
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-25, NO. 10, OCTOBER 1976

The Effects of Emerging Technology and Emulation

Requirements on Microprogramming

SAMUEL-H. FULLER, MEMBER, IEEE, VICTOR R. L~SSER, C. GORDON BELL, FELLOW, IEEE, AND
CHARLES H. KAMAN, MEMBER, IEEE

Abstract-The structure of microprogrammed processors is
largely determined by the state of (semiconductor) technology and
the requirements of the task of emulation. We discuss the impact
of LSI components on micruprogrammable processors and in par-
ticular, the effect of large memory arrays, LSI microprocessors
(bit-slices), programmable logic arrays, and high-speed shifters.

A secondary theme of this article is that microprogramming
differs very little from "regular" programming. We argue that the
right approach to understanding microprogramming is to recognize
that i t is primarily applied to the task of emulation. We review the
requirements of the emulation (interpretation) task and indicate
what capabilities a microprogrammable processor needs to have
in order to make the process of emulation efficient. We conclude
with a taxonomy of microprogrammable processors.

Index Terms-Emulation, interpretation, microprocessor, mi-
croprogramming, semiconductor technology.

I. INTRODUCTION

T HE STRUCTURE of microprogrammed processors,
and microprogramming in general, is largely deter-

mined by two factors: the state of (semiconductor) tech-
nology and the task of emulation. Therefore, this article
first reviews those technological advances as well as those
constraints and demands imposed by the emulation pro-
cess that have shaped the evolution of microprogramming.
We then use these observations to put the past develop-
ments of microprogramming in perspective and forecast
the major developments in the years ahead.

The other main theme of this article is that trying to.
characterize and understand microprogramming in terms
of how it differs from "regular" programming is a fruitless
exercise. The futility of this approach can be seen by the
numerous, contradictory definitions on microprogramming
in the literature (Rosin [14], Wilkes [21], Mallach [lo]).
Attempts to base a definition on features of a processor's
architecture, such as horizontal instruction formats, lack
of an explicit program counter, or visibility of real registers
and data paths, or on features of a processor's realization,

Manuscript received June 16,1975; revised March 29,1976. This work
was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under Contract F44620-73-C-0074 and
was monitored by the Air Force Office of Scientific Research.

S. H. Fuller and V. R. Lesser are with the Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

C. G. Bell was on leave at the Departments of Engineering and Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA 15213. He
is with the Digital Equipment Corporation, Maynard, MA.

C. H. Kaman is with the Digital Equipment Corporation, Maynard,
MA.

such as the speed of main memory to that of the control
(micro) memory, are easily rejected on the basis of existing
processors that are commonly recognized to be micropro-
grammed processors yet do not possess the required fea-
tures.

Most of this confusion in alternative definitions comes
from the fact that microprogramming has been used in two
very different ways: 1) as a hardware implementation
technique to economically implement a complex instruc-
tion set or a small number of different instruction sets on
a single processor, and 2) as a software technique to provide
programmers with an extra degree of representational
freedom, i.e., develop multiple instruction sets, each one
appropriate for a particular task domain. The technolog-
ical use of microprogramming has been the dominant
justification for the development of the vast majority of
microprogrammable processors in the past decade. But ps
the cost of software began to become the major cost of a
computer system, the use of microprograming as a tech-
nique for making a computer more convenient to program
has and will continue to become the more important ap-
plication.

The most direct approach to understanding micropro-
gramming is to recognize that it is primarily applied to the
task of emulation (interpretation). Through this approach
it is possible to understand and predict the evolution of
microprogramming independent of a particular technology
and type of instruction set being emulated.

The process of emulation will be taken up in consider-
ably more depth in Section 111, but it will be useful here to
briefly look a t the different processors used to emulate a
Basic machine. On the one hand there are the Hewlett-
Packard 2100, DEC PDP-11, and PDP-8 that have time-
sharing systems supporting Basic. The only language
available to the user is Basic and the architecture of the
processor is hidden from him. On the other hand there are
the Basic programmable calculators available from IBM
(i.e., the IBM 5100), Hewlett-Packard (Spagler [15]), and
Wang Laboratories that operate as Basic machines: their
input keys and displays are tailored to the Basic language.
I t is difficult to insist that the HP-2100, PDP-11, and
PDP-8 are not microprogrammed processors while the
"hidden" processors in the IBM, HP, and Wang Basic
calculators are microprogrammed. The only characteristic
all these processors have in common is that they are em-
ulating Basic and a good case can be made for dropping the

Copyright @I976 by The Institute of Electrical and Electronics Engineers, Inc.
Printed in U.S.A. Annals No. 6 10CXQ05

FIJLLER et al.: EMERGING TECHNOLOGY AND EMULATION 1001

term "microprogramming" altogether and simply using
"emulation" in its place. However, we will continue to use
the term "microprogramming" here since i t is so widely
used and it is a convenient way to indicate that we are
discussing programming as it applies to emulation (and
interpretation) rather than programming in general.

Following our discussion of technology and emulation,
we then discuss specific hardware and software techniques
for emulation. A number of different types of micropro-
grammed processors are also included as examples.

