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Abstract-The structure of microprogrammed processors is 
largely determined by the state of (semiconductor) technology and 
the requirements of the task of emulation. We discuss the impact 
of LSI components on micruprogrammable processors and in par- 
ticular, the effect of large memory arrays, LSI microprocessors 
(bit-slices), programmable logic arrays, and high-speed shifters. 

A secondary theme of this article is that  microprogramming 
differs very little from "regular" programming. We argue that the 
right approach to understanding microprogramming is to recognize 
that i t  is primarily applied to the task of emulation. We review the 
requirements of the emulation (interpretation) task and indicate 
what capabilities a microprogrammable processor needs to have 
in order to make the process of emulation efficient. We conclude 
with a taxonomy of microprogrammable processors. 

Index Terms-Emulation, interpretation, microprocessor, mi- 
croprogramming, semiconductor technology. 

I. INTRODUCTION 

T HE STRUCTURE of microprogrammed processors, 
and microprogramming in general, is largely deter- 

mined by two factors: the state of (semiconductor) tech- 
nology and the task of emulation. Therefore, this article 
first reviews those technological advances as well as those 
constraints and demands imposed by the emulation pro- 
cess that have shaped the evolution of microprogramming. 
We then use these observations to put the past develop- 
ments of microprogramming in perspective and forecast 
the major developments in the years ahead. 

The other main theme of this article is that trying to. 
characterize and understand microprogramming in terms 
of how it differs from "regular" programming is a fruitless 
exercise. The futility of this approach can be seen by the 
numerous, contradictory definitions on microprogramming 
in the literature (Rosin [14], Wilkes [21], Mallach [lo]). 
Attempts to base a definition on features of a processor's 
architecture, such as horizontal instruction formats, lack 
of an explicit program counter, or visibility of real registers 
and data paths, or on features of a processor's realization, 
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such as the speed of main memory to that of the control 
(micro) memory, are easily rejected on the basis of existing 
processors that are commonly recognized to be micropro- 
grammed processors yet do not possess the required fea- 
tures. 

Most of this confusion in alternative definitions comes 
from the fact that microprogramming has been used in two 
very different ways: 1) as a hardware implementation 
technique to economically implement a complex instruc- 
tion set or a small number of different instruction sets on 
a single processor, and 2) as a software technique to provide 
programmers with an extra degree of representational 
freedom, i.e., develop multiple instruction sets, each one 
appropriate for a particular task domain. The technolog- 
ical use of microprogramming has been the dominant 
justification for the development of the vast majority of 
microprogrammable processors in the past decade. But ps 
the cost of software began to become the major cost of a 
computer system, the use of microprograming as a tech- 
nique for making a computer more convenient to program 
has and will continue to become the more important ap- 
plication. 

The most direct approach to understanding micropro- 
gramming is to recognize that it is primarily applied to the 
task of emulation (interpretation). Through this approach 
it is possible to understand and predict the evolution of 
microprogramming independent of a particular technology 
and type of instruction set being emulated. 

The process of emulation will be taken up in consider- 
ably more depth in Section 111, but it will be useful here to 
briefly look a t  the different processors used to emulate a 
Basic machine. On the one hand there are the Hewlett- 
Packard 2100, DEC PDP-11, and PDP-8 that have time- 
sharing systems supporting Basic. The only language 
available to the user is Basic and the architecture of the 
processor is hidden from him. On the other hand there are 
the Basic programmable calculators available from IBM 
(i.e., the IBM 5100), Hewlett-Packard (Spagler [15]), and 
Wang Laboratories that operate as Basic machines: their 
input keys and displays are tailored to the Basic language. 
I t  is difficult to insist that the HP-2100, PDP-11, and 
PDP-8 are not microprogrammed processors while the 
"hidden" processors in the IBM, HP, and Wang Basic 
calculators are microprogrammed. The only characteristic 
all these processors have in common is that they are em- 
ulating Basic and a good case can be made for dropping the 
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term "microprogramming" altogether and simply using 
"emulation" in its place. However, we will continue to use 
the term "microprogramming" here since i t  is so widely 
used and it is a convenient way to indicate that we are 
discussing programming as it applies to emulation (and 
interpretation) rather than programming in general. 

