
Reprinted from IEEE TRANSACTIONS
ON COMPUTERS

Volume C-23, Number 4, April 1974
COPYRIGHT 0 197kTI -X~ INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

pp. 346-351
PIUNTED IN THE USA.

An Investigation of Alternative
Cache Organizations

JAMES BELL, DAVID CASASENT, MEMBER, IEEE, AND C. GORDON BELL, MEMBER, IEEE

Abstract-An investigation of the various cache schemes that are construction of the actual cache-minicomputer are also noted and a
practical for a minicomputer has been found to provide considerable simple cost/performance analysis is presented.
insight into cache organization. Simulations are used to obtain data on
the performance and sensitivity of organizational parameters of v d u s Index Terns-Cache, mapping, memory, minicomputer, simulation,

writeback and lookahead schemes. Hardware considerations in the storage-

Manuscript received May 31, 1972; revised April 10, 1973 and I. INTRODUCTION
September 10,1973.

J. Bell and C.G. Bell are with the Digital Equipment Corporation, u SING computer simulations, a detailed analysis of various
Maynard, Mass.

D. Casasent is with Carnegie-Mellon University, Pittsburgh, Pa. cache schemes in a PDP-8 minicomputer was undertaken
15213. to determine the feasibility of producing a minicomputer

BELL et al.: CACHE ORGANIZATIONS

about 5 times faster than existing machines with a minimal
cost increase. As a first step, various cache schemes used in
larger machines were restructured to fit within the framework
of a minicomputer.

Because of the minicomputer's simplicity, perturbations in
cache organization and parameters could easily be controlled.
Such an investigation thus provides more insight into the
direction and extent of performance changes, the reasons for
these changes, and a more obvious hardwarelcost tradeoff than
is possible in other cache analyses.

Since the overall speed of a system is usually limited to its
slowest element, the necessity of a fast memory for a fast
processor is apparent. A primary memory using semiconductor
storage of speed comparable to the processor is precluded by
its relatively high unit cost which limits the system's
cost/performance ratio.

The suitability of the cache memory concept previously
used in large computers [I] - [4] was thus investigated. A cache
memory is a fast buffer memory between the processor and
the primary memory. The fundamental idea in such an
organization is that by keeping the most frequently accessed
data in the fast buffer memory (the cache), the average access
time per datum is drastically reduced. Although the cache is
usually only a small fraction of the size of the main memory, a
large fraction of the address requests will be filled by the fast
buffer memory (without resorting t o accessing the slower main
memory) due t o the nonrandomness [3] of consecutive
memory addresses.

This paper discusses various cache organizations which
would capitalize on this phenomenon in the context of a
specific minicomputer. Ideally a cachelprimary memory
pairing approaches the cache in average speed and the main
memory in cost.

The following three sections outline several cache
organizations, describe the simulation for various programs,
and discuss the resultant data.

The conceptually simplest form of cache organization is
called pure associative or content addressable. It is based on an
associative memory, i.e., an unordered memory which, when
given a content value (in this case a label), returns data
"associated with" the label. This is unlike the conventional
explicitly addressed random-access memory and is significantly
more expensive.

A cache can be thought of as a front end to the primary
memory since every memory request is interpreted by the
cache. Using association on each memory reference, the labels
of all cells of the pure associative cache are tested
simultaneously to see whether they match the address sought.
If a match is found, the corresponding datum is read or
written as needed. In this case, no reference need be made to
the primary memory. If no match is found, the request must
be passed on to the main memory. A cache with an associative
memory organized in this way is discussed by Lee [5] .

Under some sets of circumstances specified by the designer

MEMORY C I C H E

Fig. 1 . Pure associative cache.

M E M O R Y CACHE

Fig. 2. Direct mapping.

of the cache, a label-datum pair is displaced from its cache cell
t o make room for a pair which is needed and not presently in
the cache. The decisions as to when and in what manner to
make these replacements are key organizational parameters of
a cache. A sample strategy might be to replace cells of the
cache in round-robin order whenever memory requests are
passed to the primary memory.

The pure associative cache needs associative storage since
any of M data words in the primary memory might be mapped
onto any of N cells of the cache, as shown in Fig. 1. Let us
assume instead that some fixed mapping h(k) exists by whick
each address of primary memory maps onto one of h
equivalence classes. One can then insist that word k of primary
memory be in the specific cache cell h(k), if it is in the cache
at all. In this manner, the need for associative hardware can be
eliminated.

