Fundamentals of
Time Shared Computers

by C. Gordon Bell

SEOPERWRST DF) rrlkmn,:’
NI
Asscciate Professor of Computer Science and ; -
Electrical Engineerin\g, Carnegie Institute of Technology. N L A
Formerly manager of Computer Design, Digital Equipment k 0 \“A \
Corporation, Maynard, Massachusetts. E — ; ‘a\ vE x|

“Time-sharing” is discussed generally in this article to cover any

application of a computer system that has simultaneous users. The

discussion defines general purpose time-sharing so as to include special
purpose time-sharing, “real time”, and “on line” systems as a

' subset. “Graceful Creation”, or the “boot strapping” of a system, is
described in which newly created individual user procedures are immedi-
ately available to the whole community of users, and the system expands

n an open-ended fashion because many users contribute to the formation.

Although the discussion is separated into hardware, operating system
software, and user components, a sharp delineation does not exist in reality.
After the basic system is specified, it is the philosophy of the author

that the system should be formed in a time-shared environment
(including the construction of the operating system software). Few
resrictive features or functions should be “built-in”, but instead, be
optionally available through the library or common files.

The underlying design criteria should be: flexibility, modularity,
stmplicity of module intercommunication, and open endedness.

The basic objectives of time-sharing are to increase user and/or overall
computer system productivity. Present general computational systems
are an extension of special, shared, multiprogrammed systems
centered around special applications (e.g., process control, command
and control, information inquiry, etc.). As such, time sharing is another
technique that makes the computer a more general tool.

All future computers will have at least some basic hardware for a form
of time-shared usage. These systems forms will run the gamut from
dedicated systems with a permanent user, through general systems with
varying number of users, to a network of shared computers.

The article discusses only the basic structure of the system, with emphasis

on the hardware, because of space limitations. For example, the issue of
scheduling jobs is discussed only superficially by listing the system variables
on which scheduling depends, together with a common scheduling algorithm.

1 CONMPUTER l)ESl(LN/l-‘lCBRl TARY

/65
rad |

1U6R

_

s

INTRODUCTION

Time-Sharing is the simultaneous
shared use of a computer system by
independent users expecting short or
appropriate (or apparently instanta-
neous) responses, within the limits
of the request and system, to com-
putational demand stimuli.

Time sharing provides a level of
service to a user who could only pre-
viously have had the service by own-
ing his own computer. The sharing
is based on the principle that there is
enough capacity in a computer for
multiple users, assuming: the proper
ordering of requests; the user con-

soles are active only a small fraction -

of the time; and a console is being
used for input or output, in which
case, another user can be processed
on an overlapping basis during the
input or output.

TIME-SHARING SYSTEM
COMPONENTS

The system components (see Fig-
ure 1) include the operating system
software, the hardware, and the user.

The Operating System Software

The Operating System Software is
responsible for the allocation of re-
sources among users and the efficient
management of the resources. In

Hardware

]

Operating System Software

1

Actual p;pcess—file,lprocess-terminal cont{zl.
A}

¥

User's

Human User Hardware

1l. Control of process
(originate process,
stop process, etcy)

2. Data for process

(e.g., text for Editor)

Fig. 2. User’s apparent system.,

addition, it manages all common
software procedures (or program li-
brary}, such as translators, manage-
ment of files or data bases, editing
programs, etc. The system provides
logical abilities, such as message
switching among user terminals.

The Hardware

The hardware enacts the proce-
dures required by either the user or
the operating system, and provides
the physical components which make
a logical and physical implementa-
tion_possible. The hardware compo-
nents are: processors, primary mem-
ories, peripherals (terminals and file

memories), control and switches.

User
User and
System
. Files
Operating
. System
R Software -—
\
User 3\ Terminals
Logical links or requests for: \
File space (data and programs), he
o O
terminal activity, and proces-- 35
H O
sing (primary memory-processor Zd
-
activity), Primary
- Memory Physical
links
[
Processors
Logical 1inks
Physical
Hardware

Fiq.

1 Logical organization of time-shared computer components.

\\ Terminal /l/

\ »
~
\ ~
~
\ Ny,
User User's
Program Files
or
Process
1. Data

2. New processes
3. Library information

- Apparent information or control flow
== Actual control

The User’'s Apparent System

The User's Apparent System in-
cludes the terminals, files, and a
process as shown in Figure 2.

The terminals provide a node for
a communication link between the
system and user for the control of
the user process and transmission of
data. Terminals are at the comput-
er’s periphery and include devices
like typewriters, printers, cathode ray
tube displays, audio output response
units, etc.

The files or data base retain the

- user’s information while in the sys-

tem. This information includes both
his dormant processes or programs,
or, in general, all the data he wishes
the system to retain.

The user process or user procedure
or program directs the system for his
file, terminal, and processing activity.

TIME-SHARING CRITERIA

Time-shared computers’ basic cri-
teria are: being shared among mul-
tiple users; providing independence
among the wusers; and providing
nearly “instantaneous” service to its
simultaneous users (within the limits
of their requests).

Independence Criteria

For each system component the re-
lationship among users may vary
over a range from dependence (the
simultaneous attempt of a group to
solve a single problem) to indepen-
dence (no user affects another user).
A completely independent system
would require the system to perform
as though each user were the sole
user.

45

TABLE 1. CAPACITY

REQUIREMENTS FOR TIME-SHARING SYSTEM APPLICATIONS

computational languages
(JOSS, CULLER-FRIED
System) -

Specialized computer medium-large
aided design, engineer-
ing, problem solving

languages (COGO, etc)

Process control medium-large

Text editing (Adminis- medium
trative Terminal

Service)

On line information medium-large
retrieval of periodi-

cal headings, bibliog-

raphies, keywords,

abstracts

(10%10%

small-very large

10%109

medium (>>10%

small (>>10%

mediu'm (>10%

bounded (10*-

large)

small-very large

(10%->>10%

small-very large

(10%>10%
small"(10%10%

Specialized System Primary Mem- Primary Mem- Processing File Organi- Direct Terminals
Service, or Ap- ory for ory for User Capacity/ zation and
plication Process (in Data (in bits) User (in Size
~ bits) ~ operations*/ (10%10° bits)
interactiont)

Desk calculator very small very small (<10%) very small (>10) none typewriter, input keyboard, strip
printer, scopes, audio output, or
special console.

Stock quotation small small (<10% very small (>10% one (s.ma”-medium) see above, stock ticker tape or

: transactions input, telephone.

Airline reservations medium small (109 small (109 approx. 6 (medium- special consoles, typewriters,

large) scopes.

On line banking medium small (?10‘) small (>>10% approx. 10 (medium- see above, special bank teller

. . large) consoles.
General conversational medium small-very large small-large un- multiple files per typewriter, printer, scope, plotter.

user, with few file
>10% types (medium-

see above

few (small)

multiple single pur- typewriter, prinfer, scope.
pose files/user.

. (medium)

medium (10%-10%)

one (very large)

*assumes a fairly sophisticated processor and instruction set
tmaximum interaction intervals for user requests are =~ 10 sec.

(Cuiler-Fried consists of scope,
keyboard, and tablet)

see above

physical quantity transducers,
. general user terminals,

see above. telephone (dial in,
avdio out) .

File independence, for example, is
controlled by associating information

with the file concerning the file’s

users, and uses to which the file may
be put. Such file directory data pro-
vides system capability to cover a
wide range of applications concern-
ing private and public data bases.
In fact, systems could be categorized
by the organization of their data
bases. Table 1 presents some special
purpose systems which are ordered
approximately in terms of the filing
demands. For example, a file con-
taining a teaching program may be
universally available, while a pro-
gram for monitoring the teaching
program or for grading the users
may not.

Process or program independence
{and dependence) is the most ex-
pensive hardware aspect of user in-
dependence. One program cannot
affect nor destroy another; on the
other hand, a mechanism for making
procedures available to the commu-
nity’s members is necessary.

416

4

Instantaneous Criteria

The instantaneous nature of a
time-sharing system includes both di-
rect terminals for the users and rapid
response to user demands. That is,

users are “on line” and seérved in

“real time”. An on line computer is
one which provides terminals which
allow users to directly communicate
with it by a single, simple action,
(e.g., like pressing a- typewriter key
or looking at a display). The systein
is never farther away than the néar-
est terminal. A conversational pro-
gram is an on line program which
allows a user to directly communi-
cate or “converse” with it in terms
of requests and acknowledgement
dialogues at an appropriately rapid
rate, ‘
o

A real time system is one which
has the ability to execute a required
process or program in an “accepta-
ble” period of time as governed by
the extra computer process request-
ing computation power. All systems
are real time if they are acceptably
fast: e.g.,, overnight for payroll cal-

culation might be acceptable!

Normally, we associate “real time”
with a mechanical process in which
a computer is constrained by a mech-
anism, e.g., a “real time” computer
for air traffic control must be able to
process all the inputs fromn the radar
systern such that aircraft positional
information is not lost.

The response time or total time for
the system to respond to a demand
stimulus is the suin of the reaction
time (the time until a program is
activated from the request time) plus
the processing time (the time to pro-
cess the request).

Response times for human users
should vary in accordance with their
requested demands. The response
time for a computational demand,
although known and determined by
the system, can only be judged for
acceptability by its users, Tn sum-
mary, “real time” for a mechanical
process means keeping up with the
process (not. losing information,
ete). “Real time” for a human
process Is giving an appropriate 1¢-
sponse in accordance with requests.

COMPUTER DFS1IGN ‘Frnrpary 1968

Shared Criteria

The sharing of a system by multi-
ple users represents an economic
justification by ordering or optimiz-
ing random resource requests. The
allocaiion of resources is a major
system function and includes: pro-
cessor scheduling, or the allocation
of processing capacity for process or
program exccution; file allocation
provides for the user assigned space
from the available file space; pri-
mary or memory allocation is the al-
lotment of memory space for the
execution of processes; and terminal
allocation or the assignment of ter-
minals to users.

General Purpose Time-Sharing
Criteria

All of the above criteria must be
met for a time-sharing system. In
addition, one other criteria, general-
ity, or open endedness, separates spe-
cial purpose and general purpose
systems. A general purpose time-
sharing system must provide for the
open-ended creation of new processes
or procedures during system opera-
tion time, which in themselves may
be considered part of the “system.”
This ability, or graceful creation. of
an improved or ever-expanding sys-
tem with Increasing abilities defines
an open-ended general system. In
the limit, users concerned with the
development of the operating system
software may, for example, operate
and test a complete, new time-shar-
ing system program to replace the
existing system within the framework
of the old system. As new processes,
languages, procedures, etc., are add-
ed to the operating system software
or placed in the general user’s pub-
lic domain, the line delineating the
operating system process and the
user process becomes less sharp.

The method (or language) of pro-
cedure creation, testing, and execu-
tion is the measure of generality. In
summary, a simple test for generality
can be made by determining whether
a new language can be added to the
System from a normal terminal or
console. The user should have free-
dom inherent in the hardware (or at
lea's? in the processor), including the
ability to writc programs in machine
language,

SPECIAL PURPOSE AND GENERAL
PURPOSE TIME-SHARING

In most new systems, basic time
sharing hardware can be easily pro-
vided in the design at low cost. The
gencral organjzation of all computers
provides the inherent ability to form
a time-sharing system. Indeed, time-
sharing systems have been 4mple-
mented on machines covering a wide
range of problem applications. In
general, the systems formed, using
computers which have little or no
supplementary hardivare, are re-
stricted to a single application. The
ease with which a total system may
bé implemented on a configuration is
determined for the most part by the

" configuration and the inherent hard-

ware facilities that aid the configura-
tion sharing. The features which
assist resource allocation must be in-
cluded for im; >menting general
purpose systems. The hardware can
limit the general purposeness in a
fashion similar to the operating sys-
tem software. The additional hard-
ware to provide some form of re-
source sharing can be quite small.

C

Although the ability to implexernt
a general purpose system on a £De-
cific hardware confizuration may e
a desirable design critena for the
hardware, a special purpose or d=d-
icated system may be more destrable.
A configuration dedicated to 2 par-
ticular use may be designed to pro-
vide a much more efficient utilization
of the resources than one which at-
tempts to serve all users solvirg all
problems.

It may be more advantageous to
form communities of users who share
the same systern and are only inter-
ested in solving specific classes of
problems on single systems. Systems
which already are limited by a single
resource might stand alone. For ex-
ample, present hardware file capacity
and file access capabilides appear to
limit desired library systerzs. (Thus,
a general systern cannot supply the
necessary resources, nor can the re-
sources be supplied even if a dedi-
cated system were built) Table 1
gives a list of dedicated computer
applications.

A network of dedicated computers

.\s
c/

Normally referred to as peripheral devices

.

F . .] F L] T
—— A
Y
F ¥ T, T, T
1 e 1 m

Media for communi-
cations to other
computers (e.g.,
tapes)

External machines (e.g.,
computer, analog equipment,

(Periphery) Computer
boundarv

Electro-optical-
mechanical trans-
lation device.

etc,

u

U

Fig. 3. General structure of present computers in terms of computer components.

which only solve specific problems,
supply special resources, or “under-
stand” specific languages may be a
better solution to efficient usage of
our machines than the large, general
purpose systems which try to provide
any or all services.

HARDWARE

COMPUTER STRUCTURE

Although hardware can be consid-
ered at various description levels
from memories or processors down
through “AND?” gates, on to circuits,
the level of interest for this discus-
sion is the computer and its compo-
nents. The general structure of the
computer is shown in Figure 3. The
computer’s components are: primary
memories, processors, controls, pe-
ripherals (terminals and memory
files), and switches. The communi-
cation between any pair of compo-
nents is via switches which provide
both “data and control” information
paths.

A single computer has any num-
oer of components (memories, pro-
cessors, controls, peripherals) but
every processor in the computer must
access some of the common primary
memory of the system.

A multi-processor computer has
more than one processor. Multi-pro-
cessing is the simultaneous processing
of one or more computational pro-
grams or processes by multiple pro-
cessors. Multi-processing methods
can vary from non-anonymous job
assignment, in which particular pro-
cessors or types of processors are as-
signed to specific roles, to anonymous
processors being assigned to any job
in the system.

It is difficult to have complete
anonymity because particular pro-
cessors in the system can only handle
a limited class of jobs (especially
Input/Output Processors).

A parallel processor computer has
mutltiple, anonymous processors, each
of which can be assigned to differ-
ent, independent, parallel (processed
simultaneously) parts of a single task.

All computer structures are special
cases of that shown in Figure 3.
Most systems have hierarchial or
tree-like structures like that of Fig-
ure 4. Each switch s, in fact, more
closely associated with a particular

50

Ti1] < |T1a T2

Fig. 4. Structure of a simplex computer system.

component, and takes on the special
properties necessary for switching or
selection among particular compo-
nents. Thus, a partlcu]ar tape con-
trol unit may communicate with up
to eight tape units and the particu-
lar kind of information exchanged
between the two units is a function
of the kind of units. The tree-like
structure exists not only because of

- the number and type of units and

>
w0

a, Null (1 conversation from A to B)

\/

4
—,

€, Duplex (2 conversations from

A, and A

1t
1 ztotwoofnzs)

7

v . pu

\

/ B,

SMin(m,n) - BJ

A \
- B
n

(See Figure 1.
for symbols)

Tsal "[F1a] |F12 ‘le

the way they inter-communicate, but
also because the computer is a sim-
plex structure. That is, assuming
that it is necessary for communica-
tion to be carried out from bottom
to top {a terminal or file to primary
memory), there is only one path for
the communication flow. Figure 5-
presents the structural forms the
switches take.

