
C.ai-A computer architecture for A1 research*

by C. GORDON BELL**

Camegie-Mellon University
Pittsburgh, Pennsylvania

and

PETER FREEMAN

University of California
Irvine, California

INTRODUCTION AND MOTIVATION

A recent article analyzes the need for and possibility
of an ultimate computer.' While the ultimate machine
is still distant, much current research on system struc-
tures has the goal of significantly increasing computing
power along one or more dimensions (e.g., processing
speed, memory size, functional capability, reliabil-
itY).2,3,4.6,6

The most obvious way of increasing power is through
parallelism. The earliest proposal to achieve paral-
lelism is the coupling of multiple processors to a shared
primary memory-multiprocessing. Yet, the parameters
of a design, especially the connections between pro-
cessors, memories, and the outside world, can take on
many different values.

The architecture presented here is intended to in-
crease the computing power available for a particular
application-artificial intelligence research. It was
formulated under the constraint that if built, it would
have to be operational within two years. Its lifetime
was assumed to be on the order of five years, with a
slow rejuvenation replacement process occurring during
use. Although it was formulated to be used via a net-
work such as that of the Advanced Research Projects
Agency (ARPA), the result has implications for the
design of any currently feasible, very large computer.

We present two major parts of the design-the struc-

* This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-
0107) and is monitored by the Air Force Office of Scientific
Research.
** Present address: Digital Equipment Corporation, Maynard,
Massachusetts.

ture of the hardware (and some of its details*) and the
operating system-as originally stated** and then
briefly discuss its implications for research on multi-
processing.

Requirements for ai computing

A number of special function computers ranging
from business to scientific have been described.8 The
characteristics of machines used for ai research appear
to span this spectrum, exhibiting the maximum of each
characteristic attribute. The more important of these
attributes will be examined from the standpoint of ai
computing.

Memory size

The primary (program) memory is larger in an ai
environment than most other computers because of the
local program and data base. Usually data is highly
interrelated and linked for such programs as natural
language processing. We have assumed an average
program size of 250,000 74-bit words and a working-set
size of 100,000 74-bit words. The ratio of secondary
memory (e.g., drum) to primary memory (e.g., core or
integrated circuit) we have proposed is quite low, based

*The PMS notation188 used throughout this report is based on
seven primitive component types: P-processor, M-memory,
S-switch, L-link, K-controller, T-transducer, D-data operation.
A computer composed of primitive components is represented
by C; hence, C.ai for "ai computer."
** The design was first presented in a technical report0 in May,
1971.

780 Fall Joint Computer Conference, 1972

more on swapping operation than demand paging. This
appears justified since the list structure of many of the
programs may not permit small working-sets, although
a better model of a typical program is clearly needed.
A coupling to a larger tertiary memory is provided for
files.

Processor power

The central processor power requirement for ai com-
puting seems less than for the largest scientific processor
because the typically Iarge memory is accessed more or
less randomly in a relatively inefficient fashion. Thus,
the more powerful facilities of a scientific processor
may go unused because the data-types (e.g., floating-
point) are unused. In some cases ai processes are
compute-bound, and need significant processor power
in critical areas.

PMS structure

The ai computer usually requires better communica-
tions facilities to external equipment and humans than
either a scientific or a business computer. Typically,
these characteristics are like the process control com-
puter, except that higher data rates are involved for
speech, video and mechanical transducers which oper-
ate a t human interaction rates. These considerations
are particularly critical for ai research groups engaged
in robot, hand-eye, and speech research.

The instruction set (conventional and specialized)

The design permits the use of existing conventional
processors as well as specialized processors. Conven-
tional processors can be either 32 or 36 bits. In particu-
lar, since the PDP-10 is widely used for ai research,
PDP-10 processors can be used (e.g., DEC's KAlO and
KI10, and the Stanford Artificial Intelligence Labora-
tory version).

There is also a need for a facility which can be used
for experimentation with new instruction-sets for ai
processing. Specialized language processors can be
fabricated, tested, and used within the environment.
Typically, the instruction-set is the characteristic that
usually comes to mind when ai computing is discussed.
Operations for a stack, a garbage collector, hash-coding
on linked lists, etc., are obvious candidates. On the
other hand, a simple processor with floating point
arithmetic is often adequate because decisions can be
bound in software and later changed.