A particularly natural mapping is t o let h(k) be K modulo
N, where N is chosen to be a power of 2. In this case, we can
use the low order (log,N) bits of k to determine which cache
cell to examine. This "direct mapping" scheme is shown in
Fig. 2. Consider the M words of primary memory to be
arranged as an array of N rows and M/N columns. Direct
mapping then means that row k of primary memory maps only
onto cell k of the cache.

Another useful feature of direct mapping is its economy on
the number of bits of label in the cache. In a pure associative
cache any word can be in any cache location and the label
must be the full primary memory address. However, in direct
mapping, the low-order bits of the label are the same as the
cache address and there is no need to store them explicitly.
The label part of each cache cell in direct mapping need only
be (log,M/N) instead of (log,M) bits wide.

Direct mapping and pure associative mapping are both
special cases of a more general organization known as set
associative, in which there exists a one-to-many mapping H(k)
of each memory address into some subset S of the N
equivalence classes. When the cardinality of S is identically 1
or N, we have the cases of direct mapping or pure associativity,
respectively. ~niermediate values of S lead to hardware
structures in which an intermediate amount of associative
hardware is needed to do comparisons within the class S.

348 IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

The addressing speed obtainable with the direct mapping
scheme and its extremely low hardware overhead make it and
its variants most attractive for use in a minicomputer.
However, even within the class of direct mapping schemes,
there are too many organizational parameters to vary
experimentally in hardware. A software simulation was
therefore undertaken.

A software simulator for various cache organizations was
the main tool used in the cache design. "Traces" or sequences
of typical memory address requests to the primary memory by
the processor during program execution were collected. For
ease of data collection, the program execution was simulated
on a larger computer rather than done directly.

To collect traces reflecting typical minicomputer usage,
three programs were chosen to generate traces of about one
million addresses each. One program was a numerical
computation in FOCAL, a widely used interactive interpreter.
The second was the fast Fourier transform (FFT), the most
commonly requested program in the DECUS users' library.
The final program used was the PDP-8 assembler (PAL)
assembling a short program.

Once collected, these traces were used as input t o the cache
simulator. Rather than varying all parameters simultaneously,
the effects of each parameter were isolated as much as
possible. Each simulation run was designed to answer a specific
question, e-g., how does performance vary with cache size? A
constant assumption is that the cache was ten times as fast as
the primary memory, with one hundred ns and 1-ps cycle
times, respectively. Another constant assumption suited to
minicomputers is that only one word of memory at a time can
be accessed or transmitted over a bus.

The first topic investigated via simulation was the effects of
different policies for writing into primary memory. In the
simplest policy, known as "write-through (WT)", if there is a
write to a given address, that word in primary memory is
updated even if there is also a copy of that word in the cache.
In addition to conceptual simplicity and ease of
implementation, WT has the advantage that obsolete
information is never present in main memory. This can be
particularly valuable in systems with independent
inputloutput paths or multiple processors.

The simulation results for a cache with WT are displayed in
Fig. 3. For uniformity, all results shown are for the FOCAL
program; the results for the EFT and PAL programs are
substantially identical. In the graphs, the various cache sizes
are shown on a logarithmically scaled abscissa, while the
ordinate is the effective cycle time that results. The log of the
cache size is seen to be roughly linear with effective cycle time
over the range shown; doubling the cache size increases the
effective speed of the memory by about twenty percent.

An appropriate figure of merit a for a cache computer is
defined as the ratio of the execution time of a program run on
a conventional machine to the execution time on a cache

I
3 2 64 128 256 512

C A C H E S I Z E I W o r d s 1

Fig. 3. Speed versus cache size, write through (WT) and conflicting-use
writeback (CUW).

machine. The effective or average cycle time for the cache
machine (the ordinate in Figs. 3-6) is the cycle time of its slow
primary memory divided by a. From Fig. 3, a 512 word cache
with WT is seen to provide an index of performance a of 2.2,
where a machine with no cache is defined to have an a of
unity.

The average cycle time of a cachelprimary memory pair can
be thought of as a weighted average of the speed of the cache
and the speed of the primary memory, the weighting factors
being functions of the size and organization of the cache. To
gain maximum advantage from the cache, the fraction of
references to primary memory must be minimized. This points
up the weakness of the WT approach, where the fraction of
references to primary memory asymptotically approaches the
fraction of writes (rather than zero) as the cache size is
increased. More sophisticated writeback schemes must thus be
examined.

The circumstances responsible for most of the
"unnecessary" writes that occur using WT can easily be
characterized. During the time a word resides in the cache, it
may be updated several times; however, as long as the word
remains in the cache, it does not matter whether the copy in
primary memory is out of date, since requests for the word ale
filled by the cache. Thus, it is only when the word is
ultimately displaced from the cache by a different word that
an accurate copy need be rewritten into primary memory.

