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Module 0 - Preface 

The subject of cornputer architecture as curl-ently taught 
in I I I O S ~  coniputer engineering and computer science 
program is a mixture of  architectural principles, 
organizatio.ra1 stiategies, and ixnplerne~itation techniques. 
This bluriing of the hierarchy of system levels that 
characterize the structure of  a computer has made it very 
difficult for students (and often instructors 3s well) to 
determine what were the forces that led t o  the design 
decisions they have seen reflected in machines. 

Guidance for the develi>pment of courszs in computer 
architecture 113s come from the AChl Curriculum 
Committee o n  Computer Science [AChI68] and the 
COSIKE Committee of thc Conlmission on Engineering 
Education [COS68] . I n - ,  I968 these committees both 
proposed syllabuses for a course in coniputer organization. 
The AChl comniittce a l s ~  pl.oposcd tlie content for an 
advanced course in cornputer organization. Thc ~llatcrial in 
these courses is characterized by the confusing mixture of  
topics we 11we aiready mentioned. The courscs also suffer 
other short(:on~ings. They contain sketchy topic outlines 
rather than detailed spec~ficntions. They pay insufficient 

attention to the fact that t o  a u x r  the ec,seritial part of any 
cornputer system is its visible facilitks: language procekors, 
operating system, and other software. Tilerefore, they d o  
not support the integration of i~srdware and software 
design that is required to  create conip!!tt'r systems which 
satisfy t ix  user. I:inally, cbmputlng e ~ ~ v i l m n i e n t s  and basic 
technologies have chenged  significant!^ since the AChl and 
COSINE committees made tl:eir rc.conirnendations, and 
these changes need t o  be reflected - i n  a computer 
a rch i t~c iure  course description. 

In view o r  these circurnsra~ces, a t x k  force was 
cstablished by the IEEE Coniputer Socicty to prepare a 
detailed specification for a course of study in computer 
archi!ecture for students wlioje ,iiajor interest is in 
conipbtel engi~iecri~:g or c~)l;ip:liCr science. The members of  
the task force were: George E. f?o-,sr:inriii. cliairn~nn, Palyn 
Associates, Inc.; C. Gordon I.'cll, Digital Equipment 
corpora tic!^; Frcderick P. ilrooks, Jr.. U~iivcrsity of North 
Carolii!a, Ch:i;x! IIill; hiicl~acl J .  Flynn, Stanford 
University; Snnluel 11. FuIIcr, Ca:wgie-hlellon Ilnivcrsity; 
Ilcrhcrt Iiellern~an, State University of  New York a t  
B i n g l ~ a ~ n i ~ t o n .  
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Plan of the Report 

. 'The structure of  this report has been motivated by three 
considerations. First, the report is concer11i.d primarily with 
computer hardware architecture. Second, tlie course of  
study is intended for students for whom computer 
architecture supports their interest in computer engineering 
o r  computer science. These people need to be familiar with 
all of the topics discussed here. This course of study is not  
sufficient, however. for the training of tlie professional 
computer architect. The introduction t o  hlodule 1 explains 
why. Third, the universities using this report will vary 
considerably with respect t o  plans for packaging thus 
material into academic courses, instructor capability, 
student ability, and studefit preparation. 

The first and second considerations determined what 
material should be included, and the third consideration 
determined how it should be organized. The material 
presented has been restricted t o  those topics xvhich we feel 
every computer engineer and computer scientist ought t o  
know and t o  those computer systems which have been in 
the mainstream of commercial equipment. As a result, 
topics such as the early history of computers: parallel, 
pipeline, associative3 and array processing; the effectiveness 
of various machine structures in performing various 
computations; implementation details including busing 
structures and interfacing conventions; and switching 
structures have been conciously excluded from this course 
of  study. We have organized the material presented into 1 1 
modules, each dealing with a fundamental aspect of 
computer hardware architecture. The modules are: 

Ti:lc 

Introduction and XIeta Representation 

Data Representation 

Instructions and Addressing 

Interpretation and Control 

hlemory herarchies  

Protection hlechanisms and Hardware 
Aids t o  Supervision 

Specialized Processors 

Multiple Computers 

Performance Evaluation 

Reliability 

System &sign Evaluation 

The packaging of  these modules into academic courses is 
up  t o  individual instructors. However, they must generally 
be taught in the order indicated. The material in modules 1 
and 11 may be interspersed throughout tlie course of study 
rather :ban being treated as stparate items. \Ve have tried t o  
help by sugest ing the amount of  time u.lGch should be 
devoted t o  each module and its sub-topics, and by precise 
specification of the references which support each topic. 
One grouping of the modules we have found effective is: 

hlodulc 1 : h1c:a Representation 
Modi~ltls 2-51 Clds~cdl  PI u~essor  lXc11lory /Switch 

Aspects of Compute; Architecture 
hlodules 6-5: Aspects of Systems Architecture 
Modulcs 9.: 1 : %valua;ion hfz:ho& and Analysis. 

In addition, depending upon the composition o f  the class. 
whether computer engineers or computer scientists, the 
instructor may choose t o  cmpllasize, respectively, the 
hardware i~nplementation or software enginecring con- 
sequences of  various arclutectural decisions. 

We believe that it is possible within the scope of  t!iis 
course of s!udy to undertake term projects that involve 
design. However, it was unfeasible for us t o  offer guidance 
in this area. Instructors will have t o  define projzcts based 
on their resources and the abilities of thcir students. There 
is, of  course, a temptation t o  d o  a machine sketch, but the 
cormnittee does not. encourage such a project because \ye 
feel that the essence of the design process lies in probing 
deeper than the sketch level t c  understand the inter- 
relations between various design decisions. 

The only textbooks currently available that cover a 
reasonable amount of  the material proposed in this course 
of  study are: Computer Srnlcrures: ReaJir~gs. m7d 
Ekamples, C .  G .  Bell and A. Newel1 [BEL71] ; Digital 
Contpurer System ~rinci&s, H. Ilellerman [HEL73 j : and 
Itltrodricriorz to  Curuprrter Architecture, H .  Stone (ed.). 
[ST075] .  i 
Background 1 

T o  be prepared for this course of study in computer 
arch~tecture the student should have a good understanding 
of  (1) p;ogramming in borh assembly language and 
higher-level languages, and (2) how at least one simple 
computer works. 

The necessary experience in progranunir~g call' be 
obtained from any course that introduces the notion r?f 
compu?i~:g throlx$l t!ie use cf ar, s1gz:ithmic Inngu2ze E:IC!I 
6 F(jRTRx:'r . . ,\. ALG9L: "i FLI .  F u ~ i i i i a ~ i ~ ~  ~ ~ i i i ~  ~ . ~ ~ ~ ~ ~ i u i ~  

language programming and the organization of a simpie 
machine can be ,obtained from a coursz bssed 01: a k x t  
such as [ST0721 or [GEA731. 

It  is desirable for the student either to have had a course 
in logic design or t o  have besn exposed t o  logic design in 
either of  the prerequisite coursits just described. However, 
since many students interested in comput:r architecture 
may be engaged in software engineering programs, iv2 have 
arranged this course so that logic design is not an essecti31 
prerequisite. 

Some of the modules require additional prerequisites 
such as elementary statistics and probability, and depend 
on an understanding o f  preceding modules. Such 
dependencies are indicated in the introducticns t o  the 
individual modules. 

