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Module 0 — Preface

The subject of computer architecture as currently taught
in most computer engineering and computer science
prozrams is a mixture of architectural principles,
organizatioaal strategies, and implementation techniques.
This blurring of the hierarchy of system levels that
characterize the structure of a computer has made it very
difficult for students (and often instructors as weli) to
determine what were the forces that led to the design
decisions they have seen reflected in machines.

Guidance for the development of courses in computer
architecture has come from the ACM Curriculum
Committee on Computer Science [ACM68] and the
COSINE Commmittee of the Commission on Engineering
Education [COS68]. In- 1968 these committees both
proposed syllabuses for a course in computer organization.
The ACM commitice also proposed the content for an
advanced course in computer organization. The material in
these courses is characterized by the confusing mixture of
topics we have already mentioned. The courses aiso suffer
other shortcomings. They contain sketchy topic outlines
rather than detailed specifications. They pay insufficient
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attention to the fact that to a uszr the essential part of any
computer system is its visible facilities: language processors,
operating system, and other software. Therefore, they do
not support the integration of hardware and software
design that is required to create computer systems which
satisfy the user. Finally, computing environments and basic
technologies have changed significantly since the ACM and
COSINE committees made their recommendations, and
these changes need to be reflected -in a computer
architecture course description.

In view of these circumstaices, a task force was
cstablished by the IEEE Computer Society to prepare a
detailed specification for a course of study in computer
architecture for students whose uajor interest is in
computer enginecring or computer science. The members of
the task force were: George E. Rossmann, chairman, Palyn
Associates, Inc.; C. Gordon Bell, Digital Equipment
Corporation; Frederick P, Brooks, Jr., University of North
Carolina, Chape! Hill; Michael J. Flynn, Stanford
University; Samuel I Fuller, Carnegie-Mellon University;
Herbert Hellerman, State University of New York at
Binghampton.

COMPUTER



Plan of the Report

. The structure of this report has been motivated by three
considerations. First, the report is concerned primarily with
computer hardware architecture. Second, the course of
study is intended for students for whom computer
architecture supports their interest in computer engineering
or computer science. These people need to be familiar with
all of the topics discussed here. This course of study is not
sufficient, however, for the training of the professional
computer architect. The introduction to Module 1 explains
why. Third, the universities using this report will vary
considerably with respect to plans for packaging this
material into academic courses, instructor capability,
student ability, and student preparation.

The first and second considerations determined what
material should be included, and the third consideration
determined how it should be organized. The material
presented has been restricted to those topics which we feel
every computer engineer and computer scientist ought to
know and to those computer systems which have been in

. the mainstream of commercial equipment. As a result,

topics such as the early history of coinputers: parallel,
pipeline, associative, and array processing; the effectiveness
of various machine structures in performing various
computations; implementation details including busing
structures and interfacing conventions; and switching
structures have been conciously excluded from this course
of study. We have organized the material presented into 11
modules, each dealing with a fundamental aspect of
computer hardware architecture. The modules are:

Module No. Tizle
1 Introduction and Meta Representation
2 Data Representation
3 Instructions and Addressing
4 Interpretation and Control
S Memory Hierarchies
6 Protection Mechanisms and Hardware
Aids to Supervision
7 Specialized Processors
8 Multiple Computers
9 Performance Evaluation
10 Reliability
11 System Design Evaluation

The packaging of these modules into academic courses is
up to individual instructors. However, they must generally
be taught in the order indicated. The material in modules 1
and 11 may be interspersed throughout the course of study
rather than being treated as separate items. We have tried to
help by suggesting the amount of time which should be
devoted to each module and its sub-topics, and by precise
specification of the references which support each topic.
One grouping of the modules we have found effective is:

Module 1: Me:a Representation

Modules 2-5: Classical Processor/Memory/Switch
Aspects of Computer Architecture

Meodules 6-8: Aspects of Systems Architecture

Modules ©-11: Evaluation Methods and Analysis.
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In addition, depending upon the composition of the clags,
whether computer engineers or computer scientists, the
instructor may choose to cmphasize, respectively, the
hardware implementation or software engincering con-
sequences of various architectural decisions.

We believe that it is possible within the scope of this
course of study to undertake term projects that involve
design. However, it was unfeasible for us to offer guidance
in this area. Instructors will have to define projects based
on their resources and the abilities of their students. There
is, of course, a temptation to do a machine sketch, but the
committee does not encourage such 2 project because we
feel that the essence of the design process lies in probing
deeper than the sketch level te understand the inter-
relations between various design decisions.

The only textbooks currently available that cover a
reasonable amount of the material proposed in this course
of study are: Computer Structures: Readings and
Examples, C.G. Bell and A. Newell [BEL71]; Digiral
Computer System Principles, H. Hellerman [HEL73]: and
Introduction to Computer Architecture, H. Stone (ed.),
[STO75}.

Background

To be prepared for this course of study in compute
architecture the student should have a good understanding
of (1) programming in both assembly language and
higher-level languages, and (2) how at least one simple
computer works. .

The necessary experience in programuming can be
obtained from any course that introduces the notion of
computing through the use of an algerithmic language such
as FORTRAN. ALGOL, o: PLI. Famnillarity with wssernbly
language programming and the organization of a simpie
machine can be obtained from a course based on a text
such as [STO72] or [GEA74].

It is desirable for the student either to have had a course
in logic design or to have been exposed to logic design in
either of the prerequisite courses just described. However,

‘since many students interested in computer architecture

may be engaged in software engineering programs, we have
arranged this course so that logic design is not an essential
prerequisite. '

Some of the modules require additional prerequisites
such as elementary statistics and probability, and depend
on an understanding of preceding modules. Such
dependencies are indicated in the introducticns to the
‘individual modules.

Module 1 — introduction and
Meta Representation {2 Hours)

Introduction (1 Hour).

What is computer architecture? A number of definitions
have been advanced. Architecture describes the attributes
of a svstem as seen by a programmer—i.e.. the conceptual
structure and functional behavior, as- distinct from the
organization oi the data fiow and controis, the logical
design, and the physical implementation. Architecture 1s
the study of those aspects in the analysis and design of
computers which specifically relate their siructure and their
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function. Computer architecture is the discipline devoted to
the design of highly specific and individual computers from
a collection of common building blocks.