A write-back method which does just this was thus devised.
A primary memory word is now accessed if and only if that
word has no counterpart in the cache. Whenever a word of
primary memory is read or written, that word is also copied
into the cache, thereby displacing some other word whose
cache position conflicts with its own. The word displaced from
the cache is then written back into primary memory. This
scheme will be called "conflicting-use writeback (CUW)".

CUW offers a significant performance increase over WT, as
shown in Fig. 3. For example, with a 512 word cache, WT
takes over forty percent longer on the average. The index of
performance CUW is 3.2 compared to 2.2 for WT. (All
comparisons of a will assume a constant cache size of 512
words.)

BELL et al.: CACHE ORGANIZATIONS

32 64 128 256 512

C A C H E Sl Z E (Words1

I...... 0 1/4 1/2 3/4 1

C a c h e Portion Dedicated

Fig. 4 . Speed versus cache size, conflicting-use writeback without X bit Fig. 5 . Speed versus cache dedication for 64, 128, 256, and 512 word
(CUW) and with X bit (CUX). caches using CUX writeback.

This reduction in the average number of writes to primary
memory per change in cache occupancy is one effective way of
improving performance. The shift from WT to CUW lowered
this number to exactly 1 . But a further lowering is still
possible in many cases. Consider a certain address in memory
which is sometimes read but never written (most instructions
fall into this category). Such a word will eventually move to
the cache, and will eventually be displaced from the cache. But
even when displaced, it need not be written back into primary
memory, since it has not been changed. To implement this
improvement, an extra X bit can be added per cache cell for
bookkeeping purposes to record any change to the occupant.
The X bit is reset to zero for each new occupant, and is set to
one by any updating of that cell. The results of simulating UW
with (CUX) and without (CUW) an X bit are shown in Fig. 4 ,
from which the effective cycle time with a 512 word cache
memory is seen to decrease from 3 17 to 207 ns when the X bit
is included. Stated differently, the performance is increased by
50 percent, from an a of 3.2 to an a of 4.9. This 50 percent
performance increase more than compensates for the hardware
costs of including the single extra bit.

Some overlap of the CUX operations can occur. For
instance, the cache word can be written immediately following
the access time of the primary memory, not at the end of its
cycle. In large computers many overlapped operations occur
and an in-depth cache analysis is difficult.

Thus far, the cache memory has been assumed to be
composed of homogeneous cells. But conceivably a
functionally specialized partitioning of the cache could give
higher performance. For example, perhaps a cache devoted
exactly half to instructions and half to data would be more
effective than a homogeneous one; alternatively, one that
holds just instructions could be better than one holding just
data. To test these hypotheses, the effects of dividing the
cache into sections dedicated to specific uses were
investigated.

Simulated caches of varying sizes were divided into quarters
and each quarter was devoted exclusively to instructions or to
data. Fig. 5 shows how performance using the CUX writeback

scheme varies with the proportion of the cache devoted to
data. Typically, the best performance occurs with half of the
cache devoted to instructions and half to data. However, the
index of performance of 4.4 for this case is somewhat worse
than the 4.9 value found for the corresponding 512 word
homogeneous cache. As shown in Fig. 6, the performance of
the best dedicated cache CUXD (half allotted to instructions
and half to data) in general is quite similar to that of a
homogeneous cache (CUX); the extra complexity of r
dedicated cache control is thus not justifiable.

The caches found on large computers differ from those
discussed here in that each of their cache cells contain multiple
words which are moved as a block to and from primary
memory. The performance increase derived from such caches
can be attributed to two conceptually different causes called
lookback and lookahead. Within loops, cache benefits are due
to reencountering previously used words in the cache (i.e.,
lookback) while in straight line code, cache benefits are due to
lookahead. Since only single word blocks have been discussed
thus far, lookahead has played no role.

This restriction was now removed and the cache simulator
was modified to include a type of lookahead while retaining
single word cache cells. Every time a word was brought into
the cache from the primary memory, the next consecutive
word was brought into the next consecutive cache cell at the
same time. Fig. 6 depicts the value of this lookahead (CUXL)
relative t o a cache without lookahead (CUX). This lookahead
does result in an improved a of 6.0 (an indication that, in
general, consecutive memory locations are more likely to be
referenced) but once again at the cost of added complexity in
the cache control. Furthermore, it requires a double width,
slow main memory. Such a scheme was not considered for the
machine constructed as it would have required a new slow
memory configuration, new bus and pin assignments, and
eliminated compatability with existing machines. The use of
lookahead only on instructions and not data, was also
examined: this proved to be about 4 percent less effective than
the use of lookahead on both.