Module 1 - lntroductiori and 
Meta RepresenQtion (2 Hours) 

Introduction ( I  Hour) 

What is computer architecture? A number of  definitions 
have been advanced. Arcl!itecturc dejcribes the dttribuies 
of a system as seen by a programmer-i.e., the conceptual 
structure and functional behavior, as. distir~cr from the ; 
organization oT thc. :inta riow and controls. tile i o g d  . 
design, and the physical implernenrzticn. hrc!;itectu;e I: + 

the study of  those aspects in the analysis and design o i  
~ ~ n t p u t c r ~  whish specifiually relate their stnlcrurz and riieir ; 



function. Computer architecture is the discipline devoted t o  
the design of !ughly specific and individual computers iron1 
a collection of cornmon building blocks. 

We decided not tcr adopt ally uf  these Jtfiiiiiions. 
Instedd we deiinetl computer architecture by dzcitiing what 
professional architects are supposed t o  do. The comni t tee  
determined that the computer architect's task is to define 
computer systems that use hardware and software 
technologies so as to  best satisfy all the users' needs, 
including function, econom!., reliability, simplicity. and 
performance. In carrying ou t  this task, the architect must 
develop an understanding of the potential applications of 
each system and then bring to bear extensive knowledge of  
the material in this course of study, operating systems 
principles [COS71],  impkmentation details, component 
techologies ,  and many other things t o  accomplish its 
design. 

Computer hardware systems are complex. There are at  
least five levels in any implementation of a co~npute r  
system: 

a. processor/memor~/switch (PhlS) level . 
b. programming level which includes operating systems 
c. register transfer level 
d. switching circuits level 
e. circuit or realization level 

Each level arises from abstractions of the levels below it and 
is characterized by a distinct language for representing its 
components, its modes of combination, and its laws o f  
behavior. 

The first three levels of this hierarchy are the proper 
G i  dJL ~.ifipsi<i h ,.... !.,. t ? :  = 

JIUUJ ,,ti, u\\aiC Z i ~ k i ~ ~ c i ,  b~~iIiisi2 iiie 
architect must dec!de how to distribute the complexity 
inherent in a computer s>.stem among them. Not much will 
be said about soft\vare and operating systems directly, but  
their influence on hardware architecture \vill permeate all 
the modules. hioreover, we have tried to  show how the 
bou~idaries bztween these levels keep changing and how this 
impacts design. 

Sleta Representation ( I 4  Hours) 

The general problem a d d r e w d  in this submoduie should 
be discussed briefly t o  introduce the student to  the need 
for fornial description. Specific notations can then be 
introduced naturally when the need for them arises. 
Therefore, the time allotted ~o this submodule should be 
distributed throughout the course of  study. 

In  order to  cornmuniate  about machines, one  must have 
suitable languages. Communication dialogues include 
user-vendor, vendor-system designer, system designer- 
programmer. student-teacher, etc. The earliest cornmunica- 
tions concerning machines took the form of standard prose 
and conventional mathematics (including standard and 
Boolean algebra) and used ad hoc diagrams 3hd flowcharts 
to describe the structure and operation of  the object being 
buiit. 

As machines evolved into complex structures, however, 
it became important to use more precise hnguages in order 
to cornrnunicnte ?he d e s i y s  esactly but simply. The 
formality of con temporan  descriptions also irnplies that 
they can be understood by machines.~It  is useful t o  have 
machine-readable descriptions of  machines so that they 
may be simulated and hence verified prior t o  their  actual 

construction. For exampie, in :he case of microprograms, 
programs trans la!^ the descriptions from the syntax of an 
assenibkr o r  compiler language into a form for 
ccr,s!n!ction, s~n:ul-tion, arid veriiication. There has also 
been considernble interest in translating the formal 
description of each system level in a computer structure 
into a realization of that level automatically. 

For the high-level block diagrams that represent the 
components of computer systems (e.g., c?ntial processors, 
primary memories. 2nd secondary memories), there is a 
need for precise descriptions simply to  permit novices t o  
understand them readily. Such notations also p e m ~ i t  
comparisons. Dzscriptions that shuw the connectivity of  a 
structure lay the foundation for the automatic generation 
of models for perfonnance and reliability calsulations. A 
formal representation permits automatic verification and 
cons:ruction of  configurations. That is, a specific computer 
system can become the basis for a variety of configurations 
each of which depends on the number and type of  
components that are used to forrn it. It is generally quite 
difficult to  verify that each sucli confiprat ion will be 
viable when realization considerations sucli as power, floor 
space, interconnection cable lengths, input-output band- 
widths, reliability, etc., are accounted for. 

Some aspects and uses of notations include description 
of: 

(a) The functional specifications of a system with 
conventional prose. At the topmost level of  system 
description, users must express their needs and work with 
conlputer archi~ects  t o  refin? these expi-essions in to  
meaningful speciticztions through t!~e medium o f  conven- , 

tional prose. 
(b) The physical structure of a particular computer 

system including its various processors, memories, peri- 
pherals. and their interconnection. 

(c) ?he  instruction set with its interpretation and the 
definition of  data-types and ooerations on these data-types. 
Such a description may be used in lieu of standard 
programming reference manuals. Currently, rnost machines 
are described in conventional prose, but also contain an 
inforrnai register transfer notation description o f .  the 
behavior of each instruction. Nearly all machines have a 
sirnillator written in a high-level language that runs o n  
another machine. 

(d) The physical organization of a particular processor, 
including its registers, dcta operators, data flow, and 
control. Usua!ly this is ad hoc on a functional diagram 
basis. The behavior of such a s).stein is specified using 
register transfer languages and conventional programming 
languages. The outcome is 3 description suitable for 
simulation. For microproyramrned machines the behavior is 
expressed as an asse~nbly language listirrg and/or flowcllart. 

(e) T!lt syritas and sen~antiz: of  data structures. In 
currently evolving Iiardware structures, especially corn- 
munication links, more ~ ~ i i l ~ l c x  da!a structures are being 
directly interpretzd. The interconnection of compufer 
cunlponents (computer-coniputer, computer-terminal, etc.) 
depends on complex communications protocois. These 
message protocois are exprcsscd in Backus-normal form, 
state diagrams, tlowcharts, and timing diagrams. 

(9 Combinational and s~quential  hgic with !ogic 
dia2ranls and Boolean algebra. Such descriptions enable 
gate and circuit level siniulatid~? of the objects. 
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hlodule 1 - Topic Outline 

Initinl fur tct io~~al  specificntions o f  a system. 
Cornputer srferwce fiianuals [e.g,, CDC06; DECIO; 

1BM70j. 

Computer components. Processors, memories, con- 
trollers, traiisducers (110 equiprnei;t), links, switches 
(buses). [BEL71, Ch. 2 (PLIS); system block diagrams 
from any c o n ~ p u t e r  reference manual] 

Register transfer level block diagrams. 
Combinational and sequential logic. 

Block Diagrmrs (Two-Din~ct~sioml) to Rcpresent Systenz 
Behoviov 

Flowcharts and/or state diagrams for sequential circuits, 
microprograms, and comnlunication link protocols. 

Languages (One-Din~ensio~zal, Formal, hfccl~iize Inter- 
pretahk) 

Instruction set definition. [FAL64; REL71, Ch. 2 (ISP); 
CHU72; IBL731 

Numher representation: mathematical notation and 
conventions. 

