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INTRODUCTION AND MOTIVATION 

A recent article analyzes the need for and possibility 
of an ultimate computer.' While the ultimate machine 
is still distant, much current research on system struc- 
tures has the goal of significantly increasing computing 
power along one or more dimensions (e.g., processing 
speed, memory size, functional capability, reliabil- 
itY).2,3,4.6,6 

The most obvious way of increasing power is through 
parallelism. The earliest proposal to achieve paral- 
lelism is the coupling of multiple processors to a shared 
primary memory-multiprocessing. Yet, the parameters 
of a design, especially the connections between pro- 
cessors, memories, and the outside world, can take on 
many different values. 

The architecture presented here is intended to in- 
crease the computing power available for a particular 
application-artificial intelligence research. It was 
formulated under the constraint that if built, it would 
have to be operational within two years. Its lifetime 
was assumed to be on the order of five years, with a 
slow rejuvenation replacement process occurring during 
use. Although it was formulated to be used via a net- 
work such as that of the Advanced Research Projects 
Agency (ARPA), the result has implications for the 
design of any currently feasible, very large computer. 

We present two major parts of the design-the struc- 

* This work was supported by the Advanced Research Projects 
Agency of the Office of the Secretary of Defense (F44620-70-C- 
0107) and is monitored by the Air Force Office of Scientific 
Research. 
** Present address: Digital Equipment Corporation, Maynard, 
Massachusetts. 

ture of the hardware (and some of its details*) and the 
operating system-as originally stated** and then 
briefly discuss its implications for research on multi- 
processing. 

Requirements for ai computing 

A number of special function computers ranging 
from business to scientific have been described.8 The 
characteristics of machines used for ai research appear 
to span this spectrum, exhibiting the maximum of each 
characteristic attribute. The more important of these 
attributes will be examined from the standpoint of ai 
computing. 

Memory size 

The primary (program) memory is larger in an ai 
environment than most other computers because of the 
local program and data base. Usually data is highly 
interrelated and linked for such programs as natural 
language processing. We have assumed an average 
program size of 250,000 74-bit words and a working-set 
size of 100,000 74-bit words. The ratio of secondary 
memory (e.g., drum) to primary memory (e.g., core or 
integrated circuit) we have proposed is quite low, based 

*The PMS notation188 used throughout this report is based on 
seven primitive component types: P-processor, M-memory, 
S-switch, L-link, K-controller, T-transducer, D-data operation. 
A computer composed of primitive components is represented 
by C; hence, C.ai for "ai computer." 
** The design was first presented in a technical report0 in May, 
1971. 
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more on swapping operation than demand paging. This 
appears justified since the list structure of many of the 
programs may not permit small working-sets, although 
a better model of a typical program is clearly needed. 
A coupling to a larger tertiary memory is provided for 
files. 

Processor power 

The central processor power requirement for ai com- 
puting seems less than for the largest scientific processor 
because the typically Iarge memory is accessed more or 
less randomly in a relatively inefficient fashion. Thus, 
the more powerful facilities of a scientific processor 
may go unused because the data-types (e.g., floating- 
point) are unused. In some cases ai processes are 
compute-bound, and need significant processor power 
in critical areas. 

PMS structure 

The ai computer usually requires better communica- 
tions facilities to external equipment and humans than 
either a scientific or a business computer. Typically, 
these characteristics are like the process control com- 
puter, except that higher data rates are involved for 
speech, video and mechanical transducers which oper- 
ate a t  human interaction rates. These considerations 
are particularly critical for ai research groups engaged 
in robot, hand-eye, and speech research. 

The instruction set (conventional and specialized) 

The design permits the use of existing conventional 
processors as well as specialized processors. Conven- 
tional processors can be either 32 or 36 bits. In  particu- 
lar, since the PDP-10 is widely used for ai research, 
PDP-10 processors can be used (e.g., DEC's KAlO and 
KI10, and the Stanford Artificial Intelligence Labora- 
tory version). 