In summary, various organizations designed to enhance the

350 IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

performance of a cachelprimary memory pair as far as possible
along the continuum from pure primary memory performance
(a = 1) toward pure cache performance (a = 10) have been
simulated. For the organizations simulated, a cache of 512
words can reasonably be expected to yield an cr in the range of
3 to 6, depending on the complexity of the cache control
which can be tolerated.

VI. HARDWARE CONSIDERATIONS

Various hardware considerations have already been alluded
to. The general interfacing problems and the hardware tradeoffs
involved in the various schemes will now be considered. Fig. 7
shows the basic timing diagram for a fast cache memory. Three
time points are noted for reference. At TI the fast memory
timing begins. At T, the label-datum pair is obtained from the
memory. By T3 (which is actually TI of the next cycle) the
next memory address (MA) location and input data (DI), if a
write cycle, must be loaded. If the word is an instruction, this
requires that the decoding as well as the computational
operations be performed in a critical T3 - T, time. Any
computation, shifting, incrementing, etc., requiring the
accumulator (AC) register can be overlapped with the next
cycle by loading the AC at T, of the next cycle, thereby
overlapping instruction execution as much as possible. Fast
bipolar memories have tcYcle -- 2 taCce,. For the cache memory
actually implemented, access time is 60 ns and cycle time is
110 ns. S series TTL devices were used in all critical paths to
achieve the required speed.

The choice of a direct mapping cache scheme added very
little in hardware, essentially one 5-bit comparator between the
label and the higher order MA bits, (for a 512 word cache-16K
word primary core memory system). Any cache scheme
requires timing loops within the CPU control, one controlling
the fast cache memory and the other the slow primary
memory. Their starting and the switching between them are
controlled by a cache control unit (CCU) which is essentially
the above 5-bit comparator. A two bus system is another
practical requirement in any cache scheme: a fast bus on
which the fast memory is mounted, and a slow bus to which
the slow primary memory and all peripherals interface. The
CCU controls the interfacing of these two buses and the
central processing unit (CPU).

The 50 percent performance increase obtainable with the
CUX writeback scheme greatly encouraged its implementation.
This was rather easily incorporated by feeding the X bit of the
accessed cache word, the status of the CPU's read/write
flip-flop, and the result of the comparison to a logic network
within the cache control. Thls logic then controls the sequence
of fast memory and slow memory reads and writes to be
generated, thus controlling the two timing loops and their
interconnection.

The majority of solid-state memories evaluated had latched
outputs, so that after a three cycle read-write-write sequence
the original datum read out three cycles before is still present
at the memory's data-out lines. This enabled some
simplification in the flow chart. The nondestructive readout
feature of a solid-state memory necessitated a preclear of the

3 2 64 128 256 512

CACHE S I Z E lWords l

Fig. 6. Speed versus cache size, CUX writeback with lookahead
(CUXL), CUX writeback scheme with best dedication (CUXD).

1, 1 2 1 3

Fig. 7 . Simplified cache timing.

fast memory when power was turned on; this was rather easily
implemented.

An added feature of the direct mapping cache scheme
chosen is the ease with which the number of words of fast
cache memory can be increased for users requiring a larger
slow primary memory and/or a yet faster average system
speed. The user need only purchase as much fast cache
memory as his speed needs require and may add on more later
in much the same way that core is added presently. The
increase in cache size merely changes the label length and thus
the number of bits that need be compaired. By fixing the label
at 5 bit, a wide variety of cache/slow memory sizes can be
handled.

From a cost/performance standpoint, the increased
parallelism and speed of the CPU increases its cost by 50
percent due to the added boards, wiring and increased IC
count. This increase plus the cost of a 512 word X 18 bit solid
state memory imply a price differential of certainly no more
than $5000. Even with such conservative assumptions, an
interesting cost/performance comparison results between the
minimum PDP8/E system, the average PDP-8/E system, and a
time-shared PDP-8/E system with and without a cache scheme
and faster processor. As shown in Table I, the
performance/cost ratio of the designated system can be as
much as 4.3 times greater than that of a conventional
PDP-8/E.