FUNCTIONAL OVERVIEW OF C.ai

Consideration of the problem of designing and build-
ing an optimal computer for ai research quickly leads
one to the realization that there may not be a feasible
solution. The numerous constraints, wide variations in
computing style, and the impossibility of defining the
ai problem narrowly seem to make this a certainty.
Thus, the major premise of this design is that if one
wishes to provide ai researchers with better computing
tools, one must, in fact, provide an environment in
which many, varied tools may be developed and used.
This design should be viewed as a specification of such
an environment.

The aim is to provide a collection of virtual machines,
organized along multiprocessor lines. It is thus im-
portant to understand what the system provides and
what the users see.

The user sees

a collection of functionally specialized intercon-
nected computers, each with large memories;
the potential for processes on separate processors
to communicate and share resources;
a large secondary memory for temporary use and
a very large tertiary memory (i.e., files) for perma-
nent storage of information.

operating system on a processor sees

a mechanism for allocating and overseeing sharing
of the three level memories (primary, secondary
and tertiary) ;
a mechanism for the transfer of files between
memory levels ;
a mechanism to handle the transfer of information
to the outside world.

The overall operating system sees

a processors competing for memory;
a requests to share resources between processors;

logical communication channels between processors
and the outside world;
files to be created and moved;
memories to housekeep;
accounting information to be logged and displayed.

THE HARDWARE STRUCTURE OF C.ai

Figure 1 shows a simplified diagram of C.ai. It is a
multiprocessor system with a centralized cross-point

C.ai-A Computer Architecture for A1 Research 781

Links to external world
(e .g . , Advanced Projects
Research Agency ARPA net-
work), tertiary memory,
console, e tc .

16 Public Memory modules containing
L a b o u t 8 x 106, 74-bit words, MOS

Ic f l entra l cross-point for

Figure 1-PMS diagram (simplified) of C.ai

C

switch which allows up to 16 processor or secondary
memory (e.g., drum) ports to be connected to the pri-
mary memory. Some ports can be multiplexed between
several components. The characteristics of the primary
memory (the dominant component of the system) are:
MOS, 550 ns cycle time; 221 296-bit words accessible as
74, 148, 222 or 296 bits in a single access.

The 16 memory modules are interconnected to the
16 processor ports via a central 74-bit cross-point
switch. The main reason for a central cross-point is to
limit the cables from p x m to p+m and shorter dis-
tances. Also, by using a non-bus arrangement, processor
and memory modules can be removed while the system
is operating.

Another type of switch is used to provide inter-
communication among the processors. This is shown in
the lower part of the figure and is described later in
more detail.

A central computer (C.amos) executes the operating
system. It has some private memory, interconnection to
i/o devices, terminals, and tertiary memory. Two C.-

amos computers are shown, but only one will be in use
a t any time (see below). The other processors are
general-purpose or specialized language processors.
Each of these might have a minicomputer which acts
as the control for starting and stopping, maintenance,
data gathering, context switching, etc.

Figure 2 provides a more detailed description of the
structure shown in Figure 1. It will be used to aid the
description.

Primary memory

1 -'

The characteristics of various memories are given in
Table I. We have used specific quotations for cost,
performance, etc.

The primary memory, Mp, gives an overall memory
size of about 6 2 0 ~ 106 bits and (because of the 16 ports)
a bandwidth of 8,600 million bits/sec (16 portsX296
bits/port ; .550 psec cycle). The access time, as mea-
sured a t the processor, will be about 350 ns. The actual

I
I

16 memory ports each

k I

/providing up to 296
Y bits/550 ns

lt iplexed ports
language processors +

7 &\special ized i /o

.c Mp-P interconnection

operating system
computers (C.amos and
C. -0s. spare)

t I I

I L h k I

secondary
memory

4 ,r

Jcentral trunk-swi tch
for P interconrmunication

782 Fall Joint Computer Conference, 1972

I I -lids to external world

p b l i c primary memory'

/' Central, Mp-P cross-point switcha

'public, primary memory; 223 - 224 words; 74, 148, 222, or 296 b/w; 550 ns/w; MOS
'central; cross-point switch; MP-PC~MS dialogues; 16x16; w-dth: 74 bits
"Central, trunk switch; inter P dialogues; r 2 trunks
4Central, trunk switch; P-K(Mp.port) dialogues; 2 2 trunks 1 identical protocols bK(Mp.port) Relocation, protection, error correction, err0 detection; see*
"~(~~erating-system) - with local primary and secondary memory
'Ms(secondary memory; drum; 1.4-gbits)