Following our discussion of technology and emulation, 
we then discuss specific hardware and software techniques 
for emulation. A number of different types of micropro- 
grammed processors are also included as examples. 

The state of the art in semiconductor electronics has had 
a profound effect on the feasibility of microprogramming. 
Prior to the 1960's the only effective means of imple- 
menting a high-speed control store was to use a diode 
matrix. This was the technology used by Whirlwind I 
(Everett [3]) and suggested by Wilkes in his original paper 
on microprogramming [22 ] .  Figs. 1 and 2 show the struc- 
ture of these control units. As long as these diodes were 
discrete components, a control store of any reasonable size 
was too expensive to compete with alternate implemen- 
tations using random logic (e.g., over 30 000 bits of control 
storage are required to implement the full PDP-11 archi- 
tecture on the DEC LSI-11, while the Whirlwind I had only 
4800 "bits" in its control store). I t  is important to realize 
that both structures are just the control parts of their 
processors and are alternatives to conventional sequential 
control circuits as shown in Fig. 3. I t  was .not until the 
middle and late 1960's that integrated-circuit technology 
advanced to the level that economic read-only memories 
(ROM's) and read-write memories (RAM's) became a 
practical reality. It stands to the credit of IBM's engineers 
that they were able to develop the IBM System1360 series 
of machines via microprogramming in the early 1960's; 
every model in the early IBM 360 line used a different, 
nonsemiconductor technique to implement its control 
store. These ingenious, but admittedly cumbersome and 
costly, techniques could be laid aside when the IBM S/370 
series of machines were implemented since integrated- 
circuit technology had advanced to the stage that semi- 
conductor control stores were reliable. Fig. 4 illustrates the 
basic structure of current microprogrammed control 
units. 

Semiconductor memories suitable for control stores in 
microprogrammed processors are now at  the stage where 
1024 bitlpackage RAM's and 4K (K = 1024) bitlpackage 
ROM's are in wide use in present processors and 2K 
RAM's and 8K ROM's are being designed into some newer 
processors. 4K RAM's and 16K ROM's have been an- 
nounced and are available, but at present they are too slow 
to be seriously considered for most control stores. 

For well over 10 years now semiconductor manufacturers 
have set a pace where the commercially feasible chip 
complexity (i.e., number of devices per chip) has roughly 
doubled every one to two years. For example, the 4 kbitl 
package RAM (13 000 devices) was introduced roughly two 
and one-half years after the 1 kbit (4000) RAM. Recent 
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Fig. 1. M.I.T. Whirlwind control unit. 

announcements of 16 kbitlpackage RAM's continue this 
trend. There is every reason to believe that this trend will 
continue for a t  least the next 4 to 6 years. Hence we face 
a situation where we can expect to see the size of control 
stores growing as technology encourages designers to use 
more control storage to cut costs in other areas, improve 
the performance of the microprocessors, or add additional 
capabilities. 

The other LSI components that are having a major im- 
pact on the evolution of microprogramming are the LSI 
microprocessor chip sets.l The Intel 3000 2-bit processor 
bit-slice,2 the AMD 2901 4-bit processor bit-slice, and the 
Western Digital microprocessor set are the most popular 
versions of this type of component. These LSI micropro- 
cessor components implement the major registers, data 
paths, and arithmetic unit in LSI packages. They all rely 
on microprogramming to specialize their behavior to the 
appropriate "target" architecture (e.g., PDP-11, HP-2100, 
disk channel, communications processor). Since it will be 
much more cost-effective to implement the next generation 
of small computers using these LSI microprocessor com- 
ponents, microprogramming will take on an even more 
central role in the implementation of small computers. 

Memory arrays and LSI processors are not the only 

By now, the term microprocessor has hecome a terribly overworked 
word. I t  is commonly used in a t  least three ways. 

1) A microprogrammable processor. In other words, the processor that 
fetches and executes the microinstruction sequence which is used to 
emulate the "target" machine. We will continue to call this processor a 
microprogrammable processor. 

2) A processor with very small data types (e.g., 8-bit words), a relatively 
limited instruction set, and usually implemented in one or a small number 
of LSI packages. The most common examples are the Intel 4040, Motorola 
6800, and the Intel 8080. The character (or digit) oriented processor is 
not considered in this paper. 