Register transfer and logic behavior including micro- 
programs. 

APL and APLderivatives. [HEL73; IIJL73) 
kLXi,-likre. [EEL7 1 , Ch. 2 (1SP); 
FORTPAN-like. [CHU7Lj 

h g i c a l  design: Boolean algebra foi combinational logic 
and time difference equations for sequentla1 circuits. 

Communication-message forxa t s  (syntax and semantics) 
for  communication links. [Backus-normal form] 

In summary, t o  understand, analyze, synthesize, and 
generally communicate with one anoiher and with 
machines about machines requires various informal and 
formal representations. As one considers each aspect of 
computer architecture, representation is the basis for 
understanding. 

Module 2 - Data Representation (5 Hours; 

Computers exist t o  manipulate information. Therefore, 
designirlg the ways in which the information is t o  be 
represented is a first and central step in computer 
architecture. The set of operations t o  be prrtormed follov/s 
from the set o f  data types to  be nianipulatd.  Since one 
wants the operations for manipulating program i~dorrnat ion 
to be as r?lilcii as possihk like u!he: data operations, !lie 
selection o f  dsta rcpresuntations creates strong biases as t o  
tlic formats ana representations of  ir!srl-uctions. 

A good way t o  teacil this ~ n n d u i e  is to  ;tad s i~ lden is  
through a decisicn tree representing tile data tcprescnt.+t' c lo11 
design decisions for a general-purpose or special-purpose 
computer. 

The objectives of  the module are: 
' 

(a) To teach a rather ger~eral point of view about 
representation, since creativity wiih respect t o  new 
representations and a sharp awartnesr of  existing ones lead 
t o  innowtive pragram and n i s c l l i ~ i ~  design. 

(b) T o  show the numerous and . sornetiines suCr!e 
considerations afiecting each reprwxrat ior i  decision. 

(c) T o  show how represei~tation de i i s ion~  i n t t l r x 1 ,  

thereby introdi ic~ig the student to  the notioil o f  s p t c m  
design, which requires opt imizhg a set of tighil!; caupled 
decisions. 

General references: [ST075,  Ch. 2; BEL71, Ch. 3: 
BR069,  Sec. 6 .2 ;  KNU68, Ch. 21. 

The Notion of Representation (5'2 Hour) 

Representation o f  concepts by langcage eltnients- 
n u m b e ~ s ,  letters. 

Representation of language elements by bits. 
Allocation of a set of  birs. 
Encodiug of values by a bit c o n f i ~ ~ r a t i 9 n .  

Centrality of  representation t o  archirecturzl process. 

Structure of the Representation Space (?h Hour) 

Resoht tion 

What will be  the s~ ia l les l  nemed and manipulable 
element? For example: 

1 bit - IBhi S t ~ e t c h ,  Burroughs B l Y O ,  CDC Star 
6 bits - Univac ! 108,  Honeyveil 6000  
8 bit byte - ILiM Si?hO OEC FDP-1 I 
18 bit halfword - DEC PDP- LO 
36 bit word - IBM 7094. 

Dais Element Sizes 

Systems require consistency anlong the x v f r z i  sizes. 
Consider the representation families of some svsti.ir,s: 

IBM S1-160: 4,P, 16. 3 2 . 6 4  blts. [.431D64] 
Univac 1108: 6 , 9 ,  12, 18, 36. 7 2  birs. 
Burroughs B6700: 4 . 6 ,  8. 48. 96  birs. 
CDC 6600: 60,  120 bits. [THOTO, Ch. 51 

Data Formats (4 Hours) 1 
h t a  types are derived from architectural and appl~ca-  

tions requirements. I 

Fixed P o i ~ t  Numbers 
j 

Choice of base: bmary, decimal (IB3I 653. I3 \1  14911. 
. Sign rrpresentation: 1811 7091, CDC 6600. 1B\1 S, 360. 

i 
MLwd Fi.xcii A'u nrbers 

! 
Scalmg. [hlCK57, C!I. 4 ;  S T E T .  Cfi. 71 

j 
Homirg I'c,itil Nlrnibm i 

General rcfcrcrtce: [ R U C h &  Ch. 8: STR7-41. 
Lccnti:?~? of radix pht. Chr bbOO; 1931 51360, 1 

B t ~ r ~ u ~ g l i s  B5500. i 

Mantissa base arid sign representation. [BKWCg; !  
COD731 

i 
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Exponent base and sign representation. 
Precision. significance, significance alarms and measures. 

[BP173; KilK731. 
Normailzation, guard dipi:s, rounding. [:U?173] 

Encoding of  characters: ASCII, EBCDIC, BCD. [BUC62, 
Ch. 61 

Distinctions between internal and external repr.s enta- 
tion o f  characters. 

Inherent length variability arises from applications. 
Various methods exist for accommodating variable 
length fields and ior specifying lengths. IBhl 1401, 
IBhl Sl360,  Burrouglzs B5500. [BUC62, Ch. 41 

Bit Strings 

If bits are i n d e p e n d e ~ t  and re-orderable by the designer, 
they really form a set represented as a vector. Special 
operations for bit vectors [IVE62, Ch. 1] ; for bit strings 
[BUC62, Ch. 171. Burroughs B1700, IBM Stretch, CDC 
Star. 

Higher Structrires 

Complex numbers. 
Vectors. CDC Star. 
Chained representations of  vectors, FIFO, LIFO 

(stacks). Burroughs B5.500. [BAR611 
Matrices, trees. Both of  these map neatly o n t o  vectors, 

hence processors with vectorial memories. ILLIAC 
IV, STARLV. (iVE62. Sec. 1.23; BER711 

C9ROI,, PL!I s tmct l -~es :  tr.es of  inhornogeneor~s 
elements. 

Lattices, graphs, and nonplanar nets: represe~tat ion by 
chained struttures. [MCA6O; ROS611 

Data flags: embedding control information in data. 
Burroughs B5500. [ILI68, Ch. 2-3; BUC62, Sec. 7.9; 
FEU72; FEU731 

Module 3 - Instructions and Addressing (5 Hours) 

In all electronic computer technologics u p  t o  now, 
memory speeds have been at least as slow as, and usually 
much slower than, operation speeds. Therefore, the 
performance of a conpute r  can be first-ordcr approximated 
by the memory barzd\tvidth, the number o f  bits per second 
delivered (or accepted) by  the nienimy, running con- 
tinuously. For most applications, regardless ef  the machine, 
about half of the bandwidth is used for data, about half for 
instructions. 

The architect, therefore, tries t o  improve the cost- 
performance ratio of  his design by  utilizing the memory 
bandwidth efficie~t!?., in Shannon's sense. The design of  
data representation llas been treated in Module 2. This 
module trerts the design of  instruction representation;. 
Whereas many decisions about data lepresentation are 
almost dictated by the characteristics of  the data from 
intenc!ed applications, instruction representation gives wide 
scope tor design differences. Indeed, the most str:king 
differences in computer architectures have !iistoriczlly been 
concentrated here. 

An instruction consists of  the specification o f  (usually) a 
single operstion and the operands for it. The design 
decisions, therefore, are: 

What se: o i  operations shail be allowed? . How sllall 3 particular operation be specitied? 
How shall the operands be specified (addressed)? 
H3w shall all the spccifkations be fitted together into 
aE ir:stmction format? 