The state of the art in semiconductor electronics has had
a profound effect on the feasibility of microprogramming.
Prior to the 1960's the only effective means of imple-
menting a high-speed control store was to use a diode
matrix. This was the technology used by Whirlwind I
(Everett [3]) and suggested by Wilkes in his original paper
on microprogramming [22] . Figs. 1 and 2 show the struc-
ture of these control units. As long as these diodes were
discrete components, a control store of any reasonable size
was too expensive to compete with alternate implemen-
tations using random logic (e.g., over 30 000 bits of control
storage are required to implement the full PDP-11 archi-
tecture on the DEC LSI-11, while the Whirlwind I had only
4800 "bits" in its control store). I t is important to realize
that both structures are just the control parts of their
processors and are alternatives to conventional sequential
control circuits as shown in Fig. 3. I t was .not until the
middle and late 1960's that integrated-circuit technology
advanced to the level that economic read-only memories
(ROM's) and read-write memories (RAM's) became a
practical reality. It stands to the credit of IBM's engineers
that they were able to develop the IBM System1360 series
of machines via microprogramming in the early 1960's;
every model in the early IBM 360 line used a different,
nonsemiconductor technique to implement its control
store. These ingenious, but admittedly cumbersome and
costly, techniques could be laid aside when the IBM S/370
series of machines were implemented since integrated-
circuit technology had advanced to the stage that semi-
conductor control stores were reliable. Fig. 4 illustrates the
basic structure of current microprogrammed control
units.

Semiconductor memories suitable for control stores in
microprogrammed processors are now at the stage where
1024 bitlpackage RAM's and 4K (K = 1024) bitlpackage
ROM's are in wide use in present processors and 2K
RAM's and 8K ROM's are being designed into some newer
processors. 4K RAM's and 16K ROM's have been an-
nounced and are available, but at present they are too slow
to be seriously considered for most control stores.

For well over 10 years now semiconductor manufacturers
have set a pace where the commercially feasible chip
complexity (i.e., number of devices per chip) has roughly
doubled every one to two years. For example, the 4 kbitl
package RAM (13 000 devices) was introduced roughly two
and one-half years after the 1 kbit (4000) RAM. Recent

I

o r d e r -
register

inputs
(t i m e s t a t e

s i g n) g e n e r a t o r)

Fig. 1. M.I.T. Whirlwind control unit.

announcements of 16 kbitlpackage RAM's continue this
trend. There is every reason to believe that this trend will
continue for a t least the next 4 to 6 years. Hence we face
a situation where we can expect to see the size of control
stores growing as technology encourages designers to use
more control storage to cut costs in other areas, improve
the performance of the microprocessors, or add additional
capabilities.

The other LSI components that are having a major im-
pact on the evolution of microprogramming are the LSI
microprocessor chip sets.l The Intel 3000 2-bit processor
bit-slice,2 the AMD 2901 4-bit processor bit-slice, and the
Western Digital microprocessor set are the most popular
versions of this type of component. These LSI micropro-
cessor components implement the major registers, data
paths, and arithmetic unit in LSI packages. They all rely
on microprogramming to specialize their behavior to the
appropriate "target" architecture (e.g., PDP-11, HP-2100,
disk channel, communications processor). Since it will be
much more cost-effective to implement the next generation
of small computers using these LSI microprocessor com-
ponents, microprogramming will take on an even more
central role in the implementation of small computers.

Memory arrays and LSI processors are not the only

By now, the term microprocessor has hecome a terribly overworked
word. I t is commonly used in a t least three ways.

1) A microprogrammable processor. In other words, the processor that
fetches and executes the microinstruction sequence which is used to
emulate the "target" machine. We will continue to call this processor a
microprogrammable processor.

2) A processor with very small data types (e.g., 8-bit words), a relatively
limited instruction set, and usually implemented in one or a small number
of LSI packages. The most common examples are the Intel 4040, Motorola
6800, and the Intel 8080. The character (or digit) oriented processor is
not considered in this paper.

3) Any processor whose registers, data paths, and arithmetic unit are
implemented in a small number of LSI components. For example, the
DEC LSI-11 and the CMU-11, a PDP-11 built with Intel 3000 compo-
nents (McWilliams et al. 111). Here "micro" refers to the small numbers
of integrated circuits neede A to implement the basic processor, not the
small size of the data types. We use the term LSI microprocessor to refer
to these types of processors. * An LSI component is characterized as a bit-slice component if mul-
tiple copies of the component can be connected together so as to form an
arbitrary-width processing element. For example, by connecting together
3,4, or 8 ADM29014-bit processor bit-slices, respectively, a 12-, 16-, or
32-bjt processing element can be constructed.

IEEE TRANSACTIONS ON COMPUTERS. OCTOBER 1976

Inputs

t*

...
Combinational
array I

' M i c r o p r o g r a m a d d r e s s r e g i s t e r , o r m a s t e r - s l a v e r e g i s t e r s

Fig. 2. Wilkes 22 microcontrol unit.

Inputs
C o m b i n a t i o n a l

l o g 1 c

Fig. 3. Conventional sequential control circuit.