We decided not to adopt any of these definitions.
Insiead we detined computer architecture by deciding what
professional architects are supposed to do. The committee
determined that the computer architect’s task is to define
computer systems that use hardware and software
technologies so as to best satisfy all the users’ needs,
including function, economy, reliability, simplicity. and
performance. In carrying out this task, the architect must
develop an understanding of the potential applications of
each system and then bring to bear extensive knowledge of
the material in this course of study, operating systems
principles [COS71}, implementation details, component
technologies, and many other things to accomplish its
design.

Computer hardware systems are complex. There are at
least five levels in any implementation of a computer
system:
processor/memorv/switch (PMS) level
. programming level which includes operating systems
register transter level
. switching circuits level
circuit or realization level

Pao op

Each level arises from abstractions of the levels below it and
is characterized by a distinct language for representing its
components, its modes of combination, and its laws of
behavior.

The first three levels of this hierarchy are the proper
study of the compuier hardware architeci, beCause ihe
architect must decide how to distribute the complexity
inherent in a computer system among them. Not much will
be said about software and operating systems directly, but
their influence on hardware architecture will permeate all
the modules. Moreover, we have tried to show how the
boundaries between these levels keep changing and how this
impacts design.

Meta Representation (14 Hours)

The general problem addressed in this submodule should
be discussed briefly to introduce the student to the need
for formal description. Specific notaticns can then be
introduced naturally when the need for them arises.
Therefore, the time allotted to this submodule should be
distributed throughout the course of study.

In order to communicate about machines, one must have
suitable languages. Communication dialogues include
user-vendor, vendor-system designer, system designer-
programmer, student-teacher, etc. The earliest communica-
tions concerning machines took the form of standard prose
and conventional mathematics (including standard and
Boolean algebra) and used ad hoc diagrams and flowcharts
to describe the structure and operation of the object being
buiit.

As machines evolved into complex structures, however,
it became important to use more precise languages in order
to communicate the desizns exactly but simply. The
formality of contemporary descripticns also implies that
they can be understood by machines. It is useful to have
machine-readable descriptions of machines so that they
may be simulated and hence verified prior to their actual
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construction. For exampie, in the case of microprograms,
programs translate the descriptiens from the syntax of an
assembler  or compiler language into a form for
construction, simulation, and verification. There has also
been considerable interest in translating the formal
description of each system level in a computer structure
into a realization of that level automatically,

For the high-level block diagrams that represent the
components of computer systems (e.g., central processors,
primary memories, and secondary memories), there is a
need for precise descriptions simply to permit novices to
understand them readily. Such notations also pemmit
comparisons. Descriptions that show the connectivity of a
structure lay the foundation for the automatic generation
of models for performance and reliability calculations. A
formal representation permits automatic verification and
construction of configurations. That is, a specific computer
system can become the basis for a variety of configurations
each of which depends on the number and type of
components that are used to form it. It is generally quite
difficult to verify that each such configuration will be
viable when realization considerations such as power, floor
space, interconnection cable lengths, input-output band-
widths, reliability, etc., are accounted for.

Some aspects and uses of notations include description
of:

(a) The functional specifications of a system with
conventional prose. At the topmost level of system
description, users must express their needs and work with
computer architects to refine these expressions into
meaningful specifications through the medium of conven-
tional prose.

(b) The physical structure of a particular computer
system including its various processors, memories, peri-
pherals, and their interconnection.

(¢) The instruction set with its interpretation and the
definition of data-types and operations on these data-types.
Such a description may be used in lieu of standard
programming reference manuals. Currently, rnost machines
are described in conventional prose, but also contain an
informal register transfer notation description of the
behavior of each instruction. Nearly all machines have a
simulator written in a high-level language that runs on
another machine.

(d) The physical organization of a particular processor,
including its registers, dsta operators, data flow, and
control. Usually this is ad hoc on a functional diagram
basis. The behavior of such a system is specified using
register transfer languages and conventional programming
languages. The outcome is a description suitable for
simulation. For microprogrammed machines the behavior is
expressed as an assembly language listing and/or flowchart.

{e) The syntax and semantics of data structures. In
currently evolving hardware structures, especially com-
munication links, more complex data structures are being
directly interpreted. The interconnection of compufer
components (computer-computer, computer-terminal, etc.)
depends on complex communications protocois. These
message protocols are expressed in Backus-normal form,
state diagrams, flowcharts, and timing diagrams.

() Combinational and scquential logic with logic
diagrams and Boolean algebra. Such descriptions enable
gate and circuit level simulation of the objects.

COMPUTER



Module 1 — Topic Outline

Prose and Informal Diagrams
Initial functional specifications of a system.
Computer veference manuals [e.g., CDC66; DECIO;
1BM70}.

Block Diagrars {(Two-Dimensional) io Represent Systerm
Structure
Computer components, Processors, memories, con-
trollers, transducers (I/O equipment), links, switches
(buses). [BEL71, Ch. 2 (PMS); system block diagrams
from any computer reference manual]
_Register transfer level block diagrams.
Combinational and sequential logic.

Block Diagrams (Two-Dimensional} to Represent System
Behavior :

Flowcharts and/or state diagrams for sequential circuits,
microprograms, and communication link protocols,

Languages [One-Dimensional, Formal, Machine Inter-
pretable)
Instruction set definition. [FAL64; BEL71i, Ch. 2 (ISP);
CHU72; HIL73]
Number representation: mathematical notation and
conventions,
Register transfer and logic behavior including micro-
programs. ’

APL and APIL-derivatives. [HEL73; HIL73]
ALGOL-ike. {BEL71, Ch. 2 (I8P)]
FORTRAN-like, [CHU72]
Logical design: Boolean algebra for combinational logic
and time difference equations for sequential circuits,
Communication-message formats (syntax and semantics)
for communication links. [Backus-normal form]

In summary, to understand, analyze, synthesize, and
generally communicate with one another and with
rachines about machines requires various informal and
formal representations. As one considers each aspect of
computer architecture, representation is the basis for
understanding.