The objectives of  the module are: 
(a) T o  teach the student t o  think of  the bit as his raw 

material and its efficiency of use as a first-o:der estimator 
of goodness of design. 

(b) To survey the wide variety o f  techniques that ha-ie 
been used in instruction specification, particularly lhe 
efficient specification of addresses. 

(c) T o  show the tight interaction among representation 
decisions enforced by the necessity t o  make instruction 
formats commefisurate with data formats, which enforces a 
bit-budget. 

General references: [BEL71, Ch. 3; GEA74, Ch. 2; 
HEL73, Ch. 8,9] .  

Operation Sets (2 Hours) 

What t o  include? 
Frequency of  use the chief test. [FOS71; CON70; 

WIN731 
Fewncss of operands an important test. 
(WTR6S and ANA73 discuss operation-set short- 

comings ~f the IBM S1360). 
O p r a t i o q s  cletermineci by date ty?es selected. [REL'II, 

Ch. 31 
Housekeeping. [FLY741 

Processor state changes: Loads and stores. 
Operations o n  addressing and indexing mechanisms. 
Movement of data, partitionkig, shiftitig. 

Arithmetic. 
+, -, X, +, shifting. [CHU62; STE72; ST075,  Ch. 1; 

HEL73, Ch. 71. In either this section o r  in Data 
Formats (pp. 47), algorithms which implement the 
common arithmetic opzrations t, -, X ,  +, and 
shifting s!iculd be discussed. These algorithms, o f  
course, depend on the method of representing 
data. The advantages and disadvantages of various 
forms o f  data representation should be discussed. 

Square root,  radix conversion and other options. 
(CHU621 

Floating point. [SWE65; STE72; STR741 
Comparisons and tests. 
Sequencing. 

Branching. 
Subroutine linkage. 
Opzlatiom o n  sequencing rnechsnisms such as 

enabling/disabling interrupts. 
Synchronization of concurrent activities. 

Input-output operations. 

Addrrssing (2 Hours) 

Name-Space Srnrctinre {itlnitl urd  Secondmy) 

Numeric names. jlBA1 6 0 4  Electronic Ca!culating Punch, 
circa 1943, had arbitrary names.) 
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Associative (stored name) - MU5 vs. geornctric (built-in 
name). 

Vectorial (most machines) vs. ma t lb  (STARAN, 
ILLIAC IV) vs. tree ([hlCA GO] -LISP) vs. network 
(Burroughs B6500-segmentation) name st iuctu~c.  

Number of independent name spaces. [DEN65; ARD66; 
DEG70; RAN691 

Overlapping name spaces. General purpose registers are 
addressable memory locations. DEC I'DP-10, 
Univac I 108 

Operand Specification FVithin the Name Space 

Full address in instruction. DEC PDP-10, IBM 7094 
Abbreviated addresses. 

Necessity due t o  large me~nories and program locality 
(nonuniform-access distributions). [Ah4D64] 

Bank Registers-The contents of a bank register are 
concatenated to the left end of the displacement 
field to enlarge the effective address. DEC PDP-8, 
HP 2100 

Base Registers-The contents of a base register can be 
added to  a displacement field (IBM S/360) or used 
in relative addressing (Univac 1108). 

Descriptors or control words, referenced by short 
address. Burroughs B5500 and B6500, MU5. 
[ILI68; K1L681 

Effective address calculation. [BLA59] 
Index registers. IBM S/360, CDC 6600, DEC PDP-11, 

DEC PDP- 10, Univac 1 108 
Indirect addressing. 

Single level. IBM 7094, DEC PDP-1 I 
Multilevel. HP2100, DEC PDP- 10 
Programmed-Indirection achieved through Load 

Address kstvddion. !EM S/350 
Desciiptors-A Special form of indirect address. 

Burroughs B5 500 
Immediate Address-Direct implementation of 

operand in instruction. IBM Stretch 

Formats (1 Hour) [LAW68; KII-681 

Inlporta~rce of  Frequency Arpinzents in Format Design 

CDC 6600 NOP's waste bandwidth. 

Format Compone!~ts 

Format Specifier. 
Operation Code: fixed vs. variable length vs. extensions. 
Addresses (including abbreviated ones). 
Address Modification Specifications. 
Sequencing. 

Format Sizes 

Size must be commensurate with data representation 
and subfields must be commensurate with readily-accessible 
data units. 

1 6 , 3 2 , 4 8  bits: 1BM S/360 
15, 30 bits: C I X  6600 
8, 1 6 , .  . ., 96 bits: Burroughs B6500 
36,72,108,  144 bits: Honeywell 6000 

Operatiorl Codc Specification 

Fixed-size. IRM S/360, CDC 6600 
Variable-size. DGC PDP-I 1 
Huffmann-coded. IBM Stretch, Burrougls B1700 
Direct bit-significance. DEC PDP-8 

Number of Addrerses 

Examples: 

' 0 - 1 1 + 1  

Burroughs B5.500 IBhl7094 IBXl650 

2 3 3 +  1 

1BM S/360 CDC 6600 EDVAC 

Stacks as a mechanism for eliminating addresses. 
[BAR61; BR063; BAR69; AMD64; ST075, Ch. 71 

Accumulator, multiplier registers as implicit second, 
third addresses. IBM 7094, IBM S,'360. Univac i 108 

Multiple accumulators for abbrebqated second, thlrd 
addresses. IBM ,51360, CDC 6600. DEC PDP-11. I R l l  
S/360 fixed and floating point rqisters distinguished 
by operation code. 

Next instruction address. IBM 650, EDVAC. Espl~cit  
sequence specification is rare because redundancy is 
so high. 

Module 4 - Interpretation and 
Control (6 Hours) . 

The writing of interpretive routines i s  usually taugilt 
independently and separateiy from the notions of 
instruction execution and interrupt handling. This module 
attempts t o  stress the unity of these ideas. 

Interpretation is the assignment of meaning to  an 
expression applied to  specific data, whether the expression 
is in a high-level, assembly, or bw-level (socalkd 
microprogram) language. I t  is invoked by a control 
mzchanism which selects a series of operations to  be 
performed at the (virtual) machine level that implements 
the interpretation (execution). The control mechanism then 
makes the next expression ready for interpretation 
(sequencing). The emphasis of this nodule will be on  
control within an interpretive routine and control between 
interpretive routines. 

For example, if the expressions are assembly language 
instructions, the control mechanism seiects a sequence of 
register transfer level operations to  decode and execu~e the 
operation specified in an instruction. The control 
mechanism then either fetches the next instruction (or 
interpretation or, if an external event (interrupt) has been 
signaled, initiates an interpretive routine t o  handle the 
interrupt. 

One way to  intr, duce this rnodule would be to discuss 
the interpretation of assembly Isnguage macroinstructions. 
I-lave the stildcnts piogram a small number of short 
interpretive routines in assembly languaee and then s!low 
them how to link and sequence rhrough these routines. The 
macro sequence should include setring and testing 
conditions. branching, snd executing the interpretive 
routines. One interp~etive routine shouid be devoted to the 
handling of in ter iu~ts .  Some of th:. concepts of Module 3 



could also ?x brought out during these exercises: p~ssing of 
parameters. generation of addresses, representation of an 
instructicn, opelation sets, etc. 