3) Any processor whose registers, data paths, and arithmetic unit are 
implemented in a small number of LSI components. For example, the 
DEC LSI-11 and the CMU-11, a PDP-11 built with Intel 3000 compo- 
nents (McWilliams et al. 111 ). Here "micro" refers to the small numbers 
of integrated circuits neede A to implement the basic processor, not the 
small size of the data types. We use the term LSI microprocessor to refer 
to  these types of processors. * An LSI component is characterized as a bit-slice component if mul- 
tiple copies of the component can be connected together so as to form an 
arbitrary-width processing element. For example, by connecting together 
3,4, or 8 ADM29014-bit processor bit-slices, respectively, a 12-, 16-, or 
32-bjt processing element can be constructed. 
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developments in semiconductor technology that are having 
a significant effect on the structure of microprogrammed 
processors. Two other very important developments are 
the programmable logic array (PLA) and shifter. The basic 
structure of a PLA is shown in Fig. 5. I t  is a two-level 
combinatorial logic circuit that is "wired" for a specific 
application through masking, or metalization. The PLA 
has the same outward characteristics of a ROM except that 
it would take a ROM with several orders of magnitude 
more devices to match the function of the PLA in many 
applications. For example, a common PLA is a Rockwell 
Corporation package with 48 110 terminals [13]. ROM that 
would be equivalent to this PLA in many applications 
would require two orders of magnitude more bits. A PLA 
uses the same techniques that designers of digital circuits 
used a decade ago to minimize the number of gates re- 
quired to realize a combinatorial function. However, if the 
function to be implemented is sufficiently ill-conditioned 
(e.g., a parity tester), the PLA offers no advantage over an 
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Fig. 4. Current microprogram control units 

ROM. Instruction decoding is an example of a combina- 
torial function amenable to minimization techniques and 
hence PLA's will be very useful for providing the decoding 
of instructions that must otherwise be done with random 
logic or via a sequence of microinstructions. 

PLA's do not lend themselves to dynamic alternations; 
there is no natural addressing mechanism for each of the 
make-or-break points in the PLA structure. A dynamically 
alterable component that could be used much like a PLA 
is an associative memory (Gardner [5]). The associative 
memory can be used, for example, in emulation to assist 
in the decoding of a target machine language instruction. 
This could be accomplished by loading into each input 
match field of the associative memory the bit pattern 
corresponding to one type of instruction format; its cor- 
responding output response field is then loaded with the 
particular microcode subroutine and its appropriate calling 
parameters to be executed when its input match field is 
matched. Since the associative memory is alterable, it 
could be dynamically reloaded for each different machine 
language that is being emulated. Another use of an asso- 
ciative memory in emulation would be to use it to specify 
sophisticated, programmable I10 patterns that will cause 
an interrupt, e.g.,'SPS-41 ([18], [2]), thus making it easy 
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to emulate the interrupt structures of a wide variety of 
machine languages. However, associative memories have 
been touted for some time now as a panacea for many 
problems but have yet to be proven a cost-effective unit. 

Another semiconductor device that has made an im- 
portant impact on microprogrammable processors is the 
shifter. For example, the Signetics 8243 takes an 8-bit byte 
as input, shifts it left from zero to seven positions, zeroing 
out the leftmost bits, and presents the shifted byte on 8 
output pins. Using a package like the Signetics 8243 as a 
basic building block, larger shifters can easily be con- 
structed. The ability of cheaply implementing a fast shifter 
makes variable-length byte extraction, a common process 
in emulation, a much easier task. 

As will be detailed in the next sections, these techno- 
logical advances will lead to microprogrammable archi- 
tectures that are more uniform in structure (less ad hoc), 
easier to program, and can more efficiently emulate a wide 
variety of different and more complex instruction sets. 

As we stated in the Introduction, the right approach to 
understanding microprogramming is to examine the task 
it must perform: emulation. This view is especially ap- 
propriate given that a major trend in the use of micro- 
programming over the last few years has been towards 
more generalized emulation; this trend has occurred in' 
terms of both the number and complexity of machine 
languages capable of being efficiently emulated on a single 
microprogrammable processor. Architectures such as the 
Burroughs B1700 (Wilner [23]), which was designed for 
efficient emulation of algebraic block-structure languages, 
and SAAB FCPU (Lawson and Smith [6]), which provides 
general emulation capabilities in a high-speed processor, 
are examples of this more general approach to emulation. 
This trend should be heightened in the future as the va- 
riety and complexity of tasks being programmed on a 
single processor continues to increase. Thus this section 
spells out in detail the task of emulation and through this 
discussion indicates the appropriate representational 

framework and associated operations for efficiently per- 
forming an emulation (interpretation). In the next section 
we tie together our observations on emulation and tech- 
nology to predict the future evolution of microprogram- 
ming. 