There is also a need for a facility which can be used 
for experimentation with new instruction-sets for ai 
processing. Specialized language processors can be 
fabricated, tested, and used within the environment. 
Typically, the instruction-set is the characteristic that 
usually comes to mind when ai computing is discussed. 
Operations for a stack, a garbage collector, hash-coding 
on linked lists, etc., are obvious candidates. On the 
other hand, a simple processor with floating point 
arithmetic is often adequate because decisions can be 
bound in software and later changed. 

FUNCTIONAL OVERVIEW OF C.ai 

Consideration of the problem of designing and build- 
ing an optimal computer for ai research quickly leads 
one to the realization that there may not be a feasible 
solution. The numerous constraints, wide variations in 
computing style, and the impossibility of defining the 
ai problem narrowly seem to make this a certainty. 
Thus, the major premise of this design is that if one 
wishes to provide ai researchers with better computing 
tools, one must, in fact, provide an environment in 
which many, varied tools may be developed and used. 
This design should be viewed as a specification of such 
an environment. 

The aim is to provide a collection of virtual machines, 
organized along multiprocessor lines. It is thus im- 
portant to understand what the system provides and 
what the users see. 

The user sees 

a collection of functionally specialized intercon- 
nected computers, each with large memories; 
the potential for processes on separate processors 
to communicate and share resources; 
a large secondary memory for temporary use and 
a very large tertiary memory (i.e., files) for perma- 
nent storage of information. 

operating system on a processor sees 

a mechanism for allocating and overseeing sharing 
of the three level memories (primary, secondary 
and tertiary) ; 
a mechanism for the transfer of files between 
memory levels ; 
a mechanism to handle the transfer of information 
to the outside world. 

The overall operating system sees 

a processors competing for memory; 
a requests to share resources between processors; 

logical communication channels between processors 
and the outside world; 
files to be created and moved; 
memories to housekeep; 
accounting information to be logged and displayed. 

THE HARDWARE STRUCTURE OF C.ai 

Figure 1 shows a simplified diagram of C.ai. It is a 
multiprocessor system with a centralized cross-point 
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Links to  external world 
(e .g . ,  Advanced Projects 
Research Agency ARPA net- 
work), tertiary memory, 
console, e tc .  

16 Public Memory modules containing 
L a b o u t  8 x 106, 74-bit words, MOS 

Ic f l entra l  cross-point for 

Figure 1-PMS diagram (simplified) of C.ai 

C 

switch which allows up to 16 processor or secondary 
memory (e.g., drum) ports to be connected to the pri- 
mary memory. Some ports can be multiplexed between 
several components. The characteristics of the primary 
memory (the dominant component of the system) are: 
MOS, 550 ns cycle time; 221 296-bit words accessible as 
74, 148, 222 or 296 bits in a single access. 

The 16 memory modules are interconnected to the 
16 processor ports via a central 74-bit cross-point 
switch. The main reason for a central cross-point is to 
limit the cables from p x m  to p+m and shorter dis- 
tances. Also, by using a non-bus arrangement, processor 
and memory modules can be removed while the system 
is operating. 

Another type of switch is used to provide inter- 
communication among the processors. This is shown in 
the lower part of the figure and is described later in 
more detail. 

A central computer (C.amos) executes the operating 
system. It has some private memory, interconnection to 
i/o devices, terminals, and tertiary memory. Two C.- 

amos computers are shown, but only one will be in use 
a t  any time (see below). The other processors are 
general-purpose or specialized language processors. 
Each of these might have a minicomputer which acts 
as the control for starting and stopping, maintenance, 
data gathering, context switching, etc. 

Figure 2 provides a more detailed description of the 
structure shown in Figure 1. It will be used to aid the 
description. 

Primary memory 

1 -' 

The characteristics of various memories are given in 
Table I. We have used specific quotations for cost, 
performance, etc. 