/ BI
__.B
\ J
B
n
b. Simplex (1 conversation from
A to any of n B's)
A

,,i\/
NS

d, Time-Shared Multiplex (1 con-

versation from any of m-A's

to any of n-B's)

Muletiplex (Min(m,n) simultaneous
conversation from any of m-A's

to any of n-B's)

Fig. 5. Computer component switch or selection configurations.

COMPUTER DESIGN/FEBRUARY 1968

SN Ny S —

Figure 6 gives a computer with
multiple paths between a primary
memory module and a given periph-
eral element. Since there is some re-
dundancy among components, it can
be shown that there is a higher prob-
ability that the computer will be in
an operational state, as measured by
some large fraction of memories,
processors, terminals, and files being
operational. Such an operational
state would undoubtedly be at re-
duced performance. The probability
of a system being opcrational is a
function of the computer structure

(the number of components and

their interconnection) and each
component’s probability of failure.

For systems requiring a large frac- .

tion of availability or a high uptime,
it is necessary to at least duplicate
each component of the system. Such
systems can be designed so that all

units are constantly in service (in-’

cluding the duplicates), and when a
system failure occurs, the faulty unit
is removed or the system re-parti-
tioned for maintenance. Such a
design philosophy, called graceful
degradation or fail soft, provides

continuous usage even though the

capacity mnay be degraded. Fail soft
design imposes the constraint on the
hardware that there be a duplicate
of each unit and communication
path in the system. It is possible to
have similar functional duplicates to
avoid complete duplication, ie., a
drum can be replaced by a disk. In
such cases, the systemn will continue
to function, but at very much re-
duced capacity. These computers
also must have ability to detect first
fault occurrence at a computer com-
ponent so that errors will not prop-
agate through the entire system,
making fault location difficult. Once
a faulty unit is detected, the system
must be able to be dynamically re-
configured.

Multiple units can also provide a
means of achieving better overall
systemn performance since the units
can be used for operation while they
are standing-by.

PRIMARY MEMORY COMPONENT

The primary memories (usually
core or thin films) retain the active
portions of both user and operating
system processes. These processes are
either being enacted by a processor
or are waiting for a processor. The

lF I T T T

Simplex path Note:
failure in

P,v C will

cause F to fail.

can be tolerated.

T

4 paths from memory switch
to F. A to T. A failure in P,V P3,
or 2 failures in CoVC3V C4VCy

' S
{See Figure 1, fc-
synooels)
66 C7 VEIQ
8 S
T T [T

2 paths from memcrv system te T.
A failure in €y will disable I.

Fig. 6. Hardware structure of mulliplexed computer.

primary memory may also contain
memory maps and status information
regarding the systemn’s users.

The primary memory is the me-
dium -of logical intercommunication
between the hardware and software
components.

The arrangement of the memory
subsystem, as shown in Figures 4 and
6, is such that from the processor’s
viewpoint, a number of access points,
or ports, are provided with which
the processors connect. The physical
form that a memory subsystem (the
memories and the switch to which
the processors connect) takes is de-
scribed by:

1. The number of
memory modules.

2. The properties of each memory
module.

® The data width (in bits) of in-
formation accessed at one time.

® The quantity of informationstored
(in bits).

e The access time — the time the
module requires to obtain data, given
that the module is free, from the
time an access request has been
made.

e The c¢ycle time — the time the
module requires to completely ac-
knowledge a request, and become
free for the next request.

® Memory failure probability (de-
tected failures and undctected fail-
ures).

3. The method used to assign physi-
cal addresses (which the processor

independent

uses) to physical memory modules
and memory words.

4. The switching network which
connects with the processors. See
Figure 5 for possible switches. These
range from 1,2,P {where P is the
number of processors ., to M Jor
the number of memory modules™ as
possible simultaneous conversation
among processors and memories,

All primary memories are furc-
tionally similar because they store
programs while they are being inter-
preted by a processor: data for pro-
grams; and other state informaticn
required by the processors. The
memories can be separated accord-
ing to their specific functions on the

 basis of their cost, size, and speed.

Principal Primary Memory
{Core or Thin Film Technology)

This memory is the principal ster-
age for programs while they are run.
In inost computers, the assumption is
made to provide a certain match be-
tween processor capacity {in bits’
sec.) and the available primary
memory cycles (in bits/sec.). In
small computers this is the only Pri-
mary Memory in the computer.

Bultk Memory or Large
Capacity Storage

These memories have the follow-
ing characteristics relative to pn-
mary memory: -—— cheaper ($.02-
.04/bit versus $.10-.20/bit); larger

51

{0.5-1) million words versus 32,000-
256,000 words; and slower (8 usec/
word versus .8 usec/word).

The assumptions about use are:

1. Problems involving large data
structures in which data is randomly
accessed.

2. As program base for seldom ex-
ecuted user and system programs.
3. As data base for seldom accessed
data. (Whether a program is moved
from bulk memory to principal mem-
ory is a function of movement
overhead, and the expected activity.)

A bulk memory is also often used
as a secondary storage device to hold
programs and data (types 2 and 3
above) which are transferred to pri-
mary memory (higher speed) for ex-
ecution. Thus, it is treated essential-
ly as a fast, zero access, drum-like
device for program swapping.

Scratch-Pad Memories

These memories have the follow-
ing characteristics relative to primary
memory — faster (by a factor of 5) ;
more expensive (by a factor of 10-

100) ; and smaller {20-1000 words)..

Such memcries contain:

1. Short loops for high-speed pro-
gram execution

2. Control information which may
be referenced by I/O processors

3. Either the processor state or cop-
les of the processor state (arithmetic,
index registers, status information,
etc.).

PROCESSORS

Processors connect with primary
memory and enact user computa-
tional {arithmetic, symbolic, logical,
etc.) processes. Large systems re-
quire several types of processors to
efficiently handle the different tasks,
to provide redundancy, and to match
the capacity of the memory system.

Processors can be specified at the
computer system level by the follow-

ing parameters:

1. Instruction set ability
® Distribution of processing time re-
quired for the given algorithm being
‘ocessed.
Distribution of memory space for
the algorithm.
2. The number of programs which
are recognized as independent pro-
cesses. (This number is roughly

52

equivalent to the number of inter-
ruptor trap channels.)

3. Program switching time or the
time to save a process state, and to
reset a processor to a new process
state.

4. The number of bits (or words)
associated with a process which re-
sides in the processor and must be
swapped when a new process is se-
lected.

Computation Processors, Central
Processing Units, Arithmetic
Processors, or General

Purpose Processors

These interpret memory-provided
processes, and most generally per-
form arithmetic, symbolic, and logi-
cal functions. This conventional pro-
cessor handles user and operating
system processes. In small systems,
it is the only processor, and as such
interprets input-output commands
for peripheral devices.

Special Purpose Processors or
Algorithm Processors

These (arithmetic/logical) proces-
sors interpret a limited command set

for special languages or algorithms

and augment a general purpose pro-
cessor. This type of processor has so
far only been used experimentally
(e.g., to process IPL V statements or
evaluate polynomials). Future pos-
sibilities include the use of special
processors for cross/auto correlation,
fast Fourier series transformation,
Matrix Multiplic. .ion, etc., algo-
rithms (e.g., IBM 360/2938 Array
Processor) .

Peripheral Processors, Input-Output
Processor, Input-Output Control
Units, or Data Channels -
or Channels

These interpret a limited set of
commands or instructions which han-
dle controlling the transmission of
data between peripheral contro} unit
peripherals and primary memory.

Peripheral processor programs ex-
ist in primary memory, and are usu-
ally created by arithmetic processors.
Though they do not usually have the
arithmetic, logical or symbolic, capa-
bility, they do possess enough logic
to do algorithm decoding. When
necessary, arithmctic processors aug-
ment the peripheral processors.

The instructions interpreted by pe-
ripheral processors include:

1. Terminal initialization commands.
® Selection of data transmission path
by selecting both the control unit and
peripheral device.

® Device function specification com-
mands, These include commands for
— reading, writing, unit speed, and
directions selection, data transmis-
sion formats, etc.

® Location of information within
the peripheral. If the device is or-
ganized in such a fashion to regard
its data as being addressable or ac-
cessible by a number, the location
must be specified.

2. Peripheral status query com-
mands. At various times, the proces-
sor queries the state of the control
unit-peripheral device and places the
status in primary memory.

3. Peripheral program execution (in
addition to initialization and status
query commands). These instruc-
tions include:

® Branching.

e Setting up of commands for block
data transmission.

® Intercommunication with other
processors, by issuing commands to
the processors. Also, a peripheral
processor trapping may transfer job
completion information into a queue.
4. Supervision of actual data trans-
mitted between peripheral-control
and primary memory.

Block Data Transfer Processors

These processors are a special case
of the peripheral processors, and are
used to execute the special instruc-
tion to transfer an array or block of
data in primary memory to another

- location in primary memory.

Display Processors

These processors are specialized
peripheral processors which interpret
display procedures. That is, a dis-
play processor program in memory,
when interpreted by a display pro-
cessor, yields a picture.

PERIPHERALS

The peripheral devices are at the
physical and logical periphery of the
computer as can be seen by the tree-
like structure of Figure 4. The com-
munication to peripherals is con-
trolled from programs in primary

COMPUTER DESIGN/FEBRUARY 1968

o el

memory which transfer information
with the periphery from memory to
processor to control unit to periph-
eral.

Two types of peripheral devices
will be discussed: Terminals and Pe-
ripheral or File Memory.

The property which separates a
file from a terminal is whether infor-
mation can be both written into and
read from the file. That is, the de-
vice is capable of both storing and
retrieving information. The informa-
tion stored on the file memory can be
utilized in various ways according to
other properties of the file.

The terminal serves a different
function; that of providing the com-
puter with a path with which to
communicate with people, or other
machines. A file and terminal may

be considered almost identical from _

a program viewpoint. The terminal

is restricted in that information can

only be 1) written (reading oc-
curs by some media outside the com-
puter), or 2) read (writing occurs
outside the computer), or 3) read or
written (e.g.,, a typewriter can be
both read or written by a computer,
since the computer cannot read what
it has written).

Terminals

Terminals are used to communi-
cate with anything outside the com-
puter and may further be subdivided
according to with whom they com-
municate. The characteristics of the
terminals are: information transmis-
sion time and form (character or
blocks) ; information format or cod-
ing; transmission directions {In, Out,
In or Out) ; and selection or address-
ing of terminal data, e.g. random,
linear or sequential, etc.

Direct Terminals. Direct Termi-
nals provide the human user with a
node for direct communication with
the computer. These terminals in-
clude: typewriters, scopes for display
of text or graphical information,
audio output devices, telephone in-
put dialing units, and specialized
terminals, such as bank teller win-
dow consoles, airlines reservations
consoles or stock quotation terminals.

Indirect Terminals. Indirect ter-
minals provide a communication
path between the human user and
the computer, but only via a path
which requires off line transforma-
tion of information. Information is

available at the indirect terminal in
only 4 machine readable form (e.g.,
holes in a card or tape, or magne-
tization of an area of tape). A sepa-
rate, mechanical translation process
is required to convert from machine
readable to “people readable” form.
Indirect terminals include card or
paper tape readers and punches,
film or photograph readers, special-
ized format document readers, (e.g.,
magnetic ink or typewritten), TV
cameras, photographic output de-
vices, magnetic tape units, etc.
Machine Terminals. Machine Ter-
minals are those which link other

-computers, or electrical form devices

(such as temperature or pressure
transducers, etc.) to the computer.
Such a linkage may include the Da-
taphone, which is a channel or link
for transmitting information outside
the computer’s periphery via tele-
phone channe.. Other forms in-
clude: analog-digital conversion, and
discrete event, time duration, data
encoding methods,

A computer is often used as a ter-
minal to the main computer for the
following functions:

1. Concentrating or managing a
number of typewriter or other termj-
nals on a text line at a time basis,

2. Pre- and post-processing of in-
formation on cards, magnetic tape,

‘printers, and plotters.

3. Processing of high data rate ter-
minals for the main computer, as in
the case of CRT displays.

4. Connecting to a process of some
other kind, e.g., process control, data
logging, information collection, etc.

Peripheral or File Memories

These memories lie at the same
structural position as terminals. A
file’s sole function is the storage of
information for use by the process
(or programs). The parameters
which control how a device is to be
used in a system are:

1. Cost.
2. Size of memory.

- 3. Access time and information

quantity characteristics. Information
selection or access time may be ex-
pressed in terms of the following op-
erators:

® Random — Data selection is a
constant and is independent of the
address (e.g., core address, drum
head selection — generally electronic
or optical).

¢ Linear (uni-directional) — Data

selection time varies proportionately
with the address (e.g., tape) required.
e Linear —same as above except
that either direction of information
address searching and data transmis-
sion is permitted (e.g., disk selection
or track arm).

® Cyclic Linear (or constant rota-
tional) — Data selection time varies
proportionally with the address. Ad-
dresses are being changed automati-
cally, and take on cyclic values at
some rate (e.g., drum).

4. Addressability of information.
Some cases include:

* Files with no explicit hardware
addresses.

¢ Files with addresses specified by
embedded data.

e Files with explicit hardware ad-
dress information associated with ac-
cess mechanism.

5. Replaceability of information. In-
formation space can be recovered by
exactly re-writing over existing in-
formation, to replace a single part of
a file without the need to re-write
the whole file.

6. Removeability or portability of
information from the computer, ie.,
transferability of information off-line
among computers. This property
provides for information to be re-
moved from the system and stored
off line.

The use to which a particular file
is put in the system is a function of
the above parameters of all storage
devices. The present systems have
the requirements for the hierarchy:
bits, words, word groups (<i00-
1000 words), program size word
blocks (1000-100,000 words), files,
and multiple files. The secondary
memory functions in the computer
can be broken into the following dif-
ferent tasks for which different
kinds of file memory can be used.

Prograrmn Swapping Memory. Pro-
gram swapping memory is used for
the retention of programs to be
placed in primary memory for direct
execution by a processor. “Program
swapping memory” and “secondary
memory” are considered to be syn-
onynious.

Program Swapping, the underly-
ing principle of many time-sharing
systems, is the act of keeping pro-
grams in secondary, or file memory,
until they are ready to be run (as
the scheduler decides), and then ex-
changing them with programs in
primary memory so that they may be

53

executed by the processor and pri-
mary memory. The secondary mem-
ory may also be used to provide the
user with the appearance of a large,
homogeneous, one-level primar y
memory, if sufficient memory alloca-
tion hardware is provided {see mem-
ory allocation, below).

The transfer of data between the
two levels of memory should be as
near the primary memory speed as
possible (still allowing some arith-
metic processing). The single char-
acteristic of time to exchange users
between primary memory and pro-
gram swapping memory affects the
maximum number of users and their
response time for swapping systems.

Fixed head drums or discs are
most commonly used for swapping,
since only a rotational or cyclic lin-
ear access is encountered to select
data. .

A program swapping device may
not be necessary unless the system
serves a large number of users. It
is also possible to use some slower
storage components, (e.g., program
file memory), as swap data media.
The substitution of one file type for
“nother allows a system to be built

ithout complete component redun-
dancies and still satisfy uptime con-
straints.

Program File Memory. Program
file memory is storage used for user
data base and user programs which
are not usually in a state to be run.
The requirements for file memory
necessitate the use of large, relatively
fast, addressable storage in which
data items can be replaced. The units
which are used for this purpose in-
clude fixed or moving head drums
or discs, magnetic card readers, and
magnetic tape (whose data can be
both addressed and replaced).