Module 2 — Data Representation (5 Hours)

Computers exist to manipulate information. Therefore,
designing the ways in which the information is to be
represented is a first and central step in computer
architecture. The set of operations to be performed follows
from the set of data types to be manipulated. Since vne
wants the operations for manipulating program information
to be as much as possible like other data operations, the
selection of data representations creates strong biases as to
the formats and representations of instructions. -

A good way to teach this module is to icad students
through a decision tree representing the data representation
design decisions for a general-purpose or special-purpose
computer.

December 1875

The objectives of the module are:

(a) To teach a rather general point of view about
representation, since creativity with respect to new
representations and a sharp awareness of existing ones lead
to innovative program and machine design.

(b) To show the numerous and . sometimes subtle
considerations affecting each representation decision.

(c) To show how representation decisions interact,
thereby introducimg the student to the notign of system
design, which requires optimizing a set of tightly coupled
decisions.

General references: [STO75, Ch. 2;
BRO69Y, Sec. 6.2; KNU68, Ch. 2].

BEL71, Ch. 3:

The Notion of Representation (32 Hour)

Representation of concepts by languagze elements—
numbers, letters.
Representation of language elements by bits.
Allocation of a set of bits.
Encoding of values by 2 bit configuration.
Centrality of representation 1o architectural process.

Structure of the Representation Space (12 Hour)

Resolution

What will be the smallest nzmed and manipulable
element? For example:

1 bit — IBM Stretch, Burroughs B1700, CDC Star

6 bits — Univac 1108, Honevweil 6000

8 bit byte — [BM §/360, DEC PDP-11

18 bit halfword — DEC PDP-10

36 bit word — IBM 7094,

Daia Element Sizes

Systems require consistency among the severzl sizes.
Consider the representation families of soms svstems:

IBM S/360: 4, 8, 16, 32, 64 bits. [AMD64]

Univac 1108: 6,9, 12, 18, 36. 72 bits,

Burroughs B6700: 4, 6, 8, 48, 96 bits.

CDC 6600: 60, 120 bits. [THO?0, Ch. 5]

Data Formats (4 Hours)

Data types are derived from architectural and applica-
tions requirements.

Fixed Point Numbers

Choice of base: binary, decimal (IBM 8§30, IBM 1401).
Sign representation: 1BM 7094, CDC 6600, IBM 5/360.

Mixed Fixed Numbers
Scaling. {MCRS7, Ch. 4; STE72, Ch. 7]

Floaring Point Numbers
General reference: [BUC62, Ch. 8: STR74].

Location of radix point, CDC 6600, IBM S/360,
Burroughs BS500.

Mantissa  base and sign representation. [BRWE9;
COD73]

AT
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Exponent base and sign representation,

Precision, significance, significance alarms and measures.

{BRE73; KUK73]}.
Norrialization, guard digits, rounding. {KAM73]

Character Strings

Encoding of characters: ASCIi, EBCDIC, BCD. [BUC62,
Ch. 6] ,

Distinctions between internal and external representa-
tion of characters.

Inherent length variability arises from applications.
Various methods exist for accommodating variable
length fields and for specifying lengths. IBM 1401,
IBM S/360, Burroughs B5500. [BUC62, Ch. 4]

Bit Strings

If bits are independent‘and re-orderable by the designer,
they really forin a set represented as a vector. Special
operations for bit vectors [IVE62, Ch. 1]; for bit strings

[BUC62, Ch. 17]. Burroughs B1700, IBM Stretch, CDC
Star.

Higher Structures

Complex numbers.

Vectors. CDC Star.

Chained representations of vectors,
(stacks). Burroughs B5500. [BAR61]

Matrices, trees. Both of these ‘map neatly onto vectors,
hence processors with vectorial memories. ILLIAC
IV, STARAN. [IVE62. Sec. 1.23; BER71]

COBOL, PL/t structurss: trees of inhomogeneous
elements.

Lattices, graphs, and nonplanar nets: representation by
chained structures. {MCA60; ROS61]

Data flags: embedding control information in data.
Burroughs B5500. [IL168, Ch. 2-3; BUC62, Sec. 7.9;
FEU72; FEU73] :

Module 3 — Instructions and Addressing (5 Hours)

In all electronic computer technologies up to now,
memory speeds have been at least as slow as, and usually
much slower than, operation speeds. Therefore, the
performance of a computer can be first-order approximated
by the memory bandwidth, the number of bits per second
delivered (or accepted) by the memory, running con-
tinuously. For most applications, regardless of the machine,
about half of the bandwidth is used for data, about half for
instructions.

The architect, therefore, tries to improve the cost-
performance ratio of his design by utilizing the memory
bandwidth efficient!y, in Shannon’s sense. The design of
data representation iias been treated in Module 2, This
module treats the design of instruction representations.
Whereas many decisions about data representation are
almost dictated by the characteristics of the data from
intended applications, instruction representation gives wide
scope tor design differences. Indeed, the most striking
differences in computer architectures have historically been
concentrated here, :
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FIFO, LIFO

An instruction consists of the specification of (usualiy) a
single operation and the operands for it. The design
decisions, theretore, are:

e What set of operations shall be allowed?

« How shall a particular operation be specitied?

« How shall the operands be specified (addressed)?

o How shall all the specifications be fitted together into

an ipstruction format? '

The objectives of the module are:

(a) To teach the student to think of the bit as his raw
material and its efficiency of use as a first-order estimator
of goodness of design.

(b) To survey the wide variety of techniques that have
been used in instruction specification, particularly the
efficient specification of addresses.

(c) To show the tight interaction among representation
decisions enforced by the necessity to make instruction
formats commensurate with data formats, which enforces a
bit-budget.

General references: [BEL71, Ch. 3; GEA74, Ch. 2;
HEL73, Ch. 8,9].

Operation Sets (2 Hours)

What to include?
Frequency of use the chief test. [FOS71; CONT70;
WIN73]
Fewness of operands an important test.
(WIR68 and ANA73 discuss operation-set short-
comings of the IBM §/360).
Operations determined by data tynes selected. {BEL71,
Ch. 3]
Housekeeping, [FLY74]
Processor state changes: Loads and stores.
Operations on addressing and indexing mechanisms.
Movement of data, partitioning, shifting.
Arthmetic.
+, —, X, +, shifting, {CHU62; STE72; STO75, Ch. 1;
HEL73, Ch. 7]. In either this section or in Data
Formats (pp. 47), algorithms which implement the
common arithmetic operations +, —, X, +, and
shifting shculd be discussed. These algorithms, of
course, depend on the method of representing
data, The advantages and disadvantages of various
forms of data representation should be discussed.
Square root, radix conversion and other options.
[CHU®62]
Floating point. [SWE6S5; STE72; STR74]
Comparisons and tests.
Sequencing.
Branching.
Subroutine linkage.
Operations on  sequencing mechanisms such  as
enabling/disabling interrupts.
Svnchrenization of concurrent activities.
Input-output operations.

