
Computer Structures are Changing: Will UNIX Change with Them?

-C. Gordon Bell
Steve Emmerich

Ivor Durham '

Daniel P. Siewiorek
Andrew Wilson

Encore Computer Corporation
15 Walnut St.

Wellesley, MA 021 81
uucp address: encore!emrnerich

ABSTRACT

The UNIX operating system does not adequately support a significant,
emerging computer structure: the Multi (symmetric shared memory, multiple
microprocessor) computer. This paper offers reasons why the Multi, in particu-
lar, is a significant computer structure, and describes some of the reasons that
developing and executing applications built to use multiple cooperating processors
will require facilities beyond those found in UNIX. We argue (a) that multipro-
cessor and distributed computers for which UNIX is not currently well suited will
dominate in the next decade; (b) that in order to make UNIX and the notion of a
popular, non-proprietary OS survive, the UNIX technical community should
focus on providing appropriate support for these new computing structures; (c)
that progress towards such support should be shared in a forum sponsored by
USENIX (called the ltMulti- and Distributed UNIX (MAD- UNIX) forumt1), so
that progress is in the hands of a coalition of sponsors, not in the hands of a sin-
gle company, in order to avoid the tendency for the standard to become
proprietary or to ossify.

1. The Multi -- An Important New Architecture

One important, emerging computer structure is the Multi, or multiple microprocessor com-
puter.

Multiprocessors consist of two or more processors capable of independent instruction execu-
tion and able to access programs and memory held in a common, shared memory. Mainframes
have been built in multiprocessor configurations with two to four processors, such as the Bur-
roughs B5000 (a dual symmetric multiprocessor), the IBM System 370 and 308X series computers
(ranging up to a quad processor). Larger multiprocessors were not successful (a) because switch-
ing and cabling cost overhead grew as the product of the number of processors and memories,
and (b) because due to program sharing, a multiprocessor with N processors requires faster, more
expensive memory than a uniprocessor requires, whose cost exceeds that of N separate, slower
memories.

The Multi composed of microprocessors alleviates the cabling/switching cost issue by using
a fast, inexpensive and short central switch or llbustl for all communication between processors,
memories, and input/output devices (impossible for physically larger mainframes). Advances in

memory cacheing technology addresses the memory cost issue by providing a fast memory subsys-
tem using high speed, expensive cache memory and lower speed, cheap main memory, while in
many implementations allowing for full data concurrency between all caches in a system.

As a result, the small size, low cost and rapidly increasing performance of microprocessors
enable the design and construction of computer structures that offer significant advantages in the
design, manufacturing price-performance ratio and reliability over traditional computer families
implemented from TTL and ECL semiconductor technologies. Current, commercial Multis typi-
cally consist of 2-28 microprocessors, common memories and input/output devices which com-
municate across a fully shared bus structure. [Multiprocessors with different interconnection
schemes between components also exist, but they tend to be specialized for high performance in
limited application areas.]

There are several commercial Multi's, built by companies such as Sequent, Arete, Synapse,
Intel, and Encore, each with different processor-memory-in-out interconnect, configuration capa-
city, and cost. As an example, Encore's Multimax is a Multi designed for high- performance pro-
cessing and high input-output data rates. Up to 20 processors with caches can be plugged into
the bus (on ten modules), along with up to 32 megabytes of completely shared main memory.
The bus and system architecture permits 1024 processors to address 4 gigabytes of physical and
virtual memory, permitting expansion as higher degrees of component integration are achieved.
The system's bus, the Nanobus, transmits 100 megabytes per second, sufficient for anticipated
increases in speed of CPU chips (and resulting increases in bus loading from memory accesses)
for many years. Terminal and workstation access is via one or more local-area networks.

2. Operating Systems on Multi's

The Multi structure is well-suited to high-speed of data connectivity between multiple CPU's
(via shared memory), and fast synchronization between processors (via test-and-set type opera-
tions, and interrupts). An operating system can achieve high throughput in real-time, timesharing
and transaction processing applications, by dynamically distributing jobs among CPU's. In a
multiprogramming (timesharing) environment, throughput (the number of jobs completed per
unit time) is incrased by dividing processes among the many processors in a way that is tran-
sparent to users. In real-time applications, one or more CPU's can be dedicated to device polling
and/or interrupt handling as well as data transfer to mass storage, while other processors control
the general programming and administrative environment. Since each process will typically spend
25 to 50 percent of its time in the UNIX kernel, UNIX must be adapted to allow multiple proces-
sors to be operating in the kernel simultaneously (as AT&T, Sequent, and Masscomp have
described at these conferences). For many scientific and engineering applications in which data
sets can be partitioned and operated upon in parallel, multiple CPU's can be applied to a single
problem simultaneously to achieve speedup, enabling the Multi to get results at the speed of much
more expensive computers, but at a fraction of the cost. Likewise, in commercial transaction-
processing and database operations, processors can be working in parallel through partitioning of
datasets or transaction steps to increase transaction rates and improving response time,

3. Applying Multiple Processors to Speed Up a Single Job

Consider the following idealized scenario on the development of a parallel program. There
is a critical application program on a uniprocessor which has become a productivity bottleneck
(e.g. VLSI design rule checker, partial differential equation solver, etc.). Dynamic parameters
from the uniprocessor version are measured, such as instructions between accesses to key global
data. The parameters are utilized in existing performance prediction models to determine the
number of processors that can be effectively utilized. With the optimum number of processors as
a guideline, the user creates a suitable parallel decomposition for the algorithm, and sets up a

simulation with automatic generation of a synthetic workload. The instrumentation, data collec-
tion, and data analysis primitives and tools are used to locate bottlenecks and contentions. Once
the synthetic workload has been balanced, the programmer replaces each synthetic process by
actual code.