-

developments in semiconductor technology that are having
a significant effect on the structure of microprogrammed
processors. Two other very important developments are
the programmable logic array (PLA) and shifter. The basic
structure of a PLA is shown in Fig. 5. I t is a two-level
combinatorial logic circuit that is "wired" for a specific
application through masking, or metalization. The PLA
has the same outward characteristics of a ROM except that
it would take a ROM with several orders of magnitude
more devices to match the function of the PLA in many
applications. For example, a common PLA is a Rockwell
Corporation package with 48 110 terminals [13]. ROM that
would be equivalent to this PLA in many applications
would require two orders of magnitude more bits. A PLA
uses the same techniques that designers of digital circuits
used a decade ago to minimize the number of gates re-
quired to realize a combinatorial function. However, if the
function to be implemented is sufficiently ill-conditioned
(e.g., a parity tester), the PLA offers no advantage over an

, ~ e z t state modifiers

C o n t r o l
s t a t e

conditional
inputs

select input

'

cutputs to

Combinational evoke ragistc.
array (memory l p ~ ~p4 transfer n y e r g -

t i o n s

(o p t i o n a l

Microinetruction N E X T S T A T E M O D I F Y
w o r d layout: I I N E X T S T A T E I O u T P u T s I

* M i c r o p r o g r a m a d d r e s s r e g i s t e r

'' One p o s s i b l e i m p l e m e n t a t i o n i s shown i m m e d i a t e l y b e l o w

~ ~ f ~ f l N e z t modifiers state addre68

I n p u t s { i I 1
C o m b i n a t i o n a l array

L-----:Y - (memory J

Control

Fig. 4. Current microprogram control units

ROM. Instruction decoding is an example of a combina-
torial function amenable to minimization techniques and
hence PLA's will be very useful for providing the decoding
of instructions that must otherwise be done with random
logic or via a sequence of microinstructions.

PLA's do not lend themselves to dynamic alternations;
there is no natural addressing mechanism for each of the
make-or-break points in the PLA structure. A dynamically
alterable component that could be used much like a PLA
is an associative memory (Gardner [5]). The associative
memory can be used, for example, in emulation to assist
in the decoding of a target machine language instruction.
This could be accomplished by loading into each input
match field of the associative memory the bit pattern
corresponding to one type of instruction format; its cor-
responding output response field is then loaded with the
particular microcode subroutine and its appropriate calling
parameters to be executed when its input match field is
matched. Since the associative memory is alterable, it
could be dynamically reloaded for each different machine
language that is being emulated. Another use of an asso-
ciative memory in emulation would be to use it to specify
sophisticated, programmable I10 patterns that will cause
an interrupt, e.g.,'SPS-41 ([18], [2]), thus making it easy

FULLER et al.1 EMERGING TECHNOLOGY AND EMULATION 1003

T h e s e internal lines correspond
to minimum tsrma in o sum-of-
products repraeentation of t h a
junction

Fig. 5. Organization of a PLA array,

to emulate the interrupt structures of a wide variety of
machine languages. However, associative memories have
been touted for some time now as a panacea for many
problems but have yet to be proven a cost-effective unit.

Another semiconductor device that has made an im-
portant impact on microprogrammable processors is the
shifter. For example, the Signetics 8243 takes an 8-bit byte
as input, shifts it left from zero to seven positions, zeroing
out the leftmost bits, and presents the shifted byte on 8
output pins. Using a package like the Signetics 8243 as a
basic building block, larger shifters can easily be con-
structed. The ability of cheaply implementing a fast shifter
makes variable-length byte extraction, a common process
in emulation, a much easier task.

As will be detailed in the next sections, these techno-
logical advances will lead to microprogrammable archi-
tectures that are more uniform in structure (less ad hoc),
easier to program, and can more efficiently emulate a wide
variety of different and more complex instruction sets.

As we stated in the Introduction, the right approach to
understanding microprogramming is to examine the task
it must perform: emulation. This view is especially ap-
propriate given that a major trend in the use of micro-
programming over the last few years has been towards
more generalized emulation; this trend has occurred in'
terms of both the number and complexity of machine
languages capable of being efficiently emulated on a single
microprogrammable processor. Architectures such as the
Burroughs B1700 (Wilner [23]), which was designed for
efficient emulation of algebraic block-structure languages,
and SAAB FCPU (Lawson and Smith [6]), which provides
general emulation capabilities in a high-speed processor,
are examples of this more general approach to emulation.
This trend should be heightened in the future as the va-
riety and complexity of tasks being programmed on a
single processor continues to increase. Thus this section
spells out in detail the task of emulation and through this
discussion indicates the appropriate representational

framework and associated operations for efficiently per-
forming an emulation (interpretation). In the next section
we tie together our observations on emulation and tech-
nology to predict the future evolution of microprogram-
ming.

An interpreter can be characterized as a system that
carries out the execution of a program in one,representa-
tional framework by dynamically mapping each statement
(instruction), a t the point it is to be executed, into an ex-
ecution sequence of statements in another environment
which realizes the semantics of the mapped statement.
Given this definition of interpretation, emulation could
be defined as the special case in which the interpreter maps
into an environment which is directly executed by the
hardware (e.g., in a microprogrammable machine, this
environment would be microcode instructions). However,
this type of distinction between interpretation and emu-
lation is often very fuzzy. For example, consider the in-
terpretation of the IBM 7090 on the IBM 360/65 which
involves the use of two environments (Tucker [20]), i.e.,
360/65 microcode and 360 machine code which is, in turn,
emulated in the microcode.