Addressing (2 Hours)

Name-Space Strnucture (Main and Secondary)

Numeric names. (IBM 604 Electronic Calculating Punch,
circa 1948, had arbitrary names.)
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Associative (stored name) — MUS vs. geometric (built-in
name),

Vectorial (most machines) vs. matrix (STARAN,
ILLIAC V) vs. tree ([MCA 60} —LISP) vs. network
(Burroughs B6500-segmentation) name structure.

Number of independent name spaces, [DEN65; ARD66;
DEG70; RAN69]

Overlapping name spaces. General purpose registers are
addressable memory locations. DEC PDP-10,
Univac 1108

Operand Specification Within the Name Space

Full address in instruction. DEC PDP-10, 1BM 7094
Abbreviated addresses.

Necessity due to large memories and program locality
(nonuniform-access distributions). [ AMD64]

Bank Registers—The contents of a bank register are
concatenated to the left end of the displacement
field to enlarge the effective address. DEC PDP-8,
HP 2100

Base Registers—The contents of a base register can be
added to a displacement field (IBM S/360) or used
in relative addressing (Univac 1108).

Descriptors or control words, referenced by short
address. Burroughs BS5500 and B6500, MUS.
[T1L168; KIL68]

Effective address calculation, [BLAS9]

Index registers. IBM S/360, CDC 6600, DEC PDP-11,
DEC PDP-10, Univac 1108 '

Indirect addressing.

Single level. IBM 7094, DEC PDP-11

Multilevel. HP2100, DEC PDP-10

Programmed—Indirection achieved through Load
Address instruction. IBM §/260

Descriptors—A  Special form of indirect address.
Burroughs B5500 i

Immediate  Address—Direct implementation of
operand in instruction. IBM Stretch

Formats (1 Hour) [LAW68; KI1.68]

- Importance of Frequency Arguments in Format Design
CDC 6600 NOP’s waste bandwidth.

Formar Components

Format Specifier.

Operation Code: fixed vs. variable length vs. extensions.
Addresses (including abbreviated ones).

Address Modification Specifications.

Sequencing.

Format Sizes

Size must be commensurate with data representation
and subfields must be commensurate with readily-accessible
data units.

16, 32, 48 bits: 1BM S/360

15, 30 bits: CHBC 6600

8,16, ..., 96 bits: Burroughs B6500

36,72, 108, 144 bits: Honeywell 6000
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Operation Code Specification

Fixed-size. IBM S/360, CDC 6600

Variable-size. DEC PDP-11

Huffmann-coded. IBM Stretch, Burroughs B1700
Direct bit-significance. DEC PDP-8

Number of Addresses
Examples:
0 - 1 I+1
Burroughs B5500 IBM 7094 IBM 650
2 3 3+1
IBM §/360 CDC 6600 EDVAC

Stacks as a mechanism for eliminating addresses.
[BARG61; BRO63; BAR69; AMD64; STO75, Ch. 7]

Accumulator, multiplier registers as implicit second,
third addresses. IBM 7094, IBM S/360, Univac 1108

Multiple accumulators for abbreviated second, third
addresses. IBM §/360, CDC 6600, DEC PDP-11. IBM
$/360 fixed and floating point registers distinguished
by operation code. ‘

Next instruction address. IBM 650, EDVAC. Explicit
sequence specification is rare because redundancy is
50 high.

Module 4 — Interpretation and
Control (6 Hours) '

The writing of interpretive routines is usually taugit
independently and separately from the notions of
instruction execution and interrupt handling. This module
attempts to stress the unity of these ideas.

Interpretation is the assignment of meaning to an
expression applied to specific data, whether the expression
is in a high-level, assembly, or low-level (so-called
microprogram) language. It is invoked by a control
mechanism which selects a series of operations to be
performed at the (virtual) machine level that implements
the interpretation (execution). The control mechanism then
makes the next expression ready for interpretation
(sequencing). The emphasis of this module will be on
control within an interpretive routine and control between
interpretive routines.

For example, if the expressions are assembly language
instructions, the control mechanism selects a sequence of
register transfer level operations to decode and execuie the
operation specified in an instruction. The control
mechanism then either fetches the next instruction for
interpretation or, if an external event (interrupt) has been
signaled, initiates an interpreiive routine to handle the
interrupt. .

One way to intr. duce this module would be to discuss
the interpretation ot assembly language macroinstructions.
Have the students program a small number of short
interpretive routines in assembly language and then show
them how to link and sequence through these routines. The
macro  sequence should include setting and testing
conditions, branching, and executing the interpretive
routines. One interpretive routine should be devoted to the
handling of interrupts, Some of the concepts of Module 3
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could also be brought out during these exercises: passing of
parameters, generation of addresses, represeniation of an
instructicn, operation sets, etc. )

After this introduction, a detailed treatment of assembly
language instruction interpretation should follow. Se-
quencing between instructions should be discussed. The
definition of the conditional branching mechanism ‘should
be especially stressed because it plays such an important
role in hardware/software interaction, The original “IF”
and “DO™ specifications of FORTRAN represent the
effects of attempting to build a language in which programs
would be as easy as possible to translate into IBM 704
machine language. They were direct descendants of the IBM
704 compare and TIX instructions. There are numerous
converse examples of machine designers mapping higher
level language artifacts into hardware. The treatment of
conditional operations should also include a discussion of
the modifications that can be made once a test is complete.
That is, once one control path is selected, exactly how is a
new instruction address determined? The role of meta-
instructions such as REPEAT and EXECUTE, which are
themselves interpretive routines, should be discussed.

