7 : 0 > + Brk] ; next ~ e t c h ~ ~ t o r e) ;

"SAi A.i t Bk" (fm - 54) + (A[I] +A[J] + B[k]; next Fetchustore) ;

I1SAi A j - Bk" (fm - 55) + (A[!] + A [j] - B[k 1; next Fetchustore) ;

"SAi BJ + Bk" (fm - 551 + (A [i] c B l J] + BLL]; next Fetch,Store);

"SAi BJ - Bk" (fm - 57) + (A[i 3 t B [j] - e[k]; next FetchJtore) ;

Fetch-Store :- (

(0 < i < 6) + (X [i] - t i p l [A [i]]) ; process t o get operand i n X or store operand from X when A

(i 2 6) -t (Hp1 [A [i] + x [i])) i s v r i t t e n

~LJperationz on B and X

Set R [i YSBi

"SBi AJ + K" (fm - 60) + (B[I] t A[J] + K);

Figure 7 (Continued)

372 Spring Joint Computer Conference, 1970

oriented ISP with 45 bit mantissa single precision general registers. This structure assumes that a Pro-

floating point (also double precision floating point gram consists of several read accesses to a large arrayb),

operations is provided). The PC state has three sets of a large number of operations on these accessed ele-

' 5 B i B j + K" (fm = 61) + (B [i l (-- B [j l + K);

"sBi X j + K" (fm = 62) + (N i l * - X [j] < l 7 : (b + K) ;

**SBi X j + Bk" (fm - 63) -r (B [i] t X[j]<)7:(b + B[k]);

"SBi A j + Bk" (fm - 64) + (B[11 t- A [j] + BCk]);

@ISBi A j - Ek" (fm = 65) + (B[11 + A [j l - B [k l) ;

IosBi e j + Bk" (fm = 66) -t (BC11 + BCJI + BCkl);

"SBi B j - Bk" (fm 67) -) (a 11 + a j l - ~ [k l) ;

Set X[i] /SXi
"SXi A j + K" (fm = 70) -t (X[il c sign,extend(A[j I + K)) :

"SXi B j + K" (fm 71) -, (x[11 + - ~ign,extend(B[j l + K)) ;

"SXi X j + K" (fm = 72) -, (X[i] 1- sign,extend(x[~] + K)) ;

"SXi X j + Bk" (fm - 73) -t (X[il +- s l g n s x t e n d (X [j] + E l k])) ;

"SXi A j + Bk" (fm = 74) -t (X[il + sign,extend(A[J] + B [k])) ;

"SXi A j - Bk" (fm - 75) + (X[i] + s ign>x tend(A [j] - B [k]) J ;

"SXi B j + Bk" (fm = 76) -, (X[i] + s i g n g x t e n d (B [J] + B [k])) ;

"SXi B j - Bk" (fm = 77) -, (X[11 + s i g n g x t e n d (B [J] - B [k])) ;

MisceZZaneous program control
"PS1l (:= fm = 0) -, (Run t 0) ; program s top
'~NOOI (:= fm = 46) + ; no opemtion; pass

Jwnp unconditiond
"JP B i + K" (:= fm = 02) -+ (P t B[i] + K; p t 3); j w n ~

Jwnp on X [j] conditions

"ZR X j K" (:= fmi = 030) + ((XC j] = 0) -t (P + K; P + 3)) ; aero

" N Z X j K" (: s f m i - 0 3 1) + ((~ [j] + O) + (~ + K ; p c 3)) ; nonaero
"PL X j KO1 (:I fmi = 032) + ((X [j] 2 0) + (P t K; p 4 - 3)) ; plus or ~ o s i t i o n

"PIG X j K" (:= fmi - 033) + ((X [j] < 0) -t (P c K; p + 3)) ; negative

"IR X j K" (:= fmi - 034) -+ (out of mnge constant t e s t s

, ((Y[J W 9 : 4 9 r 3777)V (XCJ 1,39:48>- 4000)) + p +-K; P - 3) ;