L v

1
B~(special i/o interfaces; e-g.. TV)

direct memory port (data, addresses)

control port

C

' -
&.-.-protected (user) memory port (data, addresses)

u

direct memory port
(data, addresses)

control port
prote ted (us r) memo y

7 port ?data, asdressesf I -

1

lo E-gs+ := %/ Ck(minicomputer; Ms(100 kwords); T.scope)

V J
special language
processors"

L.

1
"Transducers and tertiary memory - managed by a Ck (e.g., terabit memory)

I

Figure 2-PMS diagram of C.ai

H , r Z
1

interprocessor messages; .,
Kclock

processor control

memory word will be 296 bits with a processor specify- word will allow present 36-bit processors, such as the
ing which word (74 bits) or configuration of words i t PDP-10, 1108, and Honeywell 645 to utilize the mem-
wants. The actual information bits are expected to ory. The memory will consist of 16 modules and will
number 64 with 10 bits to be used for error correction connect to the processors through a 74-bit wide cross-
or detection a t the processor. Alternatively, the 74 bit point switch. There are 16 processor ports each 74 bits

C.ai-A Computer Architecture for A1 Research 783

TABLE I-C.ai Memory Characteristics

"Estimate

**These assume current densities. We can safely assume double density, hence lower cost, more storage, and higher transfer
rates.

***t/tertiary; slsecondary; plprimary; and ilinternal processor (cache, program control, accumulators, etc.)

wide. A transfer of more than one 74-bit word in an
access will be done sequentially a t a rate of 75 ns per
additional 74 bit word for up to four words.

Processor port control-K(Mp.port)

The local port control is shown in Figure 3. Each
processor port provides access to 224 words (a 24 bit ad-
dress). The upper 7 bits of the address specifies one of
the 128 relocation (mapping) registers the address will
use. The relocation register will supply the high order
bits of the physical address and the processor address
will supply the low order 17 bits. This is a concatena-
tion, instead of an addition, and thus should be quite
fast (1 5 0 ns). The relocation (mapping) registers and
other controls associated with the port are accessible
only to the overall operating system. Various protec-
tion-type bits might also be included in the memory
port control box to assist the processor. The relocation
unit serves these functions: maintenance, dynamic
memory assignment (reconfiguration), protection and
sharing among processors, and data parity checking.

The relocation registers will be transparent to each
processor and will serve the function of manual, address
switches on the memory. Thus, no manual switching
need be provided on the individual memory modules;
the same effect is achieved by informing the memory
control processor to vacate the desired module and
consider it unusable. All relocation and protection, as
commonly found in timesharing system processors,
will be included as part of a processor. The only reason
a processor might want to consider the port relocation
registers is to effect 65k word block transfers, i.e., to
ask the memory control processor to change addresses,
e.g., 128k-192k to 64k-128k.

The statistics control shown is passive. Although not
detailed here, it will be connected to provide appropri-
ate information on accesses, errors, and transfer rates
to a measurement unit. Another part of the port inter-
face is the capability of being exercised a t low data rates
via the controlling computer. Thus, data can be trans-
ferred via each port from the control computer. Within
each port control there is error correction and detection
hardware. Here, since we assume that some faulty pro-
cessors will be attached to the ports, the port control

784 Fall Joint Computer Conference, 1972

Physical Address data

-n
Memory-Switch f

control I

control
bits

relocated
block address

writ a-

physical
address tables

\

- - -
Processor

control

error
detect/correc

I-

p-address

error
control

statistics
control

port-
exc i s or
control

-
T

1 ink

to Supervisory Computer - - - - -

Figure 3-K(Mp.port) memory-port mapping (relocation), error-detection, error-correction and control

must supply correct data to the memory in order that and a (m+p)XS(l-input, 1-output) switch as shown:
other devices (e.g., drums, disk memory) can detect
faults. Mp m-inputs

Primary memory switch
/

S(cross-point ; m X p)
S(m; 2) 's(~; 1) p-inputs P /

'S (cross-point; m X p)

Since the switch is critically central, a dual cross- Current logic technology is ideally suited to the
point may be preferable. This is essentially a com- packaging of a centralized switch. Although it is
pound switch consisting of two cross-point switches centralized, the physical packaging can be carried out

C.ai-A Computer Architecture for A1 Research 785

to provide independence among the processor and mem-
ory ports. Logically, the memory controls and the
processor controls are quite independent. By parti-
tioning the switch into four 8x8 switches, even more
independence can be gained.