Sequencing within instruction interpretive routines is a
direct extension of the foregoing discussion on sequencing
between them. The additional material to be discussed is
related to physical timing of a system. It is important to
introduce the student to the notion of a register state
transition (internal cycle) as being a fundamental quantum
of timing in the system. Concepts such as I and E cycles,
the general decoding process, control points and data paths,
as well as simple and iterated execution cycles (multiply,
translate, etc.), should be discussed, Hardware decoders
involving rings, counters, and logic blocks should be
introduced and a discussion of microprogramming should
follow. .

General references: [BRO69, Ch. 8; KNU68, Sec. 1.4.3;
CHU72; STO7S, Ch. 10].

Introduction to Interpretation (2 Hour) [KNUG68, Sec.
1.4.3; BEJ73]
Sequencing and execution of interpretive routines.

Sequencing Between Instructions’(2 Hours)

Sequence Determined by Instruction Action

In-line.
Explicit control, IBM 650

Sequence Determined by Instruction and Result Data

Conditions and testing, IBM $/360, DEC PDP-11, IBM
7094

Branching action.

Hardware-software implementations of control struc-
tures: IBM 7094—-FORTRAN, Burroughs B5500,
MUS5-ALGOL. [LIN68]

Modification of instruction sequence.

Methods of address generation for branch target:
relative, skip, absolute, etc,

Meta Instructions

Univac  1108—REPEAT,

[BRO60}

IBM  S/360-EXECUTE.

.60

Sequence Determined by External Signals—Interrupts

IBM S/360, DEC PDP-11, DEC PDP-8, CDC 6600.
[CruU72]

Types.

Priority and levels.

Methods of handling,

Sequencing Within Instructions, Execution, and Micro-
programming (3% Hours) [RO169; CHU72; STO7S, Ch. 10;
1BB72]

The student must fully understand the basics of
instruction fetching, decoding, and execution and be able
to time out the interpretation of an instruction in a simple
machine,

Concepts [FLY67]

Cycle—as a state transition in a finite state machine.
Data paths and control points.
Control timing and data path timing,
Control finite state machines.
Execution finite state machines.
Decods of an operation, '
Gating descriptions.
Sequencing.
Execution, .
Iand E cycles. [LOR72; AND67]
Simple execution.
Iterated execution cycles (e.g.,, MULTIPLY, TRANS-
LATE),
Concurrent execution. [TCM67; THG70]

. Implementation [WIK53; RO169; HUS70]

Hardwired. [GSC67, Ch. &; RO169]
Timing rings, counters, and decode logic.
Microprogramming. [ROI169; HUS70; TEC71; TEC74;
CHU72; DAV72; FUR74; STO75, Ch. 10; TUC67]
The subject of microprogramming, although strictly
speaking an implementation topic, has had much
greater significance in computer architecture over the
past ten years than a narrow view of implementation
would have admitted. Rosin {ROI74] credits this to
the notion that “microprogramming is the implemen-
tation of hopefully reasonable systems through
interpretation or unreasonable machines.” This point
shouid be discussed in terms of how well computer
systems have met their users’ needs.
Read only storage. [HUS70]
Emulation. [RO{69; TUC65; WEB67]
Read-write microstorage. [WIL72a]
Contemporary microprogrammed processors: Bur-
roughs B1700, Nanodata QM-1, Data Saab
FCPU,

Module 5 — Memory Hierarchies (8 Hours)

This module deals with the architecture and structure of
the memory system, The fundamental reason for using
memory hjerarchies in computer systemns is to reduce the
system cost. Computer architects must balance the system
cost savings accruing from a memory hierarchy against the
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system performance degradation somctimes caused by the
hierarchy. .

The architecture of a memory hierarchy defines the
logical memory structure available to a program (process).
There is a strong interaction between this structure and the
design of an operating system for a imachine,

Properties of Memory Reference Patterns (1 Hour)

An effective analysis or design of & memory hierarchy
requires an understanding of the dynamic behavior of a
program in execution. For the purposes of memory
hierarchy analysis, it is useful to abstract the execution of a
process to derive the “reference string” from an executing
program. The reference string is simply the ordered
sequence of memory references made by the process. The
propertics of the reference string have a significant impact
on the performance of the memory hierarchy. The most
important property of .real reference strings is their
locality—the tendency for almost all references to be
directed to a limited region of the address space.

General references: [BEY66; COF68; BRA68; SIS69;
MAT70; JOS70; SAL74a].

Memory Components (4 Hours)

’ Overview of the Memory Hierarchy

The memory hierarchy includes cache memory, main
memory, on-line secondary storage units such as drum and
disk, and bulk and off-line storage such as a magnetic tape
library. The primary parameters of a memory hierarchy—
capacity, access time, and bandwidtl at each level of the
hierarchy—-are often the most important determinants of a
computer system’s performance. Therefore, it is mnot
-surprising that the readings dealing - with
hierarchies are largely concerned with performance.

General references: [KUC70; BEL71, Ch. 3; ANC69;
STO7S, Ch. 5]. _

Cache Memories and Other High-Speed Memory Buffers

These memory buffers are an important implementation
_technique that has a major impact on the performance of
central processors. They form a level in the memory
hierarchy that is between the main memory and the
processor. This level differs from the other levels (i.e., main,
secondary, and bulk storage) in the important respect that
it is not visible nor available for direct manipulation by the
programmer.
Instruction Buffers. [THO70: AND67]
Cache Memories. [KIL62; GIB67; LIP68; COT69;
MEA70; KAP72; BEJ74]

Main Storage [THO70, Ch. 4; BOL67]

Name space vs. real memory space size,

Marketing considerations in specifying maximum
memory capacitics for various IBM S/360 models.
[BEL71, Ch. 44]

Bandwidth.

Low order interleaving. [BOL67; BUR70]
Memory reconfiguration.

High order interleaving. Univac 1108
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memory

Secondary Storage

Extended muain storage. [THO70, Ch. 4; BOL67]
Fixed head disk or drum. [COF73, Sec. 5.3; FURT75]
IBM 2305 Drum Storage—[IBM23]
Moving head disk. [COF73, Sec. 5.4; TEQ72]
IBM 2314 Direct Access Storage Facility. [1BM24]
IBM 3830 Storage Control and 3330 Disk Storage
[IBM33]

Mass Storage [DAM68; HOA72; JOH75]
IBM 3850 Mass Storage System. [IBM38]

Address Translation Mechanism (3 Hours)

One of the most significant developments in computer
architecture has been the distinction between the virtual
address space (or name space) of the processor and the
physical address space of memory. A range of mechanisms
have been developed for mapping one to the other. The
following references discuss the more important ones.
General references: [KIL62; ARD66; RAN68; DEG70].