The primary memory, Mp, gives an overall memory 
size of about 6 2 0 ~  106 bits and (because of the 16 ports) 
a bandwidth of 8,600 million bits/sec (16 portsX296 
bits/port ; .550 psec cycle). The access time, as mea- 
sured a t  the processor, will be about 350 ns. The actual 
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Figure 2-PMS diagram of C.ai 
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memory word will be 296 bits with a processor specify- word will allow present 36-bit processors, such as the 
ing which word (74 bits) or configuration of words i t  PDP-10, 1108, and Honeywell 645 to utilize the mem- 
wants. The actual information bits are expected to ory. The memory will consist of 16 modules and will 
number 64 with 10 bits to be used for error correction connect to the processors through a 74-bit wide cross- 
or detection a t  the processor. Alternatively, the 74 bit point switch. There are 16 processor ports each 74 bits 
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TABLE I-C.ai Memory Characteristics 

"Estimate 

**These assume current densities. We can safely assume double density, hence lower cost, more storage, and higher transfer 
rates. 

***t/tertiary; slsecondary; plprimary; and ilinternal processor (cache, program control, accumulators, etc.) 

wide. A transfer of more than one 74-bit word in an 
access will be done sequentially a t  a rate of 75 ns per 
additional 74 bit word for up to four words. 

Processor port control-K(Mp.port) 

The local port control is shown in Figure 3. Each 
processor port provides access to 224 words (a 24 bit ad- 
dress). The upper 7 bits of the address specifies one of 
the 128 relocation (mapping) registers the address will 
use. The relocation register will supply the high order 
bits of the physical address and the processor address 
will supply the low order 17 bits. This is a concatena- 
tion, instead of an addition, and thus should be quite 
fast ( 1 5 0  ns). The relocation (mapping) registers and 
other controls associated with the port are accessible 
only to the overall operating system. Various protec- 
tion-type bits might also be included in the memory 
port control box to assist the processor. The relocation 
unit serves these functions: maintenance, dynamic 
memory assignment (reconfiguration), protection and 
sharing among processors, and data parity checking. 

The relocation registers will be transparent to each 
processor and will serve the function of manual, address 
switches on the memory. Thus, no manual switching 
need be provided on the individual memory modules; 
the same effect is achieved by informing the memory 
control processor to vacate the desired module and 
consider it unusable. All relocation and protection, as 
commonly found in timesharing system processors, 
will be included as part of a processor. The only reason 
a processor might want to consider the port relocation 
registers is to effect 65k word block transfers, i.e., to  
ask the memory control processor to change addresses, 
e.g., 128k-192k to 64k-128k. 

The statistics control shown is passive. Although not 
detailed here, it will be connected to provide appropri- 
ate information on accesses, errors, and transfer rates 
to a measurement unit. Another part of the port inter- 
face is the capability of being exercised a t  low data rates 
via the controlling computer. Thus, data can be trans- 
ferred via each port from the control computer. Within 
each port control there is error correction and detection 
hardware. Here, since we assume that some faulty pro- 
cessors will be attached to the ports, the port control 
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must supply correct data to the memory in order that and a (m+p)XS(l-input, 1-output) switch as shown: 
other devices (e.g., drums, disk memory) can detect 
faults. Mp m-inputs 

Primary memory switch 
/ 

S(cross-point ; m X p) 
S(m; 2) 's(~; 1) p-inputs P / 

'S (cross-point; m X p) 

Since the switch is critically central, a dual cross- Current logic technology is ideally suited to the 
point may be preferable. This is essentially a com- packaging of a centralized switch. Although it is 
pound switch consisting of two cross-point switches centralized, the physical packaging can be carried out 
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to provide independence among the processor and mem- 
ory ports. Logically, the memory controls and the 
processor controls are quite independent. By parti- 
tioning the switch into four 8x8 switches, even more 
independence can be gained. 

