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about 5 times faster than existing machines with a minimal 
cost increase. As a first step, various cache schemes used in 
larger machines were restructured to  fit within the framework 
of a minicomputer. 

Because of the minicomputer's simplicity, perturbations in 
cache organization and parameters could easily be controlled. 
Such an investigation thus provides more insight into the 
direction and extent of performance changes, the reasons for 
these changes, and a more obvious hardwarelcost tradeoff than 
is possible in other cache analyses. 

Since the overall speed of a system is usually limited to  its 
slowest element, the necessity of a fast memory for a fast 
processor is apparent. A primary memory using semiconductor 
storage of speed comparable to  the processor is precluded by 
its relatively high unit cost which limits the system's 
cost/performance ratio. 

The suitability of the cache memory concept previously 
used in large computers [ I ]  - [4] was thus investigated. A cache 
memory is a fast buffer memory between the processor and 
the primary memory. The fundamental idea in such an 
organization is that by keeping the most frequently accessed 
data in the fast buffer memory (the cache), the average access 
time per datum is drastically reduced. Although the cache is 
usually only a small fraction of the size of the main memory, a 
large fraction of the address requests will be filled by the fast 
buffer memory (without resorting t o  accessing the slower main 
memory) due t o  the nonrandomness [3] of consecutive 
memory addresses. 

This paper discusses various cache organizations which 
would capitalize on this phenomenon in the context of a 
specific minicomputer. Ideally a cachelprimary memory 
pairing approaches the cache in average speed and the main 
memory in cost. 

The following three sections outline several cache 
organizations, describe the simulation for various programs, 
and discuss the resultant data. 

The conceptually simplest form of cache organization is 
called pure associative or content addressable. It is based on an 
associative memory, i.e., an unordered memory which, when 
given a content value (in this case a label), returns data 
"associated with" the label. This is unlike the conventional 
explicitly addressed random-access memory and is significantly 
more expensive. 

A cache can be thought of as a front end to  the primary 
memory since every memory request is interpreted by the 
cache. Using association on each memory reference, the labels 
of all cells of the pure associative cache are tested 
simultaneously to  see whether they match the address sought. 
If a match is found, the corresponding datum is read or 
written as needed. In this case, no reference need be made to  
the primary memory. If no match is found, the request must 
be passed on to the main memory. A cache with an associative 
memory organized in this way is discussed by Lee [5] . 

Under some sets of circumstances specified by the designer 
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Fig. 1 .  Pure associative cache. 
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Fig. 2. Direct mapping. 

of the cache, a label-datum pair is displaced from its cache cell 
t o  make room for a pair which is needed and not presently in 
the cache. The decisions as to  when and in what manner to 
make these replacements are key organizational parameters of 
a cache. A sample strategy might be to  replace cells of the 
cache in round-robin order whenever memory requests are 
passed to the primary memory. 

The pure associative cache needs associative storage since 
any of M data words in the primary memory might be mapped 
onto any of N cells of the cache, as shown in Fig. 1. Let us 
assume instead that some fixed mapping h(k) exists by whick 
each address of primary memory maps onto one of h 
equivalence classes. One can then insist that word k of primary 
memory be in the specific cache cell h(k), if it is in the cache 
at all. In this manner, the need for associative hardware can be 
eliminated. 

A particularly natural mapping is t o  let h(k) be K modulo 
N, where N is chosen to be a power of 2. In this case, we can 
use the low order (log,N) bits of k to determine which cache 
cell to  examine. This "direct mapping" scheme is shown in 
Fig. 2. Consider the M words of primary memory to  be 
arranged as an array of N rows and M/N columns. Direct 
mapping then means that row k of primary memory maps only 
onto cell k of the cache. 

Another useful feature of direct mapping is its economy on 
the number of bits of label in the cache. In a pure associative 
cache any word can be in any cache location and the label 
must be the full primary memory address. However, in direct 
mapping, the low-order bits of the label are the same as the 
cache address and there is no need to store them explicitly. 
The label part of each cache cell in direct mapping need only 
be (log,M/N) instead of (log,M) bits wide. 

Direct mapping and pure associative mapping are both 
special cases of a more general organization known as set 
associative, in which there exists a one-to-many mapping H(k) 
of each memory address into some subset S of the N 
equivalence classes. When the cardinality of S is identically 1 
or N, we have the cases of direct mapping or pure associativity, 
respectively. ~niermediate values of S lead to hardware 
structures in which an intermediate amount of associative 
hardware is needed to  do comparisons within the class S. 
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The addressing speed obtainable with the direct mapping 
scheme and its extremely low hardware overhead make it and 
its variants most attractive for use in a minicomputer. 
However, even within the class of direct mapping schemes, 
there are too many organizational parameters to vary 
experimentally in hardware. A software simulation was 
therefore undertaken. 