Base Register Relocation

Single. CDC 6600 [THO70, Ch. 4]
Double. Univac 1108

Paging
IBM S/370. [KIL62; JOS70; SAL74]

Segmentation :
Burroughs B5500/B65G0. [DEN65; HAU6S

Implementation of Dynamic Address Translations.

[DAL68; LAV71; IBM70; IBM68]

Virtual Machines. [GOL73]

Module 6 — Protection Mechanisms and
Hardware Aids to Supervision (4 Hours)

Prerequisite: Module 5

Modern computer systems are often designed for shared
use of their resources by several concurrently executing
processes (program jobs). The most vital protection
mechanism is one designed to ensure that no job’s
execution can possibly interfere with the information used
by any other job. This storage protection is, however, only
one important aspect of a general class of supenrvision
functions concerned with signaling, response, and assign-
ment activities required for efficient computer resource
allocation and acceptable response times. A judicious
combination of software and hardware is used to
implement supervision functions. Hardware is needed for
sequences that occur with high frequency. This module and
Module 35 are he areas of greatest interaction between
computer architecture and the principles of operating
systems. :

51




General Discussion of Protection and Supervision (%2 Hour)
General references: [DEG71; HEL73; NEE72]

Motivations jor Shared Use of Storage and Processor.
Timesharing of the CPU. [W1K72]

Space-Sharing of Main Storage

Register and stored key protection.
Read/write protection.

Interprocess Communication (2 Hours)
General references: [LAM69; HEL73; HAN73; ORG73]

Interrupt Principles -

Saving and restoring system states. RCA Spectra 70 had
four operating states: program, executive, interrupt, and
machine; whereas the IBM System/360 has only two,
program and supervisor.

CDC 6600 exchange jump.

Interrupt Signaling Cutegories
Clock (timer), I/O condition, address violation, opera-
tion invalidity, external signals, explicit program call, etc.

Semaphores. [D1]68]

Privileged Mode (%2 Hour) _
General references: [CLA64; HEL73; IBM70].

Storage Protection
Interrupt Handling
Mode-Change Mechanisms

Hardware-Operating System-Problem Program [nteractions

Virtual Memory Mechanismns for Protection (1 Hour)

General references: [DEN66; DAL68; ORG72; NEE72;
SCH72; 1BM70].

Typical Major Examples to Illustrate Module Topics

Although almost every system has its distinct features,
the following can illustrate most principles and many varia-
tions found in actual practice. Tle asterisks denoi¢ virtual
storage systems.

CDC 6600

DEC PDP-11

DEC PDP-10

IBM System/360

Burroughs B5500/B6500* [ORG73]
[BM System/370*

Multics* [DAL6S; ORG72; SAL74b)
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Module 7 — Specialized Processors (56 Hours)

A number of functionally specialized proccssors have
bean developed. These processors are defined primarily by
the data types which they can process. They do not
interpret general programming languages. This module deals
with some of the more common specialized processors,

Input/Output Processors (2 Hours)

An input/output processor specializes in the manage-
ment of peripherals. It controls the details of transmission
of information between secondary memories or terminals
and main aemory. An input/output processor does not
usually altes information; it is merely an interpreter for
moving information. Computational capability is only
required if receding and reformatting of information is
necessary, or if operations are to be carried out between
second memores without central processor intervention.

General reference: [STO7S, Ch. 6].

Copy Logic, Buffers and Direct Memory Access Capability
DEC PDP-8, HP2100, DEC PDP-11. [GSC67, Sec. 8.4]

Channels

IBM 1800 Special Data Channels. [BEL71, Ch. 33]
IBM 7607 and 7909 Data Channels. [BEL71, Ch. 41]
Selector and Byte Multipiexer Channels. [PAD64]
Block Multiplexer Channel. [BRZ72]

Peripheral Processors

CDC 6600 PPU’s, [THO70, Ch. 7 and 8]
CDC 7600 PPU’s, [CDC76, Ch. 5]
Univac 1108 I/O Processor.

Microprocessors and Microprocessor Applications (2 Hours)

Over the 30 years in which computers have existed,
several thousand species of machines have been built by a
variety of organizations for a wvariety of functions. The
implementations of these machines were based on available
semiconductor and magnetic technologies. Currently,
semiconductor technology is such that a small stored
program processor can be fabricated on a single silicon die.
These processor-on-a-chip devices, when executing a fixed
program, form the basis for hand-held calculators, appliance
and automotive controllers, and simple terminals. They also
form the basis for many programmable products:
point-of-sales terminals, instruments, factory data collec-
tion terminals, display terminals, etc.

The important aspect of nearly zero cost processor-
on-a-chip computers is that they will be applied on a wide
scale in nearly all man-made objects. Though these
computers are revolutionary in functional ability, their
architectural development has been strictly evolutionary.
All of the topics discussed in this report are relevant to
their design. . :

General  references:  [COM74a; COM74b; LAP72;
HOT74]).
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Terminal Computers

Terminals of this type include CRT-keyboards whose
uses range from programming to order entry, point-of-sale,
factory data collection, communications controj, etc.

Calculators [BELT1, Ch. 20; STO75, Ch. 3]

Electronic calculators (especially the hand-held versions)
are excellent examples of specialized processors. They are
characterized by decimal rather than binary arithmetic
units, a spartan simplicity dictated by strict price
constraints, and a very primitive I/O system.

Display Processors (1 Hour)

A display processor is a complex system that
manipulates information for display terminals. It must
perform a substantial number of local operations on a set of
specialized data types which are representations of complex
graphical objects. These representations typically include
character strings, points and vectors to be displayed, and
control structures which define pictures.

General references: [WAT69; NEW74; BEL71, Ch. 25].