This example also points up the difference between
actions which are done solely for the sake of interpretation
control and information (mapping actions) and those
which actually cause the interpreted program to be exe-
cuted (execution actions) (Mitchell [12]). In this example,
mapping actions were programmed in a different repre-
sentation environment than execution actions, respectively
360/65 microcode and 360 machine language. As will be
discussed later, the appropriate environments for ex-
pressing these different types of actions and the interface
between them is one of the keys to understanding the ev-
olution of microprogrammable processors and how the
emulation task differs from other computational tasks. For
example, the SAAB FCPU explicitly recognizes the dis-
tinction between mapping and execution actions by pro-
viding separate, asynchronous processing elements for each
type of action.

The other key to understanding the emulation process
is based on a static view of this process in contrast to the
dynamic view in terms of mapping and execution action
so far presented. A static view of emulation comes from
understanding the relationship between the two environ-
ments the emulator operates on (maps between), i.e., the
environment to be emulated (machine language) and the
environment directly executed by the hardware (microcode
language). An environment consists of: 1) a data and con-
trol state image which includes, for example, in a conven-
tional processor, its set of working registers (accumulator,
index register, program counter, interrupt register, etc.)
and its main memory which hold data and program; 2) a
set of primitive actions which can be used to modify and
test the state image; and 3) a set of control rules which
decide, based on the current status of the control state
image, the sequence of primitive actions to execute. The
ease with which each of these aspects of an environment
to be "interpreted" can be imbedded into the corre-

1004 IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 1976

I
E m u l a t e d E m u l a t o r

I
M i c r o i n s t r u c t ? o n s o f semantic

i n S t r u c t + O n I (c o n t r o l d e c o d i n g) r o u t i n e for instruction I

I

Fig. 6. Commutative state diagram of the conventional emulation
process.

sponding aspects of the "execution" environment is one
of the main determiners of the efficiency of the interpre-
tation process.

The state diagram of one step in the emulation process,
Fig. 6, represents both static and dynamic aspects of the
emulation process. The left-hand side of the diagram
represents the effect of executing an instruction of the
emulated computer on the state image of the emulated
computer. The right-hand side represents the sequence of
transformations that the microprogrammed processor
must perform on its own state image in order to emulate
this instruction. In terms of this diagram, efficient emu-
lation occurs when:

1) The data and control state image of target (emulated)
machine can be easily imbedded into host (micropro-
grammed processor) machine.

2) The decoding and control sequencing function can be
implemented efficiently. (In conventional instruction sets
most of the work involves decoding, but in the emulation
of higher level languages, much less of the total effort is
spent on decoding.)

3) Microinstruction semantics can operate on the im-
bedded state image of the emulated machine in the same
way the emulated instruction does on its state image.

In the initial use of microprogrammable processors for
emulation, each of these aspects that contributes to effi-
cient emulation could be easily attained because the en-
vironment(~) to be emulated was known before the design
of the processor. This prior knowledge resulted in the de-
sign of a microprogrammable processor that had a state
image and instruction semantics that were compatible with
the emulated environment, and a hard-wired version of the
mapping action (control and decoding) between environ-
ments. However, as unanticipated and more complex en-
vironments began to be emulated a more general approach
was needed:

1) a generalized decoding structure;
2) a means of statically reconfiguring, for the duration

of an emulation, the state image, control structure, and
primitive operation of the execution environment so that
these aspects more nearly match those of the emulated
environment (Lesser [9]);

3) a means of dynamically modifying the microinstruc-
tion semantics based on parameters which are specified
in the emulated instruction, i.e., microinstruction as a

parameterized template (Lesser [B]) . Another way of
viewing this requirement is the need for clean, efficient
interface between the output of mapping actions and se-
mantics of execution actions.

These requirements for generalized emulation together
with the technological advances described in the last sec-
tion, have led to the following concepts being incorporated
into more advanced microprogrammable processors:

1) Flexible bit extraction and manipulation for gener-
alized decoding:

a) barrel shifter and mask capability (B1700,
FCPU);

b) insertion of data in an arbitrary field of an in-
ternal register (FCPU).

2) The concept of residual control as a way of configuring
the environment:

a) set up gating patterns between registers and
buses (QM-I);

b) set up mode of arithmetic, i.e., one's complement,
BCD, etc. (B1700, FCPU);

c) set up word length of data which will be applied
to arithmetic operations, memory accesses, and
stores (B1700, FCPU);

d) pseudointerrupt register for embedding control
structure of emulated machine (MLP-900,
Lawson and Smith [6]).

3) Microinstructions as parameterized templates:
a) indirect address of general registers, shift count,

ALU function (MLP-900);
b) execute-command (B1700, FCPU).

This list of features when taken as a whole sheds some
light on what are the appropriate components of an envi-
ronment (microprogrammed processor architecture) for
general-purpose emulation:

1) a primitive unit of information which is the bit
string;

2) a capability for dynamically reconfiguring both the
internal and external environment of a microprogram-
mable processor, i.e., word width, number of general reg-
isters, control structures, register bussing connections,
arithmetic mode, etc.;

3) a capability for constructing complex-address map-
ping functions.

These are capabilities that are desirable in almost all
types of computer environments. The important point is
that they are crucial for effective emulation, i.e., these
features should be looked a t in terms of a matter of degree
rather than specific function when comparing with other
task domains.