The memory switch can utilize current MSI (medium 
scale integration) logic. The switch will utilize 16 bit 
multiplexors with a typical data propagation time of 
10 nsec (assuming the data select lines have been 
settled for 2 3 0  nsec). Faster circuits, such as Schotky 
TTL and LSI switching modules, will probably be avail- 
able in time for any actual construction. 

Secondary memory 

The secondary memory investigated includes: (1) 
mechanical devices (drums, fixed head discs, etc.), (2, 
shift register or other block-oriented solid-state mem- 
ory, (3) and random access memory (RAM). Current 
characteristics for these devices are shown in Table I. 
Mechanical devices will probably hold a price advantage 
of an order of magnitude for several years. It does not 
appear that shift register memory will become suf- 
ficiently cost effective over random access memory for 
our purposes. On the other hand, block-oriented 
random access memories may be available shortly. 

A secondary memory system might consist of 20 
drums, for example, with the characteristics given in 
Table I.  Such a system would give 1,400 megabits of 
storage, an average access time of 8 msec, and a transfer 
rate of 50 megabits/second. 

Initially, the secondary memory controllers will 
simply permit multiplexing several drums into one port. 
An additional feature that could easily be included in 
the secondary memory channel would be a memory-to- 
memory connection that could take advantage of the 
4-word sequential feature of the primary memory. Since 
one wishes to maximize the bandwidth between secon- 
dary and primary memory, as the system grows to use 
many drums on several ports it  will probably be neces- 
sary to insert a computer to control the secondary 
memory, C(Ms). The secondary-tertiary memory sys- 
tem might then look as shown in Figure 4. 

Tertiary memory 

Clearly, a computer of this capacity requires some 
on-site mass storage. This will permit programs to re- 
side on tertiary memory until they are brought into 
either primary or secondary memory for more rapid 
access. The tertiary device will be controlled by its own 
processor. Aside from its size (on the order of 1012 
bits), i t  has not been specified any further. 

Console 

Scopes will be used to display the overall allocation 
of resources to tasks, and the status of each processor 
and the overall system. Several scopes may also be 
employed for human intervention required in the man- 
agement of the system. 

Interprocessor communication 

Interprocessor communication will be carried out 
over a data bus similar to DEC's PDP-11 Unibus, with 
the exception that it  would be a dual or multiple trunk 
bus to increase bandwidth, decrease response time and 
increase reliability. A processor making an inter- 
processor transfer would place a request on the bus and 
the actual transfer would take place on the trunk that 
first responded. Each message will be tagged with the 
identity of the transmitting processor. A processor will 
be able to communicate with itself on the bus. 

If the proposed interprocessor traffic appears to war- 
rant it, more than two trunks can be added. However, 
processors may communicate a t  high data rates through 
shared primary memory. 

A SOFTWARE STRUCTURE FOR C.ai 

This section provides both an overview and first level 
design of AMOS, a minimal operating system for C.ai. 
The system is not specified completely, however. 

In  a system with multiple active units (processors, in 
the case of C-ai) and shareable resources there is a 
spectrum of possible systems ranging between the ex- 
tremes of having all control of resources vested in a 
single active element to having no distinguished com- 
ponent with respect to resource allocation. AMOS is a 
classical design in which ultimate control of all shared 
resources is by a single component although all non- 
shared resources (e.g., processors*) control themselves. 

Figure 4-Eventual secondary-tertiary memory structure 

* Processors may, of course, be shared among processes on a local 
basis. Our concern here is with the global management of the 
system. 
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Likewise, there is a spectrum ranging from the highly 
uniform in which the user is unaware of the existence of 
multiple components working on his task to the highly 
diverse in which the user of one component is unaware 
of the existence of the others. AMOS tends toward the 
latter extreme. The hardware architecture does not 
prevent the former, however. 