The memory switch can utilize current MSI (medium
scale integration) logic. The switch will utilize 16 bit
multiplexors with a typical data propagation time of
10 nsec (assuming the data select lines have been
settled for 2 3 0 nsec). Faster circuits, such as Schotky
TTL and LSI switching modules, will probably be avail-
able in time for any actual construction.

Secondary memory

The secondary memory investigated includes: (1)
mechanical devices (drums, fixed head discs, etc.), (2,
shift register or other block-oriented solid-state mem-
ory, (3) and random access memory (RAM). Current
characteristics for these devices are shown in Table I.
Mechanical devices will probably hold a price advantage
of an order of magnitude for several years. It does not
appear that shift register memory will become suf-
ficiently cost effective over random access memory for
our purposes. On the other hand, block-oriented
random access memories may be available shortly.

A secondary memory system might consist of 20
drums, for example, with the characteristics given in
Table I. Such a system would give 1,400 megabits of
storage, an average access time of 8 msec, and a transfer
rate of 50 megabits/second.

Initially, the secondary memory controllers will
simply permit multiplexing several drums into one port.
An additional feature that could easily be included in
the secondary memory channel would be a memory-to-
memory connection that could take advantage of the
4-word sequential feature of the primary memory. Since
one wishes to maximize the bandwidth between secon-
dary and primary memory, as the system grows to use
many drums on several ports it will probably be neces-
sary to insert a computer to control the secondary
memory, C(Ms). The secondary-tertiary memory sys-
tem might then look as shown in Figure 4.

Tertiary memory

Clearly, a computer of this capacity requires some
on-site mass storage. This will permit programs to re-
side on tertiary memory until they are brought into
either primary or secondary memory for more rapid
access. The tertiary device will be controlled by its own
processor. Aside from its size (on the order of 1012
bits), i t has not been specified any further.

Console

Scopes will be used to display the overall allocation
of resources to tasks, and the status of each processor
and the overall system. Several scopes may also be
employed for human intervention required in the man-
agement of the system.

Interprocessor communication

Interprocessor communication will be carried out
over a data bus similar to DEC's PDP-11 Unibus, with
the exception that it would be a dual or multiple trunk
bus to increase bandwidth, decrease response time and
increase reliability. A processor making an inter-
processor transfer would place a request on the bus and
the actual transfer would take place on the trunk that
first responded. Each message will be tagged with the
identity of the transmitting processor. A processor will
be able to communicate with itself on the bus.

If the proposed interprocessor traffic appears to war-
rant it, more than two trunks can be added. However,
processors may communicate a t high data rates through
shared primary memory.

A SOFTWARE STRUCTURE FOR C.ai

This section provides both an overview and first level
design of AMOS, a minimal operating system for C.ai.
The system is not specified completely, however.

In a system with multiple active units (processors, in
the case of C-ai) and shareable resources there is a
spectrum of possible systems ranging between the ex-
tremes of having all control of resources vested in a
single active element to having no distinguished com-
ponent with respect to resource allocation. AMOS is a
classical design in which ultimate control of all shared
resources is by a single component although all non-
shared resources (e.g., processors*) control themselves.

Figure 4-Eventual secondary-tertiary memory structure

* Processors may, of course, be shared among processes on a local
basis. Our concern here is with the global management of the
system.

786 Fall Joint Computer Conference, 1972

Likewise, there is a spectrum ranging from the highly
uniform in which the user is unaware of the existence of
multiple components working on his task to the highly
diverse in which the user of one component is unaware
of the existence of the others. AMOS tends toward the
latter extreme. The hardware architecture does not
prevent the former, however.