Module 8 — Multiple Computers (4 Hours)

Various forms of multiple computers have been designed
as a means of (1) increasing the reliability and improving
the performance of computer systems, and (2) distributing
computing according to physical location needs to reduce
comumnication iink cosis, Two standard forms are the
multiprocessor computer (which consists of two or more
processors that share a common memory) and geograph-
ically distributed computer networks (which are usually a
collection of physically separated computers).

Multiprocessor computers which share the same physical
memory and addressing space but have only a few
processors have existed for some time. Systems are now
being built with a large number of processors, though.
Although some of the multiprocessor’s problems are still in
the research domain, the system designer must be aware of
the issues of reliability and performance (e.g., conflicts arise
when multiple processors access a common resource) and
the mechanisms for intercommunication which pemmit the
processors to share common resources.

Understanding computer networks requires an under-
standing of their constituent components (the inter-
connection links, the computers, and their operating
systems) and the tasks which are to be distributed among
them. Computer network analysis is similar to the analysis
of other networks in which multicommodities are
transferred among links and nodes on a dynamic basis.
Many of the studies that have been carried out for
telephone communication (especially switching) apply.

Finally, there are ad hoc, tightly coupled computer
structures which are neither interconnected via standard
communications links nor share the same memory.
Examples of these structures include 1BM’s Attached
Support Processor system, communications front ends, and
specialized file, array, and display processors. i

The advent of microprocessors clearly forces the growth
of various multiple computer structures. The simplest
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structures will be based on communications links with
processes being assigned to specific processors on 2
functional basis.

Multiprocessor Computers (2 Hours)

General references: [BEL71, Part 5;HEL73; ENS74}. "
Systems:
Burroughs D825, [BEL71, Ch. 36]
Burroughs Interpreter. [DAS72]
Carnegie-Mellon University C.mmp. {WUL72]
Bolt, Beranek and Newman, {HEA73]
Univac 1108. [STN67]
IBM System/370 Model 168 MP. [MAC74]
Switching and Interconnection Structure. |BLAG4b;
DAS72]

Performance as a Function bf the Number of Processors.
[LEH66; WUL72]

Sharing and Resource Contention. [SKI69]

Reliability.

Computer Networks (2 Hours)

General references: [BEL71, Ch. 40; IEEE73; COM73;
BEL74].

Structures and Analysis. [ROB70; FRA71; ORN72]
Communication Links and fessage, [MART2]

Facilities and Use.. [ROB73; KLE74]

Module 9 — Performance Evaluation (9 Hours)

Prerequisites: Modules 2, 3, 5, and 6, plus a basic course
in probability, [FEL68]

The performance evaluation of a computer system
consists of deriving indices of its quality, such as speeds,
storage capacities, and efficiencies of resource use. This
assessment requires an understanding of the purposes the
system is to serve as well as the hardware and software
components that constitute it. These purposes are given
explicit definition in the selection and representation of
workloads and performance indicators.

Performance evaluation is frequently concerned with
more than just producing the values of a few perfermance
indicators such as bandwidth, throughput, response time.
and resource utilization for a given configuration. It must
determine the dependence of these indicators on various
parameters of the sysiem so as to help designers choose
among a rather large collection of alternative configurations
and options in their efforts to meet user’s specifications.

Different types of peiformance studies (e.g., different
levels of detail) are appropriate to various classes of
computer professionals such as architects, hardware and
software engineers, installation managers, system pro-
grammers, provlem programiners, eic. Bespite the different
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needs of these groups, they all use the same basic classes of
evaluation tools: (1) mathematical analysis, (2) simulation
techniques, and (3) measurement. All of
introduced in this module in various contexts, and some
time should be spent comparing their strengths and
weaknesses.

General references: [CAL67; SMI68; LUC71; BEL71,
Ch. 3; FRE72; DRU73; HEL?7S; STO7S5, Ch. 11].

Overview (1'2 Hours)
Nature of Computer Performance Evaluation.
Evaluation Classes (Hardware, Software, Systems).

Definition of Performance Measures such as Bandwidth,
Throughput, Response Time, Resource Utilization, etc.

Measurement Techniques.

Hardware. [ROE69; BON69; DRU73; IBM70 (Program
Event Recording)]
Software, [CAM68; CHN69Y; SED70; BAD71; LUC71]

Introduction to Techniques of Analysis (22 Hours)

Elementary Queueing Theory

When the information necessary to evaluate a computer
system’s performance exceeds the values of simple
parameters of the hardware structure, performance
evaluation must address the underlying stochastic nature of
operating a computer system. Requests for service arriving
at processors within a computer system often can only be
modeled as a random process.

References: [KLE7S, Ch. 3-4; STO75, Ch. 11; HEL75,
Ch. 5].

Simulation Theory

There are instances when a more detailed analysis of
system behavior is needed than can be obtained from
queueing models, and instances when a system to be
analyzed cannot be adequately approximated by known
analytical methods. In these cases, simulation techniques
are the most appropriate tools available to the analyst,

References: [NIE67; MCD68; GOR69] .

Workload Selection and Characterization (1 Hour) [FER?Q;
WIN73]

Total System Load. [FRM68; WALG7]
Benchmarks.

Synthetic Workloads. [BUC69; SRE74] v

Components and Subsystems Performance (1
[DRU73; HEL75]

Hour)

Central Processor. [MUR70; BEL71, Ch. 3; SOL66]

Kernels. [CAL67]
Mixes. [RAL64; GIS70]

these are’

Main Storage

1/0 Devices and Subsystems, [HEL70]

Disk and Drum. [TEQ72; FUR75]
Printer.

Computing System Performance (3 Hours) [HEL75]

The references cited for system studies are only
suggestions. Actual studies may involve components,
subsystems, or systems. : '

Batch Systems.
Multiprogramming Systems. [ONE67; CAN68; STU71]

Timesharing Systems. [SCE67; MCK69; DOH70; BAD71;
NIE71; SHE72]}

Virtual Memory Systems. [SAL70; ORG72; SCE73;
HEL75]

Module 10 — Reliakility {5 Hours)

Reliability affects everyone connected with computer
systems, from machine designer to end user. As more
complex systems are designed and fabricated, their
designers must exercise greater care during design in order
to ensure that the svstems they develop operate with an
acceptable level of reliability. The material in this module
helps the student to understand and determine various
reliability parameters of a system, given knowledge of its
constituent parts, and to design (or configure) systems for
increased reliability.

