
- -
- - - -

_ __-_. -__-_____ __C_(__,I_______l" - - - . --". - - -..- -.- -
--.---.--.-----------.-.. -- * -3

---.-

--

George E. Rossmann C. Gordon Bell
Palyn Associates, inc. Digital Equipment Corporation

hlichael J. Flynn Frederick P. Brooks, Jr.
Stanford University University of North C a r o l i ~ ~ a 3!. Ch;q:ei Hlli
Salnuei Ii. Fuller Herbert Heilermm
Carnegie-hlcllon University State University of New York at Ding!~arnpton

Module 0 - Preface

The subject of cornputer architecture as curl-ently taught
in I I I O S ~ coniputer engineering and computer science
program is a mixture of architectural principles,
organizatio.ra1 stiategies, and ixnplerne~itation techniques.
This bluriing of the hierarchy of system levels that
characterize the structure of a computer has made it very
difficult for students (and often instructors 3s well) to
determine what were the forces that led t o the design
decisions they have seen reflected in machines.

Guidance for the develi>pment of courszs in computer
architecture 113s come from the AChl Curriculum
Committee o n Computer Science [AChI68] and the
COSIKE Committee of thc Conlmission on Engineering
Education [COS68] . I n - , I968 these committees both
proposed syllabuses for a course in coniputer organization.
The AChl comniittce a l s ~ pl.oposcd tlie content for an
advanced course in cornputer organization. Thc ~llatcrial in
these courses is characterized by the confusing mixture of
topics we 11we aiready mentioned. The courscs also suffer
other short(:on~ings. They contain sketchy topic outlines
rather than detailed spec~ficntions. They pay insufficient

attention to the fact that t o a u x r the ec,seritial part of any
cornputer system is its visible facilitks: language procekors,
operating system, and other software. Tilerefore, they d o
not support the integration of i~srdware and software
design that is required to create conip!!tt'r systems which
satisfy t ix user. I:inally, cbmputlng e ~ ~ v i l m n i e n t s and basic
technologies have chenged significant!^ since the AChl and
COSINE committees made tl:eir rc.conirnendations, and
these changes need t o be reflected - i n a computer
a rch i t~c iure course description.

In view o r these circurnsra~ces, a t x k force was
cstablished by the IEEE Coniputer Socicty to prepare a
detailed specification for a course of study in computer
archi!ecture for students wlioje ,iiajor interest is in
conipbtel engi~iecri~:g or c~)l;ip:liCr science. The members of
the task force were: George E. f?o-,sr:inriii. cliairn~nn, Palyn
Associates, Inc.; C. Gordon I.'cll, Digital Equipment
corpora tic!^; Frcderick P. ilrooks, Jr.. U~iivcrsity of North
Carolii!a, Ch:i;x! IIill; hiicl~acl J . Flynn, Stanford
University; Snnluel 11. FuIIcr, Ca:wgie-hlellon Ilnivcrsity;
Ilcrhcrt Iiellern~an, State University of New York a t
B i n g l ~ a ~ n i ~ t o n .

COMPUTER

Plan of the Report

. 'The structure of this report has been motivated by three
considerations. First, the report is concer11i.d primarily with
computer hardware architecture. Second, tlie course of
study is intended for students for whom computer
architecture supports their interest in computer engineering
o r computer science. These people need to be familiar with
all of the topics discussed here. This course of study is not
sufficient, however. for the training of tlie professional
computer architect. The introduction t o hlodule 1 explains
why. Third, the universities using this report will vary
considerably with respect t o plans for packaging thus
material into academic courses, instructor capability,
student ability, and studefit preparation.

The first and second considerations determined what
material should be included, and the third consideration
determined how it should be organized. The material
presented has been restricted t o those topics xvhich we feel
every computer engineer and computer scientist ought t o
know and t o those computer systems which have been in
the mainstream of commercial equipment. As a result,
topics such as the early history of computers: parallel,
pipeline, associative3 and array processing; the effectiveness
of various machine structures in performing various
computations; implementation details including busing
structures and interfacing conventions; and switching
structures have been conciously excluded from this course
of study. We have organized the material presented into 1 1
modules, each dealing with a fundamental aspect of
computer hardware architecture. The modules are:

Ti:lc

Introduction and XIeta Representation

Data Representation

Instructions and Addressing

Interpretation and Control

hlemory herarchies

Protection hlechanisms and Hardware
Aids t o Supervision

Specialized Processors

Multiple Computers

Performance Evaluation

Reliability

System &sign Evaluation

The packaging of these modules into academic courses is
up t o individual instructors. However, they must generally
be taught in the order indicated. The material in modules 1
and 11 may be interspersed throughout tlie course of study
rather :ban being treated as stparate items. \Ve have tried t o
help by sugest ing the amount of time u.lGch should be
devoted t o each module and its sub-topics, and by precise
specification of the references which support each topic.
One grouping of the modules we have found effective is:

hlodulc 1 : h1c:a Representation
Modi~ltls 2-51 Clds~cdl PI u~essor lXc11lory /Switch

Aspects of Compute; Architecture
hlodules 6-5: Aspects of Systems Architecture
Modulcs 9.: 1 : %valua;ion hfz:ho& and Analysis.

In addition, depending upon the composition o f the class.
whether computer engineers or computer scientists, the
instructor may choose t o cmpllasize, respectively, the
hardware i~nplementation or software enginecring con-
sequences of various arclutectural decisions.

We believe that it is possible within the scope of t!iis
course of s!udy to undertake term projects that involve
design. However, it was unfeasible for us t o offer guidance
in this area. Instructors will have t o define projzcts based
on their resources and the abilities of thcir students. There
is, of course, a temptation t o d o a machine sketch, but the
cormnittee does not. encourage such a project because \ye
feel that the essence of the design process lies in probing
deeper than the sketch level t c understand the inter-
relations between various design decisions.

The only textbooks currently available that cover a
reasonable amount of the material proposed in this course
of study are: Computer Srnlcrures: ReaJir~gs. m7d
Ekamples, C . G . Bell and A. Newel1 [BEL71] ; Digital
Contpurer System ~rinci&s, H. Ilellerman [HEL73 j : and
Itltrodricriorz to Curuprrter Architecture, H . Stone (ed.).
[ST075] . i
Background 1

T o be prepared for this course of study in computer
arch~tecture the student should have a good understanding
of (1) p;ogramming in borh assembly language and
higher-level languages, and (2) how at least one simple
computer works.

The necessary experience in progranunir~g call' be
obtained from any course that introduces the notion r?f
compu?i~:g throlx$l t!ie use cf ar, s1gz:ithmic Inngu2ze E:IC!I
6 F(jRTRx:'r . . ,\. ALG9L: "i FLI . F u ~ i i i i a ~ i ~ ~ ~ ~ i i i ~ ~ . ~ ~ ~ ~ ~ i u i ~

language programming and the organization of a simpie
machine can be ,obtained from a coursz bssed 01: a k x t
such as [ST0721 or [GEA731.

It is desirable for the student either to have had a course
in logic design or t o have besn exposed t o logic design in
either of the prerequisite coursits just described. However,
since many students interested in comput:r architecture
may be engaged in software engineering programs, iv2 have
arranged this course so that logic design is not an essecti31
prerequisite.

Some of the modules require additional prerequisites
such as elementary statistics and probability, and depend
on an understanding o f preceding modules. Such
dependencies are indicated in the introducticns t o the
individual modules.

Module 1 - lntroductiori and
Meta RepresenQtion (2 Hours)

Introduction (I Hour)

What is computer architecture? A number of definitions
have been advanced. Arcl!itecturc dejcribes the dttribuies
of a system as seen by a programmer-i.e., the conceptual
structure and functional behavior, as. distir~cr from the ;
organization oT thc. :inta riow and controls. tile i o g d .
design, and the physical implernenrzticn. hrc!;itectu;e I: +

the study of those aspects in the analysis and design o i
~ ~ n t p u t c r ~ whish specifiually relate their stnlcrurz and riieir ;

function. Computer architecture is the discipline devoted t o
the design of !ughly specific and individual computers iron1
a collection of cornmon building blocks.