After thrs ir!troduction, a detailed treatment of assembly 
language instruction interpretation should follow. Se- 
quenciiig bzrween instructions should be discussed. The 
definition of the conditional branching mechanism 'should 
be especially stressed because it plays such an important 
role in hardwarelsoftware interaction. The original "IF" 
and "DO" specifications of FORTRAN represent the 
effects of attempting to  build a language in which programs 
would be as easy as possible to  translate into 1BM 704 
machine language. They were direct descendants of the IBhl 
704 c o m ~ a f e  and TIX instructions. There are numerous 
converse examples of machine designers mapping higher 
level laneuagz artifacts into hardware. The treatment of 
conditional operations should also include a discussion of 
the modifications that can be made once a test is complete. 
That is, once one control path is selected, exactly how is a 
new instruction address determined? The role of meta- 
instructions such as REPEAT and EXECUTE, which are 
themselves interpretive routines, should be discussed. 

Sequencing within instruction interpretive routines is a 
direct extension of the foregoing discussion on sequencing 
between them. The additional material to be discussed is 
related to  physical timing of a system. It is important to  
introduce the student to the notion of a register state 
transition (internal cycle) as being a fundamental quantum 
of tirning in the system. Concepts such as I and E cycles, 

. the general decoding process, control points and data paths, 
as well as ssiqle and iterated executio~l cyc!es (ndtip!y, 
trai-dak,  etc.), should be discussed. Hardware decodeis 
involving rings,. counters, and logic blocks should be 
introduced and a discussion of microprogramming should 
follow. 

General references: [BR069, Ch. 8 ;  KNU68, Sec. 1.4.3: 
CHU72; ST075, Ch. lo] .  

Introduction to  Interpretation (% Hour) [KNU68, Sec. 
1.4.3; BE3731 

Sequencing and execution of interpretive routines. 

Sequencing Between Instructions(2 Hours) 

Sequerlce Determined by Instnicrion Action 

In-line. 
Explicit control. IBM 650 

Seqrtetzce Determined by Instruction and Result Data 

Conditions and testing. IBM S/360, DEC PDP-11, IRM 
7094 

Branching action. 
Hardware-software implementations of control struc- 

tures: IBSI 7094-FOKTRAN, Burroughs 85500, 
hl US-ALGOL. [IAN681 

Modification of instruction sequence. 
Methods of address generation for branch target: 

relztive, skip, absolute, etc. 

hleta Itutnlctiotzs 
Uniwc 1108-REPEAT, IBM S/360-EXECUTE. 
[Br\060] . 

Sequence Dcrcnni~led bj) External Sigrrals-In temipts 

IBM S/36O, DEC PDP-11, DEC PDP-8, CDC 6600. 
[CIKJ72] 

Types. 
Priority and levels. 
Methods of handling. 

Sequencing Within Instructions, Execution, and Slicro- 
programming (3% Hours) [ROI69 ; CIIU72; ST075, Ch. 10; 
IBB721 

The student must fully understand the basics of 
instruction fetching, decoding, and execution and be able 
to time out the interpretation of an instruction in a simple 
machine. 

Concepts [FLY671 

Cycle-as a state transition in a finite state machine. 
Data paths and control points. 

Control timing and data path timing. 
Control finite state machines. 
Execution finite state machines. 

Decod:: of an operation. 
Gating descriptions. 
Sequencing. 

Execution. 
I and E cycles. [LOR72; AND671 
Simple execution. 
Iterated execution cycles (e.g., MULTIPLY, TRANS- 

LATE). 
Concuricnt execution. [TCh:67; TIIC701 

Hardwired. [GSC67, Ch. 8; ROI691 
Timing rings, counters, and decode logic. 

Microprogramming. [ROI69; HUS70; TEC71; TEC74; 
CHU72; DAV72; FUR74; ST075, Ch. 10; TC'C671 
The subject of n~icroprogran~ming, although strictly 
speaking an implementation topic, has had much 
greater significance in computer architecture over the 
past ten years than a narrow view of implementation 
would have admitted. Rosin [ROI7A] credits this to 
the notion that "microprogramming is the implemen- 
tation of hopefully reasonable systems through 
interpretation or unreasonable n~aclunes." This point 
sllouid be discussed in terms of how well computer 
systems have met their users' needs. 

Read only storage. [HUS70] 
Emulation. [ROfGS; TUC65; WEB671 
Read-write microstorage. [WIL72a] 
Contemporary microprogrammeif processors: Bur- 

roughs B1700, Nanodata Q M - l ,  Data Saab 
FCPU. 

Module 5 - Memory Hierarchies (8 Hours) 

This motlule deals with the architecture and structure of 
the rnemory system. The fundamental rea5on for using 
memory 1l;erarcllics in computer systems is to icducc the 
system co\t. Computer arcl~itccts nlust balancc thc system 
cost saviugs accruing fro111 a metnory Iiicr~iclly against thc 
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system performance degradation sornctimes caused by the 
hierarchy. 

The architecture of a memory hierarchy defincs the 
logical memory structure availdble to  a pogram (process). 
There is a Ftrong interaction hetween this structure and the 
design of an operating system for a ~ ~ a c h i n c .  

Properties of Memory Reference Patterns (1 Hour) 

An effective analysis or design of c mernory hierarchy 
requires an understanding of the dynamic behavior of a 
program in execution. For the purposcs of memory 
hierarchy analysis, it is useful to abstract the execution of a 
process to derive the "reference string" f ~ o m  an executing 
program. The reference string is sinlply the ordered 
sequence of memory references made by the process. The 
properties of the reference string have a significant impact 
on the performance of the memory hierarchy. The most 
important property o f .  real reference strings is their 
locality-the tendency for almost all references lo be 
directed t o  a limited region of the address space. 

General references: [BEYGG; COF68; BRA68; SIS69; 
MAT70; JOS70; SAL74aI. 

Memory Components (4 Hours) 

Overview of the Memory Hierarchy 

The memory hierarchy includes cache memory, main 
memory, on-line secondary storage units such as drum and 
disk, and bulk and off-line storage such as a magnetic tape 
library. The p;inary parameters of a memory kiernrchy- 
capacity, access time, mu uarrdwidil: at each ii-cei of the 
hierarchy--are often the most important determinants of a 
computer system's perfornlance. Therefore, it is not 

surprising that the readings dealing with memory 
hierarchies are largely concerned with performance. 

General references: [KUC70; BEL71, Ch. 3 ;  ANC69; 
ST075, Ch. 51. 

Cache hlenzories and Other Iligll-Speed Memory Buffers 

These memory buffers are an important implementation 
. techniqlte that has a major impact on the perforniance of 

central processors. They form a level in thc memory 
hierarchy that is between the main memory and the 
processor. l h i s  level differs from the other levels (i.e., main, 
secondary, and bulk storage) in the important respect that 
it is not visible nor available for direct manipulation by the 
programmer. 