Design goals and guidelines

While not thoroughly defining the space of systems
we are interested in, the following provide a partial
specification:

Time and effort needed to construct AMOS
must be small.
The functions provided by AMOS must be
minimal, consistent with managing the hard-
ware resources of C.ai.
The "users" of AMOS are the operating systems
for each processor. Thus the total operating
system is a two-layer object: an overall operat-
ing system (AMOS) plus distinct operating
systems on each processor. In most cases a human
user and/or his program sees only one of the
individual systems, not AMOS.
Specification and construction of the operating
system for a processor is the responsibility of its
designer.
AMOS should usurp as few design prerogatives as
possible. That is, it should influence only mini-
mally the design of operating systems and pro-
grams on individual processors. Further, i t
should not greatly influence the design of C.ai
as a whole so that in the future i t will be possible
to replace AMOS with a completely different
operating system.*
It should be possible to build very simple operat-
ing systems on the processors if desired. They
should not have to handle transfers to i/o de-
vices and their communications with AMOS
should be simple.

Functions to be provided

It is easiest to specify what AMOS is to do by listing
the major functions it is to provide. Elaborations of

* C.ai is clearly a unique opportunity for implementingr adically
new virtual machines that exploit its parallel and functionally
specialized parts. The understanding of such a machine, how to
break up a load computationally, the characteristics of the
programs run on it, etc., is so meager that initially the only
sensible way to use it is as a collection of independent systems
that happen to share some physical resources. AMOS and its
hardware should not unduly impede research on more advanced
modes of usage, however.

these functions will be provided below in describing
their implementation. I t is assumed that a few other
minor functions will be needed and can be added with-
out greatly perturbing the design of C.ai or AMOS.

1. Allocate primary memory. Individual processors
must be given access to varying amounts of main
memory. Addressing ranges and access protec-
tion must be set.

2. Allocate and control other on-site memory.
Secondary and tertiary memories must be al-
located, but control must remain with AMOS
in order to enforce security of parts allocated to
different processors (and processes).

3. Handle communication between processors and
the external world. In order to keep the operating
systems on the processors simple, communica-
tion must be handled by AMOS.

4. Provide system status and accounting informa-
tion. An on-site console must be maintained in
addition to logging accounting information.

5. Startup of C.ai and individual processors. Oc-
casional cold starts of the entire system will be
necessary. Individual processors may come up
and go down as well.

6. Movement of files between memory levels. Pro-
cessors should not have to deal with physical
i/o. Further, large stores must be a shared re-
source.

Structure providing the required junctions of AMOS

Different structures can be chosen to provide the
functions of AMOS. Those selected below seem to be
sufficient for the task and consistent with the design
objectives. A more detailed overall design and/or
simulation may, of course, indicate the choice of alter-
native structures.

Primary memory allocation

The opaqueness of how allocations of primary mem-
ory are being used and their size (64K words) implies
using an extremely simple algorithm. A processor will
send a request to AMOS over the bus to allocate or de-
allocate a page of Mp; the request will include where
in the processor's address space the page is to go.
AMOS will check whether or not the processor is en-
titled to another page (a policy decision) if a new one
is being requested. I t will then adjust the mapping of
the processor appropriately and signal i t that the alloca-
tion has been made.

In order that several processors be able to handle

C.ai-A Computer Architecture for A1 Research 787

large jobs a t the same time, i t will be necessary for the
operating system on each processor to release primary
memory on a second-by-second basis whenever i t is
free. This might be handled on a gentlemen's agree-
ment basis with perhaps some monitoring in AMOS to
insure that no processors use too much core. The spe-
cific algorithm to use is a policy decision.

Secondary and tertiary memory

As far as a processor is concerned the basic unit of
storage will be an arbitrary length file. (For efficiency,
information actually may be stored on secondary and
tertiary memory in standard block sizes.) A processor
can request AMOS (via the communications bus) to
create a file; AMOS will check if the processor can
have more space and if so, create a name for the file
and pass i t back. (To facilitate storing, the names
should be from a single continuous space.) A processor
can request information to be transferred among
memories.

The request can be made with a priority, thus allow-
ing swapping or paging information to be handled just
like any other file only with higher priority for perform-
ing the transfer. Likewise, files can be transferred from
secondary or tertiary memory to primary memory.
Alternatively, external information can be transmitted
directly to or from a file (see below). Files can be erased
by request.

Note that the processors specify where they want
their files to reside. This seems essential since only
they will know the use. Pricing structure, time limits,
and allocation limits can be used to insure proper mi-
gration.