The future of microprogrammable processors will in-
evitably result in a more generalized version of these con-
cepts as technology permits. However, the aspect of
microcomputer architectures that will probably receive the
most attention in the next ten years is their control
structure. The control structure will play a more important
role in future years because one of the dominant trends in
~rngramming languages is towards more complex control

FIII,I.EK E L a/ . : EMERGING 7'ECHNOL.OGY AND EMlJLATION 1005

structure (i.e., coroutine, data flow models, parallelism,
etc.). Inevitably, these more complex control structures in
future programming languages will be reflected in the
target machine languages.

IV. HARDWARE AND SOFTWARE INTERPRETATION
TECHNIQUES

We now consider in this section hardware and software
techniques that result from a consideration of the re-
quirements of emulation processes and the possibilities
provided by (semiconductor) technology. Then advances
in technology can be related to advances in techniques and,
hence, to resultant advances in computer systems. Since
microprogramming is simply a variation of conventional
programming in terms of the desire for generality and ease
of coding, advances in microprogramming will likely follow
the same pattern already seen in assembly level pro-
gramming over the last 25 years. This is especially true
given the trend towards more complex and varied in-
struction sets which will require writing of many large
emulators, each supporting a complex run-time environ-
tnent, e.g., PL/I machine, operating systems machine, etc.
Since emulation is the major application of micropro-
gramming, specific programming support will be accented.
With advances in technology offering more storage ca-
pacity and functional processing per unit area (at low cost),
hardware structures will become more flexible thus pro-
viding a general environment for interpretation and em-
ulation. Since sections of general structures usually go
unused in any single application, the cost or cost-perfor-
mance of generality is rarely acceptable to all. However,
the added cost of generality may be borne by improved
technology, thus providing the user with more functional
capability at a constant cost. In contradistinction, the
consumer market for computers requires the lowest pos-
sible cost and, so, will trade generality for cost. Here,
technology is used to lower cost while keeping the appli-
cation specific.

In addition to the techniques detailed in the last section
for general-purpose emulation, there are also techniques
for making it easy to microprogram many large emulators.
A list of techniques, in approximate order of increasing
generality, include the following.

1) More high-speed working registers: Efforts to mini-
mize the size of the processor state is not as strong in mi-
croprogrammed processors as it is in more conventional
processors.

2) Larger control stores: Much of the current involuted
character of microprograms is a result of squeezing a
complete emulator into a small space (e.g., 256 words) and
more reasonable (micro-)programming will be possible
with larger control stores.

3) N-way branches (case statements): The ability to test
several conditions and branch to any of several sections of
code which service them.

4) (Micro)subroutines: The ability to invoke a function
or reference data specified indirectly a t a higher level.

5) Memory management: Multiprogramming is already
a common practice. For example, emulators for central
processors, several 110 processors, and microdiagnostics
often reside in the same control store. Problems of pro-
tection, relocation, and using overlays or paging from
backing stores are issues of emerging concern in micro-
programming.

6) (Micro)interrupts: Useful when multiple emulations
are being run on the same processors.

The hardware components which initially supported
microprogramming were adequate speed ROM's and
multiplexers. ROM7s provide tables to encode, decode, and
sequence control. Multiplexers extract fields, assemble
conditions for testing in parallel, and select control infor-
mation from registers containing the higher level in-
structions (indirect control) rather than from the microde
(direct control). The next advance came with the avail-
ability of high-speed, random-access, alterable memory.
With these, microprograms are easily corrected, extended,
or swapped for those which provide different functions,
for example, machine diagnosis (microdiagnostics). More
recent advances in technology have made available low-
cost, small-sized shifters, associative memories, PLA's, and
decimal arithmetic units. The fast shifter is the most im-
portant of these since it easily extracts fields from in-
structions being interpreted or data from special formats,
such as floating point numbers.

To understand the implication of hardware and software
techniques it is necessary to consider their application. The
next section provides detailed examples. At this point the
uses of microprogramming can be decomposed into two
dimensions. The first qompares designs by the level of
language supported. The range includes assembly, inter-
mediate, and high-level languages. The second dimension
orders machines by the number of environments sup-
ported, typically subdivided in two classes, one and many.
Over the last decade the number of environments has in-
creased and their level has risen from the assembly toward
the procedure oriented. In the past when several envi-
ronments were provided, one a t a time was selectable from
a small, fixed set.

By observing the development of assembly-level pro-
gramming techniques and by observing the parallel de-
velopment of microprogramming so far, a reasonable
prediction would be the continuation of the trend. If so,
the next step will be the generalization and sharing of re-
sources a t the microprogram level. First, relocation and
protection schemes for alterable microstores will be de-
veloped. Then memory management and demand paging
(caching) schemes to effect the ability to run large micro-
programs in comparatively little physical space will be
included. The dynamic allocation of microstore address
space will probably require a microoperating system with
fewer tasks than conventional ones but many similarities
with respect to space allocation techniques. To facilitate
writing and checkout of so much code, high-level languages
designed for microprogramming will be developed, just as

1006 IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 1976

they are now being used more and more as a tool for de-
veloping system programs today.

To support these advances in microprogramming soft-
ware, hardware must be provided. The most important
advance on present components is larger microstores made
possible by faster and denser memories. As an alternative
to a fast, large microstore the cache structure could be used
to combine a small, very fast primary microstore with a
larger, slower secondary one. Similarly, demand paging
requires a fast swapping medium. This might be provided
by a high-speed, low-capacity solid-state disk with low
latency.