Design goals and guidelines 

While not thoroughly defining the space of systems 
we are interested in, the following provide a partial 
specification: 

Time and effort needed to construct AMOS 
must be small. 
The functions provided by AMOS must be 
minimal, consistent with managing the hard- 
ware resources of C.ai. 
The "users" of AMOS are the operating systems 
for each processor. Thus the total operating 
system is a two-layer object: an overall operat- 
ing system (AMOS) plus distinct operating 
systems on each processor. In most cases a human 
user and/or his program sees only one of the 
individual systems, not AMOS. 
Specification and construction of the operating 
system for a processor is the responsibility of its 
designer. 
AMOS should usurp as few design prerogatives as 
possible. That is, it should influence only mini- 
mally the design of operating systems and pro- 
grams on individual processors. Further, i t  
should not greatly influence the design of C.ai 
as a whole so that in the future i t  will be possible 
to replace AMOS with a completely different 
operating system.* 
It should be possible to build very simple operat- 
ing systems on the processors if desired. They 
should not have to handle transfers to i/o de- 
vices and their communications with AMOS 
should be simple. 

Functions to be provided 

It is easiest to specify what AMOS is to do by listing 
the major functions it is to provide. Elaborations of 

* C.ai is clearly a unique opportunity for implementingr adically 
new virtual machines that exploit its parallel and functionally 
specialized parts. The understanding of such a machine, how to 
break up a load computationally, the characteristics of the 
programs run on it, etc., is so meager that initially the only 
sensible way to use it is as a collection of independent systems 
that happen to share some physical resources. AMOS and its 
hardware should not unduly impede research on more advanced 
modes of usage, however. 

these functions will be provided below in describing 
their implementation. I t  is assumed that a few other 
minor functions will be needed and can be added with- 
out greatly perturbing the design of C.ai or AMOS. 

1. Allocate primary memory. Individual processors 
must be given access to varying amounts of main 
memory. Addressing ranges and access protec- 
tion must be set. 

2. Allocate and control other on-site memory. 
Secondary and tertiary memories must be al- 
located, but control must remain with AMOS 
in order to enforce security of parts allocated to 
different processors (and processes). 

3. Handle communication between processors and 
the external world. In order to keep the operating 
systems on the processors simple, communica- 
tion must be handled by AMOS. 

4. Provide system status and accounting informa- 
tion. An on-site console must be maintained in 
addition to logging accounting information. 

5. Startup of C.ai and individual processors. Oc- 
casional cold starts of the entire system will be 
necessary. Individual processors may come up 
and go down as well. 

6. Movement of files between memory levels. Pro- 
cessors should not have to deal with physical 
i/o. Further, large stores must be a shared re- 
source. 

Structure providing the required junctions of AMOS 

Different structures can be chosen to provide the 
functions of AMOS. Those selected below seem to be 
sufficient for the task and consistent with the design 
objectives. A more detailed overall design and/or 
simulation may, of course, indicate the choice of alter- 
native structures. 

Primary memory allocation 

The opaqueness of how allocations of primary mem- 
ory are being used and their size (64K words) implies 
using an extremely simple algorithm. A processor will 
send a request to AMOS over the bus to allocate or de- 
allocate a page of Mp; the request will include where 
in the processor's address space the page is to go. 
AMOS will check whether or not the processor is en- 
titled to another page (a policy decision) if a new one 
is being requested. I t  will then adjust the mapping of 
the processor appropriately and signal i t  that the alloca- 
tion has been made. 

In order that several processors be able to handle 
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large jobs a t  the same time, i t  will be necessary for the 
operating system on each processor to release primary 
memory on a second-by-second basis whenever i t  is 
free. This might be handled on a gentlemen's agree- 
ment basis with perhaps some monitoring in AMOS to 
insure that no processors use too much core. The spe- 
cific algorithm to use is a policy decision. 

Secondary and tertiary memory 

As far as a processor is concerned the basic unit of 
storage will be an arbitrary length file. (For efficiency, 
information actually may be stored on secondary and 
tertiary memory in standard block sizes.) A processor 
can request AMOS (via the communications bus) to 
create a file; AMOS will check if the processor can 
have more space and if so, create a name for the file 
and pass i t  back. (To facilitate storing, the names 
should be from a single continuous space.) A processor 
can request information to be transferred among 
memories. 