Inst~uction Buffers. iTH070: AND671 
Cache Memories. [KIL63,; GIB67; LIP68; COT69; 

MEA70; I(AP72; BEJ74j 

Ahin Storage [TH070, Ch. 4 ;  BOL671 

Name s p c e  vs. real memory p a c e  size. 
Marketing considerations in specifying maximum 

memory capacities for various IBhl S/360 models. 
[BEL71, Ch. 441 

Ihndwidtli. 
Low order interleaving. [BOL67; BUK70] 

Memory recorrfigul:!t~on. 
Iligh order inlelloavinp,. lJnivac 1108 

Seconcicrry Storage 

Extended main storage. [TH070, Ch. 3; BOL671 
Fixed head disk or drum. [COF73, Sec. 5.3; FUI175) 

1RM 2305 Drum Storage-[IBM23] 
Moving head disk. ICOF73, Sec. 5.4; TE0721 

1BM 23 14 Direct Access Storage Facility. [1BM24] 
IUM 3830 Storage Control and 3330 Disk Storage 

[IBM33] 

Mass Storage [DAM62; IiOA72; JON751 

IBM 3850 hlass Storage System. [IBM38] 

Address Translation Mechanism (3 Hours) 

One of the most significant developments in computer 
architecture has been the distirxtion between the virtual 
address space (or name space) of the processor and tile 
physical address space of memory. A range of mechanisms 
have been developed for mapping one to the other. The 
following references discuss the more important ones. 
General references: [KIL62; AKD66; RhK68; DEG701. 

Base Register Reiocation 

Single. CDC 6600 [TH070, Ch. 41 
Double. Univac 1 108 

Paging 

IBM S/370. [KI162; JOS70; SAL741 

Segmentation 

Burrougils B5500/C65GO. [DEK65; MAU66] 

Inpiemen tation of Dynamic Address Translations. ' 

[DAM& LAV71; IBM7O; IBM681 

Virtual Machines. [GOL73] j 

Module 6 - Protection Mechanisms and 
Hardware Aids to Supervision (4 Hours) 

Prerequisite: Module 5 

Modern computer systems are often designed for shared 
use of their resources by several concurrently executing 
processes (program jobs). The most vital protection 
mechanism is one designed to ensure that no job's 
execution csn possibly interfere with the informat~on used 
by any ather job. This storage protection is, however, only 
one important aspect of a general class of supensisio~l 
functions concerned with signaling, response, and assign- 
ment activities required for efficient computer resource 
allocation and acceptable response times. A judicious 
corlibination cf softxare and hardware is ~lszd to 
implement supervision functions. Hardware is needed for 
sequences that occw with high frequency. This li?oduit: and 
Module 5 are lhe areas of gtedtest interaction between 
computer arc11itcc:ure arid the principles of operating 
systems. 



G e n e n l  Discussion of Protection and Sipemision (55 Ilour) 

General references: [DEC;71; HEL73; NEE721 

Motivut iom jbr Shared Use L? f Srorag~ anti Processor. 

Tinlesllarirrg of the CPU. [WIK72] 

Space-Sltantrg of.llaitt Storogc 

Register and  stored key protection. 
Read/w~i te  pyotection. 

Interprocess Communication (2 Hours) 

General reierences: [LAhl69; HEL73; HAN73; ORG731 

Internrpt Pritrciples 

Saving and restoring system states. RCA Spectra 7 0  h2d 
four operating states: program, executive, interrupt,  and 
machine; whereas the IRM System/360 has only two, 
program and supervisor. 

CDC 6600  exchange jump. 

Internipt Signalir~g Cutegories 

Clock ( t i m r ) .  110 condition, address violation, opera- 
ti011 invalidity. external signals, explicit program call, etc. 

Semaphores. [DI J68] 

Privileged Mode ('/2 Hour) 

General references: [CLA64; IIEL73; IBM7O] . 

Storage Protection 

Iil fernlp t Iiarrdlitig 

.!lode-Change dfecharzisms 

Hardrc~are-Ope.r~tl~zg System-Problem Program Irlteractions 

Virtual Memory Mechanisms for  Protection (1 Hour) 

General references: [DEN66; DAL68; ORG72; NEE72; 
SCH72; IBM701. 

Typical Major Examples t o  Illustrate Module Topics 

Xlthough a!rno\t every system has its distinct features, 
the following c m  illustrate rnost prir~ciplcs and m m y  varia- 
tions found in actual practice. Tlfe asterisks denore virtual 
storage systems. 

CDC 6600  
DEC PDP-11 
DEC PDP-IO 
I M I  Sys:em/360 
Burroughs H550U/B65GO* [ORG73] 
IBXI Systeni1370* 
hiult ics* [DAlbs; ORC72; SAL74bI 
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Moduie 7 - Specialized Processors (5 Hours) 

4 1111rnber of !'unctionally spcciaiized proccssors have 
l i e n  developed. Tltese processors :ire tiefined prinnar~ly by 
the d a t ; ~  types which they can proccss. They d o  not 
interpret general programming 1ang:l:tgcs. This nlotlule deals 
with some of the more common spc.cialized proccssors. 

Input/Output Processors (2 Hours) 

An input/output processor specializes in the nmiage- 
merit o f  peripherals. I t  controls the details of transmission 
of inforniation between secondary nicmories or t e ~ ~ i i i n d s  
and main tileruory. h i n p u t / o u t p ~ t  processor docs not  
usually d ie ;  information; i t  is merely an interpreter for 
moving information. Computational capability is only 
required if recoding and reformatting of iniorination is 
necessary, or if operations are t o  be carried c u t  between 
second memories without central processor interver.tion. 

General reference: [ST075,  Ch. 61. 

Copy Logic, Buffers atld Direct h1emoi.y Access Capability 

DEC PDP-3; HP2100, DEC PDP-11. [GSC67, Sec. 8.41 

Channels 

IBM 1800  Special Data Channels. [BEL71, Ch. 331 
IBM 7607 and 7909  Data Channels. [BEL71, Ch. 411 
Selector and Byte Multiuiexer Channel?. fPADhJ! 
B!ock Multiplexer Channel. [B-a721 

Peripherul Processors 

CDC 6600  PPU's. [TH070,  Ch. 7 and 81 
CDC 7600 FPU's. [CDC76, Ch. 51 
Univac 1108  I /O Processor. 

hlicroprocessors and Microprocessor Applications (2 Hours) 

Over the 30 years in which computers iiavr: existed, 
several thousand species of  macliilles have been built by a 
variety of organizations for a variety of functions. The 
implementations of these machines were based on avaiiable 
semiionductor and magnetic tecllnologies. Current!y, 
semiconductor teclmology is such that a ~111311 stored 
program processor can be fabricated o n  a single silicon die. 
These processor-on-a-cldI, devices, when executing a fixed 
progrzm, form the basis for hand-!ield calculators, appliance 
anti automotive coritrollers, and sinlplt' terminals. Tlicy also 
form the basis for many ~,)rograninir?ble products: 
point-of-sales terminals, instruments, factory data  col!ec- 
tion terminds, display terminals, etc. 

~ ~ s s o r -  The important aspect o f  nearly zero cost pro-> 
on-a-chip computers is that they will be applied on a wide 
scale in ne3rl;. d l  man-made objects. Though t l~cse 
conipi ters  are revolutionary in l'unctional ability, their 
architcctura! dcvelop~tient has been strictly evoiutic>r~ary. 
All of the topics discmsed in this report arc relevant t o  
their design. 

General references: [COM71a; COM74b; LAY 72; 
kiOT74) . 



Ternzirzal Computers 

. '1Termin;ils of this type include CKT-keyboards whose 
uses range f10n1 programming t o  order entry, point-of-sale, 
factory data collection, conimiinications cmtro l ,  etc. 