"OR X j K" (:= fmi 035) -) (

(X [j lq9:48>-3777) V (X[j 169:48>4000)+ (p +K; p +3)1;

"OF X j KO1 (:= fmi = 036) + (indef ini te form constant t e s t s

(x [j l69:48>11777) V (XCj l g 9 : 4 8 h 6 0 0 0) + (p +K; P - 3) 1;
" I 0 X j K" (:= fmi = 037) + (

(X [j 189:48>11777) V (X [j 149:48"6000) (P + K; P c 3)) ;

Jump on B [i 1, B [j] comparison

"EQ B i B j K" (:= fm = 04) + ((B [i] = B [j]) + (P +K; P +3)) ; equal

"NE B i B j KO1 (:= fm - 05) -, ((B [i] + B [j 1) -, CP - K: p - 3)) ; not equal

"GE B i B j K" (:= fm = 06) + ((B [i] 2 B [j]) + (P + K; p - 3)) ; greather than or equal

"LT B i B j Ks' (:- fm = 07) -, ((BCi 1 < B[j 1) + (P +K; P + 3)) ; Less than

Subroutine ca Z Z

"RJ K" (:= fmi - 010) -1 (return jwnp

r ([~] q 9 : 3 @ + 0 4 ~ r n o ~ o (~ + 1) ~) o o o o ~ ~ ; nex t

(P +K + 1; p - 3)) ;
Reading (RECI and writ ing (KECI Mp with Extended Core Storage, subjected t o bounds checks, and Ma', Mp' mapping

"REC B j + K" (:= fmi = 011) + (read extended core

PMS and ISP Descriptive Systems 373

ments, followed by
results.

Cc has provisions

occasional write accesses to store of a protection and relocation address. The mapping is
given in the ISP description for both Mp, but an

for multiprogramming in the form Ms('Extended Core Storage/ECS) is not described.

Mo ' [A [n] :A [n] + B [j] + K - i] < Msl[X[O]:XIO] + B [J] + K - I]) ;

"!AFC BJ + K" (: = fmi = 012) -. (wri te extended core

in teger 6wn

in teger d i f f erence

count the number of b i t s i n X [k J

transmit

logica Z proiluct

logical sum

Zogical 11i fj'erence

transmit compZement

log.!m l product and completnent

loginul sum u n ~ l comp lemr?nt.

7oglcnl l i f f e r s n c e and compl emmil

FZoczLing L'oint Ar i t imet ic using li
h 7 v the 7enst s i p n i , f l c m t (7 0 1 r n r t c.f ar i thmet ic is s?~lre(l i u i , ' ? o n ! i n ~ [,I' c ~ p w z t i o n s .

"FXi X j + Xk" (:= fm = 30) -, (X [i l X l j] + X l k l { s f)) : f?o,rt.fxg S ~ I

"FXi X J - Xk" (: - fm = 31) -, (X [i] * X L j l - X [k l { s f)) : .fi'o,~l lng i:i.fference

"DXi XJ + Xk" (: = fm - 3 2) -, fX[i] . - X[J] + X[k] (l s . d f l) ; . f ? 0 1 ~ t i ~ l g ;il~ strm

"nx i X j - uku (:= fm = 3 3) -. (x [i] *.- x [j] - x [k J (l s . d f)) ; f loa t inp 117' d i f f e r e n c e

"RXi X j + Xk" (: = fm = 34) -+ (

X[i l G- round(X[j l) + r o u n d (X [k l) (s f)) ;

"RXi X j - Xk" (:= fm - 35) -- (round f'ioatiny d i f f erence

X[i] - - r o u n d (X [j]) - round(X[k]) { s f)) ;

"FXi XJ $: Xk" (: = fm = 40) -, (X [i] - , X [j] x X[k] { s f]) ; f loai ing p~oilicct

" R X i X j ': Xk" (: = fm - 41) -, (round f loa t ing product

X [i l c X[J I x X[k] (s f] : next X C i I , - round(XCi1) [s f]) ;