The request can be made with a priority, thus allow- 
ing swapping or paging information to be handled just 
like any other file only with higher priority for perform- 
ing the transfer. Likewise, files can be transferred from 
secondary or tertiary memory to primary memory. 
Alternatively, external information can be transmitted 
directly to or from a file (see below). Files can be erased 
by request. 

Note that the processors specify where they want 
their files to reside. This seems essential since only 
they will know the use. Pricing structure, time limits, 
and allocation limits can be used to insure proper mi- 
gration. 

It is assumed that lower level memories provide hard- 
ware detection of record and file ends so that transfers 
of partial files may be made. On the other hand, record 
transfer may impose too much additional complexity 
on AMOS. 

that it will take all callers, only certain ones, or that i t  
wants to be informed of all requests for connection so 
that it can make a dynamic decision. If the requestor 
cannot be attached, he will be so informed. 

If a user can sign on, he is given a unique identifica- 
tion by AMOS and a logical channel is established to the 
desired processor. Until the connection is broken by the 
processor any incoming information headed by that 
identification will be sent to the proper processor 
(deposited in a section of his Mp or on one of his MS 
files) with a signal going from AMOS to the processor 
whenever a transmission is completed. 

A mode will be available for the transfer of large 
blocks of data directly to a secondary or tertiary mem- 
ory file without interrupting the processor until the 
transfer is finished (even if it takes many transmissions). 
Similarly, a processor can request a file of information of 
any size to be sent out over a given logical channel. 

System status and accounting 

AMOS will record all system resource usage (e.g., 
memories, i/o gear, external links) by each processor. 
The information will be displayed in summary form on 
a console and made available to the processors if ap- 
propriate. A processor can access the data of another 
under the usual sharing rules (see below). I t  is up to 
individual processors to record their own usage and to 
subdivide their use of system resources among their 
various users. 

Each processor will supply a certain amount of status 
information to AMOS upon request in order to produce 
system-wide status displays. The content of this in- 
formation depends on more detailed specifications of 
how individual processors will be used. 

Any error checking or internal monitoring informa- 
tion available to AMOS will be displayed appropriately. 
AMOS will also be responsible for utilizing such infor- 
mation to warn of faulty components or potential sys- 
tem bottlenecks. 

Communication to the outside world 
Initialization 

AMOS will know nothing about specific users. I t  
will have only logical channels that i t  can connect be- 
tween a processor and some external entity transmitting 
messages to C.ai. Since C.ai is intended to be a resource 
for use among a large number of users via a network 
(in this case the ARPA network) this will provide the 
mechanism for establishing contact between users and 
their processes. 

AMOS may receive messages from entities for which 
i t  has no logical channel set up, requesting access to a 
given processor. The processor may have told AMOS 

C.amos will have an autoload button that will load 
its local memory from a start-up disk with a program to 
initialize Mp bounds registers and load its main Mp 
from Ms. Its bootstrap will also be able to retrieve 
from its local Ms various debug, checkout, and recovery 
routines. 

C.amos will be able to start up any of the other proces- 
sors by a signal over the bus. Once started, however, 
AMOS has no control over the processor. This means 
that AMOS will have available the operating system 
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(or a bootstrap) for each processor. In some cases this 
may include loading a microcode store. 

File movement 

All file operations are logical (not physical) as de- 
scribed above. AMOS will have one or more mini- 
computers that will initiate transfers between memory 
hierarchies and perform housekeeping chores. 

Resource sharing 

The mechanism for sharing is basically the same for 
all resources. Processor A (the owner of a resource) tells 
AMOS over the bus that processor B may have a given 
type of access to the resource. If later, B requests that 
access, it  will be granted (unless A has rescinded the 
access rights). 