Calculalors IBEL71, Ch. 20;  ST075,  Ch. 31 

Electronic calculators (especially the hand-held versions) 
are excellent examples of specialized processors. They are 
characterized by decimal rather than biilary arithmetic 
units, a spartan simplicity dictated by strict price 
constraints, and a very primitive 110 system. 

i Display Processors (1 Hour) 

A display processor is a complex system that 
manipulates information fcr  display terminals. I t  must 
perform a substantial nunibei of local operztions on a set of 
specialized data types Fvhich are representatiorls of  complex 
graphical objects. These representations  typical!^ include 
character strings, points and vectors t o  be displayed, and 
control structures which define pictures. 

General references: [WAT69; hTEiV74; BEL71, Ch. 251. 

Module 8 - Multiple Computers (4 Hours) 

Various forms of  multiple computers have been designed 
as a means of  (1) increasing the reliability and improving 
the performance o f  computer systems, and (2) distributing 
computing according to physical location needs t o  reduce ..- 
wrn:~i i l~~icat ion h i k  ifisis. i w o  staidaid icjrnis arc !tie 
mulliprocessor computer (which consists o f  two or more 
processors that  share a common memory) and geograph- 
ically distributed computer networks (which are usually a 
collection of physically separated computers). 

Multiprocessor conlputers which share the same physical 
memory and addressing space but havz only a few 
processors have existed for some time. Systems are now 
being built with a large number of  processors, though. 
Although some of the multiprocessor's problems are still in  
the research domain, the system designer must be aware of  
the issues o f  reliability and performance (e.g., conflicts arise 
when multiple processors access a common resource) and 
the mechanisms for intercommunication which permit the 
processors t o  share common resources. 

Understandiqg conlputer networks requires an under- 
standing of their constituent components (the inter- 
connection links, the computers, and their operating 
systems) and the tasks which are t o  be distributed among 
them. Computer network analysis is siruilar to the analysis 
of other networks in which multicomn~odities are 
transferred among links and nodes o n  a dynamic basis. 

3 Many of the studies that have been carried out for 
telephone communication (especially switching) apply. 

Finally, there are ad hoc, tightly coupled computer 
structures which are neither interconnected via s!andard 
comniuniat ions links nor share the same memory. 
Examples of  these structures include 1B?4's A t t x h e d  
Support I'rocessor sysknl ,  conimunications front ends, and 
specialized file, array, and display pracessors. 

The advent o f  microprocessors clearly forccs the growth 
of various muliiplc. computer s!ructures. The sin1p:cst 

structures will be based o n  communications links with 
processes being assigned to specific processors o n  a , 

functional basis. 

Multiprocessor Computers (2 Hours) 

General leferences: [EEL71, Part 5 ;  IIEL73; ENS741. 
Systems: 

Burrouglis D825. JBEL71, Ch. 36) 
Burroughs Interpreter. [DAS72] 
Carnegie-Mellon IJniversity C.mmp. [\WL721 
Bolt, Beranek and Newman. [HEA73] 
Univac 1 108. [STS6'7j 
IBM Systen?/370 Model 168 h P .  [MAC741 

Switching and Interconnect ion Structure. [BLA64b; 
DAS721 

Perfornzancc as a Function of the h'umber of Processors. 
[LEH66; WUL721 

Sharuzg m d  Resource Conten tion [SKI691 

Reliability. 

I 

Computer Networks (2 Hours) 

General references: [BEL71, Ch. 40; IEEE73; COh173; 
BEL741. 

Stntctura and Anal~lsis [ROB70; FRAT1 ; ORN721 

Facilities and Use.. [ROB73; KLE741 

Module 9 - Performance Evaluation (9 Hours) 

Prerequisites: Modules 2,  3 ,  5, and 6, plus a basic course 
in probability. [ F E U 8 1  

The  performance evaluation of a computer system 
consists of deriving indices of its quality, such as speeds, 
storage capacities, and efficiencies of  resource use. This 
assessment requires an understanding of the purposes the 
system is t o  serve as well as the hardware and software 
components that constitute it. These purposes are given 
explicit definition in the selection and representation of  
workloads and performance indicators. 

Performance evaluation is frequently concerned with 
more than just producing the values of a few perfcrnm:ce 
indicators such as bandwidth. throughput, response timi'. 
and resource utilization for a given configuration. It  must. 
determint the dependence of  these indicators o n  x r i o u s  
parameters o f  the system so as t o  help designers choose 
among a rather large col!eztion of alternative con?iguraticns 
arid o p t i o ~ i s  in their efforts t o  meet user's specifications. 

Different types of  performance studies (e.g.. different 
levels of detail) are appropriate t o  va~ious  ciasses d 
computer professionals such as arciiitects, h:jrcl.\vai. a v i  
software engineers, installation managers, system pro- 
grammers, problem prograiliincrs, eic. Cespit;. ih; difizieiit 
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needs of these groups, they all use the same basic classes of 
evaluation tools: ( I )  mathematical analysis, ( 7 , )  simulation 
techniques, and (3) measurement. All of these are 
in t rodu~ed in this n~odclle in various context>, 2nd some 
time should be spent comparing their strengths and 
weaknesses. 

General references: [CAL67; SMI68; LL'C71; BEL71, 
Ch. 3; F R E E ;  DKU73; HEL75; ST075,  Ch. ! 11. 

Alaiti Storage 

I/O Devices and Subsystems [HEL70] 

Disk and Drum. [TE072; FUR751 
Printer. 

Computing System Performance (3 Hours) [MEL75] 

The references cited for system studies are only 
suggestions. Actual studies may involve components, 
subsystems, or systems. Overview (1% Hours) 

Batch Systems. Nature of Computer Performance Evaluation 

Multiprogramnring Systems. [ONE67; CAN68; STU711 Evaluation Classes (Hardware, Software, Systems). 

Timesharing Systems. [SCE67; MCK69; D3H70; BA371; 
M E 7  1 ; SHE721 

Definitiotl of Performance Measures such as Ba~ldwidth, 
Throughput, Response Time, Resource Utilization, etc. 

Virtual Memoly Systems [SAL70; ORG72; SCE73; 
HEL7 51 

.lZcasuremetrt Techiques 

Hardware. [ROE69; BON69; DRU73; IBM70 (Program 
Event Recording)] 

Software. {CtLM8; CHN69; SED70; BAD71; LUC711 

Module 10 - Reliability (5 Hours) 
Introduction t o  Techniques of Analysis (2% Hours) 

Reliability affects everyone connected with computer 
systems, from machine designer t o  end user. As more 
complex systems are designed and fabricated, their 
designers must exercise greater care during design in order 

, 

t o  ensure that the systems they develop operate with an 
acceutzble :eve! nf re!iahi!i!v. T!E !r?a~~ria!  in this n~odl.!!~ 
helps the srudcnt to mderstarid arid dcteriiiiiic various 
reliabihty parameters of a system, given knowledge of its 
constituent parts, and to  design (or configure) systems for 
increased reliability. 

Elemen t a y  Queuei~lg Theory 

N'hen the information necessary to evaluate a computer 
system's performance exceeds the values of simple 
pnrameters of the hardware structure, performance 
rvah~ation must address the u~derlying stochastic vzture of 
operating a computer system. Requests for sentice arriving 
at processors within a computer system often can only be 
modeled as a random process. 

References: [KLE75, Ch. 3-4; ST075,  Ch. 11; HEL75, 
Ch. 51. Basic Measures and Calculations (2 Hours) 

Attempts t o  evaluate a computer system quantitatively 
require an understanding of the fundamental measures of 
reliability (e.g., mean-time-to-failure, mean-time-to-repair, 
expected-system lifetime). In addition, there are a few 
elementary computations that are useful when attempting 
to estimate system reliability. 