The origin and explanation of the speed improvements
produced by variants of a basic cache scheme have been
discussed. In the context of minicomputers, somewhere

BELL et al.: CACHE ORGANIZATIONS

TABLE I
PERFORMANCE COST COMPARISON

between a performance increase factor of 5 and 6, a
breakpoint occurs. The implementation of a cache using
conflicting use write adds little to the hardware costs of a fast
processor and improves performance by a factor of 3.2, while
the addition of an X bit raises performance by an additional 50
percent to an a of 4.9 with only a small hardware increase.
Any further variants provide only minor performance
improvements at more substantial hardware costs. Therefore a
reasonable compromise between performance and cost in a
minicomputer is to use a simple cache scheme and aim for
about 90 percent hits (a! = 5) in the cache, rather than the
higher hit ratios sought in larger machines.

Configuration Costs (K$)

Minimum.

5
WE

with cache 10

The authors also wish to thank the assistance of R. Hamel
and C. Kaman of Digital Equipment Corporation during this
project. The simulation was performed by W. Corbin at
Carnegie-Mellon University.

Stanford and Northeastern Universities. His specialty is programming
languages and compilers, an area in which he has published several
papers. He is currently Manager of the Research and Development
Group, Digital Equipment Corporation, Maynard, Mass.

Performance

Average

10

15

David Casasent (S'58-M'69) received the Ph.D.
degree in electrical engineering from the
University of Illinois, Urbana, in 1969.

From 1964 to 1969 he was a Research
Assistant in the Digital Computer Laboratory,
engaged in research in hybrid analog and digital
systems and optical techniques and systems for
information processing. He is currently an
Assistant Professor at CarnegieMellon Univer-
sity, Pittsburgh, Pa., and a Consultant to Digital
Equipment Corporation and Battelle Research

Laboratories. His research work involves computer hardware, radar
processing, electron optics, electro optics and optical data processing.
He is President Elect of the Optical Society of America, Pittsburgh Sec-
tion, and past Chairman of the IEEE Electron Devices Group, Pitts-
burgh Section. He is the author of two texts on analog and digital

Performance/Cost
Ratio Compared to

8/E

electronics and over 30 technical papers.
REFERENCES Dr. Casasent is a member of Optical Society of America, SID, HKN

C.J. Conti, D.H. Gibson, and S.H. Pitkowsky, "Structural aspects and XT.

of the system/360 model 85, I.-General organization," ZBM Syst.
J., vol. 7 , pp. 2-14, 1968.
G.G. Scarott. "The efficient use of multilevel storaee." in 1965

TSS

35

40

- .
Proc. ZFZP cong. Washington, D.C.: Spartan, p. 137.
J.S. Liptay, "Structural aspects of the IBM system/360 model 85,
11.-The cache," ZBMSyst. J., vol. 7, no. 1, pp. 15-21, 1968.
D.H. Gibson, "Consideration in blockaiented systems design," in
1967 Spring Joint Comput. Conf., AFlPS Conf. Proc., vol. 30.
Washington, D.C.: Spartan, pp. 69-80.
F. Lee, "Study of 'lookaside' memory," ZEEE Trans. Comput.,
vol. C-18, pp. 1062-1064, Nov. 1969.

James Bell received the B.A. degree in
mathematics from Dartmouth College,
Hanover, N.H., in 1964 and the MS. and Ph.D.
degrees in computer science from Stanford
University, Stanford, Calif., in 1966 and 1968,
respectively. His do~toral thesis there involved
the design of Proteus, a minimal extensible
computer language.

He has previously held positions with Bell
Labs, IBM, Stanford Research Institute, and
Control Data Corporation, and has taught at

Q

1 .o

5 .O

C. Cordon Bell (M'66) was born in Kiksville,
Mo., on August 19, 1934. He received the B.S.
degree in electrical engineering in 1956 and the
M.S. degree in 1957, both from Massachusetts
Institute of Technology, Cambridge.

In 1959 he was with the Speech
Communications Laboratory at the M.I.T.
Division of Sponsored Research. From 1959 to
1960 he was a Research Engineer with the
Electronic Systems Laboratory at M.I.T. From
1960 to 1966 he was Manager in charge of

computer design at the Digital Equipment Corporation, Maynard, Mass.
He is on leave as Professor of Electrical Engineering and Computer
Science at Carnegie-Mellon University, Pittsburgh, Pa. He is presently
Vice President of Engineering, Digital Equipment Corporation,
Maynard, Mass. His research interests include general systems design
and design management, design of multiple processor computer systems.
for either parallel or multiprocessing, design automation design,
documentation structure including storage retrieval, applied artificial
intelligence, and computer applications of most types.

Mr. Bell is a member of the Association for Computing Machinery
and Eta Kappa Nu.

'Minimum

1

2.5

Average

1

3.3

TSS

1

4.3