An interpreter can be characterized as a system that 
carries out the execution of a program in one,representa- 
tional framework by dynamically mapping each statement 
(instruction), a t  the point it is to be executed, into an ex- 
ecution sequence of statements in another environment 
which realizes the semantics of the mapped statement. 
Given this definition of interpretation, emulation could 
be defined as the special case in which the interpreter maps 
into an environment which is directly executed by the 
hardware (e.g., in a microprogrammable machine, this 
environment would be microcode instructions). However, 
this type of distinction between interpretation and emu- 
lation is often very fuzzy. For example, consider the in- 
terpretation of the IBM 7090 on the IBM 360/65 which 
involves the use of two environments (Tucker [20]), i.e., 
360/65 microcode and 360 machine code which is, in turn, 
emulated in the microcode. 

This example also points up the difference between 
actions which are done solely for the sake of interpretation 
control and information (mapping actions) and those 
which actually cause the interpreted program to be exe- 
cuted (execution actions) (Mitchell [12]). In this example, 
mapping actions were programmed in a different repre- 
sentation environment than execution actions, respectively 
360/65 microcode and 360 machine language. As will be 
discussed later, the appropriate environments for ex- 
pressing these different types of actions and the interface 
between them is one of the keys to understanding the ev- 
olution of microprogrammable processors and how the 
emulation task differs from other computational tasks. For 
example, the SAAB FCPU explicitly recognizes the dis- 
tinction between mapping and execution actions by pro- 
viding separate, asynchronous processing elements for each 
type of action. 

The other key to understanding the emulation process 
is based on a static view of this process in contrast to the 
dynamic view in terms of mapping and execution action 
so far presented. A static view of emulation comes from 
understanding the relationship between the two environ- 
ments the emulator operates on (maps between), i.e., the 
environment to be emulated (machine language) and the 
environment directly executed by the hardware (microcode 
language). An environment consists of: 1) a data and con- 
trol state image which includes, for example, in a conven- 
tional processor, its set of working registers (accumulator, 
index register, program counter, interrupt register, etc.) 
and its main memory which hold data and program; 2) a 
set of primitive actions which can be used to modify and 
test the state image; and 3) a set of control rules which 
decide, based on the current status of the control state 
image, the sequence of primitive actions to execute. The 
ease with which each of these aspects of an environment 
to be "interpreted" can be imbedded into the corre- 
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sponding aspects of the "execution" environment is one 
of the main determiners of the efficiency of the interpre- 
tation process. 

The state diagram of one step in the emulation process, 
Fig. 6, represents both static and dynamic aspects of the 
emulation process. The left-hand side of the diagram 
represents the effect of executing an instruction of the 
emulated computer on the state image of the emulated 
computer. The right-hand side represents the sequence of 
transformations that the microprogrammed processor 
must perform on its own state image in order to emulate 
this instruction. In terms of this diagram, efficient emu- 
lation occurs when: 

1) The data and control state image of target (emulated) 
machine can be easily imbedded into host (micropro- 
grammed processor) machine. 

2) The decoding and control sequencing function can be 
implemented efficiently. (In conventional instruction sets 
most of the work involves decoding, but in the emulation 
of higher level languages, much less of the total effort is 
spent on decoding.) 

3) Microinstruction semantics can operate on the im- 
bedded state image of the emulated machine in the same 
way the emulated instruction does on its state image. 