General references: [ESA62; BOU71; hiAH71; HEL73, 
pp. 443-4521. 

Simulation Theoly 

There are instances when a more detailed analysis of 
system behavior is needed than can be obtained from 
queueing models, and instances when a system to be 
analyzed cannot be adequately approximated by known 
analytical methods. In these cases, simulation techniques 
are the most appropriare tools available to the analyst. 

F.eferences: [NIE67; hlCD68; GOR691. 
Codes for Error Detection and Error Correction (1 Hour) 

An essential basis for any computer system that must 
operate with a high degree of reliability is an error 
detection, and possibly an error correction, scheme for 

Workload Selection and Characterization (1 Hour) [FER72; 
WIN731 

transmission and storage of data. In memory systems, 
Total System Load. [FRM68; WAL671 redundant error detection and/or correction information is 

held in the memory. Different codes are ofteri required for 
Benchmarks distinct levels in the memory hierarchy, and each-~i~emory 

technology may impos- different demands on its code. 
Similarly, communication links are not error-free, a d  thus Syntlletic Workloads [BUC69; SRE741 

additional information must be transmitted with a message 
to ensure its integrity. 

Another area in which error detection and correction Components and Subsystems Performance (1 Hour) 
[DRU73; HEL751 plays an important part is the use of arithmetic codes for 

(he detection arid correctior! of errors iil the results 
Central Processor. (hlUR7O; BEL7 1 ,  Ch. 3; SOL661 

Kernels. [CAL67] 
Mixes. [ U 1 6 4 ;  GIs701 

produced by arithmetic operations. 
Gentral references: [iIIL68, Ch. 8 ;  AVI7lb; P E T E ;  

RAO741. 
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Diagnostic Procedures (1 Ilour) 
Diagriostic procedures are thc set of programs tlia: 

edercisc each of the component5 of a coniputer system t o  
validatc that it is worhing correctly or that kelp ~colate the 
component that is fnili!ig. Tlie frcque~ic). a l t h  which 
diagnostic procedures are unable t o  detect failures when a 
sys te~n  is known t o  be nialfunction~ng underscores the need 
t o  discuss the principles of  testing. The student should 
comprehend the imposslb~hty of exhdustive testing, the 

t need t o  understand tlie structure as well as the function of  
the component under test, and the concept of "boot- 
strapping" diagnostics-ie., validating a small "core" of 
hardware a~:d then using the core t o  test the remaining 

i 
facilities. 

General references: [BAT70; CHASO; JON711. 

.System Reliability and Serviceability (2 Hours) 

As computer systems continue t o  be applied t o  an 
increasing variety of real-time environments? stringent 
demands are made on the computer system's avaiiability 
and serviceability. The increasing con~plexi ty of large 
computer systems also requires the inclusion of more 
sopl&icated machine-checking capabilities. 

General references: [CAR64; FOX75; ORN751. 

Machine Checkilg Techniques. 

Error Logging and Recovery. 

Fault Tolerant Techniques. [AVI7 1 a] . 

Data Representation 

Instruction and 
Addressing 

E 
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0 

& 
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.$ 
5 
Q Protection Mechanisms 
E and Hardware Aids ' to Supervision 

I s 
I C 

A\ 8 lnput/Output 
5 
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7 f Facilities for 

8 Multiprocessing 
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Performance 

Figure 1. System design evaluatbn matrix 
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Large Systems 

hqodule 1 1 - System Design Evaluat~on 
16 Hours) 

T o  appreciate how the architectures of computer 
systems develop, one must analyze complete systems. Since 
fonnal techniques for the analysis of these systems do not 
yet exist, there is no substitute for studying some existing 
systems closely. The puipose in doing this is t o  tr)i to  
deduce tlie reasons for various design decisions and to see 
how design decisions in some aspects affect those in othcrs. 
Moreover, these studies provide the opportunity t o  
compare the techniques sdopted by different systems for 
solving fundamentd problems. The instructor rilay prcfer to  
introduce such studies gradually throughout the course of 
study rather than treating them as a coniparative analysis at 
the end. 

The subject matter t o  be covered is best repressnted by a 
mairix of  systems and concepts (Figure 1). The hol.izontal 
dimension compares different techniques for solving tlie 
same fundamental problems, and the vertical dimension 
shows how solving one of the problems in a particular way 
constrains the solution of other problems. Each of these 
dimensior~s is t o  be evaluated in as quantitative a manner as 
possible. 

Two points are t o  be stressed here: environment and 
teclmology. .The first is dealt with because it is in1peratis.e 
that the student develop an unciersta~lding of  the user 
environments for which these systems were actually 
intended. By environment we mean the complete set of 
users' specifications: the functional capabilities that were 

COMPUTER. SYSTEMS 
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expected, thc reiative cost of  the system (relative t o  otllers 
of its day) [513A69j, the language processors ar?d operating 
systems that were espected, and the reliability o f  the 
system in its environment. 

The second is addressed because i! is impossible t o  
wmprtre systcms wit!io!~t considering their tecilnoiogical 
base. The instructor shouid normal i~e  thcse considera:ions 
whenever possible, but a h  cal! attention t o  them w l i t ! ~  
they represent technics! constraints in the system designer's 
environment. For  example, the availabiliiy of  different 
memory elements ar,d the relative cost o f  circuits 
frequently affect arclutectural decisions. 

Computer Systems 

The systems selected for comparison should include an 
interesting disparity of environments as well as some 
similarity. The selection must be influenced, of  course. by 
the availability o f  reference materials and the students' and 
instructor's fsmiliarity with specific systems. Here are some 
suggestions. 

[.urge Systems 

a. IBhi Systen1/360 and System/370 in general and 
System/370 31odel 158 [IBh158] or hlodel !68 
[IBI\168] in particular. 

b. DEC PDP-I 0. 
c. CDC 6600. 
d. Rurroughs 86500.  
c.. Ui..*ac 110.3. 

Medirtm Systems 

a. Burroughs B1700. 
b. IBM System/370 Model 145 [IBM45]. 
C. DEC PDP-1 1/45. 
d. Honeywel! Series160 level 64.. 

1l1itriconlpulc"r Systems 

a. DEC PDP-8. 
b. HP2100 and HP21MX. 
c. hlicrodata 1600. 
d. Data General Nova. 
e. IBM System/32. 

~Mcroconlp~i rer s)lsrems 

9. Intel 8089. 
b. National [ME'-16. 
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Intel Corporation, the world's forcmcst 
microcomputer manufacturer, has o 
unique commitment to high-levei 
programming languages. We believe 
that the microcomputer revolution 
provides a singular opportunity to 
introduce the tools of modern 
programming to a vast, new generation 
of users and programmers. Tools for 
building the diverse applications of 
microcomputing power in the decade 
to come. 

To build these new tools, we need people 
with exceptional skill and ingenuity. 
People thoroughly fomilor with the 
concepts of modern programming 
languages and the des~gn of state-of- 
the-art compilers. 

Applicants should hove on MS or PhD in 
computer science, or equivalent 
background in language and compiler 
design. For i mmediote considerot ion, 
please contact Professional Emoloyriient, 
intel Corporaticn, 3065 Eowers Avenue, 
Snnto Clara, CA 95051. 
An Equal Cpportuniiy Employer !dF. 