Basic Measures and Calculations (2 Hours)

Attempts to evaluate a computer system quantitatively
require an understanding of the fundamental measures of
reliability (e.g., mean-time-to-failure, mean-time-to-repair,
expected-system lifetime). In addition, there are a few
elementary computations that are useful when attempting
to estimate system reliability.

General references: {ESA62; BOU71; MAH71; HEL73,
pp. 443-452].

Codes for Error Detection and Error Correction (1 Hour)

An essential basis for any computer system that must
operate with a high degree of reliability is an error
detection, and possibly an error correction, scheme for
transmission and storage of data. In memory systems,
redundant error detection and/or correction information is
held in the memory. Different codes are often required for
distinct levels in the memory hierarchy, and each memory
technology may impose different demands on its code.
Similarly, communication links are not error-free, and thus
additional information must be transmitted with a message
to ensure its integrity.

Another area in which error detection and correction
plays an important part is the use of arithmetic codes for
the detection and correction of errors in the results
produced by arithmetic operations. :

General references: [HIL68, Ch. 8; AVIT7ib; PET72;
RAO74].
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Diagnostic Procedures (1 Hour)

Diagnostic procedures are the set of programs that
exercise each of the components of a computer system to
validate that it is working correctly or that help isolate the
component that is failing. The frequency with which
diagnostic procedures are unable to detect failures when a
system is known to be malfunctioning underscores the need
to discuss the principles of testing. The student should
comprehend the impossibility of exhaustive testing, the
need to understand the structure as well as the function of
the component under test, and the concept of “boot
strapping” diagnostics—i.e., validating a small “core” of
hardware and then using the core to test the remaining
facilities.

General references: [BAT70; CHA70; JON71}.

.System Reliability and Serviceability (2 Hours)

As computer systems continue to be applied to an
increasing variety of real-time environments, stringent
demands are made on the computer system's availability
and serviceability. The increasing complexity of large
computer systems also requires the inclusion of more
sophisticated machine-checking capabilities,

General references: [CAR64; FOX75; ORN75).

Machine Checking Techniques.
Error Logging and Recovery.

Faulr Tolerant Technigues. [AVIT71a].

Large Systems

Medium Systems

Module 11 — System Design Evaluation
(6 Hours)

Introduction

To appreciate how the architectures of computer
systems develop, one must analyze complete systems. Since

fonmal techniques for the analysis of these systems do not

yet exist, there is no substitute for studying some existing
systems closely. The purpose in doing this is to try to
deduce the reasons for various design decisions and to see
how design decisions in some aspects affect those in others.
Moreover, these studies provide the opportunity to
compare the techniques adopted by different sysiems for
solving fundamental problems. The instructor may prefer to
introduce such studies gradually throughout the course of
study rather than treating them as a comparative analysis at
the end.

The subject matter to be covered is best represented bv a
mairix of systems and concepts (Figure 1). The horizontal
dimension compares different techniques for solving the
same fundamental problems, and the vertical dimension
shows how solving one of the problems in a particular way
constrains the solution of other problems. Each of these
dimensions is to be evaluated in as quantitative a manner as
possible.

Two points are to be stressed here: environment and
technology. . The first is dealt with because it is imperative
that the student develop an understanding of the user
environments for which these systems were actually
intended. By environment we mean the complete set of
users’ specifications: the functional capabilities that were

COMPUTER SYSTEMS

Minicomputers Microcomputers

—]

Data Representation

Instruction and
Addressing

Interpretation

Memory Hierarchy

Protection Mechanisms
and Hardware Aids
to Supervision

Input/Output

Facilities for
Multiprocessing

Computer System Design Problems

Reliability

Performance

Figure 1. System design evaluation matrix
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expected, the relative cost of the system (relative to others
of its day) [SHA69], the language processors and operating
systems that were expected, and the reliability of the
system in its environment.

The second is addressed because it is impossible to
compdre systems without considering their technological
base. The instructor shouid normalize these considerations
whenever possible, but also call sttention to them when
they represent technical constraints in the system designer’s
environment. For example, the availability of ditferent
memory elements and the relative cost of circuits
frequently affect architectural decisions.

Computer Systems

The systems selected for comparison should include an
interesting disparity of environments as well as some
similarity. The selection must be influenced, of course, by
the availability of reference materials and the students’ and
instructor’s familiarity with specific systems. Here are some
suggestions.

Large Systems

a. IBM System/360 and System/370 in general and
System/370 Model 158 [IBM38] or Model 168
[IBM68] in partxcular

DEC PDP-10.

CDC 6600.

. Burroughs B6500.

Univac 1108,

=

Q.0

X

Medium Systems

a. Burroughs B1700.

b. IBM System/370 Model 145 [IBM45].
c. DEC PDP-11/45.

d. Honeywell Series/60 level 64..

Minicomputer Systems

DEC PDP-8.

. HP2100 and HP21MX,
Microdata 1600,

. Data General Nova,
IBM System/32.

o0 o

Microcomputer systems

a. Intel 80830,
b. National [MP-16.
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activation record
block structured

flow analysis
garbage collection

Inte! Corporation, the world’s foremcst
microcomputer manufacturer, has a
unique commitment to high-level
programming languages. We believe
that the microcomputer revolution
provides a singular opportunity to
introduce the tools of modern
programming to a vast, new generation

OUR
LANGUAGE?

halting problem
infix operator
Jensen’s device
keyword

LR(k) grammar
meta-language
non-terminal
optimization
parse tree
quadratic rehash
recursive descent
semantics

TWS

up-level

VDL

Warshall's algorithm
XPL

yo-yo list

zero address

of users and programmers. Tools for
building the diverse applications of
microcomputing power in the decade
fo come.

To build these new tools, we need people
with exceptional skill and ingenuity.
People thoroughly familar with the
concepts of modern programming
languages and the design of state-of-
the-art compilers.

Applicants should have an MS or PhD in
computer science, or equivalent
background in language ana compiler
design. For immediate consideration,
please contoct Professional Emoloyment,
intel Corporaticn, 3065 Bowers Avenve,
Santa Clarg, CA 25051,

An Equal Cpportunity Employer M.F.

Decermnber 1975

57

- N