Backup File Memory. Backup file
memory is storage. which can be re-
moved from the computer, and in-
cludes magnetic cards and tape, etc.
This memory is used to retain a
snapshot or state of the systemn at
fixed intervals so that the state of the
system can be re-established in the
event of a failure. This hardware
file does not require explicit address-
g, or the ability to replace data,

Archival Memory. Archival mem-
ory is used to store user files which
are removed from the computer.
These files exist principally for cost
reasons, and the act of reivieving a
file from the archives is one of man-

54

ual selection from a library for which
the computer does not have direct
access. Magnetic tapes are used for
this purpose, since acceptable re-
trieval time may range from Y
hour to one day. The files are

roughly equivalent to backup storage
files. -

CONTROL UNITS

The control units have little logi- :

cal significance in the computer. The
controls exist principally because of
the cost ratios of control electronics
to peripheral devices, and of control
electronics to total system costs. It is
desirable that all peripherals include
controls so that the simultaneous
transmission of data from all periph-
erals is possible.

The functions which the controls
perform are: :
1. Electrical logic signal conversion.
Lines from peripheral devices, e.g.,
typewriters must have the same elec-
trical characteristics as the computer
logic.
2
(Information coding and decoding).
The coding of information is an idio-
syncrasy of each device, and as such
information must be put in a com-
puter compatible form of informa-
tion. .
3. Buffering or assembly of informa-

tion. Since each device may inher-

ently transfer bit strings which are a
sub-multiple of a computer’s word,
a complete word may have to be
formed prior to memory transmis-
sion. Very high speed bit rates for
the peripheral data can be reduced
to acceptable character or word data
rates for transmission to memory by
parallel data transmission path and
buffering.

4. Selection of a specific peripheral

fl:om the set which connects with the’

control. The control retains the
switch position information which se-
lects the peripheral.

5. Sclection of information within
the peripheral. For devices which
have information organized in ad-
dressable form, the control contains
the value of address for the informa-
tion to be accessed.

6. Error correction and detection.

SWITCHES

A switch provides a communica-
tion path between two different com-
ponent types. Figure 5 lists the switch

2. Time information transformation

forms. The specific choice of which
switch to use is a function of the
allowable switch cost, the time al-
lowed to transmit information
through the switch, the number of
simultaneous conversations, the num-
ber of units among which switching
is to occur, and the expected relia-
bility of the switch relative to the
components from which it is con-
structed (together with requirements

. for partitioning parts of the switch

which have failed).

The implication of the switch dia- -
grams is that the switch is set to a
particular value, and that informa-
tion then flows along the switching
paths, between the components (or
rather between registers of the com-
ponents). A large part of the switch
consists of decision hardware for set-
ting the switch positions. In par-
ticular, along a path for which in-
formation is to be switched, there
exists a dialogue between the trans-
mitting unit, the switch, and the
receiving unit. The dialogue is:
transmitter broadcasts a request for
a dialogue to either one or all switch
units; the appropriate switch setting
or selection or closure is made; the
information is sent from transmitter
to receiver, i.e., the information dia-
logue takes place between the two
units while the switch is in a given
position; and finally, after the dia-
logue, the switch is opened. In some
cases, the dialogue first consists of
additional selection information. For
example, in a multiple memory mod-
ule system: a processor first makes

" a request for a particular memory

module; the particular switch is
closed which allows the processor-
memory module dialogue to take

“-place (the processor transmits a par-

ticular memory address to the mem-
ory so that a memory word is se-
lected; the data transmission takes
place between memory and proces-
sor); and, finally, the switch is
opened, or the dialogue is terminated.

MULTI-PROGRAMMING AND
MEMORY ALLOCATION
HARDWARE

Multi-programming is the simul-
taneous existence of multiple, inde-
pendent programs within primary
memory being processed sequentially
or in parallel by one or more proces-
sors. Time-Slicing describes the di-
vision or allocation of a processor’s
time among multiple programs prior

SEONATDTCTTT enacieans Aoaiiio LAWY

R

TABLE 2. MEMORY ALLOCATION METHODS

Hardware Designation

Method of Memory Allocation
Among Multiple Users

Limits of Partc.'ae

Method

Conventional computer — no memory al-
location hardware

1 4 1 users. Protection for each memory
cell

1 4 1 users. Protection bit for each mem-
ory page.

Page locked memory

Bounds register.
Two sets of protection and relocation reg-

isters, 2 pairs of bounds register.

Memory page mapping*

Memory page/segmentation mapping

One set of protection and relocation reg-)
isters (base address and limit registers).:

No special hardware. Completely done by inter-
pretive programming.

-

A protection bit is added to each memory cell.
The bit specifies whether the cell can be written
or accessed. :

A protection bit is added for each page.: (See
above scheme))

". Each block of memory has a user number which

must coincide with the currently active user num-

ber.

All programs written as though their origin were
location 0. The re! stion register specifies the
actual location of the user, and the protection
register specifies the number of words allowed.
{See Fig. 7.)

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo-
geneous virtual memory.

For each page (22" words) in a user's virtual
memory, corresponding information is kept con-
cerning the actval physical location in primary or
secondary memory. *Iif the map is in primary
memory, it may be desirable to have “associative
registers” at the processor-memory interface to
remember previous reference to virtual pages,
and their actual locations. Alternatively, a hard-
ware map may be placed between the processor
and memory to transform processor virtual ad-
dresses into physical addresses. (See Fig. 8.)

Additional address -space is provided beyond a
virtual memory above by providing a segment
number. This segment number addresses or se-
lects the page tables. This allows a user an al-
most unlimited set of addresses. Both segmenta-
tion and page map lookup is provided in hardware.
(See Fig. 9.) May be thought of as two dimen-
sional addressing.

Completely interpretive prog-amming re-
quired. (Very high cost in ¥ —e is paid for
generality.)

Only 1 special user 4+ 1 cthar user s &-
lowed. User programs mcs® be writter 2¢
special locations or with soedcial conve~-
tions, or loaded or assertied into piace.
The time to change bits if a user jot is
changed makes the methed mearly usebess
No memory allocstion by Fa~dware.

No memory allocation by Fa-dware.

Not general. Expensive. Memory reinca-
tion must be done by corve~¥ons or vy
relocation software. A fixed, small nu—
ber of users are permitted bty the hard-
ware. No memory allocaticn bv harcdwa-e.

As users enter and leave, primary memov
holes form requiring the mowing of users.
Pure procedures can only b= irplementzd
by moving impure part aczcent to pure
part.

Similar to above. Simple, purs procedo=s
with one data array area can be imple
mented.

Relatively expensive. Not as gener2’ as
foliowing method for imgle—enting pu=
procedures.

Expensive. No experience to judge eFec-
tiveness.

to the completion of the programs.

Having multiple programs in pri-
mary memory may require special
hardware for the protection of pro-
grams against each other and mem-
ory space allocation. Allocation or
relocation provides a user address
space which is independent of the
computer’s actual address space.

In general, the goal is to effectively
provide each user or user’s program
with a large, continuous memory
space as though he were the sole
user. A further goal is to provide a
method such that any two identical
blocks in primary memory would not
have to be duplicated. This ability
has significance in implementing

pure procedures.

A pure procedure is the constant
or pure or read-only part of a pro-
gram which has been separated from
the variable or data part. Operating
systems software (including compil-
ers, assemblers, loaders, editors) is
generally written as a set of pure
procedures for primary memory
conservation.

.Unless allocation hardware exists,
software may have to carry out this
function, in which case, not only is
the ability of the system limited, but
time is consumed in relocating pro-
grams.

Sometimes primary memory is
broken into pages of 2° to 2'? words

for hardware allocation. A number
of solutions are possible, and Tablz 2
gives a list of some current schemes.
The methods, boundary registers,
memory page mapping, and memory
page mapping/segmentation map-
ping are elaborated in Figures 7, 8,
and 9.

The memory map is part of the
user’s status information and is gen-
erally held in primary memory. The
map contains information to trans-
form user’s or virtual addresses into
physical addresses in primary mem-
ory. It may also contain access con-
trol information, including whether
a page may be read, read as dawm,
written, or read as program.

55

0 U ¢ User
| .. L _] Addresses in| Relocation |Protection
User (‘ogg;jsgf Register Register
2
Ul. 1 0< 2 0 2
PE 2 0<3 3 3
Relocation
2
5T T2 4 [| 6 1
Protection Al,

6 0
] s
Hardware registers

when user #2 is

runniag

Table of user location information

Luser-memory™ addresses in 1000's of words

"absolute memory" addresses in 1000's of words

Fig. 7. Memory allocation using boundary or relocation and protection register.

PROGRAM
INTERCOMMUNICATION

Although intercommunication
among the various hardware ele-
ments occurs physically along the
lines of the hierarchy, the primary
memory provides the main commu-
nication path between programs.
Communication could be via com-
mon files. Normally, two programs
only communicate occasionally, and
hardware mnust be used to signal
when communication is to occur.

Hardware Interrupts or Traps

Hardware interrupts or traps are
intra- and inter-processor state con-
ditions which command the proces-
sor to begin the execution of another
program or process. The number of
conditions which can cause indepen-
dent program starts is a measure of
a processor’s capabilities, since state
change occurs frequently. Intra-
processor traps occur for the follow-
g reasons: ’

10
1
12
13°
17
AN
10 1
13 A 15
14 A 16

map locating a user's
"virtual'memory in

"absolut:e"memor."y

.

1. Processor malfunction. The self-
checking part of the processor has
detected an error. (E.g., a memory
access has resulted in an error.)
2. Program or process malfunctions.
A program has:
® Made an arithmetic error (e.g.,
divide by zero) which, if continued,
will yield meaningless results.
®* Made reference to part of a pro-
gram or data which does not exist
or is not available to the program.
3. A timer associated with the pro-
cessor has signaled that it may be
time to do something else.
Intra-Processor Traps for Execu-
tive Calls. Hardware instructions are
required for efficient intercommuni-
cation between the user process and
the operating system. The commands
for file and terminal activity, and
the calling of executive or operating
system defined functions is via these
special instructions. When they are
executed by a user, a trap or inter-
rupt may occur (with a change in
status to another mode or process)

Uj- (1-2) addresses:
//// 1024-2047 for U,
7 /// . 3
Uj 2-4) - 2048-4095 for UJ.

\

Uj_(o_]) 0-1023 for U._1

"absolute memory"

Fig. 8. Memory allocation using page allocation map.

56

so that the operating system can
carry them out. The limits of re-
quirements of these instructions in-
clude: decreasing the time between
request and action; increasing the
number of permissible command
types; allowing flexibility in the call
type (e.g., subroutine calling with
parameters, provisions for data stor-
age on behalf of a user, and the
ability of commands to call other
commands or nested calls).

Inter-Processor Traps. Inter-pro-
cessor communication between both
arithmetic-arithmetic, and arithme-
tic-peripheral processors is also ac-
complished by trapping. Intercom-
munication among processors is
required using Interrupts usually
when a processor has completed an
assigned task or requires another
processor’s assistance. For example,
peripheral processors do not usually
have the ability to decide the num-
ber of times the reading of faulty
records should be attempted before
giving up, or what to do after a set
of peripheral processes have been
carried out.

HARDWARE WHICH FACILITATES
GENERAL PURPOSE TIME-
SHARING

Special Modes

Privileged instruction set or ex-
ecutive mode denotes a state when
the operating system is running and
a privileged set of instructions is be-
ing executed by the processor for the
operating system software. These in-
structions would not be allowed by a
user when running in user mode
state. The two distinct states, user
mode-executive mode, represent a
minimum requirement to allow allo-
cation and control of resources,

Executive mode allows the operat-
ing software system the freedom to
activate any terminal, modify any
data location, and, in general, do
anything which is within the limits
of the hardware. User mode implies
a restricted set of abilities for the
user: no ability to control a periph-
eral device; access to only a limited
data set; etc. This implies that re-
quests for terminal and file activity
are via the operating system soft-
ware. Other modes may be provided
which allow the system to reference
a user’s data, as though the system
were a specific user which facilitates
data transmission between user and

COMPUTER DESIGN /FEBRUARY 1068

rRIE——

Logigal or virtual memory address request from processor
for user's (two dimensional addressing)

Word or Call
Segment Page Number Number Within
Number Within Segment Page
e Onc > one par~ Processor Component

dimension dimension

User Segment Table Register

t
Segment
Table Origin of Table
Length
Y
'._l_"
Segment Table for * Users
- Page table | Origin of ni
Segment length page table
table
length _— 3 .
=~
l 1y
. ‘+an addition
! L operation
m 2 . % F)
Page Table#* Page Table : - Page Table : $
) T [OFigin Of access and
b »wControl page activity
information
page (read, write,
table i read only,etc,
j length unused, etc.)
*
located in
— 4 primary
memory during
. . program
User Memory Maps (Page and Segment Tables)and Transformation | execution
(Located in either Primary Memory or Auxiliary Map Memory)
Primary Memory Component
4
_ physical }jword of cell
¢) page within page .

\-——__-—-\vf—-_—-u—fj

physical primary memory
address

Fig. 9. Memory allocation using pages and segments.

57

system. For example, users interested
in specific terminals might directly
control them with no system inter-
vention or overhead. In some cases,
a user must directly control a device
to effectively utilize it. Additional
levels of hardware resource alloca-
tion also allow peripherals to be
cur concurrently within normal sys-
tem use.

Time Measurement Hardware

The switching of processors to pro-
cesses is done by the scheduling part
of the operating system. The soft-
ware requires a clock or interval
timer hardware to measure elapsed
time. A processor interrupt accompa-
nies the time interval’s termination.

Inter-Processor Interlocks and
Communication for Multi-
Processing

When multiple arithmetic proces-
sors execute the same process or dif-
ferent processes which modifies a
common data base (eig., occurs in
scheduling or core allocation proce-
lures), it is necessary to provide
hardware interlocks. The interlock
prevents the simultaneous multi-pro-
cessor execution by providing a
single processor instruction which si-
multaneously tests and conditionally
modifies a primary memory cell by
setting into an interlock state. In this
way, the first processor enters and
locks the process by testing and mod-
ifving prior to another processor’s
use. The second processor must wait
for the unlocking to occur before
entering.

Inter-processor communication to
handle faults and share jobs can take
place by normal inter-processor traps
or interruptions among processors.

User Status Preservation Hardware

The active user’s processor hard-
ware registers and status must be
preserved as a processor is switched
to a new user on the operating sys-
tem. Hardware or special instruc-
tions which quickly save and restore

user’s status and set up another
state are desirable to minimize job
switching overhead time. They also
may simplify the construction of the
software and reduce the number of
possible errors.

38

PROPOSED ADVANTAGES
FOR TIME-SHARING
OF COMPUTERS

In the following discussion, only
the positive aspects of Time-Sharing
are given. In emerging new systems,
there have been just enough positive
results to provide us with the ability
to imagine how great Time-Sharing
can be. Rather than point out how
an on line system allows men to be
controlled by computer, or how
poorly the present machines, which
have been adapted for Time-Shar-
ing, perform, 1 will list the proposed
adv}mtages and suggest them as de-
sign aspirations.

In general, Time-Sharing replaces
an existing form of processing be-
cause it offers to provide a better ser-
vice or cost less, sometimes it offers
to do a job that is difficult using an-
other system. It also opens up new
avenues of approach which enable a
new class of problems to be attacked
fruitfully. It is already changing the
structure of programs; maybe be-
cause of the system structure, but
also because of new hardware which
might not have been available with-
out Time-Sharing, (i.e., memory seg-
.mentation or two dimensional ad-
dresses).

ON LINE ADVANTAGES

The direct terminal (by providing
a link between computers and man)
forms a symbiotic problem solving
system. The symbiotic system offers
to provide a more complete problem

solving system because of the tight .

coupling between the two compo-
nents, and power in each processor’s

domain. For example, in computer

aided design the human user synthe-
sizes while the computer analyzes
and optimizes. A circuit designer
would suggest circuits while the com-
puter would “breadboard” or analyze
them. With configuration deter-
mined, the computer would optimize
the parameter values. Thus, the re-
active nature of the on line or direct
termipal provides the user with a
very responsive tool with which to
probe the problem solution space.