In the initial use of microprogrammable processors for 
emulation, each of these aspects that contributes to effi- 
cient emulation could be easily attained because the en- 
vironment(~) to be emulated was known before the design 
of the processor. This prior knowledge resulted in the de- 
sign of a microprogrammable processor that had a state 
image and instruction semantics that were compatible with 
the emulated environment, and a hard-wired version of the 
mapping action (control and decoding) between environ- 
ments. However, as unanticipated and more complex en- 
vironments began to be emulated a more general approach 
was needed: 

1) a generalized decoding structure; 
2) a means of statically reconfiguring, for the duration 

of an emulation, the state image, control structure, and 
primitive operation of the execution environment so that 
these aspects more nearly match those of the emulated 
environment (Lesser [9]); 

3) a means of dynamically modifying the microinstruc- 
tion semantics based on parameters which are specified 
in the emulated instruction, i.e., microinstruction as a 

parameterized template (Lesser [B ] ) .  Another way of 
viewing this requirement is the need for clean, efficient 
interface between the output of mapping actions and se- 
mantics of execution actions. 

These requirements for generalized emulation together 
with the technological advances described in the last sec- 
tion, have led to the following concepts being incorporated 
into more advanced microprogrammable processors: 

1) Flexible bit extraction and manipulation for gener- 
alized decoding: 

a) barrel shifter and mask capability (B1700, 
FCPU); 

b) insertion of data in an arbitrary field of an in- 
ternal register (FCPU). 

2) The concept of residual control as a way of configuring 
the environment: 

a) set up gating patterns between registers and 
buses (QM-I); 

b) set up mode of arithmetic, i.e., one's complement, 
BCD, etc. (B1700, FCPU); 

c) set up word length of data which will be applied 
to arithmetic operations, memory accesses, and 
stores (B1700, FCPU); 

d) pseudointerrupt register for embedding control 
structure of emulated machine (MLP-900, 
Lawson and Smith [6]). 

3) Microinstructions as parameterized templates: 
a) indirect address of general registers, shift count, 

ALU function (MLP-900); 
b) execute-command (B1700, FCPU). 

This list of features when taken as a whole sheds some 
light on what are the appropriate components of an envi- 
ronment (microprogrammed processor architecture) for 
general-purpose emulation: 

1) a primitive unit of information which is the bit 
string; 

2) a capability for dynamically reconfiguring both the 
internal and external environment of a microprogram- 
mable processor, i.e., word width, number of general reg- 
isters, control structures, register bussing connections, 
arithmetic mode, etc.; 

3) a capability for constructing complex-address map- 
ping functions. 

These are capabilities that are desirable in almost all 
types of computer environments. The important point is 
that they are crucial for effective emulation, i.e., these 
features should be looked a t  in terms of a matter of degree 
rather than specific function when comparing with other 
task domains. 

The future of microprogrammable processors will in- 
evitably result in a more generalized version of these con- 
cepts as technology permits. However, the aspect of 
microcomputer architectures that will probably receive the 
most attention in the next ten years is their control 
structure. The control structure will play a more important 
role in future years because one of the dominant trends in 
~rngramming languages is towards more complex control 
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structure (i.e., coroutine, data flow models, parallelism, 
etc.). Inevitably, these more complex control structures in 
future programming languages will be reflected in the 
target machine languages. 

IV. HARDWARE AND SOFTWARE INTERPRETATION 
TECHNIQUES 

We now consider in this section hardware and software 
techniques that result from a consideration of the re- 
quirements of emulation processes and the possibilities 
provided by (semiconductor) technology. Then advances 
in technology can be related to advances in techniques and, 
hence, to resultant advances in computer systems. Since 
microprogramming is simply a variation of conventional 
programming in terms of the desire for generality and ease 
of coding, advances in microprogramming will likely follow 
the same pattern already seen in assembly level pro- 
gramming over the last 25 years. This is especially true 
given the trend towards more complex and varied in- 
struction sets which will require writing of many large 
emulators, each supporting a complex run-time environ- 
tnent, e.g., PL/I machine, operating systems machine, etc. 
Since emulation is the major application of micropro- 
gramming, specific programming support will be accented. 
With advances in technology offering more storage ca- 
pacity and functional processing per unit area (at low cost), 
hardware structures will become more flexible thus pro- 
viding a general environment for interpretation and em- 
ulation. Since sections of general structures usually go 
unused in any single application, the cost or cost-perfor- 
mance of generality is rarely acceptable to all. However, 
the added cost of generality may be borne by improved 
technology, thus providing the user with more functional 
capability at  a constant cost. In contradistinction, the 
consumer market for computers requires the lowest pos- 
sible cost and, so, will trade generality for cost. Here, 
technology is used to lower cost while keeping the appli- 
cation specific. 