A software simulator for various cache organizations was 
the main tool used in the cache design. "Traces" or sequences 
of typical memory address requests to the primary memory by 
the processor during program execution were collected. For 
ease of data collection, the program execution was simulated 
on a larger computer rather than done directly. 

To collect traces reflecting typical minicomputer usage, 
three programs were chosen to generate traces of about one 
million addresses each. One program was a numerical 
computation in FOCAL, a widely used interactive interpreter. 
The second was the fast Fourier transform (FFT), the most 
commonly requested program in the DECUS users' library. 
The final program used was the PDP-8 assembler (PAL) 
assembling a short program. 

Once collected, these traces were used as input t o  the cache 
simulator. Rather than varying all parameters simultaneously, 
the effects of each parameter were isolated as much as 
possible. Each simulation run was designed to answer a specific 
question, e-g., how does performance vary with cache size? A 
constant assumption is that the cache was ten times as fast as 
the primary memory, with one hundred ns and 1-ps cycle 
times, respectively. Another constant assumption suited to 
minicomputers is that only one word of memory at a time can 
be accessed or transmitted over a bus. 

The first topic investigated via simulation was the effects of 
different policies for writing into primary memory. In the 
simplest policy, known as "write-through (WT)", if there is a 
write to a given address, that word in primary memory is 
updated even if there is also a copy of that word in the cache. 
In addition to conceptual simplicity and ease of 
implementation, WT has the advantage that obsolete 
information is never present in main memory. This can be 
particularly valuable in systems with independent 
inputloutput paths or multiple processors. 

The simulation results for a cache with WT are displayed in 
Fig. 3. For uniformity, all results shown are for the FOCAL 
program; the results for the EFT and PAL programs are 
substantially identical. In the graphs, the various cache sizes 
are shown on a logarithmically scaled abscissa, while the 
ordinate is the effective cycle time that results. The log of the 
cache size is seen to be roughly linear with effective cycle time 
over the range shown; doubling the cache size increases the 
effective speed of the memory by about twenty percent. 

An appropriate figure of merit a for a cache computer is 
defined as the ratio of the execution time of a program run on 
a conventional machine to the execution time on a cache 
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Fig. 3. Speed versus cache size, write through (WT) and conflicting-use 
writeback (CUW). 

machine. The effective or average cycle time for the cache 
machine (the ordinate in Figs. 3-6) is the cycle time of its slow 
primary memory divided by a. From Fig. 3, a 512 word cache 
with WT is seen to provide an index of performance a of 2.2, 
where a machine with no cache is defined to have an a of 
unity. 

The average cycle time of a cachelprimary memory pair can 
be thought of as a weighted average of the speed of the cache 
and the speed of the primary memory, the weighting factors 
being functions of the size and organization of the cache. To 
gain maximum advantage from the cache, the fraction of 
references to primary memory must be minimized. This points 
up the weakness of the WT approach, where the fraction of 
references to primary memory asymptotically approaches the 
fraction of writes (rather than zero) as the cache size is 
increased. More sophisticated writeback schemes must thus be 
examined. 

The circumstances responsible for most of the 
"unnecessary" writes that occur using WT can easily be 
characterized. During the time a word resides in the cache, it 
may be updated several times; however, as long as the word 
remains in the cache, it does not matter whether the copy in 
primary memory is out of date, since requests for the word ale 
filled by the cache. Thus, it is only when the word is 
ultimately displaced from the cache by a different word that 
an accurate copy need be rewritten into primary memory. 

A write-back method which does just this was thus devised. 
A primary memory word is now accessed if and only if that 
word has no counterpart in the cache. Whenever a word of 
primary memory is read or written, that word is also copied 
into the cache, thereby displacing some other word whose 
cache position conflicts with its own. The word displaced from 
the cache is then written back into primary memory. This 
scheme will be called "conflicting-use writeback (CUW)". 

CUW offers a significant performance increase over WT, as 
shown in Fig. 3. For example, with a 512 word cache, WT 
takes over forty percent longer on the average. The index of 
performance CUW is 3.2 compared to 2.2 for WT. (All 
comparisons of a will assume a constant cache size of 512 
words.) 
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Fig. 4 .  Speed versus cache size, conflicting-use writeback without X bit Fig. 5 .  Speed versus cache dedication for 64, 128, 256, and 512 word 
(CUW) and with X bit (CUX). caches using CUX writeback. 