A complete tool 1s available, in-
cluding all files which hold a user’s
data base and his procedures are
within the system. The problem in
transporting physical data is climi-
nated. Thus, the necessity and in-

|

convenience of relying on other hu-
man systems for the preparation of
programs and handling of data is
unnecessary. When there is need to
create, modify, or destroy a file, the
commands are executed quickly.
The total time to make a modifi-
cation and have another attempt at
problem solution, or the problem
turn around time can be short or
appropriate with the task size.
Direct terminal interaction with
the system to create and edit files
provides a constant monitoring and
check on a user’s input so that a
wide variety of errors can be de-
tected at all levels during the prob-
lem solving. That is, data format
and validity checking, including the
detection of misspelled words occurs

at the earliest possible time and-

lowest level. Clerical functions, in-
cluding program preparation, draw-
ings, and réport generation are part
of the system.

Data may be presented in more
useful forms to on line users without
the nced to transfer entire output
files to paper. A user may specify
only the part of the file or process
of interest. More useful forms of
data presentation, such as graphs,
charts, and diagrams may be pre-
sented on displays and plotter.

[

USER COMMUNITY ADVANTAGES

A general purpose system provides
an ever increasing set of procedures
for problem solutions, created by its
users. Procedures may enter the
public domain more rapidly, the
author need issue only a notice to
the system (which informs other
users). Procedures in the public

.domain become useful more quickly

because a large community of users
has immediate access to them and
incidentally simultaneously checks
them. Common or shared data bases
(e.g., census data) need only be
gathered once and appear in one file,

Routine inter-user administrative
tasks such as updating the library,
administrative message sending, and
availability lists occur at time of
origin and are automatically part of
the system.

The accounting of resources is by
the system with controls imposed by
overall human administration. Not
only is there better accuracy, but
users can be monitored rather than
being required to administer their

COMPUTER DESIGN /FREBRUARY TORR

e e g S

own time. This, in turn, provides
better information about the total
utility of the sestem and its users.

A higher level of standardization
is possible and can be achieved
among users and hence the ease of
using the system should improve.
Trivial functions which tend to be
rewritten (e.g., error handling of
messages, lesser used arithinetic func-
tions, the manipulation of characters
to form words, etc.) are more likely
to be shared because of the ease of
sharing.

The possibility for improving the
documentation associated with pro-
cedures should improve through the
ease of documentation and perhaps

pressure of the community to share
procedures. The overall documenta-’

tion (text, diagrams, etc.) which de-
scribe a process or problem solution
may improve.

FLEXIBLE TERMINAL LOCATION

Most direct terminals may be lo-
cated where they can most efficiently

serve the users; in fact, they are even
portable. No longer will it be neces-
sary for the user to preschedule time,
but he can now use the computer as
his tool when and where he best is
able to work. For some, this may be
in an office, for others a laboratory,
and still others, their home. Ulti-
mately, consoles will be in all homes.
For example, consider the salesman
who has a terminal in his home (or
a portable one in his car) such that
he can help the computer determine
a list of the best calls for that day.

ECONOMICAL ADVANTAGES ¢

In general, a community is pro-

_.vided with a much larger system

than any single member could afford.
For on line or real time systems, the
hardware and software overhead as-
“sociated with this additional ability

" can be associated with a larger num-

ber of ‘users.

A large number of facilities (co-
ordination of all file activity, trans-
mission of data to terminals, stan-

dard error handling, etc.) which are
overhead functions are implemented
within a system framework rather
than repeatedly by each user as he
attemnpts to form his own system.
Parallel requests for resources rather
than serial processing provide the
system with more information to im-
prove scheduling.

Since the systemn provides the users
with the ability to “watch™ the exe-
cution of a process, the likelihood of
using large amounts of processing
capability yielding erroneous results
is lessened.

If the community of users is suffi-
ciently large, there should be more
than one hardware unit of each type,
and in the event of hardware failure,
the system can be repartitioned to
maintain a working system although
of lesser performance.

The second and concluding part
of this article, which contains an ex-
tensive bibliography on time shar-
ing, will be published in the March
issue of Computer Design.

"6y

ot X

“Time Sharing” is presented in its most general sense as any application of a
computer system that involves simultaneous users. Concepts and equipment

of time-shared systems are defined and described and criteria for system conﬁguratwns
are given in terms of application requirements.

FUNDAMENTALS OF TIME-

This is the second and concluding section of -the article by
C. Gordon Bell which appeared on pages 44 through 59 of the

February issue of Computer Design,

The first section discussed

the ardware of timme-shared computers and suggested advantages
of time sharing. This section discusses operating system software
and user components and mcludes an extensive bibliography on

time sharing.

OPERATING SYSTEM
SOFTWARE

Operating system, monitor, super-
visor, and executive are names
given to those processes that super-
vise and control the operation of
the system for all users.

Unlike conventional operating
systems that are static, a Time Shar-
ing Operating system is growing
and dynamic. New procedures may
be added continuously.

The additional languages and
facilities have a structure that may
have a rather complex operating
system as a major part of the lan-
guage. For example, consider the
administration of a teaching pro-
gram. The program would un-
doubtedly schedule its users (pu-
pils), and the hierarchy of the whole
system would be: the operating sys-

:m for the entire computer man-

aging a central teaching program
to manage all courses managing
a course teaching program which
would manage all individual users
taking the particular course.

28

The objectives of the system soft-
ware are: :

1. Provide many user functions or
facilities with easy-to-use processes.
2. Effective or efficient hardware
utilization. Perhaps allow users to
utilize the hardware directly. Pro-

vide special user services which -

utilize special hardware.
The criteria for the design might:
1. Meet the requirements for

Time-Sharing (computer time and

memory space) per user.
2. Provide for flexibility in the op—

erating system using modular con-

struction. Individual components
can be independently designed,
tested, and modified (or improved).
If possible, the system components
should be written as user processes.

In general, all systems are con-
straiped by cost considerations., A
special system may concentrate on
a single objective, while a general
system is forced to find a balance
between many objectives.

The system software contains:
1. System data base, or informa-
tion necessary for system manage-
ment, and management procedures.

’

2. Resource allocation, control,
and management procedures.

3. Common procedures or processes
for the users, the library.

4. Miscellaneous elements: System
initialization and shut-down; error
recovery; file backup; creation of
new system; and system debugging.

OPERATING SYSTEM DATA BASE

The operating system requires a
large data base that is retained in
primary memory and in files. Back-
up files (copies of files) must be
regularly written so that the system
can be restarted in a correct state in
the event of system failure.

The data for a user include: his
memory map or process location,

.generally found in primary mem-

ory while running or active; the
processor status (the location coun-
ter, processor flags, accumulators,
index registers, etc.); identity in-
formation (name, number, project
numbers, etc.); the time used, al-
lotted, last run, etc.; the run state
(e.g., presently running, waiting to
run, requiring special service, wait-
ing for file transaction, terminal ac-
tion, additional memory, etc.); per-
manent user data to allow the
assignment of terminals and file
space; accounting information; sys-
tem temporary storage to enact
user requested procedures; and
active terminal and file buffering
storage.

COMPUTER DESIGN /MARCH 1968

by
C. GORDON BELL

SHARED COMPUTERS

Associate Professor of Computer Science and

Electrical Engineering, Carnegie Institute of Technology.
Formerly manager of Computer DeS|gn Digital Equmment
Corporation, Maynard, Massachusetts. .

In addition to the data base asso-
ciated with each user there are in-
herent data associated with system
components and resources. These
include: hardware status and avail-
ability information; terminal
names; file directories including de-
scriptors of abilities, modes, etc.;
primary memory free space; and
file memory free space.

Historical, statistical, and ac-
counting information are also kept,
and historical or activity data pro-
vide tools for system improvement.
They especially aid scheduling and
memory allocation as well as indi-
cate the system balance and load.

RESOURCE ALLOCATION,
CONTROL AND MANAGEMENT

This responsibility includes: proc-
essor time or scheduling; process
space (primary memory allocation)
and assignment of a process to sec-
ondary memory or files; file space;
and terminal /process/user alloca-
tion and assignment.

The two extreme philosophies
that determine the number of users
a system can have are “denied ac-
cess” and “degraded service.” “De-
nied access” provides for a fixed
number of users, each of which will
obtain a known or worse case re-
sponse. “Degraded service” pro-
vides for more users and the service
is at least inversely proportional to
the number of active users.

Scheduling

The assignment of processors to
processes is scheduling. The sched-
uling algorithms that compute the
time a process is to run usually use
the following input parameters:
previous time used; memory space
occupied; status of terminal or file
data transmission; expected re-
sponse time for the user; user in-
formation; and number of users.
The priority information avail-
able includes the user, his urgency,
and willingness to pay. As eco-
nomically realistic systems that
charge for their actual uses come
into existence, users will be able to
get a broader range of service.
The round robin algorithm runs
each wuser, in turn, for a fixed
quanta of time, and when all users
have been served, the process is
repeated. If any user cannof run
because he is waiting for input or
output, or halted, he misses a turn.
On completion of input or output
the user is put at the head of the

‘queue and run (subject to his allot-

ted time).
The scheduling algorithm is a

_ most subjective system component,

and, therefore, might be written in
a form that can be easily modified.
How, when, and which components
call the scheduler is also important.

Memory Allocation
Primary/secondary memory alloca-

tion occurs as users make demands
for more space the svstem activates
user processes. The hardware mem-
ory allocation scheme of Table 2
constrains the user map organiza-
tion, and the process organization.
This hardware constrains the user
procedure with restrictions ranging
from writing in interpretive lan-
guages; writing at particular ad-
dresses or using a conventon
determined index register as a base
register; writing with no restric-
tions (over the basic machinej; and
finally providing a two-dimen-
sional addressing space.

The memory paging-memory seg-
mentation hardware will drastically
influence future program structure
and design. With two-dimensional
addressing, the user is not required
to manage primary memory, and is
free to address data by two logical
numbers rather than by physical
numbers. (With such {reedom, and
ability one might expect a propor-
tional cost.)

File Allocation and Control

File allocation and control are gen-
erally subject to extra-svstem con-
straints on the basis of user-size-re-
striction tables.

File allocation cannot easily be
separated from detailed file man-
agement. The management in-
cludes the service of detailed user
requests for data, while allocation

29

is concerned with broader control
of all file space.

Hardware’s View of Files. The
hardware parameters that affect
file organization are: the hardware
access time for words or sectors of
the file; the word or record trans-
fer time; the size of the records
transferred; the total file size; and
the file {ailure rate.

Operating System’s View of Files.
The apparent file parameters are:
the size of files; the number of users
and number of files per user; the
access time to segments of a file;
the nature of addressing the file in-
formation (sequential or random
accessing); the file index; and the
file data buffering.

File activities can be divided into
operations: naming, or declarations,
inter-file manipulation, intra-file
utilization, and file closing.

User’s View of Files. Parameters as-
sociated with the directory or index
of files for users provide a means
of controlling a file’s activity, flexi-
bility, general usage, name, users,
record of its activity, and actual lo-
cation of the file components. File
accessibility control for the user
is on the basis of the originator
(owner), group, and public. The
modes of file activity include read/
write, read only, execute only (a
procedure), and denied access.
Other information about file access
includes creation date, number of
times used, last time used, times

modified, etc. The user requests
of functions for utilization include:
reading, writing, naming, re-nam-
ing, deleting, appending, inserting,
providing access restrictions, ob-
taining statistical information,. or
in general, any operation that can
be done with the data in or about
a file.

Terminal Allocation

Terminal allocation in general sys-
tems is either on a first-come-first-
served basis or on a completely re-
served basis. Requests for terminal
reservations are via a control termi-
nal, and as a job is initiated, the
terminals required for job comple-
tion are requested. The terminal
is the means by which a process is

TABLE 2. MEMORY ALLOCATION. METHODS

Hardware Designation

Method of Memory Allocation
Among Muitiple Users

Limits of Particular
Method

Conventional computer — no memory al
ltocation hardware

1 4+ 1 users. Protection for each rnemory
cell

1 + 1 users. Protection bit for each mem-
ory page.

Page locked memory

One set of protection and relocation reg-
isters (base address and limit registers).
Bounds register.

Two sets of protection and relocation reg-

isters, 2 pairs of bounds register.

Memory page mapping*

Memory page/segmentation mapping

No special hardware. Completely done by inter-
pretive programming.

A protection bit is added to each memory cell.
The bit specifies whether the cell can be written
or accessed.

A protection bit is added for each page. (See
above scheme.)

Each block of memory has a user number which
must coincide with the currently active user num-
ber.

All programs written as though their origin were -
location 0. The relocation register specifies the_
actual location of the user, and the protection
register specifies the number of words allowed.
(See Fig. 7.)

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo-
geneous virtual memory. '

For each page (2°2 words) in a user's virtual
memory, corresponding information is kept con-
cerning the actual physical location in primary or
secondary memory. *If the map is in primary
memory, it may be desirable to have “associative
registers’”” at the processor-memory interface to
remember previous reference to virtual pages,
and their actual locations. Alternatively, a hard-
ware map may be placed between the processor
and memory to transform processor virtual ad-
dresses irmfo physical addresses. (See Fig. 8.)

Additional address space is provided beyond a
virtual memory above by providing a segment
number. This segment number addresses or se-
lects the page tables. This allows a user an al-
most unlimited set of addresses. Both segmenta-
tion and page map lockup is provided in hardware.
(See Fig. 9.) May be thought of as two dimen-
sional addressing.

- Similar to above. Simple, pure procedures

Completely interpretive programming re-
quired. (Very high cost in time is paid for
generality.)

Only 1 special user 4 1 other user is al-
lowed. User programs must be written at
special locations or with special conven-
tions, or loaded or assembled into place.
The time to change bits if a user iob is
changed makes the method nearly useless.
No memory allocation by hardware.

No memory allocation by hardware.

Not general. Expensive. Memory reloca-
tion must be done by conventions or by
relocation software. A fixed, small num-
ber of users are permitted by the hard-
ware. No memory allocation by hardware.

As users enter and leave, primary memory
holes form requiring the moving of users.
Pure procedures can cnly be implemented
by moving impure part adjacent to pure
part.

with one data array area can be imple-
mented.

Relatively expensive. Not as general as
following method for implementing pure
procedures.

Expensive. No experience to judge effec-
tiveness.

30

COMPUTER DESIGN /MARcH 1968

intiated and requests for additional
terminals, primary memory, time,
etc., are made through it. It is the
medium for job control.

Resource management deals with
servicing user demands after re-
source allocation has occurred. It
is imperative to provide users with
a system that requires little or no
knowledge of particular device or
terminal idiosyncrasies. Even
though terminals have differing
characteristics it is desirable for the
system to provide users with a
single basic set of characteristics.
More flexible terminals would, of
course, leave abilities in access of
the common characteristics which
could be wutlized.
hand, it is important to allow users
the freedom to control special ter-
minal activity directly. This is par-
ticularly necessary in mixed experi-

mental-production systems involv- -

ing terminals that differ widely.
For example, in flight simulation
systems, the usage may range from
program debugging, new terminal
hardware-software debugging, and
simulation.

The terminal characteristics are:
speed or data rate of the terminal;
amount of primary memory used
for buffering and the location of
the buffers; system overhead time
for data requests, including proc-
essing time required for the data;
and device data acquisition modes,
and terminal data usage. Detailed
terminal management includes the
process that buffers data from the
terminal and synchronizer user de-
mands with terminal performance.

SYSTEM-PROVIDED PROCEDURES
AND PROCESSES A

In addition to providing the soft-
ware framework within which users
operate the hardware, the system
also supplies many of the processes
for a user. That is, the system in-
cludes a library of procedures for
arithmetic function evaluation, spe-
cial and procedure oriented lan-
guage translations, computer aided
instruction, file data conversion,
text editing, program debugging,
fact retrieval, simulation, etc. In
fact, the difference between a user
and a system process is that a user
process can be altered.