We decided not tcr adopt ally uf these Jtfiiiiiions.
Instedd we deiinetl computer architecture by dzcitiing what
professional architects are supposed t o do. The comni t tee
determined that the computer architect's task is to define
computer systems that use hardware and software
technologies so as to best satisfy all the users' needs,
including function, econom!., reliability, simplicity. and
performance. In carrying ou t this task, the architect must
develop an understanding of the potential applications of
each system and then bring to bear extensive knowledge of
the material in this course of study, operating systems
principles [COS71], impkmentation details, component
techologies , and many other things t o accomplish its
design.

Computer hardware systems are complex. There are at
least five levels in any implementation of a co~npute r
system:

a. processor/memor~/switch (PhlS) level .
b. programming level which includes operating systems
c. register transfer level
d. switching circuits level
e. circuit or realization level

Each level arises from abstractions of the levels below it and
is characterized by a distinct language for representing its
components, its modes of combination, and its laws o f
behavior.

The first three levels of this hierarchy are the proper
G i dJL ~.ifipsi<i h ,.... !.,. t ? : =

JIUUJ ,,ti, u\\aiC Z i ~ k i ~ ~ c i , b~~iIiisi2 iiie
architect must dec!de how to distribute the complexity
inherent in a computer s>.stem among them. Not much will
be said about soft\vare and operating systems directly, but
their influence on hardware architecture \vill permeate all
the modules. hioreover, we have tried to show how the
bou~idaries bztween these levels keep changing and how this
impacts design.

Sleta Representation (I 4 Hours)

The general problem a d d r e w d in this submoduie should
be discussed briefly t o introduce the student to the need
for fornial description. Specific notations can then be
introduced naturally when the need for them arises.
Therefore, the time allotted ~o this submodule should be
distributed throughout the course of study.

In order to cornmuniate about machines, one must have
suitable languages. Communication dialogues include
user-vendor, vendor-system designer, system designer-
programmer. student-teacher, etc. The earliest cornmunica-
tions concerning machines took the form of standard prose
and conventional mathematics (including standard and
Boolean algebra) and used ad hoc diagrams 3hd flowcharts
to describe the structure and operation of the object being
buiit.

As machines evolved into complex structures, however,
it became important to use more precise hnguages in order
to cornrnunicnte ?he d e s i y s esactly but simply. The
formality of con temporan descriptions also irnplies that
they can be understood by machines.~It is useful t o have
machine-readable descriptions of machines so that they
may be simulated and hence verified prior t o their actual

construction. For exampie, in :he case of microprograms,
programs trans la!^ the descriptions from the syntax of an
assenibkr o r compiler language into a form for
ccr,s!n!ction, s~n:ul-tion, arid veriiication. There has also
been considernble interest in translating the formal
description of each system level in a computer structure
into a realization of that level automatically.

For the high-level block diagrams that represent the
components of computer systems (e.g., c?ntial processors,
primary memories. 2nd secondary memories), there is a
need for precise descriptions simply to permit novices t o
understand them readily. Such notations also p e m ~ i t
comparisons. Dzscriptions that shuw the connectivity of a
structure lay the foundation for the automatic generation
of models for perfonnance and reliability calsulations. A
formal representation permits automatic verification and
cons:ruction of configurations. That is, a specific computer
system can become the basis for a variety of configurations
each of which depends on the number and type of
components that are used to forrn it. It is generally quite
difficult to verify that each sucli confiprat ion will be
viable when realization considerations sucli as power, floor
space, interconnection cable lengths, input-output band-
widths, reliability, etc., are accounted for.

Some aspects and uses of notations include description
of:

(a) The functional specifications of a system with
conventional prose. At the topmost level of system
description, users must express their needs and work with
conlputer archi~ects t o refin? these expi-essions in to
meaningful speciticztions through t!~e medium o f conven- ,

tional prose.
(b) The physical structure of a particular computer

system including its various processors, memories, peri-
pherals. and their interconnection.

(c) ?he instruction set with its interpretation and the
definition of data-types and ooerations on these data-types.
Such a description may be used in lieu of standard
programming reference manuals. Currently, rnost machines
are described in conventional prose, but also contain an
inforrnai register transfer notation description o f . the
behavior of each instruction. Nearly all machines have a
sirnillator written in a high-level language that runs o n
another machine.

(d) The physical organization of a particular processor,
including its registers, dcta operators, data flow, and
control. Usua!ly this is ad hoc on a functional diagram
basis. The behavior of such a s).stein is specified using
register transfer languages and conventional programming
languages. The outcome is 3 description suitable for
simulation. For microproyramrned machines the behavior is
expressed as an asse~nbly language listirrg and/or flowcllart.

(e) T!lt syritas and sen~antiz: of data structures. In
currently evolving Iiardware structures, especially corn-
munication links, more ~ ~ i i l ~ l c x da!a structures are being
directly interpretzd. The interconnection of compufer
cunlponents (computer-coniputer, computer-terminal, etc.)
depends on complex communications protocois. These
message protocois are exprcsscd in Backus-normal form,
state diagrams, tlowcharts, and timing diagrams.

(9 Combinational and s~quential hgic with !ogic
dia2ranls and Boolean algebra. Such descriptions enable
gate and circuit level siniulatid~? of the objects.

COMPUTER

hlodule 1 - Topic Outline

Initinl fur tct io~~al specificntions o f a system.
Cornputer srferwce fiianuals [e.g,, CDC06; DECIO;

1BM70j.

Computer components. Processors, memories, con-
trollers, traiisducers (110 equiprnei;t), links, switches
(buses). [BEL71, Ch. 2 (PLIS); system block diagrams
from any c o n ~ p u t e r reference manual]

Register transfer level block diagrams.
Combinational and sequential logic.

Block Diagrmrs (Two-Din~ct~sioml) to Rcpresent Systenz
Behoviov

Flowcharts and/or state diagrams for sequential circuits,
microprograms, and comnlunication link protocols.

Languages (One-Din~ensio~zal, Formal, hfccl~iize Inter-
pretahk)

Instruction set definition. [FAL64; REL71, Ch. 2 (ISP);
CHU72; IBL731

Numher representation: mathematical notation and
conventions.

Register transfer and logic behavior including micro-
programs.

APL and APLderivatives. [HEL73; IIJL73)
kLXi,-likre. [EEL7 1 , Ch. 2 (1SP);
FORTPAN-like. [CHU7Lj

h g i c a l design: Boolean algebra foi combinational logic
and time difference equations for sequentla1 circuits.

Communication-message forxa t s (syntax and semantics)
for communication links. [Backus-normal form]

In summary, t o understand, analyze, synthesize, and
generally communicate with one anoiher and with
machines about machines requires various informal and
formal representations. As one considers each aspect of
computer architecture, representation is the basis for
understanding.

Module 2 - Data Representation (5 Hours;

Computers exist t o manipulate information. Therefore,
designirlg the ways in which the information is t o be
represented is a first and central step in computer
architecture. The set of operations t o be prrtormed follov/s
from the set o f data types to be nianipulatd. Since one
wants the operations for manipulating program i~dorrnat ion
to be as r?lilcii as possihk like u!he: data operations, !lie
selection o f dsta rcpresuntations creates strong biases as t o
tlic formats ana representations of ir!srl-uctions.

A good way t o teacil this ~ n n d u i e is to ;tad s i~ lden is
through a decisicn tree representing tile data tcprescnt.+t' c lo11
design decisions for a general-purpose or special-purpose
computer.

The objectives of the module are:
'

(a) To teach a rather ger~eral point of view about
representation, since creativity wiih respect t o new
representations and a sharp awartnesr of existing ones lead
t o innowtive pragram and n i s c l l i ~ i ~ design.

(b) T o show the numerous and . sornetiines suCr!e
considerations afiecting each reprwxrat ior i decision.

(c) T o show how represei~tation de i i s ion~ i n t t l r x 1 ,

thereby introdi ic~ig the student to the notioil o f s p t c m
design, which requires opt imizhg a set of tighil!; caupled
decisions.

General references: [ST075, Ch. 2; BEL71, Ch. 3:
BR069, Sec. 6 .2 ; KNU68, Ch. 21.