In  the case of Mp this is implemented by setting 
bounds registers. For files AMOS must keep lists of 
processors (not processes) that can access given files. 
It is then up to the processors to control the access of 
their individual processes. 

As an example of primary memory sharing, A may tell 
AMOS that B can have read access to one of its pages, 
say P.  A will communicate directly to B that it  has per- 
mitted access to P. Later, if B requests access to P, 
AMOS will set one of B's bounds registers to permit 
read sharing. Permission for sharing (or relinquishing 
by B) can occur a t  any time. A and B must insure that 
permission is not withdrawn precipitously. 

Performance monitoring 

A computer such as C.ai must have adequate per- 
formance monitoring capabilities integrated into its 
basic design. Many initial decisions will require modifi- 
cation as the system matures and usage patterns evolve. 
Proper design of memory systems, optimal allocation of 
primary memory, and correct bandwidth to the outside 
world are examples of decisions requiring extensive 
measurement of usage. 

Measurements should occur on a number of levels. 
Common facilities such as the interprocessor bus and 
the primary memory could be monitored by passive 
hardware devices connected to a separate computer, 
C.pm. This independence would insulate the C.pm 
from changes in AMOS and in the processors. C.amos 
and C.pm could communicate directly for dynamic 
control, but other information would be stored for later 
analysis. Many items can be measured passively by: 
(a) busy-idle bits; (b) registers to read or sample; 

(c) counters. AMOS must be able to interrogate 
C.pm to obtain current data for scheduling and resource 
allocation and for system status requests from pro- 
cessors. Thus, the C.pm should have the following 
features : 

(a) PC-Mp-Ms (processor-primary memory-secon- 
dary memory) type of structure; 

(b) ability to reduce its own data and keep current 
system information available for AMOS; 

(c) ability to write to its own slow Ms for later dis- 
play and analysis. 

Some examples of information of interest are: (a) 
K(Mp.port) errors could be counted, and transmitted 
to C.amos, (b) the number of memory references could 
be counted and waiting times tabulated, (c) a central 
clock may be provided which all processors may access. 
A central timing facility might also be included a t  the 
clock. In order to keep the traffic low, a facility such 
as the clock might broadcast the time so that each 
processor could maintain its own timers (which would 
undoubtedly be in software). 

AMOS should have a number of software monitors 
built into its modules. Such hooks are best when imple- 
mented in parallel with the operating system. Selected 
information would be either written by AMOS or read 
from registers by C.pm. If AMOS is to be a resource al- 
locator, some processor information may be required. 
Information of this type would place certain constraints 
on processor implementors, but the sharing of common 
resources requires some standardization. 

Each processor should also include its own hardware 
and software measurement devices with which AMOS 
can communicate. A mixture of software and inde- 
pendent hardware monitors integrated into the design 
of C.ai will allow for future study of this new structure, 
and encourage growth based on a knowledge of actual 
performance and utilization. 

PERFORMANCE CHARACTERISTICS AND 
EVALUATION 

Table I1 shows a comparison of C.ai performance 
with some current large-scale computers. Various at- 
tributes of these machines are given in order to give the 
reader an idea of the balance of the computer in terms 
of memory size, processing capacity and cost. The 
measures used by Robertslo were included to compare 
the performance with these machines. In some cases 
the chart is misleading since C.ai has 20 times the mem- 
ory of the next largest machine (STAR). However, for 
ai research, memory size is probably the single most im- 
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TABLE 11-Comparison of C.ai With Other Computers 

Mp.width Mp. size 
(mwords: 

.- pDp-:o 36+1 0.26 

Stanford 144+4 
AI-10 (36bfinstr) 

Model 91 

CDC 6600 

CDC STAR 
(32blinstr) ; -- 

*Assumes $8m for memory, $2m for p 

9.7 4 144 9 0.4 

4.0 

3 7 21 1370 lox (1-2) 6.0 

15.4 3 2 1920 12x10 (i/o) 3.0 
600 (ECS) 

cipherals and $300K per processor (10 PC's in first case, 20 in 

- 

~ostl@) ;Bitxmops/ 
sec; 
~itxmo~s/sec/$ 

second); Stanford 

AI-10 assumed. Adjusting the memory size to that of STAR, yields $7m (total); 1440-4320; 205-620 and $lorn; 

portant characteristic. This has been adjusted in the 
footnote to the table. The computation is based on 36 
bit operations. Using a larger word would increase the 
performance indicator, though probably not any real 
performance for this task. 