The method of calling these pro-
cedures (or job setup) and the abil-
ity to have a hierarchy of procedure

On the other.

calls is important. A system-sup-
plied procedure can be considered
an extension of the system and
called with the same mechanism
with which a user would request
file or terminal activity. In fact,
the hardware instructions that pro-
vide communication between the
system and the user should also be
used for procedure calls. In this
fashion, the system can conserve
memory space by not providing
duplicate copies of routines that are
in use by multiple users. The data
or temporary storage required by
the system while enacting a pro-
cedure on behalf of a user is paft
of the user’s memory. This struc-
ture conserves space both for users
of small subroutines (e.g., arithme-
tic, data conversion, etc.) and large
programs (translators, text editors,
etc.). ,

A set of commands might include
programmed floating point arith-
metic (for a small system), com-
mon arithmetic functions, complex
arithmetic, string processing, data
conversion and operating libraries
for the language translators, trans-
lators, editors, loaders, etc. Also
desirable is the facility for a user
to define and call his own functions
in the same hierarchy and frame-
work.

MISCELLANEOUS SYSTEM
FUNCTIONS

These processes include record
keeping, the periodic recording of
the system state for backup, error
detection, error recovery, error
handling for a device, and commu-
nication with the user terminals for
systegn I'CunStS.

The system clock is a part of the
operating system that provides the
actual time base and is used by the
scheduler and the accountant, for
example, to carry out their func-
tions.

System start-up and shut-down
procedures are necessary for ini-
tialization of system and the record-
ing of history. Parts of the system
can be written as pseudo users.
This allows functions like data
gathering and system analysis to
go on by watching the system rather
than- being embedded in it. This
operation is obtained by defining
monitor instructions that allow a
user to obtain behavioral charac-
teristics on demand.

A debugging system for the op-
erating system might have the fol-
lowing features: ability to examine
or alter; ability to dump or save the
complete system in the event of a
“crash”; ability to control the sub-
stitution of a “new” system for the
present one, etc. These features are
extensions of a normal on line de-
bugging program.

EXAMPLE OF TIME SHARING
SYSTEM FOR THE DEC PDP-6

Figure 10 first presents a simplified
view of the system in terms of the
memory map of the user and oper-
ating system, together with termi-
nals and files. The system runs
either as a multi-programming or
multi-programming /swapping sys-
tem depending on whether a
secondary memory device is avail-
able for program swapping.

A job for a user can be viewed
as an area of memory which it oc-
cupies , while running and 1/0

170 COMMAND,

INTERRUPTS, DATA \

CARDS,
. \\ PERIPHERAL ¥ PRINTER,
\ /0 PLOTTER,
EQUIPMENT PAPER TAPE,
DATA REAL TIME
INPUT-OUTPUT
coNsoLEs® { @] COMMUNICATIONS SERVICE DEVICE E£XEC
-— > (EXEC MODE] AREA
-] {PMENT
SECONDARY
- MEMORY
' oaTa USER DATA FILES
SYSTEM COMMANDS + —/ L e — —
— USER SWAPPING
I'e
% | (EXEC MODE) AREAS
Y S S N S E——— AU PP e
* consoLEs <] I
Jo8, SYSTEM FILES
SYSTEM COMMANDS ERROR 1 (INPUT ONLY}
. RETURNS, COMMON USER USERS MEMORY AREA; &
SERVICE PROGRAMS (CUSP) I = 1 CusPs
(PROTECTED AND | wi
CONTROL (FORTRAN, PIP, RELOCATED) w JOB 2 LIBRARIES
EDITOR, MACRO, ETC) USER 5 OR 3 EXECUTIVES
PROGRAMS CONTROL. o = USER
@ 4 DEBUGGING
JoBy 2 AREAS
N
soomona. | 3
USERS
AREAS
(MEMORY)

Fig. 10 PDP-6 Multiprogramming System Diagram. {Courtesy of Digital Equipment Corporation.)

31

equipment assigned to the job, in-
cluding the user’s files and termi-
nals. The operating system software
has four main modules: the system
files (e.g. FORTRAN, assembler,
language translators); terminal con-
trol; file control; and the main
body of the executive,

Figure 11 gives a more detailed
view of what a user program looks
like. The user program (e.g., a
common user program such as a
Fortran Compiler) has its own ex-
ecutive system which communicates
with the operating system. The
user executive translates user com-
mands from a console into operat-
ing system commands for file and

* TRANSLATOR
LOADER,
INPUT DATA EDITOR, ETC.
{STRING OF '
FILES)
CONTROL
CUSP
EXECUTIVE
CONSOLE

% COMMANDS,

ters which store the processor state
while the job is not running. These
include:

1. Two groups of 204 registers to
store the accumulators or general
registers (AC’s).

2. The Program Counter (PC)
and processor flags.

3. The program’s location or boun-
daries.

The registers that hold the or-

ganization to a particular program
include:

1. Starting address of the program.
2. Starting address of the debug-
ging program, DDT.

3. Location of various blocks in
the user’s area, i.e., the symbol

[DATA TO CORE (L.OADING, SYMBOL TABLE)
———>» OUTPUT DATA FILE ¥

————> LISTING FILE %

[~ ERROR FILE

FILE CONTROLS ERROR

% I/0 DEVICE CHANNELS

Fig. 11
Digital Equipment Corporation.)

terminal activity, while the actual
Fortran compiler only accepts in-
ut data and produces output data.
The user executive is responsible
for making it possible for the com-
piler to read and write files.
Figure 12 shows a memory map
of a user’s program. The space can
grow ("md contract) as the program
is running. since a user program
mayv make requests to the operat-
ing system for space. The first
main area, that veserved for operat-
ing system parameters, is 1403 long
and is available to both the user
and the operating system, although
»ecial commands must be given to
the operating system to change it.
The other arcas are a function of
what programs are being run.
The svsiem’s part of the user’s
job area contains temporary regis-

32

General structure of common user service program (CUSP) for PDP-6. (Courtesty of

table, free storage space, etc.

4. Assignment of I1/0 device
names to numbers, so that a device
can be referred to by name rather
than on an absolute basis (2 X 208
locations). ,

: The registers used as workmg
storage for the system include:

1. The STACK, a pushdown area
of temporary storage, and stack
pointer.
2. Input-Output data Buffers.

Job number.

User requests to the monitor are
handled via a defined set of instruc-
tions which are called the un-used
operation codes, or Programmed
Operators, or UUO’s. Any time the
user program makes a call to the
system for service it is via these in-
structions.

The loader is a system routine
that is placed in the user area ini-
tially and loads the various subpro-
grams required into the user area.
The loader links all symbolic refer-
ences together and fetches needed
library programs.

Figure 13 presents a memory map
of the operating system which
shows the kinds of program mod-
ules in it, together with some of the
communication paths, The mod-
ules perform the following func-
tions:

Job Status Table holds the state of
each job in the system, whether a
job is in core or residing within a
secondary memory prior to run-
ning. The state is defined by sev-
eral words and includes its condi-
tion for running, the time it is
used, and the location of the job
(which includes more status infor-
mation).

10 Device Service exists for each
peripheral device, and the module
manages the transmission of data
between primary memory and the
device, the initiation of the device,
and the processing of error or un-
usual conditions associated with
the device (e.g., re-read trys for mag-
netic tape).

File Directory and File Free Storage
Control is used with devices that
have named files and directories. It
provides the ability to enter new file
names and delete files, and it man-
ages the file’s free storage.

Error Handling is a common rou-
tine that may be called whenever
a job (or the monitor) detects an
error. A notice of the error is

. passed on to the user at his console

(or to his program), and the job
status may be altered.

Run Control is called by other pro-
grams and is just concerned with
starting and stopping a particular
job.

Core Allocation is a common rou-
tine responsible for knowing the
location of free core in the system
and when told, it reserves core
blocks.

Clock and Clock Queue are com-
mon routines that accept requests
for future notification from other
parts of the monitor. The clock
(more correctly, a timer) notifies
the caller at a specified future time.

COMPUTER DESIGN /MARCH 1968

e it

T

(For example, the timer is called
by the scheduling program so that
the scheduler can be activated to
schedule the next job.)

Scheduler makes a decision about
the number of the next job to run,
based on the variables associated
with the system’s state (each job
status, time, core, etc.).

Programmed Operator Dispatcher
processes the instructions that are
given by the user program to the
executive system. The dispatcher
looks up the instruction in a direc-
tory, does common pre-processing,

and passes control to the appropri-

ate part of the monitor. Some of
the instructions are defined by a
mnemonic call name. A Call table
is hash coded with the name, and

corresponding monitor address for
the processing.

Command Decoder processes con-
sole requests and decides the system
routine to call.

Console Command Processors in-
clude the programs for actually
processing the user console requests
(or a user program request). These
include programs for log in, save
job, start, stop, assign a device, etc.
Some programs may not be resi-
dent, in which case they are loaded
and run in a fashion similar to that

of a user program.

System Initialization starts the sys-
tem just after it is loaded, and in-
cludes the freeing of devices and
the initialization of all variables.

O .
AC STORAGE s,P 20
AC STORAGE s,P 20
UUO PROCESSING J 2
PC FLAGS STORAGE s '
PUSH DOWN POINTER S,P 1
RELOC. ADDRESS (LH=*UNUSED) s.P '
TEMP. UUO s.P 1
UUO LEVEL s [
SYSTEM TEMP. FOR UUO s.P 1 -
B ORAMETERS 4 TEMP STORAGE FOR SYSTEM s 3
JCB NUMBER s 1
1/0 DEVICE ASSIGNMENT sPp 20
STARTING ADDRESS DDT, NO. SYMBS. J [
s ' .
1/0 DEVICE TRAP LOCATIONS J 20
SYMBOL TABLE POINTER ¢ e
UNDEFINED SYMBOL 9 '
STARTING ADDRESS OF PROGRAM J 1
L FIRST FREE LOCATION J 1
1404
SPACE LOADER J
RECOVERED —|
AFTER LOAD
MAY REMAIN FORTRAN COMMON J
PROGRAM WITH ARRAYS J
(DEBUGGING PROGRAM) 3 B
\
PROGRAM 3
SYSTEM PUSHDOWN J 30
NOTE: I/0 BUFFERS (VARIABLE) J
$ - SYSTEM USE ONLY
J - JOB USE
P= PROTECTED FREE STORAGE J
SYMBOL TABLE
(BUILDS FROM LAST ADDRESS, J
TOWARDS 0)
PDP-6 USER

JOB AREA STORAGE
(COURTESY OF DIGITAL EQUIP. CORP)

Fig. 12 PDP-6 user job area storage. (Courtesy of Digital Equipment Corporation.)

System Debugging Program is a ver-
sion of the debugging program,
DDT, and may be loaded with the
system. It can be used in the event
of system failure, to interrogate the
state of the system, and includes
facilities for preserving the system
for future examination.

System Maker allows a complete
new monitor to be made as a user
program, and when called will copy
the new monitor into the area oc-
cupied by the old monitor and
transfers control to the new moni-
tor.

USER COMPONENTS

TERMINALS

Communication among the termi-
nal, system software, and user proc-
ess is very important because of
process time, memory space, ease of
use, and design modularity consid-
erations. “Human engineering”
design aspects include those that
affect a user’s apparent or actual
response.

Although there are many aspects
of terminals and their design, the
following terminal unit groups will
be used:

- 1. Typewriters.

2. Text—Keyboard Displays. (Text
cathode ray tube displays with key-
board inputs)

3. General Graphic Displays or
Consoles.

4. Direct Terminals.

5. Indirect Terminals.

6. Specialized Terminals.

7. Machine Links.

8. Peripheral Computers.

9. Other time-sharing systems or
computer networks.

The parameters that are common
to all terminals and that present
the user with certain apparent
characteristics have been discussed
in the hardware section. The
physical data transmission modes,
character sets, speed, etc., and gen-
eral appearance differ among ter-
minals, but the ‘“apparent”
characteristics to a user program
can be nearly constant, so that user
programs can be written inde-
pendent of their environment or
terminals they use. The operating
system software is responsible for
translating basic user requests into
common commands that operate
the hardware.

33

I0
COMMANDS .

pnrnomrv
1/0 DEVICE SERVICE ROUTINES INTERRUPY
{1 MODULE/ DEVICE) P+D SYSTEM
PROGRAMMED OPERATOR DISPATCHER
COMMAND DECODER (LOGIN, GET, SAVE ,ETC) P
SCHEDULER v P
CORE ALLOCATION - CORE P+pP
RUN CONTROL - RUNCSS P J DEVICE calLs
FROM 408,
10 COMMON ROUTINES - IOCSS] DEVICE ASSIGNMENT
R
10 INITIALIZE - TOCINI P COMMON CONTROL
\ SYSTEM INITIALIZATION — SYSINI [3
: CLOCK, CLOCK QUEUE DATA P+D)
“CALL" STORAGE TABLE P
SYSTEM RROR HANDLING - ERRCON P
(EXEC. MODE) ERRO E
SYSTEM MAKER — SYSMAK P ,
T 1/0 DEVICE
SYSTEM COMMON SUBS - SYSCS [. A SSION
SYSTEM (DEBUGGING PROGRAM) D0+P WITH JOB AREA
JOB TABLES—~ JBSTS 0 J
10 CONTROL - IO CONT. [’
[~ CALLS
—
SYSTEM,DEVICE
! MULTI PROGRAM EXECUTIVE /P‘ R
JOB AREA { P+D
- -
.
USER AREAS JOB AREA J P+D
(USER MODE,
RELOCATE,
AND PROTECT) .
: 0 - DATA
P — PROGRAM
JOB AREA N
SYSTEM SYMBOLS (DEBUG ONLY) P+D

Fig. 13 PDP-6 Multiprogramming System Storage. (Courtesy of Digital Equipment Corporation.)

The typical commands or in-
structions a user program gives
that deal with a terminal include:

1., Assignment of terminal to a proc-
ess (including the ability to change
the name of a terminal, so that pro-
grams do not have to address ter-
minals in an absolute sense).

2. Initialization of the terminal to
begin transmission, including the
declaration of data buffering (num-
ber and size), specification of trans-
mission modes, etc.

3. Actual transmission of data (a
character, word, buffer, ctc., at a
time).

4. Termination of transmission,
and relinquishing terminal,

Typewriters

Typewriters include both typewrit-
ers and Teletypes. The typewriter
is the most important because
people have been trained to use
them. Although harder to use,
Teletypes are a common system ter-
minal because they can be used
remotely (low bandwidth commu-
nication lines), hard copy oriented,
low cost, and are available.
Although they are inherently
character oriented, it is sometimes
desirable to buffer terminal data
on a page text line at a time basis
or until a special data delimiting
key has been struck by the user.
(This requires less overhead time
from the system to process the

COMPIITER nucun /acanare 106Q

characters, since processing is done
for cach separate line of text rather
¢han for each character of the text))

It is necessary to allow some forin
of simultaneous input and output
in order that a user can communi-
cate with the system while it is
prinling, so that a user can stop or
change the process. Full duplex
Teletypes easily provide this; half
duplex Teletypes can accomplish
this by a form of “echo checking”
during output. Most typewriter
consoles must be supplied with spe-
cial switches or keys to “break” the
information output flow so that
the user can stop runaway pro-
grams, for example.

Keyboard-Text Displays

These devices are similar to the
typewriter in principle. The key-
board-text display does not have
the hard copy provided by the type-
writer (unless the terminal or con-
sole also has a printer), but it does
provide the viewing of almost a full
page of text, together with the abil-
ity to “point” anywhere on the
page. These displays also require a
higher output data rate from a
computer in the form of “page
turning” requests. This is the prin-
cipal terminal for systems requir-
ing simple graphical results or
rapid scanning of text.