In addition to the techniques detailed in the last section 
for general-purpose emulation, there are also techniques 
for making it easy to microprogram many large emulators. 
A list of techniques, in approximate order of increasing 
generality, include the following. 

1) More high-speed working registers: Efforts to mini- 
mize the size of the processor state is not as strong in mi- 
croprogrammed processors as it is in more conventional 
processors. 

2 )  Larger control stores: Much of the current involuted 
character of microprograms is a result of squeezing a 
complete emulator into a small space (e.g., 256 words) and 
more reasonable (micro-)programming will be possible 
with larger control stores. 

3) N-way branches (case statements): The ability to test 
several conditions and branch to any of several sections of 
code which service them. 

4) (Micro)subroutines: The ability to invoke a function 
or reference data specified indirectly a t  a higher level. 

5) Memory management: Multiprogramming is already 
a common practice. For example, emulators for central 
processors, several 110 processors, and microdiagnostics 
often reside in the same control store. Problems of pro- 
tection, relocation, and using overlays or paging from 
backing stores are issues of emerging concern in micro- 
programming. 

6) (Micro)interrupts: Useful when multiple emulations 
are being run on the same processors. 

The hardware components which initially supported 
microprogramming were adequate speed ROM's and 
multiplexers. ROM7s provide tables to encode, decode, and 
sequence control. Multiplexers extract fields, assemble 
conditions for testing in parallel, and select control infor- 
mation from registers containing the higher level in- 
structions (indirect control) rather than from the microde 
(direct control). The next advance came with the avail- 
ability of high-speed, random-access, alterable memory. 
With these, microprograms are easily corrected, extended, 
or swapped for those which provide different functions, 
for example, machine diagnosis (microdiagnostics). More 
recent advances in technology have made available low- 
cost, small-sized shifters, associative memories, PLA's, and 
decimal arithmetic units. The fast shifter is the most im- 
portant of these since it easily extracts fields from in- 
structions being interpreted or data from special formats, 
such as floating point numbers. 

To understand the implication of hardware and software 
techniques it is necessary to consider their application. The 
next section provides detailed examples. At this point the 
uses of microprogramming can be decomposed into two 
dimensions. The first qompares designs by the level of 
language supported. The range includes assembly, inter- 
mediate, and high-level languages. The second dimension 
orders machines by the number of environments sup- 
ported, typically subdivided in two classes, one and many. 
Over the last decade the number of environments has in- 
creased and their level has risen from the assembly toward 
the procedure oriented. In the past when several envi- 
ronments were provided, one a t  a time was selectable from 
a small, fixed set. 

By observing the development of assembly-level pro- 
gramming techniques and by observing the parallel de- 
velopment of microprogramming so far, a reasonable 
prediction would be the continuation of the trend. If so, 
the next step will be the generalization and sharing of re- 
sources a t  the microprogram level. First, relocation and 
protection schemes for alterable microstores will be de- 
veloped. Then memory management and demand paging 
(caching) schemes to effect the ability to run large micro- 
programs in comparatively little physical space will be 
included. The dynamic allocation of microstore address 
space will probably require a microoperating system with 
fewer tasks than conventional ones but many similarities 
with respect to space allocation techniques. To facilitate 
writing and checkout of so much code, high-level languages 
designed for microprogramming will be developed, just as 
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they are now being used more and more as a tool for de- 
veloping system programs today. 

To support these advances in microprogramming soft- 
ware, hardware must be provided. The most important 
advance on present components is larger microstores made 
possible by faster and denser memories. As an alternative 
to a fast, large microstore the cache structure could be used 
to combine a small, very fast primary microstore with a 
larger, slower secondary one. Similarly, demand paging 
requires a fast swapping medium. This might be provided 
by a high-speed, low-capacity solid-state disk with low 
latency. 

Given the ability to execute so much microcode what use 
might be found for it? Extrapolating from today's ma- 
chines and keeping the needs of emulation in mind, one 
natural application would be to provide multiple pro- 
gramming environments. By this is meant a time-shared 
computer system whose users divide into classes each re- 
quiring the same environment. Some of these would be 
machine languages for older machines, others would be 
intermediate, high level (Fortran, PLII, Cobol), or appli- 
cation oriented. The high-speed shifter is useful in all of 
these to extract fields. Emulating earlier machines would 
be made easier by the use of a programmable PLA or as- 
sociative memory (to replace logic not conveniently em- 
bedded in memories due to the large number of inputs). 
Finally, note that the provision of multiple environments 
is a problem in multiprogramming and, eventually, as more 
environments are desired, in time sharing. 