The Notion of Representation (5'2 Hour)

Representation o f concepts by langcage eltnients-
n u m b e ~ s , letters.

Representation of language elements by bits.
Allocation of a set of birs.
Encodiug of values by a bit c o n f i ~ ~ r a t i 9 n .

Centrality of representation t o archirecturzl process.

Structure of the Representation Space (?h Hour)

Resoht tion

What will be the s~ ia l les l nemed and manipulable
element? For example:

1 bit - IBhi S t ~ e t c h , Burroughs B l Y O , CDC Star
6 bits - Univac ! 108, Honeyveil 6000
8 bit byte - ILiM Si?hO OEC FDP-1 I
18 bit halfword - DEC PDP- LO
36 bit word - IBM 7094.

Dais Element Sizes

Systems require consistency anlong the x v f r z i sizes.
Consider the representation families of some svsti.ir,s:

IBM S1-160: 4,P, 16. 3 2 . 6 4 blts. [.431D64]
Univac 1108: 6 , 9 , 12, 18, 36. 7 2 birs.
Burroughs B6700: 4 . 6 , 8. 48. 96 birs.
CDC 6600: 60, 120 bits. [THOTO, Ch. 51

Data Formats (4 Hours) 1
h t a types are derived from architectural and appl~ca-

tions requirements. I

Fixed P o i ~ t Numbers
j

Choice of base: bmary, decimal (IB3I 653. I3 \1 14911.
. Sign rrpresentation: 1811 7091, CDC 6600. 1B\1 S, 360.

i
MLwd Fi.xcii A'u nrbers

!
Scalmg. [hlCK57, C!I. 4 ; S T E T . Cfi. 71

j
Homirg I'c,itil Nlrnibm i

General rcfcrcrtce: [R U C h & Ch. 8: STR7-41.
Lccnti:?~? of radix pht. Chr bbOO; 1931 51360, 1

B t ~ r ~ u ~ g l i s B5500. i

Mantissa base arid sign representation. [BKWCg; !
COD731

i
December 1975

Exponent base and sign representation.
Precision. significance, significance alarms and measures.

[BP173; KilK731.
Normailzation, guard dipi:s, rounding. [:U?173]

Encoding of characters: ASCII, EBCDIC, BCD. [BUC62,
Ch. 61

Distinctions between internal and external repr.s enta-
tion o f characters.

Inherent length variability arises from applications.
Various methods exist for accommodating variable
length fields and ior specifying lengths. IBhl 1401,
IBhl Sl360, Burrouglzs B5500. [BUC62, Ch. 41

Bit Strings

If bits are i n d e p e n d e ~ t and re-orderable by the designer,
they really form a set represented as a vector. Special
operations for bit vectors [IVE62, Ch. 1] ; for bit strings
[BUC62, Ch. 171. Burroughs B1700, IBM Stretch, CDC
Star.

Higher Structrires

Complex numbers.
Vectors. CDC Star.
Chained representations of vectors, FIFO, LIFO

(stacks). Burroughs B5.500. [BAR611
Matrices, trees. Both of these map neatly o n t o vectors,

hence processors with vectorial memories. ILLIAC
IV, STARLV. (iVE62. Sec. 1.23; BER711

C9ROI,, PL!I s tmct l -~es : tr.es of inhornogeneor~s
elements.

Lattices, graphs, and nonplanar nets: represe~tat ion by
chained struttures. [MCA6O; ROS611

Data flags: embedding control information in data.
Burroughs B5500. [ILI68, Ch. 2-3; BUC62, Sec. 7.9;
FEU72; FEU731

Module 3 - Instructions and Addressing (5 Hours)

In all electronic computer technologics u p t o now,
memory speeds have been at least as slow as, and usually
much slower than, operation speeds. Therefore, the
performance of a conpute r can be first-ordcr approximated
by the memory barzd\tvidth, the number o f bits per second
delivered (or accepted) by the nienimy, running con-
tinuously. For most applications, regardless ef the machine,
about half of the bandwidth is used for data, about half for
instructions.

The architect, therefore, tries t o improve the cost-
performance ratio of his design by utilizing the memory
bandwidth efficie~t!?., in Shannon's sense. The design of
data representation llas been treated in Module 2. This
module trerts the design of instruction representation;.
Whereas many decisions about data lepresentation are
almost dictated by the characteristics of the data from
intenc!ed applications, instruction representation gives wide
scope tor design differences. Indeed, the most str:king
differences in computer architectures have !iistoriczlly been
concentrated here.

An instruction consists of the specification o f (usually) a
single operstion and the operands for it. The design
decisions, therefore, are:

What se: o i operations shail be allowed? . How sllall 3 particular operation be specitied?
How shall the operands be specified (addressed)?
H3w shall all the spccifkations be fitted together into
aE ir:stmction format?

The objectives of the module are:
(a) T o teach the student t o think of the bit as his raw

material and its efficiency of use as a first-o:der estimator
of goodness of design.

(b) To survey the wide variety o f techniques that ha-ie
been used in instruction specification, particularly lhe
efficient specification of addresses.

(c) T o show the tight interaction among representation
decisions enforced by the necessity t o make instruction
formats commefisurate with data formats, which enforces a
bit-budget.

General references: [BEL71, Ch. 3; GEA74, Ch. 2;
HEL73, Ch. 8,9] .

Operation Sets (2 Hours)

What t o include?
Frequency of use the chief test. [FOS71; CON70;

WIN731
Fewncss of operands an important test.
(WTR6S and ANA73 discuss operation-set short-

comings ~f the IBM S1360).
O p r a t i o q s cletermineci by date ty?es selected. [REL'II,

Ch. 31
Housekeeping. [FLY741

Processor state changes: Loads and stores.
Operations o n addressing and indexing mechanisms.
Movement of data, partitionkig, shiftitig.

Arithmetic.
+, -, X, +, shifting. [CHU62; STE72; ST075, Ch. 1;

HEL73, Ch. 71. In either this section o r in Data
Formats (pp. 47), algorithms which implement the
common arithmetic opzrations t, -, X , +, and
shifting s!iculd be discussed. These algorithms, o f
course, depend on the method of representing
data. The advantages and disadvantages of various
forms o f data representation should be discussed.

Square root, radix conversion and other options.
(CHU621

Floating point. [SWE65; STE72; STR741
Comparisons and tests.
Sequencing.

Branching.
Subroutine linkage.
Opzlatiom o n sequencing rnechsnisms such as

enabling/disabling interrupts.
Synchronization of concurrent activities.

Input-output operations.

Addrrssing (2 Hours)

Name-Space Srnrctinre {itlnitl urd Secondmy)

Numeric names. jlBA1 6 0 4 Electronic Ca!culating Punch,
circa 1943, had arbitrary names.)

COMPUTER

Associative (stored name) - MU5 vs. geornctric (built-in
name).

Vectorial (most machines) vs. ma t lb (STARAN,
ILLIAC IV) vs. tree ([hlCA GO] -LISP) vs. network
(Burroughs B6500-segmentation) name st iuctu~c.

Number of independent name spaces. [DEN65; ARD66;
DEG70; RAN691

Overlapping name spaces. General purpose registers are
addressable memory locations. DEC I'DP-10,
Univac I 108

Operand Specification FVithin the Name Space

Full address in instruction. DEC PDP-10, IBM 7094
Abbreviated addresses.

Necessity due t o large me~nories and program locality
(nonuniform-access distributions). [Ah4D64]

Bank Registers-The contents of a bank register are
concatenated to the left end of the displacement
field to enlarge the effective address. DEC PDP-8,
HP 2100

Base Registers-The contents of a base register can be
added to a displacement field (IBM S/360) or used
in relative addressing (Univac 1108).

Descriptors or control words, referenced by short
address. Burroughs B5500 and B6500, MU5.
[ILI68; K1L681

Effective address calculation. [BLA59]
Index registers. IBM S/360, CDC 6600, DEC PDP-11,

DEC PDP- 10, Univac 1 108
Indirect addressing.