A small cursor, which is con-
trolled by the terminal allows the
user to “point” to any character on
the page. The data associated with
a single page of text is associated
with the display.

The control of text displays re-
quires more information processing
than other terminals, since data
can be randomly addressed by
blocks both for input and output,
rather than on a strictly sequential
basis.

General Graphical Displays

These displays are similar to the
text display, but have the added
ability to display data by points,
characters, lines, circles, etc., and in
general have better resolution and
are faster.

The information forming the pic-
ture may exist in primary memory
(as a process or as data for a proc-
ess) or within the display’s own
storage. The human eye requires a
complete refresh or regenerate cycle
about every 30 milliseconds, in

which the data forming the picture
must be sent to the display. This
may impose a high data transmis-
sion rate on the memory system, in-
terfering with processing, unless the
display has an independent data
memory to hold the picture.

For graphical input, a light pen
is used to “point” to displayed in-
formation. The light pen can be
used to “draw” on the scope face.
The control and data structure
problems of the text display are
present to a much higher degree
in general graphical displays.

The RAND Tablet is a very
simple graphical input device. It
allows one to draw on a 10”7 X 107
tablet with a stylus, and it can al-
low free hand drawing, printed
character input, or curve tracing
(through paper). It may be used
independently or in conjunction
with a graphical display. The reso-
lution or number of electronically
independent points over the 10" X
10” area corresponds to 1024 X
1024 points.

Plotters

These devices provide hard copies
of general graphical data. Typi-
cally, a plotter operates on an in-
cremental or discrete basis (0.01
inches/increment) at a rate of 300
points/second over a plotting area
of 12-30 inches by several hundred
feet.

Direct Terminals

The above terminals are special
cases of direct terminals, but in
them most of the problems of ter-
minal hardware and software de-
sign can be seen. Namely, problems
of providing continuous two-way
dialogue, response time, and the
other human engineering problems.

Indirect Terminals

These terminals include most ter-
minals used by other systems, i.e.,
peripheral card readers and line
printers. The interface from a
user’s viewpoint can be identical
to the above terminals. The logical
difference, for example, between a
line printer and ~a typewriter
printer may just be the number of
allowable characters on a line; thus,
a page output on a line printer
would appear identical to that of a
typewriter (but not vice versa).

Specialized Terminals

These terminals are used for spe-
cial time-sharing systems such as
airlines reservations, etc. They in-
clude: banking teller windows,
airline reservation stations, stock
quotation inquiry keyboards, pro-
duction line data acquisition termi-
nals, etc. They provide the best
possible coupling between the user
and his system and are designed to
minimize the number of errors and
the time required as data is entered
and extracted from the terminal by

restricting the format and by en-
coding the information.

Inter-Machine Links
The link to specialized *non-
human user” devices imposes the
highest performance requirements
on the design because the data
transmission rate is high and is de-
termined by the device character-
istics, rather than the system. That
is, these devices have to be served
in real time, at the demands of the
device. Devices of this type include
those used in process control appli-
cations, simulation equipment (air-
craft or aerospace cockpits), film
reading devices or scanners, hybrid
linkages, etc. :
By providing for this equipmen
in a system, hardware protection
may also be required. A very com-
plete interrupt or trap system may
also be necessary in the hardware
so that a job can be rescheduled
rapidly to serve the device.

Peripheral Computers

These form a most necessary class

of terminals by distributing termi-
nal data transmission or loading to
the system periphery. The periph-
eral computer provides the ability
to lower the data rate for a larger
system by providing local storage
and processing capability. For ex-
ample, display computers with the
ability to detect light pen position
and track the pen, and perform

Command messages to system debugging routines are similar to the sys-
tern commands, except that they are in terms of the source language pro-

Examination and modification of the process in terms of the source
language. Insertion of program patches. Display of data in any format,

. Conditional tracing via breakpoints which are executed only if program

SSAGES TO SYSTEM OPERATORS (HUMAN) AND MANAGEMENT

Appending user availability, cost, facility, priority lists.

Manval instructions for tape mounting, card removal, etc.

SSAGES TO CONVERSATIONAL LANGUAGES
Language or Text Edit commands. Creation, modification, and deletion

Direct Statement Commands Execution. For languages which allow arith-
metic statements to be written, the ability to have a statement executed

TABLE 3. TERMINAL INPUT REQUESTS TO SYSTEM SOFTWARE
MESSAGES TO THE OPERATING SYSTEM: MESSAGES FOR PROGRAM DEBUGGING:
Log in and log out. (Includes presentation of name, number, pass-
word, data, etc.)
2. Resource requests (assignment of terminals, primary memory, file space). gram. They include:
3. Setup of the job, or process. Y. Start, stop, and comfinuation of the process.
4. Start, stop, and continuation of a process. 2
5. Examination and modification of elements of the primary memory process.
(Presentation of a storage or memory map.) 3. Data set searching
6. Information requests: 4. Program tracing.)
a. Run time, time of day 1 5.
b. Files used or space available reaches a specific state
¢. Facts about system use. ’
7. Communication with other users or human operators.
8. Saving and restoring the complete state of a process. ME.
9. Transmission of a job to a queuve for batch processing. (HUMAN)
1. Equipment availability or status information.
MESSAGES TO EDITORS: . 2. Configuration specification.
1. ?Ie name declarations including specification of access restrictions, 3 Accounting and system status requests.
ormats, etc. -
2. Transmission of data among files and/or terminals. N S. Message broadcasts.
3. General file editing including creating, appending, inserting, modifying, 6. n 5
deleting, etc. 7. System diagnostic reports.
8. Control of back-up or archival storage.
MESSAGES TO TRANSLATORS:
1. File specifications including: ME
a. Control statements. 1.
b. Source language inputs. of programs is provided.
c. Object output. 2.
d. Object listing.
e. Object linkage information (if separated from output). immediately (e.g., 2 + 2 = ?} is provided.
f. Errors and diagnostics. 3. Commands for Control of the Programs.
2. Control switches (e.g., what to do in case of errors), 4. Data entry and data output from the program.

36

COMPUTER DESIGN / MARCH 1968

some coordinate transformations on
the display data may be desirable.

In process control applications,
data sampling, limit checking, and
data logging can be done by pe-
riphcral computers, on a more
economical basis, since they do not
require the generality of a large
machine. Also, since the overhead
time to switch to another program
may be high, the high data rates
associated with these processes
would degrade the large machine.

External Time-Sharing Systems

These terminals form the link with
other time-sharing systems. This
form of intercommunication is new,
but may be significant in total prob-
lem solving systems by allowing
programs in one system to call on
other systems.

Message switching centers with
some local file storage might form
the immediate link with users. As
users require more advanced ser-
vices, the switching centers would
likely call either large, general sys-
tems or systems specializing in a
particular service. Because of our
geographical time zones, inter-sys-
tem load sharing is possible in a
fashion similar to that in which
utilities share electrical generation
capacity.

TERMINAL COMMUNICATION .
WITH THE OPERATING SYSTEM

In addition to the terminal con-
nection with the process, a terminal
must connect with the operating
system software for the control of
the job. All of the programs (trans-
lators, editors, loaders, etc.) that
form the system also require con-
trol words or statements. Table 3
lists the information required from
the user to specify tasks for the sys-
tem.

Communication Dialogue

The format used for control infor-
mation is an important design con-
sideration, and it is important to
have a “forgiving system,” or one
which does not affect a user too ad-
versely when a wrong command is
given.

It may be important that the user
react (type in, observe output, etc.)
as little as possible to specify a given
situation. Abbreviated commands
might be permitted in place of
longer words (e.g., LOGIN = LI,

although longer commands would
also work. For example, two in-
teresting possibilities are: a user
types a command that has enough
information to make the command
unambiguous, and, the user types
enough information to make the
command unambiguous, followed
by the system typing the rest of the
command in a “ghost-like” fashion.
When commands are given that
irrecoverably affect files, the system
might require some sort of verifica-
tion that the command specified is
actually desired.

User defined macro commands
compose the most general method
to provide users with the commands
they want, and what they call the
commands, because users define,
name, and write them in terms of

2141108 a41lCG 4zl uizliis 11z Crads O

standard sets of system commands.

FILES

It is desirable to consider the file
and terminal structure in a similar
fashion from both a user and sys-
tem software viewpoint; that is,
the access, method of transmitting
data, and data formats may be
nearly identical for both files and
terminals,

MAIN EXECUTIVE

TEACHING PROGRAM
EXECUTIVE

FORTRAM
EXECUTIVES

COURSE
EXECUTIVES

USERS

(PUPILS)

nal that requires service at regular
intervals. A protected, assignable
command subset to control the par-
ticular device may be required,
Alternatively, control can some-
times be provided by incorporating
the device in the normal system
Pprinhpr:ﬂ or innut-outnit service

LEIpRAtaal L SRpReOLipue SLIVICE
programs. Scheduling of users now
becomes more complex, since the
device anomalies constrain the
scheduling algorithm.

Guaranteed processing capabili-
ties are provided by treating the
total processing capacity as a re-
source. Thus, a guaranteed capac-
ity at a guaranteed time can be
scheduled according to request.
Users of systems may get degraded
service rather than be denied ac-
cess because of poor service. With
a supply of unattended jobs to proc-
ess in a batch queue, or compute-
bound problems to run as back-
ground, a combination denied/de-
graded service may be provided
which balances the system's ca-
pacity.

The methods of communication
with the system through a hier-
archy of higher level operating sys-
tems pose the questions: “What is
the user process?” and “What is the

SUB-SYSTEM EXECUTIVES
(s.g., BATCH PROCESSING,
LANGUAGES, ETC.)

Fig. 14 Hierarchy of executives with a general ;urpose time-sharing system,

The file characteristics have been
previously discussed as part of the
operating system software in terms
of what the hardware is, what the
operating systemn provides, and
what the file looks like to a user.

USER PROCESS

The user process or procedure in-
cludes: a memory map locating the
process; the actual process, and user
status information (terminal and
file assignments).

Occasionally, a guaranteed ser-
vice must be made available to a
user both for specialized devices,
and processing. For example, a
user may have a particular termi-

system?” A user’s procedure may

-be appended to the system and be-

come a system function or common
user service procedure. This ever
expanding set of program segments
which form the system present the
problems of segment naming, file
Jocation within the system, and
protection while they are being
run. Nevertheless, the ability to
run normally while creating and
testing other parts of a system, or
to have a portion of the system re-
moved and another one substituted
gives rise to very powerful tools in
the graceful creation of the system.
As a minimum, a new system should
be able to be created on a general
purpose system, with the substitu-

CONDITTED nYyoemar Joooe o

tion for the existing system occur-
ring at a time when the system is
inoperative. We can look forward
to complete systems that allow sub-
systems that do their own schedul-
ing of time, ctc,, and allocate some
resources. Thus, a completely gen-
eral purpose system might allow
complete freedom to incorporate
any of the systems described in
Table 1 in an efficient manner. Fig-
ure 14 shows the relationship proc-
esses might have to one another
in a general purpose system.

CONVENTIONAL VERSUS
CONVERSATIONAL LANGUAGE
PROCESSING

Conventional processing or transla-

tion of a language occurs in the
sequence:

1. Creation of a text format source -
file (cards or system file) which de- -

scribes the process.

2. Translation of source files into
object files with linkage, relocation,
subroutine, listing, and error infor-
mation.

a

3. Loading the object file together
with library files to form the proc-
css.

4. Process execution,

In contrast, conversational lan-
guage processing provides nearly
simultaneous creation and execu-
tion of procedures. The input lan-
guage can be checked at tlre time
of entry at the terminal and is
translated, being immediately avail-
able for execution.

The data may be transformed in-
to an interpretive form with all
sub-routines, linkages, etc., occur-
ring directly on input with ro
intermediate files. The insertion
of additional statements or pro-
gram steps is done directly, and
debugging is through the run time
diagnostics and user abilities to
examine variables directly and exe-
cute statements conditionally. The
conversational system may require a
slightly longer execution time, but
is most effective because of its com-
bined editor, translator, loader, li-
brary and debugging system.

Clearly, for problems involving
little computation, the turn-around
time is very short for solving prob-
lems in this fashion. The main
structure of programs is such that
this interactive approach may be
the common method in a few years.

Batch Processing

This is one of the most efficient
methods of controlling the execu-
tion of a large number of pro-
grams, since jobs are always run to
completion. In a time-sharing sys-
tem which is principally serving
on-line users, the batch process can
be used as a background job or to
absorb spare capacity. A fixed or
guaranteed amount of processing
can be allocated to batch process-
ing. The batch must be able to be
loaded by either external users with
card decks or users who defer jobs
that can be done anytime (or at
batch convenience).

The handling of a batch need
not be incorporated within the sys-
tem, but rather a batch process can

TABLE 1. CAPACITY REQUIREMENTS FOR TIME-SHARING SYSTEM APPLICATIONS

computational languages
(JOSS, CULLER-FRIED
System)

Specialized computer
aided design, engineer-
ing, problem solving
fanguages (COGO, etc.)

medium-large

Process control medium-large

Text editing (Adminis-
trative Terminal
Service)

medium

* On line information
retrieval of periodi-
cal headings, bibliog-
raphies, keywords,
abstracts

medium-large

medium (109

Specialized System Primary Mem- Primary Mem- Processing File Organi- Direct Terminals
Service, or Ap- ory for ory for User Capacity/ zation and
plication Process (in Data (in bits) User (in . Size
bits) operations*/ (10°%10° bits)
interactiont)

Desk calculator ~ very small very small (<10 very small (>10% none typewriter, input keyboard, strip
printer, scopes, audio output, or
special console.

Stock quotation small small (<109 very small (>10") one (small-medium) see above, sf.ock ticker tape or
transactions input, telephone.

Airline reservations medium small (109 small (109 approx. 6 {(medium- special consoles, typewriters,

] large) scopes.

On line banking medium small (>>10% small (109 approx. 10 (medium- Qee above, special bank teller

large) consoles.

General conversational medium small-very large small-large un- .multiple files per

(10%10% bounded (10%-

>10% types (medivm-
large)
small-very large small-very large see above

(10109 (10%->10%

medium (>109 small-very large few (small)

(10->10%

small (>109 small (10109

medium (10%107)

*assumes a fairly sophisticated processor and instruction set
fmaximum interaction intervals for user requests are == 10 sec.

ser, with few file

multiple single pur-
pose files/user.
{medium)

one {very large)

typewriter, printer, scope, plotter.
(Culler-Fried consists of scope,
keyboard, and tablet.)

see above

physical quantity transducers,
general user terminals.

typewriter, printer, scope.

see above. telephone (dial in,
audio out)

39

be regarded as a special user. Thus,
a common service program (the
batch manager) would permit any
user to “batch process.”

CONCLUSIONS
PRESENT PROBLEMS)

Before widespread time-sharing sys-.
tems and system networks can be
formed, standardization of data and
file format descriptions will have
to occur. Simple conventions must
be established to control the actual
format of the bits transmitted be-
tween computers. This will enable
the transmission of problems, data,
and procedures between systems.
Present intersystem communication
experiments should - provide . a
framework for the standardization
of information interchange formats,
and detailed data representation.

Once a data representation for
higher speed lines is established, it
will be possible to remove the ter-
minals we presently associate with
the computer outside the comput-
_er’s periphery. This will enable the
cross-use of terminals among com-
puters. It will also allow software
that is more independent of the
peripheral and computer to be writ-
ten.

Current data transmission costs
for the remote typewriter user (with
an average input rate of ten bits
per second) do not reflect the true
cost-capacity (2400 bits per second
for a voice grade line) or use of the- -
line. -
Although good, low cost com-
puters (processor, memory, and
minimum peripheral equipment)
are available, the higher costs asso-
ciated with file storage for smaller
systems do not permit the design of
low cost time-shared computers.