It is assumed that lower level memories provide hard-
ware detection of record and file ends so that transfers
of partial files may be made. On the other hand, record
transfer may impose too much additional complexity
on AMOS.

that it will take all callers, only certain ones, or that i t
wants to be informed of all requests for connection so
that it can make a dynamic decision. If the requestor
cannot be attached, he will be so informed.

If a user can sign on, he is given a unique identifica-
tion by AMOS and a logical channel is established to the
desired processor. Until the connection is broken by the
processor any incoming information headed by that
identification will be sent to the proper processor
(deposited in a section of his Mp or on one of his MS
files) with a signal going from AMOS to the processor
whenever a transmission is completed.

A mode will be available for the transfer of large
blocks of data directly to a secondary or tertiary mem-
ory file without interrupting the processor until the
transfer is finished (even if it takes many transmissions).
Similarly, a processor can request a file of information of
any size to be sent out over a given logical channel.

System status and accounting

AMOS will record all system resource usage (e.g.,
memories, i/o gear, external links) by each processor.
The information will be displayed in summary form on
a console and made available to the processors if ap-
propriate. A processor can access the data of another
under the usual sharing rules (see below). I t is up to
individual processors to record their own usage and to
subdivide their use of system resources among their
various users.

Each processor will supply a certain amount of status
information to AMOS upon request in order to produce
system-wide status displays. The content of this in-
formation depends on more detailed specifications of
how individual processors will be used.

Any error checking or internal monitoring informa-
tion available to AMOS will be displayed appropriately.
AMOS will also be responsible for utilizing such infor-
mation to warn of faulty components or potential sys-
tem bottlenecks.

Communication to the outside world
Initialization

AMOS will know nothing about specific users. I t
will have only logical channels that i t can connect be-
tween a processor and some external entity transmitting
messages to C.ai. Since C.ai is intended to be a resource
for use among a large number of users via a network
(in this case the ARPA network) this will provide the
mechanism for establishing contact between users and
their processes.

AMOS may receive messages from entities for which
i t has no logical channel set up, requesting access to a
given processor. The processor may have told AMOS

C.amos will have an autoload button that will load
its local memory from a start-up disk with a program to
initialize Mp bounds registers and load its main Mp
from Ms. Its bootstrap will also be able to retrieve
from its local Ms various debug, checkout, and recovery
routines.

C.amos will be able to start up any of the other proces-
sors by a signal over the bus. Once started, however,
AMOS has no control over the processor. This means
that AMOS will have available the operating system

788 Fall Joint Computer Conference, 1972

(or a bootstrap) for each processor. In some cases this
may include loading a microcode store.

File movement

All file operations are logical (not physical) as de-
scribed above. AMOS will have one or more mini-
computers that will initiate transfers between memory
hierarchies and perform housekeeping chores.

Resource sharing

The mechanism for sharing is basically the same for
all resources. Processor A (the owner of a resource) tells
AMOS over the bus that processor B may have a given
type of access to the resource. If later, B requests that
access, it will be granted (unless A has rescinded the
access rights).

In the case of Mp this is implemented by setting
bounds registers. For files AMOS must keep lists of
processors (not processes) that can access given files.
It is then up to the processors to control the access of
their individual processes.

As an example of primary memory sharing, A may tell
AMOS that B can have read access to one of its pages,
say P. A will communicate directly to B that it has per-
mitted access to P. Later, if B requests access to P,
AMOS will set one of B's bounds registers to permit
read sharing. Permission for sharing (or relinquishing
by B) can occur a t any time. A and B must insure that
permission is not withdrawn precipitously.

Performance monitoring

A computer such as C.ai must have adequate per-
formance monitoring capabilities integrated into its
basic design. Many initial decisions will require modifi-
cation as the system matures and usage patterns evolve.
Proper design of memory systems, optimal allocation of
primary memory, and correct bandwidth to the outside
world are examples of decisions requiring extensive
measurement of usage.