Given the ability to execute so much microcode what use
might be found for it? Extrapolating from today's ma-
chines and keeping the needs of emulation in mind, one
natural application would be to provide multiple pro-
gramming environments. By this is meant a time-shared
computer system whose users divide into classes each re-
quiring the same environment. Some of these would be
machine languages for older machines, others would be
intermediate, high level (Fortran, PLII, Cobol), or appli-
cation oriented. The high-speed shifter is useful in all of
these to extract fields. Emulating earlier machines would
be made easier by the use of a programmable PLA or as-
sociative memory (to replace logic not conveniently em-
bedded in memories due to the large number of inputs).
Finally, note that the provision of multiple environments
is a problem in multiprogramming and, eventually, as more
environments are desired, in time sharing.

The various microprogrammed processors can be
characterized along evolutionary lines, which in turn
roughly correspond to their implementation complexity.
One of the earliest computer implementations, Whirlwind
I (Everett 131) formulated the control part as an encoding
in a changeable, diode array memory (see Fig. 1). From this
Wilkes extended the coding and coined the word "micro-
programming" (Wilkes [22]).

A. One-Machine, Integrated Control, and Data Part

With the availability of fast, read only, random access
memories, processors with a single, fixed instruction set
were designed. These early designs permitted instruction
sets with more complex data operations (e.g., multiply,
divide, double precision). The most notable design of this
type, the IBM System1360 (Blaauw and Brooks [I], Ste-
vens [19]) was actually a set of about 10 computer models
implementing the same instruction set covering a perfor-
mance range of about a factor of 300 and a price range of
about a factor of 100. Over half of the models were imple-
mented using microprogrammed control interpreters.

plemented in a single processor, the natural extension is
to implement several machines. The earliest implemen-
tations of multiple instruction sets in a single physical
machine used conventional programming. First-genera-
tion, cyclic-access, drum-memory computers were "emu-
lated" using higher speed, second- and third-generation
computers with RAM'S.

An early and extensive use of multiple, fixed machine
emulations occurred with the IBM 360 microprogrammed
processors as they were used to implement the IBM Sys-
tern1360 instruction set, the 360 110 processor instruction
sets, and several models of earlier IBM computers. How-
ever, the design methodology of these computers is not well
understood. An approximation to the design process for
these machines appears to be: first the primary machine
(in this case the 360) is designed; the various other ma-
chines to be interpreted are then added to the design by
installing their idiosyncrasies (e.g., carry and overflow
conditions, state, and special data path breaks) (Tucker
[20], Fuller et al. [4]), and making it easy to decode their
instruction formats.

C . A Variable Group of Conventional Instruction Sets

Given that a single machine can be built that imple-
ments several conventional instruction sets (sequentially),
can a machine that implements several instruction sets,
but on a variable basis, be built? In effect, Standard
Computer Corporation attempted such a design in the
IC-model4 and later the MLP 900 [16], [17]. The main goal
of the MLP-900 was to implement an IBM 360, together
with other undefined machines, e.g., PDP-10, etc. In es-
sence, the machine was designed with much generality
using multiple register sets and a two-stage pipeline for
instruction fetching and instruction execution. The vari-
able parts, which cannot be emulated easily by sequencing,
were brought to a 4-position, multiple-pole, electronic
switch, which permitted up to 4 variable parts to be se-
lected. Each variable part consisted of special-purpose
logic to assist in a specific emulation. The myriad of details
associated with the 1/0 section (e.g., channels and device
state words) add more to the system definition job than the
central processor itself.

Currently, there are no commercially viable machines
that emulate a set of conventional machines (i.e., archi-
tectures) on a variable basis. I t appears that the machines
to be emulated must be determined a priori, in a fixed
fashion. Such a machine would permit any one machine
to be emulated a t a given instant by loading its memory
with the information necessary to interpret the target
machine. Although this has been done when a large ma-
chine interprets another machine, the implication in such
a task is that the speed of emulation is essentially that of
the target machine. The necessary hardware for this task

B' A Fixed Group O f Conventional Instruction Sets should be available in the near future and such systems can
Given that a single machine instruction set can be im- appear by 1980.

FULLER et al.: EMERGING TECHNOLOGY AND EMULATION

TABLE I
Emulation Subtasks for each of the Major Machine (Language)

Levels

Level

Machine
language

BASIC and
many sys-
tem prog.
languages

FORTRAN,

w1,
ALGOL,
etc.

LISP,
SNOBOL,
Simula/67,
APL, etc.