Present time-sharing structures
for™ computers are extension or-
ganizations of the basic computer.
Present systems were -not initially
designed for time-sharing, but were
modified slightly to accommodate
potential users. Hence, these sys-
tems create almost as many prob-

lems as they solve. A more reason-
able approach for a system’s
design is an initial specification
that includes Time-Sharing as a
goal. A solution might take on the
form of a network. For example,
the very large computing machines
that are built by computer manu-
facturers have: taken a long time
to build (and technology has
changed, invalidating industry’s ex-
trapolations before the computers
were operational); required longer
than expected to become opera-
tional; failed to meet initial design
goals, have been uneconomical
from a production standpoint; and
only a few systems have been built.
The current large, very general sys-
tems also suffer from the same kind
of design thinking.

Each component of a general pur-
pose time sharing system is con-
strained to supply such general
service that the system as a whole
may be so inefficient (and expen-
sive) as to make the system imprac-
tical. The issue is similar to an
organization consisting of either
highly trained specialists or gen-
eralists. An organization of general-
ists is very flexible; but, on the
other hand, it may not be economi-
cal to have people who are capable
of being the president doing all the
tasks within an organization. The
general purpose systems just now
becoming operational are con-
structed in such a flexible fashion
as to probably be uneconomical.
Each system component is so gen-
eral (for example, the filing system)
that, although it can perform any
task (given enough time), the act of
doing very trivial operations re-
quires a great deal of time. Perhaps
a better approach is to divide the
systems’s resources by allowing sev-
eral independent operating systems
to care for them (e.g., editing, as-
sembling, filing, translating, and
running).

FUTURE SYSTEMS

Future computers will be equippcd
with hardware to allow some form
of time-sharing. For smaller com-

COMPUTER DESIGN / MARCH 1968

puters, the additional hardware
greatly enhances a system’s utility,
especially when being used in proc-
ess control and in rescarch requir-
ing the direct links with other
machines or to experimental equip-
ment.

The form of Time-Sharing Com-
puters will be:
1. The system with a single general
user or batch process, plus one fixed
job or a fixed multi-terminal com-.
munity of special users (11, or
14-n special users). Process control
and on-line special business data
processing systems take this form.
2. Dedicated special systems which
service a particular user commu-
nity. These provide little or no
communication with other systems.
(E.g., library, airlines reservations,
etc.)
3. Dedicated systems with switching
ability so that a problem that re-
quires other aids can be referred to
other systems. More general sys-
tems may refer problems to them.
4. Message switching for other sys-
tems. These may have file process-
ing, editing, and limited calcula-
tion capability, or message
buffering; such a system would
communicate with other systems
for most demands from users,
5. Peripheral computers that ser-
vice special terminals and control
small local processes. Processing
capacity for general purpose prob-
lem solving, file storage, program
translation, and diagnostics for
the peripheral system would be de-
rived from a higher level system.
6. The totally general system with
a large community of users. The
general system would undoubtedly
communicate with other systems.

Although the author has at-
tempted to be objective, it is felt
that the technique of computer
Time-Sharing is a significant ad-
vance toward an effective use of
computers. Time-Sharing removes
one more restriction in computer
usage — that of allowing only a
single use of a machine. As such,
the additional generality creates op-
portunities, as well as countless
problems.

BIBLIOGRAPHY

1. Adams. E. N.. “Reflections on the Design of a CAI Operating

Svstem.” AFIPS Conference Proceedings, Spring Joint Computer
Conference Vol. 30, 419-424 (1967) .

2. Allan, Prvor 1. and R. Warner Homer, “Time Sharing in
Biomedical Rescarch.” Datamation Vol. 12 (4) (April 1966) .

3. Amdahl. G. M., “New Concepts in Computing Systems De-
sign.” Proc. IRE Vol. 50 (5). 1073-1077 (Memory Protcction)
(Mayv 1962) .

4. American Management Association, “Advances in EDP and
Information Svstems,” AMA Report No. 62.

3. Anderson. J. P.. S. A, Hoffman, J. Shifman, and R. J. Wil-
ltams, “D-325 — A Multiple Computer System for Command and
Control.” Proc. Fall Joint Computer Conference Vol. 25, 86-96
{December 1962) . See also D-825 Manual — Burroughs Corpora-
tion.

6. Arden. B. W.. et al, “Program and Addressing Structure in A
Time-Sharinreg Environment.” Journal of the Association for Com-

puting Machinery Vol. 13 (1), 1-16 (January 1966) .

7. Aschenbrenner, R. A, M. Flynn, G. A. Robinson, “Intrinsic
Multiprocessing.” AFIPS Conference Proceedings, Spring Joint
Computer Conference Vol. 30, 81-86 (1967) .

& Avakian. Emik A. and F. Walter Jenison, Jr., "\’oicc Response
and Visual Display Techniques for On-Line Information
Handling Svstems,” The Bunker-Ramo Corporation, Stamford,
Connecticut.

9. Bachmzn. C. W. and S. B. Williams, “A General Purpose
Programming Svstem for Random Access Memories,” Proc. Fall
Joint Com puter Conference Vol. 26, 411-422 (1964) .

10. Baldwin, F. R., W. B, Gibson, and C. B. Poland, “A Multi-
processing Approach to a Large Computer System,” IBM Systems

Journal Vol. 1. p: 61 (Sept. 1962) .

11. Bauer. Walter F., “Why Multi-Computers?,” Datamation Vol.
8 (9 (Sept. 1962) .

12. Beckman. F. S, F. P. Brooks. Jr, and W. J. Lawless, Jr,
~Developments in the Logical Organization of Computer Arith-
;nqeﬁ[lic and Control Units,” Proc. IRE Vol. 49 (1), 53-66 (January
961) .

13. Bell. G. and M. W. Pirtle, “Time-Sharing Bibliography,”
Proc. IEEE Vol. 34 (12), 1764-1765 (December 1966) .

14, Belluardo. R., R. Gocht, G. Paquette, “A Time Shared
Hvbrid Simulation Faculty,” UAC, East Hartford, Conn., AFIPS
Vol. 28 (1%56) .

15. Bitzer. P. L., and H. G. Slottow, “The Plasma Display Panel
— A Digitallv Addressable Display with Inherent Memory,”
AFIPS Conierence Proceedings, Fall Joint Computer Conference
Vol. 20 17210, . 541548 (1066). »

16. Boilen. S.. “User’s Manual for the BBN Time-Sharing Sys-
tem.” Bolt. Beranek, and Newman, 50 Moulton St., Cambridge,
Mass.

17. Bolt. Richard H., “Man-Machine Partnership in Intellectual
Pursuits: A Look Ahead,” Publication No. 1191, Printing and
Publishing Office, National Academy of Sciences.

13, Brillouin. Leon, “Science and Information Theory,” Second
Edition. Aczdemic Press, Inc. (1962).

19. Brooks. F. P., Jr.,, “A Program Controlled Program Interrupt
Svstem.” Proc. Eastern Joint Computer Conference, 128-132
1December 1957) .

20. Buchholz. W. (Editor), “Planning a Computer System —
Project Siretch.” McGraw-Hill Book Company, Inc., New York
(1962) . See also IBM 7030 (Stretch) Manual) .

21. Burks. A. W, H. H. Goldstine and J. von Neumann, “Pre-
liminary Discussion of the Logical Design of an Electronic Com-
puting Instrument,” (reprinted) Datamation, 24-31 (September
1662) .

22, Burroughs Corporation, “The Descriptor,” Burroughs Cor-
poration (19o61).

23. Burten. A, J. and R. G. Mills. “Electronic Computers and
Their Business Applications,” London, E. Benn (1960) .

24. Bush. Vannevar, “As We May Think,” Atlantic Monthly
Vol 176. 11 (July 1945) .

25. Calingzert. P, “System Performance Evaluation: Survey and
Appraisal.” Comm. ACM 10 (1), 12-18 (January 1967).

25. Carnegie. “Carnegie Institute of Technology Computation
Center Users Manual.”

27. Casde. C. T, “Planning the 3600,” Proc. Eastern Joint Com-
puter Cowicrence, 73 (December 1964). See also CDC-3600,
Datamatice-: 57-40 (May 1964) .

23, Clippinger. Richard F., “Programming Implications of
Hardware Trends,” IFIP Congress, New York Vol. 1, 207-212
(1963) .

29. Codd. E. F.. “Multiprogramming Scheduling,” Comm. ACAM
Vol. 3 (&v June 1960) .

I, Codd. ¥. F.,, “Multiprogramming Stretch: A Report on
Trials™ P o JFIP Congress, Munich, 374, North Holland Pub-
Lsinng Coo Amsterdam (Aug. 27 1o Sept, 1, 1962) .

oo Cefmon B0 G, A General Flow Chart Description of the
Timoe-Sharing Svstem,” SDC TM-1639/000/00 (Dec. 12, 1963) .

%]

42

32. Comfort, W. T, “A Computing System Design for Uscr
Service,” Proc. Fall Joint Computer Conference, Las Vegas,
Nevada, Vol. 27 (Nov. 30, 1965) .

33. Computer Rescarch Corporation, “Time Sharing System
Scorecard, No. 1,” Computer Rescarch Corporation, 747 Pleasant
St., Belmont, Mass.

34. Conway. M. E., “A Multiprocessor System Design,” Fall Joint
Computer Conference Vol. 24, 139-146 (1963).

35. Cook, P. A. C., “Real-Time Monitoring of Laboratory In-
struments,” AFIPS Conference Proceedings, Spring Joint Com-
puter Conference Vol. 30, 779-782 (1967) .

36. Coons, 8. A., “An Outline of the Requirements for a Com-
puter Aided Design System,” 1963 Spring Joint Computer Con-
ference, 229.-304.

37. Corbato, F. J., ct al, “The Compatible Time-Sharing System:
A Programmer’s Guide,” M.IT. Press, Cambridge, Mass. (1963).
38. Corbato, Fernando J., M. Merwin-Daggett, and R. C. Daley,
“An Experimental Time-Sharing System,” AFIPS Conference

. Proceedings Vol. 21, 335-344 (Spring 1962) .

39. Corbato, F. J., V. A. Vyssotsky, “Introduction and Overview
of the Multics System,” Proc. Fall Joint Computer Conference,
Las Vegas, Nevada (Nov. 30, 1965) .

40. Crisman, P. A., Editor, “The Compatible Time-Sharing Sys-
tem,” A Programmer’s Guide, 2nd edition, M.L.T. Press, Cam-
bridge, Mass. (1965) . :
41. Critchlow, A. J., “Generalized Multiprocessing and Multi-
programming Systems,” AFIPS Conference Proceedings, Fall Joint
Computer Conference Vol. 24, 107-126 (1963) .

42. Culler, G. J. and B. D. Fried, “The TRW Two-Station, On-
Line Scientific Computer: General Description,” Computer Aug-
mentation of Human Reasoning, Washington, D. C., June 1964,
Spartan Books, Washington, D. C. (1965) .

43. Daley, R. C. and P. G. Neumann, “A General Purpose File
System for Secondary Storage,” Proc. Fall Joint Computer Con-
ference, Las Vegas, Nevada Vol. 27 (Nov. 30, 1965) .

44. Dartmouth, “The Dartmouth Time-Sharing System,” Com-
putation Center, Dartmouth College (Oct. 19, 1964) .

45. Datamation, “A Survey of Airline Reservation Systems,™ p.
58 (June 1962) .

46. David, E. E, Jr. and R. M. Fano, “Some Thoughts About
the Social Implications of Accessible Computing,” Proc. Fall
Joint Computer Conference, I.as Vegas, Nevada Vol. 27 (Nov.
30, 1965) .

47. Dearden, John, “Can Management Information Be Auto-
mated,” Harvard Business Review (March—April, 1964).

48. Denning, P. J., “Effects of Scheduling on File Memory Op-
erations,” AFIPS Conference Proceedings, Spring Joint Computer
Conference Vol. 30, 9-22 (1967) .

49. Dennis, J. B., “A Multiuser Computation Facility for Educa-
tion and Research,” Communications of the Acm Vol. 7, 521-529
(Sept. 1964) .

50. Dennis, J. B., “Segmentation and Design of Multipro-
grammed Computer Systems,” IEEE International Convention
Record, Institute of Electrical and Electronic Engineers, New
York, Vol. 13 (8), 214-225 (1965) ; and JACM Vol. 12 (4), 589-
602 (Oct. 1965) -

51. Dennis, J. B. and E. L. Glaser, “The Structure of On-Line
Informidtion ~ Processing Systems,” Proceedings of the Second
Congress on Information Systems Sciences, 1-11, Spartan Books,
Washington, D. C. (1963) .

52. Dertouzos, M. L. and H. L. Graham, “A Parametric Graphi-
cal Display Technique for On-Line Use,” AFIPS Conference
Proceedings, Fall Joint Computer Conference Vol. 29 (7-10),
210210 (1966) .

53. Desmonde, William H., “Computers and Their Uses,” Engle-
wood Cliff, New Jersey, Prentice-Hall (1964); “Real Time Data
Processing System — Introductory Concepts,” Englewood Cliff,
New Jersey, Prentice-Hall (1965) .

54. Digital Equipment Corporation, Maynard, Mass., *“Multi-
programming System Manual for PDP-6,” DEC-6-EX-SYS-UM-

Switching and Order Entry at Westinghouse Tecle-Computer
Center,” Westinghouse Electric Corporation.

50. Duffy, G. F. and W. D. Timberlake. “A Business-Oriented
Time-Sharing System,” IBM, SDD Poughkeepsie, AFIPS, Spring
Joint Computer Conference, Vol. 28, 265275 (1966) .

57. Dunn, T. M. and J. H. Morrisscy, “Remote Computing —
An Experimental System, Part 1: External S$pecifications,” —
J. M. Keller, E. C. Strum, and G. H. Yang. Part 2, Proc. Spring
Joint Computer Conference Vol. 25, 413443 (1964) .

58. Eckert, J. P, J. C. Chu. A. B. Tonik, and W. F. Schmitt,
“Design of UNIVAC -— LARC System L Proc. Eastern Joint
Computer Conference (16), 59-65 (1959) .

59. Edwards. J. D, “An Automatic Data Acquisition and Inquiry
Svstemn Using Disk Files,” (Lockheed Missiles and Space Col),
Disk File Symposium, March 6-7, 1963 (Informatics, Inc. Cul-
ver City, Calif)

COMPUTER DESIGN /MARCH 1968

C.PREOO.
55. Dudas, J. F., “Concurrent Processing of Teletype Messag\Q

U S —

F AR E R

. i 2

.

e

R NSNS W —

S

60. Evans, D. C. and Lecere, J. Y., “Address Mapping and the
Control of Access in an Interactive Computer,” AFIPS Confer-
ence Proceedings, Spring Joint Computer Conference Vol. 30,
23 82 (1967 .

61. Fano, Robert M., “The MAC System: The Computer Utility
Approach.” TEEE Spectrum Vol. 2. 36-64 (January 1965) .

62. Fine. G. H., C. W. Jackson and P. V. Mclszac, “Dynamic
Program Behavior Under Paging,” Prec. ACAM 2ist Conference,
223.228,

63. Flynn, Michael J., “Very High-Speed Computing Systcms,”
Proc. IEEE Vol 54 (12), 19011909 (Dccember 1966) .

64. Forgic, R. W.. “A Time- and Memory-Sharing Executive
Program for Quick Response On-Line Applications,” Proc. Fall
‘]Igént Computer Conference, Las T'egas, Nevada Vol. 27 {(Nov. 30,
965) .