"DXi X j fi Xk" f :- fm = 42) -+ (X [i l G- X [j] x XCk] (l s . d f \) ; f loa t ing d p product

"FXi X j / Xk" (: - fm = 44) - (X [i] c- X [j] / X[k] (s f)) ; f loa t ing d iv ide

"RXi XJ / Xk" :- f m = 45) -, (X[i] '- round(X[J] / X[k]) (s f)) ; round f loa t ing d iv ide

"NXi R j Xk" (:= fm = 24) -, (normalize

X [i l +- no rma l i ze (X [k]) { s f) ;

RCJI $ - normalize,exponent(X[k]) [s f)) ;

I'igure 7 (Continued)

374 Spring Joint Computer Conference, 1970

"2x1 BJ Xk" (:- fm - 25) + 1 round and n o ~ m t i a e

X[i] t round(X[k]) (s f) ; next

X[i] c normal i te(X[i l) (s f) ;

B[J] cnormal ize,exponent(~[i]) (s f)) ;

lVXi BJ Xk' (:- fm - 26) + (B[J] t ~[k]<58:4& (s t) ; unpack

X[i] t X[k]<59,47:0, i s !)) ;

llPXi BJ Xk" (:= fm = 27) + (~[k]<58:41b c B [J l (s l] ; pack

X[k1<59 A 7 : b + xC11 { s t)) ;

) end ~netruct ionsxemct ion

Figure 7 (Continued)

SUMMARY

We have introduced two notations for two aspects of
the upper levels of computer systems: the topmost
information-flow level, here called the PMS level
(there being no other common name); and the inter-
face between the programming level and the register
transfer level, called ISP.

We were induced to create these notations as an
aid in writing a book describing the architecture of
many different computers-which served to make
us painfully aware of the (dysfunctional) diversity
that now exists in our way of describing systems. It
would have been preferable to have notational systems
cor~structed around techniques of analysis or syn-
thesis (i.e., simulation languages). But our immediate
need was for adequate descriptive power to present
computer systems for a text. Considering the amount
of effort it has taken to make these notational systems
reasonably polished, it seems to us they should be
presented to the computer profession, for criticism
and reaction.

The main sources of experience with the notation so

descriptions for 14 systems.** The levels of details in
all of these is as adequate as the programming manual,
i.e., as complete as the description of the PDP-8
example given here. In addition a t least one new
machine, the DEC PDP-11 (these proceedings), has
made use of the notation a t the formulation and
design stage.

REFERENCES

1 C G BELL A NEWELL
Computer structures: Readings and examples
In Press McGraw-Hill Company 1970

2 Y CHU
Digital computer design fundamentals
McGraw-Hill Book Company 1962

3 J A DARRINGER
The description, simulation, and automatic implementation of
digital computer processors
Thesis for Doctor of Philosophy degree College of
Engineering and Science Department of Electrical
Engineering Carnegie-Mellon University Pittsburgh
Pennsylvania May 1969

4 A D FALKOFF K E IVERSON E H SUSSENGUTH
A formal description of sqstem/360

far is in the aforementioned book, where we have IBM Systems journal %I 3 No 3 pp 198-261 1956

developed PMS diagrams for 22 systemsY and ISP ;i STEEL J1t
A .first version o f UNCOL

* ARPA network; Burroughs B5500, B6500; CIIC 6600; LGP ** The computers and the associated number of description pages
30; ComLogNet; DEC LINC-8-338, PDP-11; English Electric (enclosed in ~arentheses) are CDC 160A (2), 6600 PPU (2),
Deuce, KDF-9; IBM 1800, 7401, 7094, System/360 (Models 6600 CPU (4%); DEC PDP-8 (2, 3 with options), PDP-11 (5) ,
30 - 91), ASP network; LRL network; MIT's Whirlwind I ; 338 (5), IBM 1800 (3x1, 1401 (3%), 7094 CPU (7), 7094 Data
NBS'S Pilot; RW 40, SDS 910 930; UNIVAC 1108. Channel (6%); LINC (-3); RW 40 (2%); SDS 92 (-3)) 930 (4).