Measurements should occur on a number of levels.
Common facilities such as the interprocessor bus and
the primary memory could be monitored by passive
hardware devices connected to a separate computer,
C.pm. This independence would insulate the C.pm
from changes in AMOS and in the processors. C.amos
and C.pm could communicate directly for dynamic
control, but other information would be stored for later
analysis. Many items can be measured passively by:
(a) busy-idle bits; (b) registers to read or sample;

(c) counters. AMOS must be able to interrogate
C.pm to obtain current data for scheduling and resource
allocation and for system status requests from pro-
cessors. Thus, the C.pm should have the following
features :

(a) PC-Mp-Ms (processor-primary memory-secon-
dary memory) type of structure;

(b) ability to reduce its own data and keep current
system information available for AMOS;

(c) ability to write to its own slow Ms for later dis-
play and analysis.

Some examples of information of interest are: (a)
K(Mp.port) errors could be counted, and transmitted
to C.amos, (b) the number of memory references could
be counted and waiting times tabulated, (c) a central
clock may be provided which all processors may access.
A central timing facility might also be included a t the
clock. In order to keep the traffic low, a facility such
as the clock might broadcast the time so that each
processor could maintain its own timers (which would
undoubtedly be in software).

AMOS should have a number of software monitors
built into its modules. Such hooks are best when imple-
mented in parallel with the operating system. Selected
information would be either written by AMOS or read
from registers by C.pm. If AMOS is to be a resource al-
locator, some processor information may be required.
Information of this type would place certain constraints
on processor implementors, but the sharing of common
resources requires some standardization.

Each processor should also include its own hardware
and software measurement devices with which AMOS
can communicate. A mixture of software and inde-
pendent hardware monitors integrated into the design
of C.ai will allow for future study of this new structure,
and encourage growth based on a knowledge of actual
performance and utilization.

PERFORMANCE CHARACTERISTICS AND
EVALUATION

Table I1 shows a comparison of C.ai performance
with some current large-scale computers. Various at-
tributes of these machines are given in order to give the
reader an idea of the balance of the computer in terms
of memory size, processing capacity and cost. The
measures used by Robertslo were included to compare
the performance with these machines. In some cases
the chart is misleading since C.ai has 20 times the mem-
ory of the next largest machine (STAR). However, for
ai research, memory size is probably the single most im-

C.ai-A Computer Architecture for A1 Research 789

TABLE 11-Comparison of C.ai With Other Computers

Mp.width Mp. size
(mwords:

.- pDp-:o 36+1 0.26

Stanford 144+4
AI-10 (36bfinstr)

Model 91

CDC 6600

CDC STAR
(32blinstr) ; --

*Assumes $8m for memory, $2m for p

9.7 4 144 9 0.4

4.0

3 7 21 1370 lox (1-2) 6.0

15.4 3 2 1920 12x10 (i/o) 3.0
600 (ECS)

cipherals and $300K per processor (10 PC's in first case, 20 in

-

~ostl@) ;Bitxmops/
sec;
~itxmo~s/sec/$

second); Stanford

AI-10 assumed. Adjusting the memory size to that of STAR, yields $7m (total); 1440-4320; 205-620 and $lorn;

portant characteristic. This has been adjusted in the
footnote to the table. The computation is based on 36
bit operations. Using a larger word would increase the
performance indicator, though probably not any real
performance for this task.

The PMS diagram of Figure 2 has sufficient detail
for deriving basic performance characteristics of the
computer. Each processor is assumed to cost approxi-
mately $100,000. A 16X 16 switch should run approxi-
mately $200,000.

The critical parameter for determining the perfor-
mance is the number of memory ports and the processor
operation-rate, so that the interference among the
processors can be determined. Each processor is able to
obtain up to 296 bits in 550 ns (or 540 megabits/sec).
By comparison, a PDP-10 demands roughly two words
each 3.5 ps a t 300,000 op/sec. Thus, a word can be
used each 1.25 microseconds or its port needs only 28
megabits/sec. The above system supplies roughly 20
times this amount; eight words/access and a cycle time
of 550 ns contribute to this gain. Since the eight words
are accessed at one time, a cache next to a processor
will be necessary to make full use of the capability.

By using a cache memory the needed bandwidth into
primary memory is significantly reduced. One would
expect about 95 percent of the data in the cache.

Executing 4 million instructions/sec, at most, one word
would be required per 125 ns (i.e., 8 million words/sec).
Now since 95 percent of the data is in the cache*, the
requirements for primary memory access are only one
access each 20 memory accesses. Thus the effective
memory cycle time is only one word each 2.5 micro-
seconds. The interference among ports is therefore quite
small. At the very least, i/o devices, such as the drums,
could share a port. In Table I1 we have.assumed two
processors per port (for a total of 20 processors).