Single level. IBM 7094, DEC PDP-1 I
Multilevel. HP2100, DEC PDP- 10
Programmed-Indirection achieved through Load

Address kstvddion. !EM S/350
Desciiptors-A Special form of indirect address.

Burroughs B5 500
Immediate Address-Direct implementation of

operand in instruction. IBM Stretch

Formats (1 Hour) [LAW68; KII-681

Inlporta~rce of Frequency Arpinzents in Format Design

CDC 6600 NOP's waste bandwidth.

Format Compone!~ts

Format Specifier.
Operation Code: fixed vs. variable length vs. extensions.
Addresses (including abbreviated ones).
Address Modification Specifications.
Sequencing.

Format Sizes

Size must be commensurate with data representation
and subfields must be commensurate with readily-accessible
data units.

1 6 , 3 2 , 4 8 bits: 1BM S/360
15, 30 bits: C I X 6600
8, 1 6 , . . ., 96 bits: Burroughs B6500
36,72,108, 144 bits: Honeywell 6000

Operatiorl Codc Specification

Fixed-size. IRM S/360, CDC 6600
Variable-size. DGC PDP-I 1
Huffmann-coded. IBM Stretch, Burrougls B1700
Direct bit-significance. DEC PDP-8

Number of Addrerses

Examples:

' 0 - 1 1 + 1

Burroughs B5.500 IBhl7094 IBXl650

2 3 3 + 1

1BM S/360 CDC 6600 EDVAC

Stacks as a mechanism for eliminating addresses.
[BAR61; BR063; BAR69; AMD64; ST075, Ch. 71

Accumulator, multiplier registers as implicit second,
third addresses. IBM 7094, IBM S,'360. Univac i 108

Multiple accumulators for abbrebqated second, thlrd
addresses. IBM ,51360, CDC 6600. DEC PDP-11. I R l l
S/360 fixed and floating point rqisters distinguished
by operation code.

Next instruction address. IBM 650, EDVAC. Espl~cit
sequence specification is rare because redundancy is
so high.

Module 4 - Interpretation and
Control (6 Hours) .

The writing of interpretive routines i s usually taugilt
independently and separateiy from the notions of
instruction execution and interrupt handling. This module
attempts t o stress the unity of these ideas.

Interpretation is the assignment of meaning to an
expression applied to specific data, whether the expression
is in a high-level, assembly, or bw-level (socalkd
microprogram) language. I t is invoked by a control
mzchanism which selects a series of operations to be
performed at the (virtual) machine level that implements
the interpretation (execution). The control mechanism then
makes the next expression ready for interpretation
(sequencing). The emphasis of this nodule will be on
control within an interpretive routine and control between
interpretive routines.

For example, if the expressions are assembly language
instructions, the control mechanism seiects a sequence of
register transfer level operations to decode and execu~e the
operation specified in an instruction. The control
mechanism then either fetches the next instruction (or
interpretation or, if an external event (interrupt) has been
signaled, initiates an interpretive routine t o handle the
interrupt.

One way to intr, duce this rnodule would be to discuss
the interpretation of assembly Isnguage macroinstructions.
I-lave the stildcnts piogram a small number of short
interpretive routines in assembly languaee and then s!low
them how to link and sequence rhrough these routines. The
macro sequence should include setring and testing
conditions. branching, snd executing the interpretive
routines. One interp~etive routine shouid be devoted to the
handling of in ter iu~ts . Some of th:. concepts of Module 3

could also ?x brought out during these exercises: p~ssing of
parameters. generation of addresses, representation of an
instructicn, opelation sets, etc.

After thrs ir!troduction, a detailed treatment of assembly
language instruction interpretation should follow. Se-
quenciiig bzrween instructions should be discussed. The
definition of the conditional branching mechanism 'should
be especially stressed because it plays such an important
role in hardwarelsoftware interaction. The original "IF"
and "DO" specifications of FORTRAN represent the
effects of attempting to build a language in which programs
would be as easy as possible to translate into 1BM 704
machine language. They were direct descendants of the IBhl
704 c o m ~ a f e and TIX instructions. There are numerous
converse examples of machine designers mapping higher
level laneuagz artifacts into hardware. The treatment of
conditional operations should also include a discussion of
the modifications that can be made once a test is complete.
That is, once one control path is selected, exactly how is a
new instruction address determined? The role of meta-
instructions such as REPEAT and EXECUTE, which are
themselves interpretive routines, should be discussed.

Sequencing within instruction interpretive routines is a
direct extension of the foregoing discussion on sequencing
between them. The additional material to be discussed is
related to physical timing of a system. It is important to
introduce the student to the notion of a register state
transition (internal cycle) as being a fundamental quantum
of tirning in the system. Concepts such as I and E cycles,

. the general decoding process, control points and data paths,
as well as ssiqle and iterated executio~l cyc!es (ndtip!y,
trai-dak, etc.), should be discussed. Hardware decodeis
involving rings,. counters, and logic blocks should be
introduced and a discussion of microprogramming should
follow.

General references: [BR069, Ch. 8 ; KNU68, Sec. 1.4.3:
CHU72; ST075, Ch. lo] .

Introduction to Interpretation (% Hour) [KNU68, Sec.
1.4.3; BE3731

Sequencing and execution of interpretive routines.

Sequencing Between Instructions(2 Hours)

Sequerlce Determined by Instnicrion Action

In-line.
Explicit control. IBM 650

Seqrtetzce Determined by Instruction and Result Data

Conditions and testing. IBM S/360, DEC PDP-11, IRM
7094

Branching action.
Hardware-software implementations of control struc-

tures: IBSI 7094-FOKTRAN, Burroughs 85500,
hl US-ALGOL. [IAN681

Modification of instruction sequence.
Methods of address generation for branch target:

relztive, skip, absolute, etc.

hleta Itutnlctiotzs
Uniwc 1108-REPEAT, IBM S/360-EXECUTE.
[Br\060] .

Sequence Dcrcnni~led bj) External Sigrrals-In temipts

IBM S/36O, DEC PDP-11, DEC PDP-8, CDC 6600.
[CIKJ72]

Types.
Priority and levels.
Methods of handling.

Sequencing Within Instructions, Execution, and Slicro-
programming (3% Hours) [ROI69 ; CIIU72; ST075, Ch. 10;
IBB721

The student must fully understand the basics of
instruction fetching, decoding, and execution and be able
to time out the interpretation of an instruction in a simple
machine.

Concepts [FLY671

Cycle-as a state transition in a finite state machine.
Data paths and control points.

Control timing and data path timing.
Control finite state machines.
Execution finite state machines.

Decod:: of an operation.
Gating descriptions.
Sequencing.

Execution.
I and E cycles. [LOR72; AND671
Simple execution.
Iterated execution cycles (e.g., MULTIPLY, TRANS-

LATE).
Concuricnt execution. [TCh:67; TIIC701

Hardwired. [GSC67, Ch. 8; ROI691
Timing rings, counters, and decode logic.

Microprogramming. [ROI69; HUS70; TEC71; TEC74;
CHU72; DAV72; FUR74; ST075, Ch. 10; TC'C671
The subject of n~icroprogran~ming, although strictly
speaking an implementation topic, has had much
greater significance in computer architecture over the
past ten years than a narrow view of implementation
would have admitted. Rosin [ROI7A] credits this to
the notion that "microprogramming is the implemen-
tation of hopefully reasonable systems through
interpretation or unreasonable n~aclunes." This point
sllouid be discussed in terms of how well computer
systems have met their users' needs.

Read only storage. [HUS70]
Emulation. [ROfGS; TUC65; WEB671
Read-write microstorage. [WIL72a]
Contemporary microprogrammeif processors: Bur-

roughs B1700, Nanodata Q M - l , Data Saab
FCPU.

Module 5 - Memory Hierarchies (8 Hours)

This motlule deals with the architecture and structure of
the rnemory system. The fundamental rea5on for using
memory 1l;erarcllics in computer systems is to icducc the
system co\t. Computer arcl~itccts nlust balancc thc system
cost saviugs accruing fro111 a metnory Iiicr~iclly against thc

COMPUTER

system performance degradation sornctimes caused by the
hierarchy.