65. Fothcringham, J., “Dynamic Storage Allocation in the Atlas
Computer,” Comm. ACM Vol. 4 (10) , 435-436 (Oct. 1961) .

66. Frankovich,]J. M. and H. P. Peterson, “A Functional De-
scription of the Lincoln TX-2 Computer,” Western Computer

Proceedings, 146 (1957) . -

67. Fredkin, Edward, “The Time-Sharing of Computers,” Com-

puters and Automation Vol. 12 (11) (Nov. 1963) .

68. Gallagher, James D., “Management Information Systems and

the Computer,” AMA Research Study: No. 51 (1961).

69. Gallenson, L., “On-Line 1/O Processor for the Command

Res;arch Laboratory,” The PDP-1-C-30, SDC . TM-1653 (Dec. 23,

1963) .

70. Gallup, G., “The Miracle Ahead,” Harper and Row, New

York (1964) .

71. Gass. S. 1., Marilyn B. Scott, R. Hoffman, W. K. Green, A.

Peckar, R. D. Peavey and J. E. Hamlin, “Project Mercury Real-

Time Computational and Data Flow System,” Proc. Eastern

Joint Computer Conference Vol. 20, 33-78 (Dec. 1961) .

72. Ginzberg, M. G., “Notes on Testing Real-Time Systems

Programs,” IBM System Journal 4 (1), 58-72 (1965).

73. Glaser, E. L., “The Structure of On-Line Information

Processing Systems,” Proc. Second Congress on Information Sci-

ences, Homestcad, Va., 1-11 (Nov. 1965) .

74. Glaser, E. L. and F. G. Corbato, “Introduction to Time-

Sharing,” Datamation Vol. 10 (11) (Nov. 1964) . .

75. Glaser, E. L., J. F. Couleur and G. A. Oliver, “System De-

sign of a Computer for Time-Sharing Applications,” Proc. Fall

E]}oint Computer Conference, Las Vegas, Nevada, Vol. 27 (Nov.

0, 1965) .

76. Greenberger, Martin, “The Computers of Tomorrow,” Ai-

lantic Monthly, 63-67 (May 1964) .

77. Greenberger, Martin, “Management and the Computer of

the Futurc,” The M.IT. Press and John Wiley and Sons, Inc.,

(1962) .

78. Gruenbeyer, Fred, “Are Small Free-Standing Computers Here

to Stay?,” Datamation Vol. 12 (4) (April 1566) .

zgaHarris, R. P, “The PDP-6,” Datamation Vol. 10 (11) (Nov.
).

80. Hastings, Thomas N., “Real-Time Compuiing with Time-

Sharing,” Computers and Automation Vol. 14 (10) (Oct. 1965) .
81. Hittel, L. A,, “Some Problems in Data Communications Be-
tween the User and the Computer,” AFIPS Conference Proceed-
ings, Fall Joint Computer Conference Vol. 29 (7-10), 395402
(1966) .

82. Holland,]J. H., “On Tterative Circuit Computers Con-
structed of Micro-Electronic Components and Systems, Proc.
Western Joint Computer Conference, p. 259 (May 1960) .

83. Holt, A. WV, “Program Organization and Record Keeping
for Dynamic Storage Allocation,” Comm. ACM Vol. 4, 422-431
(Oct. 1961) .

84. Hoover, E. S. and Eckhart, “Performance of a Monitor for a
Real-Time Control System,” AFIPS Conference Proceedings, Fall
Joint Computer Conference Vol. 29 (7-10), 23-26 (1966) .

85. IBM “1800 Time-Sharing Executive System Specifications,”
File 1800-36, Form No. C26-5990-0.

86. Iliffe, J. K. and J. G. Jodeit, “A Dynamic Storage Allocation
Scheme,” Computer J. Vol. 5, 200209 (Oct. 1962).

87. Johnson, T. E. “Sketchpad II: A Computer Program for
Drawing in Three Dimensions,” Proc. Spring Joint Computer
Conference, p. 347, Detroit, Michigan (May 1963).

88. “The JOSS System, Time Sharing at Rand,” Datamation
Vol. 10 (11j (Nov.'1964) . :

89. Kemper, D. A., “Operation of CRL Teletype System,” SDC
TM 1488/000/00 (Sept. 18, 1963) .)

90. Kennedy, J. R., “A System for Time-Sharing Graphic Con-

soles,” AFIPS Conference Proceedings, Fall Joint Computer
Conference Vol. 29 (7-10), 211-222 (1966) .

91. Keydata, “Data Processing — On Line . . . In Real Time . . .
The Keydata System,” Keydata Corporation, 575 Technology
Square, Cambridge, Mass.

92. Kilburn, T., R. B. Payne and D. J. Howarth, “The Atlas
Supcrvisor,” Proc. Eastern Joint Computer Conference Vol. 20,

279-294 (1961).

93. Kilburn, T., D. B. G. Edwards. M. J. Lanigan. and F. H.
Sumner. “One Level Storage Svstem,” TRE Transactions on
Electronic Computers Vol. EC-1T (2), 223235 (April 1962, .
94. King. Gilbert W. et al.. “Automation and the Library of
Congress,” Washington, D. C.: Library of Congress (1963) .

95. Kinslow, H. A., “The Time-Sharing Monitor Svstem,” Fall
Joint Computer Conference, Vol. 26, Part 1, 443454 (1964).

96. Kolsky, “Centralization vs. Decentralization.” Tenth Annual
Symposium on Computers and Data Processing (June 26-27,
1963) .

97.)Lampson, Butler W., “Timec Sharing Svstem Reference
Manual,” Working Document, University of California. Docu-
ment No. 30.1030; issued Scpt. 30, 1965; revised Dec. 30, 1963.
98. Lampson, B. W., W. W. Lichtenberger, M. W. Pirtle. “A
User Machine in a Time-Sharing System,” Proc. IEEE Vol. 54
(12) , 1766-1774 (Dcc. 1966) .

99. Landis, N., A. Manos, and L. R. Turner, “Initial Experience
with An Operating Multiprogramming System,” Comm. ACM,
Vol.5 (5) (May 1962).

100. Lawless, W. J., “Developments in Computer Logical Or-
ganization,” Aduvances in Electronics and Electron Physics Vol.
100, Academic Press, Inc., New York (1959).

101. Lchman, M., “A Survey of Problems and Preliminary Re-
sults Concerning Parallel Processing and Parallel Processors.”
Proc. IEEEE Vol. 54 (12), 1889-1901 (Dec. 1966) .

102. Leiner, A. L., W. A, Notz, J. L. Smith and W. W. Youden,
“PILOT Multiple Computer System (Manual).” National Bu-
reau of Standards Report 6688. See also Journal of ACM Vol. 6
(3) (July 1959).

103. Lehrer, N. H. and Ketchpel, R. D., “Recent Progress in a
High-Resolution, Meshless, Direct-View Storage Tube,” AFIPS
Conference Proceedings, Fall Joint Computer Conference Vol.
29 (7-10), 531-540 (1966) .

104. Levine, S. et al, “A Fast Response Data Communications
System for Airline Reservations,” Communication and Elec-
tronics (Nov. 1961) .

105. Lichtenberger, W. W. and M. W. Pirte. “A Fadility for
Experimentation in Man-Machine Interaction,” Proc. Fall Joint
Computer Conference, Las Vegas, Nevada Vol. 27 (Nov. 30,
1965) .

106. Licklider, J. C. R. “Man Computer Svmbiosis.” IRE
Transactions on Human Factors in Electronics Vol. HFE-1, 4-11
(March 1960) . -
107. Licklider, J. C. R. and W. E. Clark, “On-Line Man-Com
puter Communication,” Proc. Spring Joint Computer Conference,
113128 (1962) . .

108. Lonergan, L. and P. King, “Design of the B3000 System,”

Datamation Vol. 7 (5) (May 1961).

109. McCarthy, J., “Time Sharing Computer Svstems,” Manage-
ment and the Computer of the Future (M. Greenberger, Editor),
M.LT. Press, Cambridge, 221-236 (1962) .

110. McCarthy, J., S. Boilen, E. Fredkin, and J. C. R. Licklider,
“A Time-Sharing Debugging Systemm for a Small Computer,”
Proc. Spring Joint Computer Conference Vol. 23, 355-363 (1963) .
111. McClung, L. W., “A Disc-Oriented IBM 70914 Svstem,”
Paper #3, Disk File Symposium, March 6-7, 1963, Hollywood,
California (Sponsored by Informatics, Inc.)

112. Mabher, R. J., “Principles of Storage Allocation in a Multi-
processor Multiprogrammed System,” Comm. of ACM Vol. 4, 421-
422 (Oct. 1961) . :

113. Malcom, Donald G. and Alan J. Rowe, “Management Con-
trol Systems,” John Wiley and Sons, Inc. .

114. Marcotty, M. J., F. M. Longstaff, and Audrev P. M. Wil-
liams, ““Time-Sharing on the Ferranti Packard FP6000 Computer
System,” Proc. Spring Joint Computer Conference Vol. 23, 20-40
(1963) .

115. Marill, T. and Roberts, L. G., “A Proposed Communica-
tions Network to Tie Together Existing Cemputers.” AFIPS
Conference Proceedings, Fall joint Computer Conference Vol.
29 (7-10), 425-433 (1966) .

116. Mendelson, M. J. and A. W. England, “The SDS SIGMA 7:
A Real-Time Time-Sharing Computer,” AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference Vol. 29 (7-10), 51-64
(1966) .

117. M.I.T. Digital Computer Lab., “Comprehensive Svstem
Manual — A System of Automation Codes for the Whirlwind
Corporation,” Mcmo M-2539-2 (Dec. 1933) .

118. Nebel, B. E., “A Multiprogrammed Teleprocessing System
for Computer Typesetting,” AFIPS Conference Proceedings. Fall
Joint Computer Conference Vol. 29 (7-10), 115-124 (1966) .
119. Nelson, T. H., “A File Structure for the Complex, the
Changing and the Indeterminate,” ACM National Conference
(Aug. 1965) .

120. Niscnoff, N., “Hardware for Information Processing Sys-
tems: Today and in the Future,” Proc. IEEE Vol. 54 (12), 1820—
1835 (Dec. 1966) .

121. Ochsner, B. P., “Controlling a Multiprocessor System,” Bell
Telephoncs Lab. Record (Feb. 1966) .

43

122. Ossanna, J. F., L. E. Mikus, and S. D. Dunten, “Communi.-

cations and Input/Qutput Switching in a Multiplex Computing

System,” Proc. Fall Joint Computer Conference, Las Vegas,

Nevada Vol. 27 (Nov. 30, 1965) .

123. Parkhill, D. F., “The Challenge of the Computer Utility,”

Addison-Wesley Publishing Company 1.C-66-24245, (1966) .

Addison-Wesley Publishing Company LC-66-24245, (1966) .

124. Penny,]J. D. and T. Pearcey, “Use of Multiprogramming in
the Design of a Low Cost Digital Computer,” Comm. ACM Vol.

5 (9) . p. 473 (Scpt. 1962) .

125." Perlis, A. J., “A Disk File Oriented Time Sharing System,”
Disk File Symposium, March 1963 (sponsored by Informatics,

Inc., Culver City, Califl) .

126. Peters, B., “Security Consideration in Multi-Programmed

Computer System,” AFIPS Conference Proceedings, Spring Joint
Computer Conference Vol. 30, 283286 (1967) .

127. Proctor. James W. Jr., “The Voice Response System,”

Datamation Vol. 12, 43-44 (Aug. 1966) .

128. Ramamoorthy, C. A., “The Analytic Design of a Dynamic

Lookahead and Program Segment — System for Multipro-

grammed Computers,” Proc. ACM 21st Conference, 229-239.

129. Ramsay, Karl and J. C. Strauss, “A Real Time Priority

Scheduler,” Proc. ACM 21st National Conference, 161-166.

130. Reiter, A., “A Resource Allocation Scheme for Multi-User

On-Line Operation of a Small Computer,” AFIPS Conference

Proceedings, Spring Joint Computer Conference Vol. 30, 1-8
1967) .

1<3]. %{oberts, L. G., “The Lincoln Wand,” AFIPS Conference
Proceedings, Fall Joint Computer Conference Vol. 29 (7-10),

228-228 (1966) .

182. Rosenberg, A. M. (Editor), “Command Research Labora-
tories Users Guide,” SDC TM-1354 (Nov. 19, 1965).

133. Ross, D. T. and J. E. Rodriguez, “Theoretical Foundations
for the Computer-Aided Design System,” Computer Aided De-

sign, Spring Joint Computer Conference, p. 305 (1963).

134. Samuel, A. L., “Time Sharing on a Computer,” New

Scientist Vol. 26, 583-587 (May 27, 1965) .

. 185. Scherr, Alan L., “Time Sharing Measurement,” Datamation

Vol. 12 (4) (April 1966) .

136. Schwartz, E. S., “Automatic Sequencing Procedure with
Application to Parallel Programming,” Journal of ACM Vol. 8,

513537 (Oct. 1961).

137. Schwartz, J. I, E. G. Coffman, and C. Weissman, “A Gen-

eral Purpose Time-Sharing Systems,” Spring Joint Computer
Conference Vol. 25, 397411 (1964) .

188. Schwartz, J. 1., “Observations on Time-Shared Systems,”

ACM Proceedings of the 20th National Conference, p. 525
1965) .

1(39. %chwartz, Jules 1., “The SDC Time-Sharing System Part 1,”

Datamation Vol. 10 (1), Part 2, (Nov. 1964) ; Datamation Vol.
10 (12) (Dec. 1964) .

140. Scott, M. B. and R. Hoffman, “The Mercury Programming

System,” Proc. Eastern Joint Computer Conference, Vol. 20, 47—

53 (Dec. 1961).

141. Sprague, Richard E., *On Line-Real Time Systems — 1964,

Management Services (May-June 1964) .

142. Stanga, D. C., “Univac 1108 Multiprocessor System,” AFIPS
Conference Proceedings, Spring Joint Computer Conference Vol.

30, 67-74 (1967).

143. Stotz, R., “Man-Machine Console Facilities for Computer-

Aided Design,” Computer Aided Design, Spring Joint Computer
Conference, p. 323 (1963) .

144. Strachey, C., “Time Sharing in Large Fast Computers,”

Proc. of the International Conference on Information Processing,

Paris, UNESCO, 336-311 (1960) .

145. Summer, F. H; and E. C. Y. Chen, “The Central Control
Unit of the ATLAS Computer,” Proc. of IFIP Congress, p.
657 (1962). ' .

146. Sutherland, I. E., “Sketchpad: A Man-Machine Graphical
Communication System.” Lincoln Lab Technical Report No.
296, M.LT., January 30, 1963. Computer Aided Design, Spring

Joint Computer Conference, 329-346 (1963) .

147. Teleregister, “200 Display System,” The Bunker-Ramo Cor-
poration, Stamford, Conn.

148. Teleregister, “On-Line Data Processing for Hotels,” The

Bunker-Ramo Corporation, Stamford, Conn.

149, Vyssotsky, V. A, F. J. Corbato, and R. M. Graham, “Struc-
ture of the Multics Supervisor,” Proc. Fall Joint Computer Con-

ference, Las Vegas, Nevada, Vol. 27 (Nov. 30, 1965) .

150. Weil, J. W., “A Heuristic for Page Turning in a Multi-
{)(;"(V)s;)rumxncd Computer,” Comm. ACM Vol. 5 (9), p. 480 (Sept.
962) .

151, Weil, J. W., “The Tmpact of Time-Sharing on Data Proc-

essing Management,” DPMN Quarterty 2,2, 216 (Jan. 1966) .

152, Wilkes, M., “A Programmer’s Utility Filing System,” Com-

puter Journal 7, 180-18 ¢ (Oct. 1961) .

153, Yates, John E. “\ Time-Sharing Svstem for the PDP-1

Computer,” ME, Press (1962) .

COMPUTER DESIGN /MARCH 1968