The various microprogrammed processors can be 
characterized along evolutionary lines, which in turn 
roughly correspond to their implementation complexity. 
One of the earliest computer implementations, Whirlwind 
I (Everett 131) formulated the control part as an encoding 
in a changeable, diode array memory (see Fig. 1). From this 
Wilkes extended the coding and coined the word "micro- 
programming" (Wilkes [22]). 

A. One-Machine, Integrated Control, and Data Part 

With the availability of fast, read only, random access 
memories, processors with a single, fixed instruction set 
were designed. These early designs permitted instruction 
sets with more complex data operations (e.g., multiply, 
divide, double precision). The most notable design of this 
type, the IBM System1360 (Blaauw and Brooks [I], Ste- 
vens [19]) was actually a set of about 10 computer models 
implementing the same instruction set covering a perfor- 
mance range of about a factor of 300 and a price range of 
about a factor of 100. Over half of the models were imple- 
mented using microprogrammed control interpreters. 

plemented in a single processor, the natural extension is 
to implement several machines. The earliest implemen- 
tations of multiple instruction sets in a single physical 
machine used conventional programming. First-genera- 
tion, cyclic-access, drum-memory computers were "emu- 
lated" using higher speed, second- and third-generation 
computers with RAM'S. 

An early and extensive use of multiple, fixed machine 
emulations occurred with the IBM 360 microprogrammed 
processors as they were used to implement the IBM Sys- 
tern1360 instruction set, the 360 110 processor instruction 
sets, and several models of earlier IBM computers. How- 
ever, the design methodology of these computers is not well 
understood. An approximation to the design process for 
these machines appears to be: first the primary machine 
(in this case the 360) is designed; the various other ma- 
chines to be interpreted are then added to the design by 
installing their idiosyncrasies (e.g., carry and overflow 
conditions, state, and special data path breaks) (Tucker 
[20], Fuller et al. [4]), and making it easy to decode their 
instruction formats. 

C .  A Variable Group of Conventional Instruction Sets  

Given that a single machine can be built that imple- 
ments several conventional instruction sets (sequentially), 
can a machine that implements several instruction sets, 
but on a variable basis, be built? In effect, Standard 
Computer Corporation attempted such a design in the 
IC-model4 and later the MLP 900 [16], [17]. The main goal 
of the MLP-900 was to implement an IBM 360, together 
with other undefined machines, e.g., PDP-10, etc. In es- 
sence, the machine was designed with much generality 
using multiple register sets and a two-stage pipeline for 
instruction fetching and instruction execution. The vari- 
able parts, which cannot be emulated easily by sequencing, 
were brought to a 4-position, multiple-pole, electronic 
switch, which permitted up to 4 variable parts to be se- 
lected. Each variable part consisted of special-purpose 
logic to assist in a specific emulation. The myriad of details 
associated with the 1/0 section (e.g., channels and device 
state words) add more to the system definition job than the 
central processor itself. 

Currently, there are no commercially viable machines 
that emulate a set of conventional machines (i.e., archi- 
tectures) on a variable basis. I t  appears that the machines 
to be emulated must be determined a priori, in a fixed 
fashion. Such a machine would permit any one machine 
to be emulated a t  a given instant by loading its memory 
with the information necessary to interpret the target 
machine. Although this has been done when a large ma- 
chine interprets another machine, the implication in such 
a task is that the speed of emulation is essentially that of 
the target machine. The necessary hardware for this task 

B' A Fixed Group O f  Conventional Instruction Sets should be available in the near future and such systems can 
Given that a single machine instruction set can be im- appear by 1980. 
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TABLE I 
Emulation Subtasks for each of the Major Machine (Language) 

Levels 

Level 

Machine 
language 

BASIC and 
many sys- 
tem prog. 
languages 

FORTRAN, 

w1, 
ALGOL,  
etc. 

LISP, 
SNOBOL,  
Simula/67, 
APL, etc. 