The architecture of a memory hierarchy defincs the
logical memory structure availdble to a pogram (process).
There is a Ftrong interaction hetween this structure and the
design of an operating system for a ~ ~ a c h i n c .

Properties of Memory Reference Patterns (1 Hour)

An effective analysis or design of c mernory hierarchy
requires an understanding of the dynamic behavior of a
program in execution. For the purposcs of memory
hierarchy analysis, it is useful to abstract the execution of a
process to derive the "reference string" f ~ o m an executing
program. The reference string is sinlply the ordered
sequence of memory references made by the process. The
properties of the reference string have a significant impact
on the performance of the memory hierarchy. The most
important property o f . real reference strings is their
locality-the tendency for almost all references lo be
directed t o a limited region of the address space.

General references: [BEYGG; COF68; BRA68; SIS69;
MAT70; JOS70; SAL74aI.

Memory Components (4 Hours)

Overview of the Memory Hierarchy

The memory hierarchy includes cache memory, main
memory, on-line secondary storage units such as drum and
disk, and bulk and off-line storage such as a magnetic tape
library. The p;inary parameters of a memory kiernrchy-
capacity, access time, mu uarrdwidil: at each ii-cei of the
hierarchy--are often the most important determinants of a
computer system's perfornlance. Therefore, it is not

surprising that the readings dealing with memory
hierarchies are largely concerned with performance.

General references: [KUC70; BEL71, Ch. 3 ; ANC69;
ST075, Ch. 51.

Cache hlenzories and Other Iligll-Speed Memory Buffers

These memory buffers are an important implementation
. techniqlte that has a major impact on the perforniance of

central processors. They form a level in thc memory
hierarchy that is between the main memory and the
processor. l h i s level differs from the other levels (i.e., main,
secondary, and bulk storage) in the important respect that
it is not visible nor available for direct manipulation by the
programmer.

Inst~uction Buffers. iTH070: AND671
Cache Memories. [KIL63,; GIB67; LIP68; COT69;

MEA70; I(AP72; BEJ74j

Ahin Storage [TH070, Ch. 4 ; BOL671

Name s p c e vs. real memory p a c e size.
Marketing considerations in specifying maximum

memory capacities for various IBhl S/360 models.
[BEL71, Ch. 441

Ihndwidtli.
Low order interleaving. [BOL67; BUK70]

Memory recorrfigul:!t~on.
Iligh order inlelloavinp,. lJnivac 1108

Seconcicrry Storage

Extended main storage. [TH070, Ch. 3; BOL671
Fixed head disk or drum. [COF73, Sec. 5.3; FUI175)

1RM 2305 Drum Storage-[IBM23]
Moving head disk. ICOF73, Sec. 5.4; TE0721

1BM 23 14 Direct Access Storage Facility. [1BM24]
IUM 3830 Storage Control and 3330 Disk Storage

[IBM33]

Mass Storage [DAM62; IiOA72; JON751

IBM 3850 hlass Storage System. [IBM38]

Address Translation Mechanism (3 Hours)

One of the most significant developments in computer
architecture has been the distirxtion between the virtual
address space (or name space) of the processor and tile
physical address space of memory. A range of mechanisms
have been developed for mapping one to the other. The
following references discuss the more important ones.
General references: [KIL62; AKD66; RhK68; DEG701.

Base Register Reiocation

Single. CDC 6600 [TH070, Ch. 41
Double. Univac 1 108

Paging

IBM S/370. [KI162; JOS70; SAL741

Segmentation

Burrougils B5500/C65GO. [DEK65; MAU66]

Inpiemen tation of Dynamic Address Translations. '

[DAM& LAV71; IBM7O; IBM681

Virtual Machines. [GOL73] j

Module 6 - Protection Mechanisms and
Hardware Aids to Supervision (4 Hours)

Prerequisite: Module 5

Modern computer systems are often designed for shared
use of their resources by several concurrently executing
processes (program jobs). The most vital protection
mechanism is one designed to ensure that no job's
execution csn possibly interfere with the informat~on used
by any ather job. This storage protection is, however, only
one important aspect of a general class of supensisio~l
functions concerned with signaling, response, and assign-
ment activities required for efficient computer resource
allocation and acceptable response times. A judicious
corlibination cf softxare and hardware is ~lszd to
implement supervision functions. Hardware is needed for
sequences that occw with high frequency. This li?oduit: and
Module 5 are lhe areas of gtedtest interaction between
computer arc11itcc:ure arid the principles of operating
systems.

G e n e n l Discussion of Protection and Sipemision (55 Ilour)

General references: [DEC;71; HEL73; NEE721

Motivut iom jbr Shared Use L? f Srorag~ anti Processor.

Tinlesllarirrg of the CPU. [WIK72]

Space-Sltantrg of.llaitt Storogc

Register and stored key protection.
Read/w~i te pyotection.

Interprocess Communication (2 Hours)

General reierences: [LAhl69; HEL73; HAN73; ORG731

Internrpt Pritrciples

Saving and restoring system states. RCA Spectra 7 0 h2d
four operating states: program, executive, interrupt, and
machine; whereas the IRM System/360 has only two,
program and supervisor.

CDC 6600 exchange jump.

Internipt Signalir~g Cutegories

Clock (t i m r) . 110 condition, address violation, opera-
ti011 invalidity. external signals, explicit program call, etc.

Semaphores. [DI J68]

Privileged Mode ('/2 Hour)

General references: [CLA64; IIEL73; IBM7O] .

Storage Protection

Iil fernlp t Iiarrdlitig

.!lode-Change dfecharzisms

Hardrc~are-Ope.r~tl~zg System-Problem Program Irlteractions

Virtual Memory Mechanisms for Protection (1 Hour)

General references: [DEN66; DAL68; ORG72; NEE72;
SCH72; IBM701.

Typical Major Examples t o Illustrate Module Topics

Xlthough a!rno\t every system has its distinct features,
the following c m illustrate rnost prir~ciplcs and m m y varia-
tions found in actual practice. Tlfe asterisks denore virtual
storage systems.

CDC 6600
DEC PDP-11
DEC PDP-IO
I M I Sys:em/360
Burroughs H550U/B65GO* [ORG73]
IBXI Systeni1370*
hiult ics* [DAlbs; ORC72; SAL74bI

52

Moduie 7 - Specialized Processors (5 Hours)

4 1111rnber of !'unctionally spcciaiized proccssors have
l i e n developed. Tltese processors :ire tiefined prinnar~ly by
the d a t ; ~ types which they can proccss. They d o not
interpret general programming 1ang:l:tgcs. This nlotlule deals
with some of the more common spc.cialized proccssors.

Input/Output Processors (2 Hours)

An input/output processor specializes in the nmiage-
merit o f peripherals. I t controls the details of transmission
of inforniation between secondary nicmories or t e ~ ~ i i i n d s
and main tileruory. h i n p u t / o u t p ~ t processor docs not
usually d ie ; information; i t is merely an interpreter for
moving information. Computational capability is only
required if recoding and reformatting of iniorination is
necessary, or if operations are t o be carried c u t between
second memories without central processor interver.tion.

General reference: [ST075, Ch. 61.

Copy Logic, Buffers atld Direct h1emoi.y Access Capability

DEC PDP-3; HP2100, DEC PDP-11. [GSC67, Sec. 8.41

Channels

IBM 1800 Special Data Channels. [BEL71, Ch. 331
IBM 7607 and 7909 Data Channels. [BEL71, Ch. 411
Selector and Byte Multiuiexer Channel?. fPADhJ!
B!ock Multiplexer Channel. [B-a721

Peripherul Processors

CDC 6600 PPU's. [TH070, Ch. 7 and 81
CDC 7600 FPU's. [CDC76, Ch. 51
Univac 1108 I /O Processor.

hlicroprocessors and Microprocessor Applications (2 Hours)

Over the 30 years in which computers iiavr: existed,
several thousand species of macliilles have been built by a
variety of organizations for a variety of functions. The
implementations of these machines were based on avaiiable
semiionductor and magnetic tecllnologies. Current!y,
semiconductor teclmology is such that a ~111311 stored
program processor can be fabricated o n a single silicon die.
These processor-on-a-cldI, devices, when executing a fixed
progrzm, form the basis for hand-!ield calculators, appliance
anti automotive coritrollers, and sinlplt' terminals. Tlicy also
form the basis for many ~,)rograninir?ble products:
point-of-sales terminals, instruments, factory data col!ec-
tion terminds, display terminals, etc.