This reduction in the average number of writes to  primary 
memory per change in cache occupancy is one effective way of 
improving performance. The shift from WT to CUW lowered 
this number to  exactly 1 .  But a further lowering is still 
possible in many cases. Consider a certain address in memory 
which is sometimes read but never written (most instructions 
fall into this category). Such a word will eventually move to  
the cache, and will eventually be displaced from the cache. But 
even when displaced, it need not be written back into primary 
memory, since it has not been changed. To implement this 
improvement, an extra X bit can be added per cache cell for 
bookkeeping purposes to  record any change to the occupant. 
The X bit is reset to zero for each new occupant, and is set to  
one by any updating of that cell. The results of simulating UW 
with (CUX) and without (CUW) an X bit are shown in Fig. 4 ,  
from which the effective cycle time with a 512 word cache 
memory is seen to decrease from 3 17 to 207 ns when the X bit 
is included. Stated differently, the performance is increased by 
50 percent, from an a of 3.2 to an a of 4.9. This 50 percent 
performance increase more than compensates for the hardware 
costs of including the single extra bit. 

Some overlap of the CUX operations can occur. For 
instance, the cache word can be written immediately following 
the access time of the primary memory, not at the end of its 
cycle. In large computers many overlapped operations occur 
and an in-depth cache analysis is difficult. 

Thus far, the cache memory has been assumed to  be 
composed of homogeneous cells. But conceivably a 
functionally specialized partitioning of the cache could give 
higher performance. For example, perhaps a cache devoted 
exactly half to  instructions and half to data would be more 
effective than a homogeneous one; alternatively, one that 
holds just instructions could be better than one holding just 
data. To test these hypotheses, the effects of dividing the 
cache into sections dedicated to  specific uses were 
investigated. 

Simulated caches of varying sizes were divided into quarters 
and each quarter was devoted exclusively to instructions or to  
data. Fig. 5 shows how performance using the CUX writeback 

scheme varies with the proportion of the cache devoted to  
data. Typically, the best performance occurs with half of the 
cache devoted to  instructions and half to  data. However, the 
index of performance of 4.4 for this case is somewhat worse 
than the 4.9 value found for the corresponding 512 word 
homogeneous cache. As shown in Fig. 6,  the performance of 
the best dedicated cache CUXD (half allotted to  instructions 
and half to  data) in general is quite similar to that of a 
homogeneous cache (CUX); the extra complexity of r 
dedicated cache control is thus not justifiable. 

The caches found on large computers differ from those 
discussed here in that each of their cache cells contain multiple 
words which are moved as a block to and from primary 
memory. The performance increase derived from such caches 
can be attributed to two conceptually different causes called 
lookback and lookahead. Within loops, cache benefits are due 
to  reencountering previously used words in the cache (i.e., 
lookback) while in straight line code, cache benefits are due to  
lookahead. Since only single word blocks have been discussed 
thus far, lookahead has played no role. 

This restriction was now removed and the cache simulator 
was modified to  include a type of lookahead while retaining 
single word cache cells. Every time a word was brought into 
the cache from the primary memory, the next consecutive 
word was brought into the next consecutive cache cell at the 
same time. Fig. 6 depicts the value of this lookahead (CUXL) 
relative t o  a cache without lookahead (CUX). This lookahead 
does result in an improved a of 6.0 (an indication that, in 
general, consecutive memory locations are more likely to be 
referenced) but once again at the cost of added complexity in 
the cache control. Furthermore, it requires a double width, 
slow main memory. Such a scheme was not considered for the 
machine constructed as it would have required a new slow 
memory configuration, new bus and pin assignments, and 
eliminated compatability with existing machines. The use of 
lookahead only on instructions and not data, was also 
examined: this proved to be about 4 percent less effective than 
the use of lookahead on both. 

In summary, various organizations designed to enhance the 
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performance of a cachelprimary memory pair as far as possible 
along the continuum from pure primary memory performance 
(a = 1) toward pure cache performance (a = 10) have been 
simulated. For the organizations simulated, a cache of 512 
words can reasonably be expected to  yield an cr in the range of 
3 to 6, depending on the complexity of the cache control 
which can be tolerated. 