Clearly, the desire to exploit concurrency within a particular piece of software increases the
complexity of the overall task. In the experience of researchers at CMU, there are two major
differences between sequential and parallel programming. The first is the requirement that the
speed of data communication and synchronizaton between processors take advantage of the speed
of the shared memory between processors, to maximize aggregate performance. The information
communicated between processors is comprised of raw data to be processed, plus information to
synchronize tasks so that the integrity of the information is maintained. The second difference is
the control of concurrent activities. Controlling concurrent activities involves not only scheduling
tasks so that the "producersff deliver information in time to keep the "consumersu busy, but also
the need to stop and start collections of activities together, and to avert undesirable interactions
including both contention and deadlock in the sharing of resources. Both communication and
control ibsues have been addressed in distributed systems interconnected by Local Area Networks.
However, the high-overhead solutions for loosely coupoled LAN's are not appropriate for tightly
coupled shared memory multiprocessors. Communication and control on multiprocessors has
been the subject of study on C.mmp and Cm* at CMU, Ultracomputer at NYU, and TRAC at
Texas. Experience shows us that special scheduling algorithms, IPC mechanisms, data abstrac-
tions, and tools are needed to assist with parallel program development and execution. (A bibliog-
raphy on these topics are being distributed at the conference, separate from the Proceedings).

The complexity of developing parallel programs suggests that a llParallel Programming
Environment" needs to be devised, in which each step of design, specification, implementation,
instrumentation and debugging are supported by tools.

The design stage should provide various models of computation including proven templates
for typical techniques of parallel processing. Some of these are as follows: parallel decomposi-
tion (e.g. master-slave, pipeline, asynchronous, synchronous, multiphase, partitioning, and tran-
sactions); templates for high availability and fault tolerance (e.g. journaling, shadow processes,
duplicate and compare, replicate and majority vote); and performance prediction models (e.g.
speed-up prediction as a function of parameters measured on a uniprocessor version of an algo-
rithm). Because performance will be even more sensitive to design in a parallel environment,
tools for creating synthetic workloads and simulating multiprocessor contention (both hardware
and 0 s) would be useful.

I

Tools for defining data abstractions and their functionality, and the synchronization
mechanisms for those abstractions, would assist in the specification, implementation, and debug-
ging phases. Libraries of such abstractions could be built up that have well understood cost, per-
formance, and reliability characteristics. Extensions to programming languages should be pro-
vided to describe concurrency. Structure editors would be available to assist writing of syntacti-
cally correct code, and compiler and run-time checks should be included for semantic checking.
The debugging and instrumentation stage should be supported by facilities for managing multiple
activities, e.g. starting, stopping, and scheduling of events, as well as notification upon detection
of a set of events.

4. How can we Cooperate To Support Distributed and Parallel Processing?

Several vendors have adapted UNIX to multiple processors by allowing multiple threads of
execution through the kernel,- but this level of support does not address how the aggregate com-
puting cycles of Multi's can speed up the time to perform single applications that are organized as
multiple tasks or processes. Research in alternative computer architectures, operating systems,
languages, and algorithms is not likely to provide answers in the near future. This is up to us,
the UNIX community, to learn and adapt to UNIX technology.

Until now, the motivation for changing UNIX has properly been to make it more fully real-
ize its original intended purpose of being a better, more portable timesharing environment that
exploits its underlying hardware, particularly for software development and technical documenta-
tion preperation applications. Support for evolutionary hardware developments such as virtual
memory and peer-to-peer networking were successfully added, largely as a result of public
domain, government-funded efforts at U.C. Berkeley. More recently UNIX has been adopted as
a workstation development and execution environment, and as a multi-tasking OS for PC's.

It is ironic that after having been a source of much creative change in OS development over
the past 15 years, UNIX(tm) is commercially supported and subject to pressure to be standardized
when it is least suitable for supporting the fastest-growing computing styles and most cost-
effective hardware structures. Networking, bitmap displays, and multi-processors are the new
components of these computing structures and styles which UNIX does not succeed in managing
very well. In order to manage these hardware resources properly, UNIX clearly must support
integral networking (or better capabilities for integrating network- based systems capabilities into
the operating environment), and flexible distributed resource sharing and control between hetero-
geneous machines. Progress is being made in this direction, notably by SUN and AT&T and
numerous universities. More progress could be made towards supporting closer control by data-
base and transaction processing systems over process and task scheduling, and disk access, for
improved performance, as these are areas where much research and practical systems building has
taken place since the UNIX filesystem was invented. In addition, UNIX must provide suitable
constructs for supporting diverse bitmap displays that provide heterogeneous graphics services
and windowing facilities. This is an area in which must experimentation is occurring, as it is not
very well understood yet how screen objects, operating systems, and languages ought to interact
for good performance and flexibility.

Interested members of the USENIX Association could make a difference in addressing dis-
tributed and parallel processing needs in UNIX, and in helping to shape a good development and
execution environment for distributed and multiprocessors with UNIX, by joining Encore in the
founding of the "MAD-UNIX forum." We would like to discuss with you appropriate mechan-
isms for participants to share ideas, over the network or in person.

It is our belief that if UNIX does not evolve fast enough to support distributed resource
sharing across networks, and parallel applications on Multi's, other proprietary OS's will. Given
how significant we believe the Multi structure to be, this could mean that UNIX could become
AT&T's operating system for their computers, and merely a vompatibility interface" for other
successful computers. Though possibly inevitable, the loss of momentum behind UNIX as an OS
for the future (rather than the past) would be a loss for all of us who believe that UNIX can con-
tinue to be a source of creative, practical ideas in computing.