Sequencing Instruction Instruction Operand I fetch / decoding accessing 1 :;::ations 

:onditional 
xonch, sub- 
.outines 

fixed 
format 

iteration 

medium 

immediate 
indirect 
indexed 

medium 1 medium I low 1 medium I medium 

add, multi- 

ply,  or, 
complement 

high 

simple 
syntax 

block 
structure 
recursion, 
coroutines 

high 

subscripted 
data struc- 
tures 

parol l i l  pra- 
cesses, syn- 
chronization, 
message sys. 

high 

sine, cosine, 
matrix oper- 
ations 

high 

I I l inked lists, 
associative 

medium 

vector opera- 
tions 
garbage col- 
lection 

high 

low 

low 

D. A Single Higher Level Language Interpreter 
Machine 

Since the use of higher level algebraic languages (e.g., 
Algol, Fortran) and more natural textual languages (e.g., 
Cobol) there has been a substantial interest in the devel- 
opment of hardware that would interpret the languages 
directly. To date, several machines have been built for 
single languages (using directly hard-wired techniques), 
and a number of machines have been microprogrammed 
to interpret languages directly. These designs have not 
resulted in any particular insight about direct language 
interpretation. The implementations execute the object 
target language faster than the nonmicroprogrammed 
counterparts, and the speed improvements hold no sur- 
prises; the faster memory of the microcode, together with 
the small, register transfer primitives, provide the im- 
provement. 

low 

E. Interpreting Many Lunguages Directly with a 
Single Machine 

To date, only the Burroughs B1700 (Wilner [23]) has 
been built with the goal of either the direct interpretation 

medium 

or the compiling and execution of several higher level 
languages. In that it  is able to interpret the various lan- 
guages, and encode the object code in a space of roughly 
one-half that of a conventional small computer (the IBM 
System 3), it  is successful. However, its success as mea- 
sured by execution time is not clear for one would also 
expact a factor of 2 increase in the execution of the object 
code. There has been no attempt to compare the execution 
time on a technology-normalized basis. The B1700 has also 
been used in the direct interpretation of several conven- 
tional machines (e.g., IBM 1401 and Burroughs B2500). 
Considering all factors, the B1700 appears to be the most 
general of the microprogrammed machines in exis- 
t e n ~ e . ~  

medium 

F. Special-Purpose Machines 

An especially interesting evolution of microprogrammed 
machines has occurred for the interpretation of array data 
for matrix and vector operations, including time-series 

As measured by ability to access any bit in memory, to have arbitrary 
length microcode in any memory, and to operate on variable length field 
with both binary and BCD formats. 
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evaluation (e.g., fast Fourier transform). The IBM 2938 
is an example of an early connected processor that per- 
forms this function. Most recently, a 3-processor system 
for these operations has been developed and is attached 
as a peripheral to a conventional minicomputer [18]. The 
three processors are functionally separated for: fetching 
data from the attached computer, collecting analog inputs, 
and storing the results back; moving data from the local 
array in the right order for the arithmetic part; and the 
arithmetic part. 

Although less exotic than array processors, micropro- 
grammable processors are finding increasing use as effi- 
cient ways to implement I/O processors and 110 control- 
lers. The IBM 3830 Storage Control Unit, which controls 
3330 disks, is an excellent example of the use of a micro- 
programmable processor as 110 control unit. 

VI. CONCL~JSIONS AND FORECASTS 

In this article we have reviewed the most important 
constraints within which successful microprogrammed 
processors must operate: semiconductor technology and 
the task of emulation. We think these two constraints will 
have the strongest influence on the future direction of 
microprogramming. In fact, as we have stated in the In- 
troduction, there is a good case for dropping the term mi- 
croprogramming altogether and simply realizing that many 
processors are designed to efficiently emulate the in- 
struction set of "target" machine architectures. 

The major impact of semiconductor technology on mi- 
croprogramming is to provide large and fast control stor- 
age. Moreover, the emergence of LSI microprocessors, 
programmable logic arrays, and fast shifters will have a 
significant effect on microprogramming. 

Our review of the requirements of the emulation task 
pointed to a number of central concepts that are required 
for efficient emulation. Table I summarizes the major di- 
mensions of emulation for different levels of target ma- 
chines. In each cell the importance of each subtask is in- 
dicated and new concepts or capabilities, not used by a 
subtask a t  the previous level, are noted. 
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