~ ~ s s o r - The important aspect o f nearly zero cost pro->
on-a-chip computers is that they will be applied on a wide
scale in ne3rl;. d l man-made objects. Though t l~cse
conipi ters are revolutionary in l'unctional ability, their
architcctura! dcvelop~tient has been strictly evoiutic>r~ary.
All of the topics discmsed in this report arc relevant t o
their design.

General references: [COM71a; COM74b; LAY 72;
kiOT74) .

Ternzirzal Computers

. '1Termin;ils of this type include CKT-keyboards whose
uses range f10n1 programming t o order entry, point-of-sale,
factory data collection, conimiinications cmtro l , etc.

Calculalors IBEL71, Ch. 20; ST075, Ch. 31

Electronic calculators (especially the hand-held versions)
are excellent examples of specialized processors. They are
characterized by decimal rather than biilary arithmetic
units, a spartan simplicity dictated by strict price
constraints, and a very primitive 110 system.

i Display Processors (1 Hour)

A display processor is a complex system that
manipulates information fcr display terminals. I t must
perform a substantial nunibei of local operztions on a set of
specialized data types Fvhich are representatiorls of complex
graphical objects. These representations typical!^ include
character strings, points and vectors t o be displayed, and
control structures which define pictures.

General references: [WAT69; hTEiV74; BEL71, Ch. 251.

Module 8 - Multiple Computers (4 Hours)

Various forms of multiple computers have been designed
as a means of (1) increasing the reliability and improving
the performance o f computer systems, and (2) distributing
computing according to physical location needs t o reduce ..-
wrn:~i i l~~icat ion h i k ifisis. i w o staidaid icjrnis arc !tie
mulliprocessor computer (which consists o f two or more
processors that share a common memory) and geograph-
ically distributed computer networks (which are usually a
collection of physically separated computers).

Multiprocessor conlputers which share the same physical
memory and addressing space but havz only a few
processors have existed for some time. Systems are now
being built with a large number of processors, though.
Although some of the multiprocessor's problems are still in
the research domain, the system designer must be aware of
the issues o f reliability and performance (e.g., conflicts arise
when multiple processors access a common resource) and
the mechanisms for intercommunication which permit the
processors t o share common resources.

Understandiqg conlputer networks requires an under-
standing of their constituent components (the inter-
connection links, the computers, and their operating
systems) and the tasks which are t o be distributed among
them. Computer network analysis is siruilar to the analysis
of other networks in which multicomn~odities are
transferred among links and nodes o n a dynamic basis.

3 Many of the studies that have been carried out for
telephone communication (especially switching) apply.

Finally, there are ad hoc, tightly coupled computer
structures which are neither interconnected via s!andard
comniuniat ions links nor share the same memory.
Examples of these structures include 1B?4's A t t x h e d
Support I'rocessor sysknl , conimunications front ends, and
specialized file, array, and display pracessors.

The advent o f microprocessors clearly forccs the growth
of various muliiplc. computer s!ructures. The sin1p:cst

structures will be based o n communications links with
processes being assigned to specific processors o n a ,

functional basis.

Multiprocessor Computers (2 Hours)

General leferences: [EEL71, Part 5 ; IIEL73; ENS741.
Systems:

Burrouglis D825. JBEL71, Ch. 36)
Burroughs Interpreter. [DAS72]
Carnegie-Mellon IJniversity C.mmp. [\WL721
Bolt, Beranek and Newman. [HEA73]
Univac 1 108. [STS6'7j
IBM Systen?/370 Model 168 h P . [MAC741

Switching and Interconnect ion Structure. [BLA64b;
DAS721

Perfornzancc as a Function of the h'umber of Processors.
[LEH66; WUL721

Sharuzg m d Resource Conten tion [SKI691

Reliability.

I

Computer Networks (2 Hours)

General references: [BEL71, Ch. 40; IEEE73; COh173;
BEL741.

Stntctura and Anal~lsis [ROB70; FRAT1 ; ORN721

Facilities and Use.. [ROB73; KLE741

Module 9 - Performance Evaluation (9 Hours)

Prerequisites: Modules 2, 3 , 5, and 6, plus a basic course
in probability. [F E U 8 1

The performance evaluation of a computer system
consists of deriving indices of its quality, such as speeds,
storage capacities, and efficiencies of resource use. This
assessment requires an understanding of the purposes the
system is t o serve as well as the hardware and software
components that constitute it. These purposes are given
explicit definition in the selection and representation of
workloads and performance indicators.

Performance evaluation is frequently concerned with
more than just producing the values of a few perfcrnm:ce
indicators such as bandwidth. throughput, response timi'.
and resource utilization for a given configuration. It must.
determint the dependence of these indicators o n x r i o u s
parameters o f the system so as t o help designers choose
among a rather large col!eztion of alternative con?iguraticns
arid o p t i o ~ i s in their efforts t o meet user's specifications.

Different types of performance studies (e.g.. different
levels of detail) are appropriate t o va~ious ciasses d
computer professionals such as arciiitects, h:jrcl.\vai. a v i
software engineers, installation managers, system pro-
grammers, problem prograiliincrs, eic. Cespit;. ih; difizieiit

December 1975

needs of these groups, they all use the same basic classes of
evaluation tools: (I) mathematical analysis, (7 ,) simulation
techniques, and (3) measurement. All of these are
in t rodu~ed in this n~odclle in various context>, 2nd some
time should be spent comparing their strengths and
weaknesses.

General references: [CAL67; SMI68; LL'C71; BEL71,
Ch. 3; F R E E ; DKU73; HEL75; ST075, Ch. ! 11.

Alaiti Storage

I/O Devices and Subsystems [HEL70]

Disk and Drum. [TE072; FUR751
Printer.

Computing System Performance (3 Hours) [MEL75]

The references cited for system studies are only
suggestions. Actual studies may involve components,
subsystems, or systems. Overview (1% Hours)

Batch Systems. Nature of Computer Performance Evaluation

Multiprogramnring Systems. [ONE67; CAN68; STU711 Evaluation Classes (Hardware, Software, Systems).

Timesharing Systems. [SCE67; MCK69; D3H70; BA371;
M E 7 1 ; SHE721

Definitiotl of Performance Measures such as Ba~ldwidth,
Throughput, Response Time, Resource Utilization, etc.

Virtual Memoly Systems [SAL70; ORG72; SCE73;
HEL7 51

.lZcasuremetrt Techiques

Hardware. [ROE69; BON69; DRU73; IBM70 (Program
Event Recording)]

Software. {CtLM8; CHN69; SED70; BAD71; LUC711

Module 10 - Reliability (5 Hours)
Introduction t o Techniques of Analysis (2% Hours)

Reliability affects everyone connected with computer
systems, from machine designer t o end user. As more
complex systems are designed and fabricated, their
designers must exercise greater care during design in order

,

t o ensure that the systems they develop operate with an
acceutzble :eve! nf re!iahi!i!v. T!E !r?a~~ria! in this n~odl.!!~
helps the srudcnt to mderstarid arid dcteriiiiiic various
reliabihty parameters of a system, given knowledge of its
constituent parts, and to design (or configure) systems for
increased reliability.

Elemen t a y Queuei~lg Theory

N'hen the information necessary to evaluate a computer
system's performance exceeds the values of simple
pnrameters of the hardware structure, performance
rvah~ation must address the u~derlying stochastic vzture of
operating a computer system. Requests for sentice arriving
at processors within a computer system often can only be
modeled as a random process.

References: [KLE75, Ch. 3-4; ST075, Ch. 11; HEL75,
Ch. 51. Basic Measures and Calculations (2 Hours)

Attempts t o evaluate a computer system quantitatively
require an understanding of the fundamental measures of
reliability (e.g., mean-time-to-failure, mean-time-to-repair,
expected-system lifetime). In addition, there are a few
elementary computations that are useful when attempting
to estimate system reliability.