Sequencing Instruction Instruction Operand I fetch / decoding accessing 1 :;::ations

:onditional
xonch, sub-
.outines

fixed
format

iteration

medium

immediate
indirect
indexed

medium 1 medium I low 1 medium I medium

add, multi-

ply, or,
complement

high

simple
syntax

block
structure
recursion,
coroutines

high

subscripted
data struc-
tures

parol l i l pra-
cesses, syn-
chronization,
message sys.

high

sine, cosine,
matrix oper-
ations

high

I I l inked lists,
associative

medium

vector opera-
tions
garbage col-
lection

high

low

low

D. A Single Higher Level Language Interpreter
Machine

Since the use of higher level algebraic languages (e.g.,
Algol, Fortran) and more natural textual languages (e.g.,
Cobol) there has been a substantial interest in the devel-
opment of hardware that would interpret the languages
directly. To date, several machines have been built for
single languages (using directly hard-wired techniques),
and a number of machines have been microprogrammed
to interpret languages directly. These designs have not
resulted in any particular insight about direct language
interpretation. The implementations execute the object
target language faster than the nonmicroprogrammed
counterparts, and the speed improvements hold no sur-
prises; the faster memory of the microcode, together with
the small, register transfer primitives, provide the im-
provement.

low

E. Interpreting Many Lunguages Directly with a
Single Machine

To date, only the Burroughs B1700 (Wilner [23]) has
been built with the goal of either the direct interpretation

medium

or the compiling and execution of several higher level
languages. In that it is able to interpret the various lan-
guages, and encode the object code in a space of roughly
one-half that of a conventional small computer (the IBM
System 3), it is successful. However, its success as mea-
sured by execution time is not clear for one would also
expact a factor of 2 increase in the execution of the object
code. There has been no attempt to compare the execution
time on a technology-normalized basis. The B1700 has also
been used in the direct interpretation of several conven-
tional machines (e.g., IBM 1401 and Burroughs B2500).
Considering all factors, the B1700 appears to be the most
general of the microprogrammed machines in exis-
t e n ~ e . ~

medium

F. Special-Purpose Machines

An especially interesting evolution of microprogrammed
machines has occurred for the interpretation of array data
for matrix and vector operations, including time-series

As measured by ability to access any bit in memory, to have arbitrary
length microcode in any memory, and to operate on variable length field
with both binary and BCD formats.

IEEE TRANSACTIONS ON COMI'UTKRS, OCTOBER 1976

evaluation (e.g., fast Fourier transform). The IBM 2938
is an example of an early connected processor that per-
forms this function. Most recently, a 3-processor system
for these operations has been developed and is attached
as a peripheral to a conventional minicomputer [18]. The
three processors are functionally separated for: fetching
data from the attached computer, collecting analog inputs,
and storing the results back; moving data from the local
array in the right order for the arithmetic part; and the
arithmetic part.

Although less exotic than array processors, micropro-
grammable processors are finding increasing use as effi-
cient ways to implement I/O processors and 110 control-
lers. The IBM 3830 Storage Control Unit, which controls
3330 disks, is an excellent example of the use of a micro-
programmable processor as 110 control unit.

VI. CONCL~JSIONS AND FORECASTS

In this article we have reviewed the most important
constraints within which successful microprogrammed
processors must operate: semiconductor technology and
the task of emulation. We think these two constraints will
have the strongest influence on the future direction of
microprogramming. In fact, as we have stated in the In-
troduction, there is a good case for dropping the term mi-
croprogramming altogether and simply realizing that many
processors are designed to efficiently emulate the in-
struction set of "target" machine architectures.

The major impact of semiconductor technology on mi-
croprogramming is to provide large and fast control stor-
age. Moreover, the emergence of LSI microprocessors,
programmable logic arrays, and fast shifters will have a
significant effect on microprogramming.

Our review of the requirements of the emulation task
pointed to a number of central concepts that are required
for efficient emulation. Table I summarizes the major di-
mensions of emulation for different levels of target ma-
chines. In each cell the importance of each subtask is in-
dicated and new concepts or capabilities, not used by a
subtask a t the previous level, are noted.

[I] G. A. Blaauw and F. P. Brooks, "The structure of System/360," IBM
System J . , vol. 3, pp. 119-135, 1964.

(21 J. D. Erwin and E. D. Jensen, "Interrupt processing with queued
content addressable memories," in Proc. 1972 AFIPS Fall Joint
Computer Conf. Montvale, NJ: AFIPS Press, pp. 621-627.

13) R. R. Everett, "The Whirlwind I Computer." in Proc. 1951 AIEE-
IRE Conf., pp. 70-74.

(41 S. H. Fuller et al., PDP-11/40E Microprogramming Reference
Manual, Dep. Computer Science, Carnegie-Mellon Univ., Pitts-
burgh, PA, Tech. Rep., Jan. 1976.

[5] P. L. Gardner, "Functional memory and its microprogramming
implications," IEEE Trans. Comput., vol. C-20, July 1971.

161 H. W. Lawson, Jr., and B. K. Smith. "Functional characteristics of . .
a multilingual processor," IEEE Trans. Comput. vol. C-20, pp.
732-743, July 1971.

[7] H. W. Lawson, Jr., and B. Malm, "The DATASAAB flexible central
processing unit (FCPU): Background, concepts, basic design, and
applications," Data SAAB, Linkoping, Sweden, 1973.

[8] V. R. Lesser, "An introduction to the direct emulation of control
structures by a parallel micro-computer," IEEE, Trans. Comput.
(Special Issue on Microprogramming), July 1971.

[9] --, "Dynamic control structures and their use in emulation,"

Ph.D. dissertation, Rep. CS 309, Computer Science Dep., Stanford
Univ., Stanford, CA, Sept. 1972.
E. G. Mallach, "Emulation: A survey," Honeywell Computer J. , vol.
6, pp. 287-297, 1973.
T. McWilliams, S. H. Fuller, and W. Sherwood, "Designing a
PDP-11 with Intel 3000 bit slices," Dep. Computer Science, Car-
negie-Mellon IJniv., Pittsburgh, PA, Tech. Rep., June 1976.
,J. G. Mitchell. "The desien and construction of flexible and efficient
interactive programming systems," Computer Science Dep., Car-
negie-Mellon Univ., Pittsburgh, PA, June 1970.