The PMS diagram of Figure 2 has sufficient detail 
for deriving basic performance characteristics of the 
computer. Each processor is assumed to cost approxi- 
mately $100,000. A 16X 16 switch should run approxi- 
mately $200,000. 

The critical parameter for determining the perfor- 
mance is the number of memory ports and the processor 
operation-rate, so that the interference among the 
processors can be determined. Each processor is able to 
obtain up to 296 bits in 550 ns (or 540 megabits/sec). 
By comparison, a PDP-10 demands roughly two words 
each 3.5 ps a t  300,000 op/sec. Thus, a word can be 
used each 1.25 microseconds or its port needs only 28 
megabits/sec. The above system supplies roughly 20 
times this amount; eight words/access and a cycle time 
of 550 ns contribute to this gain. Since the eight words 
are accessed at  one time, a cache next to a processor 
will be necessary to make full use of the capability. 

By using a cache memory the needed bandwidth into 
primary memory is significantly reduced. One would 
expect about 95 percent of the data in the cache. 

Executing 4 million instructions/sec, at  most, one word 
would be required per 125 ns (i.e., 8 million words/sec). 
Now since 95 percent of the data is in the cache*, the 
requirements for primary memory access are only one 
access each 20 memory accesses. Thus the effective 
memory cycle time is only one word each 2.5 micro- 
seconds. The interference among ports is therefore quite 
small. At the very least, i/o devices, such as the drums, 
could share a port. In Table I1 we have.assumed two 
processors per port (for a total of 20 processors). 

CONCLUSIONS 

An overall argument has been given as to the feasibility 
and desirability of building a computer to be used in ai 
research. The design is a very conservative, simple ap- 
proach built on current computers and technology. 
Only conventional performance processors were as- 
sumed (i.e., each has about the same performance as a 
360 Model 85). 

Given the overall results, this design provides a basis 
for specification of the next level of detail. We believe 
that an approach that departs from a conventional 
structure (e.g., by placing specific interpretation on ad- 

* Cache simulation for LISP interpreter. 
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dressing) will both decrease the performance and also 
make the memory too specialized, thereby eliminating 
unspecified future use that might be made of such a 
large facility. 

The real emphasis of the structure is simplicity, yet 
it  provides much potential power (bandwidth). Also, 
the design is not presumptuous about how particular 
future processors will use the facility. In  particular, 
additional power can be gained by developing special 
purpose processors to be used on C.ai. 

Although there are no plans to implement C.ai, a 
project a t  Carnegie-Mellon University, the C.mmp 
multiminiprocessor computerl1 has a similar architec- 
ture. Indeed, C.ai has already influenced the structure 
and instigation of that project. C.mmp is being fabri- 
cated and should provide concrete operational evalua- 
tion of the design proposed here, particularly the central 
switch, processor intercommunication, and operating 
system. The C.mmp machine is being built to provide 
computing power for speech processing and is thus more 
than an architectural research experiment. 

Multiprocessing is often taken in a rather limited 
sense, but it can encompass a range of computing modes: 
parallel processing, pipelining, networking, functional 
specialization, and independent but cooperating pro- 
cessors. The simplicity of C.ai and the fact that the ai 
computing environment is so general makes this design 
well-suited to support research into the various forms 
of multi-processing. 

Just as experimental observations of the physical 
world and theorems are presented for their own merit, 
we believe that system designs should be made known 
and studied as a source of ideas for other designs. Hope- 
fully the architecture presented will serve this purpose. 
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