General references: [ESA62; BOU71; hiAH71; HEL73,
pp. 443-4521.

Simulation Theoly

There are instances when a more detailed analysis of
system behavior is needed than can be obtained from
queueing models, and instances when a system to be
analyzed cannot be adequately approximated by known
analytical methods. In these cases, simulation techniques
are the most appropriare tools available to the analyst.

F.eferences: [NIE67; hlCD68; GOR691.
Codes for Error Detection and Error Correction (1 Hour)

An essential basis for any computer system that must
operate with a high degree of reliability is an error
detection, and possibly an error correction, scheme for

Workload Selection and Characterization (1 Hour) [FER72;
WIN731

transmission and storage of data. In memory systems,
Total System Load. [FRM68; WAL671 redundant error detection and/or correction information is

held in the memory. Different codes are ofteri required for
Benchmarks distinct levels in the memory hierarchy, and each-~i~emory

technology may impos- different demands on its code.
Similarly, communication links are not error-free, a d thus Syntlletic Workloads [BUC69; SRE741

additional information must be transmitted with a message
to ensure its integrity.

Another area in which error detection and correction Components and Subsystems Performance (1 Hour)
[DRU73; HEL751 plays an important part is the use of arithmetic codes for

(he detection arid correctior! of errors iil the results
Central Processor. (hlUR7O; BEL7 1 , Ch. 3; SOL661

Kernels. [CAL67]
Mixes. [U 1 6 4 ; GIs701

produced by arithmetic operations.
Gentral references: [iIIL68, Ch. 8 ; AVI7lb; P E T E ;

RAO741.

COMPUTER

Diagnostic Procedures (1 Ilour)
Diagriostic procedures are thc set of programs tlia:

edercisc each of the component5 of a coniputer system t o
validatc that it is worhing correctly or that kelp ~colate the
component that is fnili!ig. Tlie frcque~ic). a l t h which
diagnostic procedures are unable t o detect failures when a
sys te~n is known t o be nialfunction~ng underscores the need
t o discuss the principles of testing. The student should
comprehend the imposslb~hty of exhdustive testing, the

t need t o understand tlie structure as well as the function of
the component under test, and the concept of "boot-
strapping" diagnostics-ie., validating a small "core" of
hardware a~:d then using the core t o test the remaining

i
facilities.

General references: [BAT70; CHASO; JON711.

.System Reliability and Serviceability (2 Hours)

As computer systems continue t o be applied t o an
increasing variety of real-time environments? stringent
demands are made on the computer system's avaiiability
and serviceability. The increasing con~plexi ty of large
computer systems also requires the inclusion of more
sopl&icated machine-checking capabilities.

General references: [CAR64; FOX75; ORN751.

Machine Checkilg Techniques.

Error Logging and Recovery.

Fault Tolerant Techniques. [AVI7 1 a] .

Data Representation

Instruction and
Addressing

E
2 Interpretation
0

&
c Memory Hierarchy
.$
5
Q Protection Mechanisms
E and Hardware Aids ' to Supervision

I s
I C

A\ 8 lnput/Output
5

I 4
7 f Facilities for

8 Multiprocessing

Reliability

Performance

Figure 1. System design evaluatbn matrix

December i975

Large Systems

hqodule 1 1 - System Design Evaluat~on
16 Hours)

T o appreciate how the architectures of computer
systems develop, one must analyze complete systems. Since
fonnal techniques for the analysis of these systems do not
yet exist, there is no substitute for studying some existing
systems closely. The puipose in doing this is t o tr)i to
deduce tlie reasons for various design decisions and to see
how design decisions in some aspects affect those in othcrs.
Moreover, these studies provide the opportunity t o
compare the techniques sdopted by different systems for
solving fundamentd problems. The instructor rilay prcfer to
introduce such studies gradually throughout the course of
study rather than treating them as a coniparative analysis at
the end.

The subject matter t o be covered is best repressnted by a
mairix of systems and concepts (Figure 1). The hol.izontal
dimension compares different techniques for solving tlie
same fundamental problems, and the vertical dimension
shows how solving one of the problems in a particular way
constrains the solution of other problems. Each of these
dimensior~s is t o be evaluated in as quantitative a manner as
possible.

Two points are t o be stressed here: environment and
teclmology. .The first is dealt with because it is in1peratis.e
that the student develop an unciersta~lding of the user
environments for which these systems were actually
intended. By environment we mean the complete set of
users' specifications: the functional capabilities that were

COMPUTER. SYSTEMS

Medium Systems hil inicomputers Microcomputers

expected, thc reiative cost of the system (relative t o otllers
of its day) [513A69j, the language processors ar?d operating
systems that were espected, and the reliability o f the
system in its environment.

The second is addressed because i! is impossible t o
wmprtre systcms wit!io!~t considering their tecilnoiogical
base. The instructor shouid normal i~e thcse considera:ions
whenever possible, but a h cal! attention t o them w l i t ! ~
they represent technics! constraints in the system designer's
environment. For example, the availabiliiy of different
memory elements ar,d the relative cost o f circuits
frequently affect arclutectural decisions.

Computer Systems

The systems selected for comparison should include an
interesting disparity of environments as well as some
similarity. The selection must be influenced, of course. by
the availability o f reference materials and the students' and
instructor's fsmiliarity with specific systems. Here are some
suggestions.

[.urge Systems

a. IBhi Systen1/360 and System/370 in general and
System/370 31odel 158 [IBh158] or hlodel !68
[IBI\168] in particular.

b. DEC PDP-I 0.
c. CDC 6600.
d. Rurroughs 86500.
c.. Ui..*ac 110.3.

Medirtm Systems

a. Burroughs B1700.
b. IBM System/370 Model 145 [IBM45].
C. DEC PDP-1 1/45.
d. Honeywel! Series160 level 64..

1l1itriconlpulc"r Systems

a. DEC PDP-8.
b. HP2100 and HP21MX.
c. hlicrodata 1600.
d. Data General Nova.
e. IBM System/32.

~Mcroconlp~i rer s)lsrems

9. Intel 8089.
b. National [ME'-16.

Acknowledgements

The com~rut tee would like t o express its appreciation to
Professor E. J. hlcCluskey of S t a n f a d University, who was
instnrmental in establishing the task force, and t o the
distingu~shed grcllp of computer srclutects who served as
referees for t h ~ s repor t . T h e i r c o n s t r u c t i v e c o ~ r m c n t s were
extremely intlueritinl in the prepar;rtion of the final vc~s iun
of this report.

The committee would also like to thank Ms. Patricia
Stoaks of Palyn Associates who typed all the drafts of t!us
rep0rt .s

C-ige E. P.ox-,mrnn is o n the st:lff of Palyn
Asrociates, u.hcre he has been involved with the
dcsirn and ev:ilu;ction o f medium and h g e scale
proccswrs, the design and evaluation of
:ircniory hiexrr~hics. and the t:v..vriu.ilb~l of s d t
machine aril~itccturca. He has \;.cirked far IEM
in thc nrc.ls oi advanced tcci~rlolopy, circuit
deskn, and Luge systems ;~rcllitccti~re. From
1971-1973 he v;as a n assistant profcssor a t the
Universiiy ~ 1 ' Iklaware.

He rccei\-8x1 the ES dc:rre in electrical e r~ iacer ing from
lafaye!:e College, the MS from Penn State University, and the PILD
frorn S ~ I ~ L I I S ~ University.

Dr. kor;.;man served as chairman of the \\'orkshop o n Education
and Computer Architecture in 1973. He has published a nunlbcr of
papers in tezhnizal jourru!~ arid holds one patent.