1131 Rockwell Programmable Logic Array (PLA), Rockwell Device Di-
v~sion, Rockwell International, Anaheim, CA, Pub. 15900Nl1, Aug.
197.1 ...
R. F. Rosin, "Contemporary concepts of microprogramming and
emulation," Computing Surveys, vol. 1, pp. 197-212, 1969.
R. M. Spagler, "BASIC-language model 30 can he a calculator,
computer, or terminal," Hewlett-Packard J . , Dec. 1972.
Inner Computer-Model 9, Principles of Operation, Standard
Computer Corp., Los Angeles, CA, 1968.
IC-9000 Processor Functional Description, Standard Computer
Corp., Los Angeles, CA, Form 9001-3, 1969.
SPS-41 User's Manual, Signal Processing Systems, Inc., Waltham,
MA, 1972.
W. Y. Stevens, "The structure of Systeml360: Part I1 System im-
plementations," IRM Systems J . , vol. 3, pp;,136-143, 1964.
S. G. Tucker. "Emulation of laree svstems. Comm. ACM. vol. 8. - d

pp. 753-761;~ec. 1965.
M. V. Wilkes, "The growth of interest in microprogramming: A
literature survey," Computing Surveys, vol. 1, pp. 139-145, 1969.
-- , "The best way to design an automatic machine," in Proc.
Manchrster l l n i ~ ~ . Computer Inaugural Conf., July 1951, London,
England: Ferrante, l95i.
W. T. Wilner, "Design of the Burroughs B1700," Proc. AFIPS FJCC,
vol. 41, pp. 489-497, 1972.

Samuel H. Fuller (S'67-M'72) received the
B.S.E. degree in electrical engineering from the
IJniversity of Michigan, Ann Arbor, in 1968,
the M.S. and Ph.D degrees from Stanford Uni-
versity, Stanford, CA, in 1969 and 1972, respec-
tively.

He is an Associate Professor of Computer
Science and Electrical Engineering at Carne-
gie-Mellon University, Pittsburgh, PA. His re-
search interests include topics in computer ar-
chitecture and the werformance evaluation of

computer systems. He is currently involved in the measurement and
evaluation of C.mmp, a multiminiprocessor computer system, and the
design of new multiprocessors based on the emerging microcomputer
technology. He is the author of Analysis of L h m and Disk Storage Units
(Springer-Verlag) and a coauthor of Introduction to Computer Archi-
tccturr (SRA). He is an Editor of the Computer Systems Department
of CACM and has served as a member of the IEEE Computer Society
Task Force on Computer Architecture.

Victor R. Lesser was born in New York, NY,
on November 21,1944. He received the A.B. de-
gree in mathematics from Cornell University,
Ithaca, NY in 1966, and the M.S. and Ph.D de-
grees in computer science from Stanford Uni-
versity, Stanford, CA, in 1969 and 1972, respec-
tively.

He was a Research Associate in the Comput-
er Science Department a t Carnegie-Mellon
University, Pittsburgh, PA, from 1972 to 1974.
He currently holds the position of Research

Computer Scientist there. In addition to work on system organizations
for speech understanding, his research interests include computer ar-
chitecture, particularly multiprocessor systems and microprogram-
ming.

FULLER et al.: EMERGING TECHNOLOGY A N D EMULATION 1009

C. Gordon Bell (S'54-SM'67-F'74) is Vice-
President of Engineering for Digital Equip-
ment Corporation, Maynard, MA. He has been
on leave as Professor of Electrical Engineering
and Computer Science at Carnegie-Mellon
University, Pittsburgh, PA. He was previously
Manager of Computer Design for Digital from
1960-1966. During that time he was responsi-
ble for DEC's PDP-4, -5, and -6 computers. He
consulted for Digital in 1966-1972 while a t Car-
negie-Mellon University, working on various

computers and products including the PDP-11. He has worked in the
computer field on computer architecture, modularity of design, multip-
rocessors, and applications. His publications include Computer Struc-
tures (McGraw-Hill), coauthored with Allen Newell; Designing Com-
puters and Digital Systems, Using PDP-16 Register Transfer Modules
(Digital Press) with John Grason and Allen Newell; and several papers.

Tn addition to his industrial interests, he has served on the U.S. Gov-
ernment as a member of three COSINE committees of the National
Academy of Sciences for computer engineering education, and the Na-
tional Science Foundation, Office of Computing Activities. He is a De-
partment Editor for the CACM.

Charles H. Kaman (M'69) received the B.A. degree in mathematics from
Harvard University, Cambridge, MA, in 1965, and the M S . and Ph.D.
degrees in system sciences from the Polytechnic Institute of Brooklyn,
New York, NY, in 1967 and 1974, respectively.

In 1969 he joined the Research and Development Group of the Digital
Equipment Corporation, Maynard MA. He has worked in the areas of
processors and peripheral controller diagnostics.

Mr. Kaman is a member of the ACM and SIAM.