VI. HARDWARE CONSIDERATIONS 

Various hardware considerations have already been alluded 
to. The general interfacing problems and the hardware tradeoffs 
involved in the various schemes will now be considered. Fig. 7 
shows the basic timing diagram for a fast cache memory. Three 
time points are noted for reference. At TI  the fast memory 
timing begins. At T, the label-datum pair is obtained from the 
memory. By T3 (which is actually TI  of the next cycle) the 
next memory address (MA) location and input data (DI), if a 
write cycle, must be loaded. If the word is an instruction, this 
requires that the decoding as well as the computational 
operations be performed in a critical T3 - T, time. Any 
computation, shifting, incrementing, etc., requiring the 
accumulator (AC) register can be overlapped with the next 
cycle by loading the AC at T, of the next cycle, thereby 
overlapping instruction execution as much as possible. Fast 
bipolar memories have tcYcle -- 2 taCce,. For the cache memory 
actually implemented, access time is 60 ns and cycle time is 
110 ns. S series TTL devices were used in all critical paths to 
achieve the required speed. 

The choice of a direct mapping cache scheme added very 
little in hardware, essentially one 5-bit comparator between the 
label and the higher order MA bits, (for a 512 word cache-16K 
word primary core memory system). Any cache scheme 
requires timing loops within the CPU control, one controlling 
the fast cache memory and the other the slow primary 
memory. Their starting and the switching between them are 
controlled by a cache control unit (CCU) which is essentially 
the above 5-bit comparator. A two bus system is another 
practical requirement in any cache scheme: a fast bus on 
which the fast memory is mounted, and a slow bus to  which 
the slow primary memory and all peripherals interface. The 
CCU controls the interfacing of these two buses and the 
central processing unit (CPU). 

The 50 percent performance increase obtainable with the 
CUX writeback scheme greatly encouraged its implementation. 
This was rather easily incorporated by feeding the X bit of the 
accessed cache word, the status of the CPU's read/write 
flip-flop, and the result of the comparison to  a logic network 
within the cache control. Thls logic then controls the sequence 
of fast memory and slow memory reads and writes to  be 
generated, thus controlling the two timing loops and their 
interconnection. 

The majority of solid-state memories evaluated had latched 
outputs, so that after a three cycle read-write-write sequence 
the original datum read out three cycles before is still present 
at the memory's data-out lines. This enabled some 
simplification in the flow chart. The nondestructive readout 
feature of a solid-state memory necessitated a preclear of the 
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(CUXL), CUX writeback scheme with best dedication (CUXD). 
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Fig. 7 .  Simplified cache timing. 

fast memory when power was turned on; this was rather easily 
implemented. 

An added feature of the direct mapping cache scheme 
chosen is the ease with which the number of words of fast 
cache memory can be increased for users requiring a larger 
slow primary memory and/or a yet faster average system 
speed. The user need only purchase as much fast cache 
memory as his speed needs require and may add on more later 
in much the same way that core is added presently. The 
increase in cache size merely changes the label length and thus 
the number of bits that need be compaired. By fixing the label 
at 5 bit, a wide variety of cache/slow memory sizes can be 
handled. 

From a cost/performance standpoint, the increased 
parallelism and speed of the CPU increases its cost by 50 
percent due to  the added boards, wiring and increased IC 
count. This increase plus the cost of a 512 word X 18 bit solid 
state memory imply a price differential of certainly no more 
than $5000. Even with such conservative assumptions, an 
interesting cost/performance comparison results between the 
minimum PDP8/E system, the average PDP-8/E system, and a 
time-shared PDP-8/E system with and without a cache scheme 
and faster processor. As shown in Table I, the 
performance/cost ratio of the designated system can be as 
much as 4.3 times greater than that of a conventional 
PDP-8/E. 

The origin and explanation of the speed improvements 
produced by variants of a basic cache scheme have been 
discussed. In the context of minicomputers, somewhere 
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TABLE I 
PERFORMANCE COST COMPARISON 

between a performance increase factor of 5 and 6, a 
breakpoint occurs. The implementation of a cache using 
conflicting use write adds little to the hardware costs of a fast 
processor and improves performance by a factor of 3.2, while 
the addition of an X bit raises performance by an additional 50 
percent to an a of 4.9 with only a small hardware increase. 
Any further variants provide only minor performance 
improvements at more substantial hardware costs. Therefore a 
reasonable compromise between performance and cost in a 
minicomputer is to  use a simple cache scheme and aim for 
about 90 percent hits (a! = 5) in the cache, rather than the 
higher hit ratios sought in larger machines. 

Configuration Costs (K$) 
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