C. Cordon Bell is vice president of cqineering
for D$itsl Equipr:ient Corporation.

O n leave as professor of :lectrical engineer-
ing and computer science a t Canegie-hlellon
Unkersitj.., he was previousiy manager of
Computer Design for Digital from 1960-1966.
Durine that time he was responsible for DEC's
PDP-4. -5 , and -6 computers. He consulted for
DEC in 1966-1972 while woiking at ChIU on LA various computers and products including the

PDP-11.
His work ir? the computer field covers computer architecture.

modularity of design, multiprocessors, and applications His
publications include Conpcter Smtctltres (hIcGraw HilI) and
Desy~iing Computer; and fli.~itaf Systems (Digital Press) and several
papers

In additioa t o his industrial interests, Bell has served as a
member of three COSINE committees of the National Academy of
Sciences o n computer en~ineering education, and has served the
Na!ional Science Foundation, Office of Computing Activities He is
a depzr!rnt:nt editor for CACM, 2nd is a Fellow of the IEEE.

. -;,- --.-+. - *= -* , Frederick P. Brooks, Jr. is Kenan professor and
i ; chairmsn of the Cornputer Science Department . '

at thc Unnersity of Nort!] Carolina in Chapel

f . 'qp Hill He is best known as the "father of the IBhf
.= , Sys;ern/ 360," having served as project nlanager
: ; for its development and later as manager of the

-,--./ Opemtin: System/360 software project during

?,A
its d e s i g phase. Earlier, he was an architect of

' .' i the IBM Stretch and Har;est computers
k w . d At C h ~ p e l ~ H i l l , Iir. Brooks has participnted

in th? establishmznt and gaidi~?g of the Triangle Universities
Computn thn Center and the North Carolina Educational Cum-
putins Senice. He has published Arctonlotic Dizta Processi?ig, the
Systern/34O Eiiirioii of Automatic Data Processing, and chapters in -- , , .s\tral o t t e r books His most recent work is The ,~iyt lr ical .
Marz-,~lcc?rirl~: Essays or1 Sojtnvre E?~gbree;?ng.

?,Ilchae! J. Flynn is a founder and viccpresident
of Palyn Associztes and is now the senior

. , ? consultant for the corporation. He is alm a
A- i profesmr of electrical engineering a t Stanford 5 $4 ! f (.::; 1 university.
. . i He joined IBM in 1955 and, over a 10-year

> -% kc j ter~ure there, worked in the areas of circuit \w;?;. .- ; drvcl;p:i~cnt and cornputcr organization and

- -.&>;;,; '\
'$J "sign At IU%I he was a designer and manager

: ot protctppe versions of the IS11 7090 and
7c)30!1. Later, as m a r q c r , he was responsible I'or design and
development of the 36G >lode1 91 Central Processor.

Dr. H y n n joir~cd the facul:y of Northwestern Unive~xity in 1966
and lttcr ~ 3 s professor o f ~wrnputcr science a t The Johns Hopkins
University.

A viccpresident o f the IEEE Comp~i tz r Society, Flynn has
ser;cd as chairnun tif the iEl<K Technical Colnniittec o n Cornputer
hrclci?ccture and as ~ssoci;ltc cditor of th:: IEEE Tro~sac~iotzs on
Conip ; r tm He Iw pul)li~l:cil over thirty papers in technical journals
and irc)lds two pntcntg He ieceivcd his I3StE Prom Manhattan
C\)llc:e, his !-!SI<E from Syr:icuse University, anti his PILD from
hri i 'ue Ur~iversity.

COMPCJTER

x---,i. ' Samucl 11. 1:uller is a11 aswci;~tc professor of
<+. .

i: ' '

c.omputcr science and clcctric~! cnpinccritip :it
Carmyic-h1cIh Univcrsily. tlis rcscarcll
intcrests in~.lude topics in c(3lnputer arcl~i- , :-.:,p tcctu rc and tltc pcrfor tn.int'c evaluation o f

1 .
t, ‘ - \ c:omputcr systems kle i:; currcn:ly involved in
? . the measurcrnent and evalu;ition of C.mmp, :I

t $ multi-miniprocrssor computer system, and the
P. . design of ncw niultiproceswrs hasctl o n the

K - " ' crnerp(n:: rnicrowmputcr technology.
Dr. l'ullei rcccivcd the l $ S i dcprec in electrical cnginccring from

thc U~tive~sity of hlizliipan in 1968, the hlS 2nd l'l1.11 d g r e c s from
Stanford University in 1969 and 1972, respectively.

l l e is !hc :ru tlwr of AIV!)W's of 1)r.1rr11 ar~d Oisk Storage IJ~lits
(Springer-Vcrlap). and a co-author of 111tr.odrtctiorr to Cor~p i t c r
Arclriic~titr? (SI1.4). Dr. 1:uller is an editor of the Computer
S y s t e ~ m 1)cp;trtmerit of C>IG11 ;~iid is a member of tlic AChl and the
1LI:I: Cc~inputcr Soiicty. Ile is also a niernher of Tau Beta Pi, Sigma
Xi, Phi K:tppa Phi, and Etii Kappa Nu.

Herbert Ilellernian has bcen a professor a t the
State University of New York : ~ t I3ingllamtun

?. >bite 1969. Earlier, he served o n the electrical
, . , engineering faculties a t Syracuse University arid

\ $ the University of Delaware. Dr. Hcllcrman was . . > b -.- : with tltc IRM Yorktown lleazarch and System
-. .. .

, ' a , Development Divisions for 1 0 years where Ite
'-jg worked on tlie architecture and performance of

3 multiproprarnmed, timeshared, and multi-
L. ,_J processor systems. He is the author of several

books. Ilis current computer work centers on Iiardware/software
performa~ice, operating systemsand computer system education

He received his undergraduate degree at Purdue University and
the P1i.D from Syracuse U!iiversity.

Bibliography

We Inve triccl to identify a minimum set o f references
wluch, in our opinion, represent the bcst path through the
material in the course of study. These references have been
~ilarkcd with asterisks. The remaining references have been
selected because they simpliijr and broaden the path
established by the first set.

[ACM68] "Curriculum 68," CACM, 11, 3, hlarch 1968: pp.
151-197.

*[AMD64] Amdalil, G. M., G. A. Blaauw, and F. P. Brooks
"Architecturr of tlic IUhl System/360," IBhf Jol~rtlil of HAD. 8.
2 , April 1964: pp. 87-101.

[ANA73] Anagnostopoulos, P., C. XI. Stabler, and A. van Dam,
"Computer Architecture and Instruction Set Dcsigk" AFIPS
Proc. NCC, 42, 1973: pp. 519-529.

[ANC69] Anacker, W., and C. P. Wang, "Evaluatio~i of Computing
Systems With Memory Hie~archies," IEEE T ~ G I : L 0 1 1 Conip:~fci.s,
EC-16, 6 , Dec. 1967: pp. 764-773.

* [AND671 Anderson, D. 'A1., F. J. Sparacio and K. 51. Tornasulo.
"The IBhl System/360 hlodel 91: Machine Pllilowphy and
Instruction Ilandling," IBAl Jorlntal of R&D, 11, 1, january
1967: pp. 8-24.

*[ARD66] Arden, B. W., B. A. Galler, T. C. O'Bricn and F. H.
Westervelt, "Program and Addressing Struc?ure in a Time
Sharing Environment," JACAf, 13, 1, J a n 1966: pp. 1-16.

activation record
block structured
coercion
displo y
extensible
flow analysis
garbage collection

haltirrg problem
infix operator
Jensen's device .
keyword
L R (k) grammar
meto-language
non-terminal
optimization
parse tree
quadratic rehosh
recursive descent
semantics

TWS
up-level
VDL
Warshall's algorifhm
XPL
yo- yo lis t
r ero oddr-ess

Intel Corporation, the world's forcmcst
microcomputer manufacturer, has o
unique commitment to high-levei
programming languages. We believe
that the microcomputer revolution
provides a singular opportunity to
introduce the tools of modern
programming to a vast, new generation
of users and programmers. Tools for
building the diverse applications of
microcomputing power in the decade
to come.

To build these new tools, we need people
with exceptional skill and ingenuity.
People thoroughly fomilor with the
concepts of modern programming
languages and the des~gn of state-of-
the-art compilers.

Applicants should hove on MS or PhD in
computer science, or equivalent
background in language and compiler
design. For i mmediote considerot ion,
please contact Professional Emoloyriient,
intel Corporaticn, 3065 Eowers Avenue,
Snnto Clara, CA 95051.
An Equal Cpportuniiy Employer !dF.