CONCLUSIONS

An overall argument has been given as to the feasibility
and desirability of building a computer to be used in ai
research. The design is a very conservative, simple ap-
proach built on current computers and technology.
Only conventional performance processors were as-
sumed (i.e., each has about the same performance as a
360 Model 85).

Given the overall results, this design provides a basis
for specification of the next level of detail. We believe
that an approach that departs from a conventional
structure (e.g., by placing specific interpretation on ad-

* Cache simulation for LISP interpreter.

790 Fall Joint Computer Conference, 1972

dressing) will both decrease the performance and also
make the memory too specialized, thereby eliminating
unspecified future use that might be made of such a
large facility.

The real emphasis of the structure is simplicity, yet
it provides much potential power (bandwidth). Also,
the design is not presumptuous about how particular
future processors will use the facility. In particular,
additional power can be gained by developing special
purpose processors to be used on C.ai.

Although there are no plans to implement C.ai, a
project a t Carnegie-Mellon University, the C.mmp
multiminiprocessor computerl1 has a similar architec-
ture. Indeed, C.ai has already influenced the structure
and instigation of that project. C.mmp is being fabri-
cated and should provide concrete operational evalua-
tion of the design proposed here, particularly the central
switch, processor intercommunication, and operating
system. The C.mmp machine is being built to provide
computing power for speech processing and is thus more
than an architectural research experiment.

Multiprocessing is often taken in a rather limited
sense, but it can encompass a range of computing modes:
parallel processing, pipelining, networking, functional
specialization, and independent but cooperating pro-
cessors. The simplicity of C.ai and the fact that the ai
computing environment is so general makes this design
well-suited to support research into the various forms
of multi-processing.

Just as experimental observations of the physical
world and theorems are presented for their own merit,
we believe that system designs should be made known
and studied as a source of ideas for other designs. Hope-
fully the architecture presented will serve this purpose.

ACKNOWLEDGMENTS

The design reported here was developed in a project
seminar on list-processing machines run by the authors
a t Carnegie-Mellon University during the Spring of
1971;9J2J3 the participants worked on the design a t all
levels and their contributions are acknowledged. Valu-
able assistance and feedback was provided by Professors
A. Newell, R. Reddy and W. Wulf. A Kendziora and
Professor J . McCredie provided the section on per-

formance measurement. The referees' suggestions
greatly reduced the size and improved the organiza-
tion and readability.

REFERENCES

1 W H WARE
The ultimate computer
IEEE Spectrum March 1972 p 84

2 C G BELL R CHEN S REGE
Efect of technology on near term computer structures
IEEE Computer March/April 1972 p 29

3 D J FARBER K LARSON
The structure of a distributed computing system software
Proceedings of XXII Polytechnic Institute of Brooklyn
Symposium April 1972

4 M J FLYNN A PODVIN
Shared resource multiprocessing
IEEE Computer March 1972 p 20

5 J H BARNES R M BROWN M KATO
D J KUCK D L SLOTNICK R A STOKES
The ZLLZAC ZV computer
IEEE Transactions on Computers C-17 Vol 8 p 746
August 1968

6 S A HOLLAND C J PURCELL
The CDC STAR-100: a large scale network oriented computer
system
Proceedings of the IEEE Computer Conference September
1971 p 55

7 C G BELL A NEWELL
The PMS and ZSP descriptive systems for computer structures
SJCC 1970 p 351

8 C G BELL A NEWELL
Computer structures
McGraw-Hill 1971

9 C G BELL P FREEMAN et a1
C.ai: a computing environment for ai research
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

10 L ROBERTS
Data processing technology forecast
Advanced Research Projects Agency April 1969

11 W A WULF C G BELL
C.mmp: a multiminiprocessor
This volume

12 M BARBACCI H GOLDBERG M KNUDSEN
C.ai(P.LZSP)-a LISP processor for C.ai
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

13 D McCRACKEN G ROBERTSON
C.ai(P.L*)--an L* processor for C.ai
Computer Science Department Carnegie-Mellon University
Pittsburgh Pennsylvania May 1971

