|

THE ARCHITECTURE AND APPLICATIONS OF COMPUTER MODULES:
A SET OF COMPONENTS FOR DIGITAL SYSTEMS DESIGNs

C. Gordon Beliss, Robert C. Chen, Samuel H. Fuller,
John Grason, Satish Rege and Daniel P. Siewiorek

Departments of Computer Science and Electrical Engineering
Carnegie-Melion University

ABSTRACT

This paper discusses the design and use of
system-building modules of about minicomputer
complexity. These modules (CMs), are intended to
facilitate the design of the full range of digital
systems needed to carry out current and future
computational tasks.

INTRODUCTION

Module sets for computer system design are

becoming increasingly complex, driven by decreasing

cost and size of hardware and increasing computer
system performance requirements, Standardized module
sets have evolved from circuit elements to gates and
flip-flops to IC chips’ to register transfer level module
sets. In this paper we introduce a new, more
complex, more flexible set, called Computer Modules
{CMs).

A CM consists of a processor (Pc) and memory
(Mp) of about minicomputer complexity, together with
several carefully designed ports: see Figure 1. The
1/0 and interrupt structures of conventional computers

make it difficult to use them to construct closely
coupled networks. Addressing this problem, each port
of a CM is designed to handle operations such as

handshaking and buffering, executing concurrently with
the processor of the CM. These ports allow us to
construct CM systems covering a wide range of cost
and performance.

CMs will come into physical existence within the
next few years: the current microprocessors of Intel,

———— e — - —
1
{ k(1] Lo
= /K[Z] —+-# To Transducers
. | and other

: He Fe s . Computer Modules
{ .

|
: K{N] i

[
| . -3
. The (M The port controllers

Figure 1, PMS Diagram of a M

177

National Semiconductor and AMI [10] are precurszrs cf
these modules. This paper presents tre raticrae fc-
the trend towards more complex mco..es and fe- Crss
in particular. The range of applicat.cn of ChMs a=2 i-e
implications, ie., efficient communicat.cns interfaces, z-e
discussed. Finally, we describe sore acpucaticms, a-z
discuss the communications needs and cost/perfcr~z-:e
tradeoffs related to these applicatiors.

ARCHITECTURE

Module Complexity

CMs are another step in a continuing tre-c

toward more complex modules. Ore reason fcr t-s
trend is that defining more compiex modules ‘-z~
simpler modules vyields distinct ac.artages. Cre
advantage is that the complex moduies can be vsez =
different applications without recesgz~, and “a-ze-
systems of these modules can be constructec ¢~

modified faster and more easily. A second adve-lzg
arises from economics of scale: by standardizirg (-
more complex modules, they can be mass proecces
rather than made on a custom basis.

The trend toward more complex modules is a'sd
due to decreasing size and cost of hardware 2a-¢

increasing pressures for complex systems. Tre
pressures for complex systems co~e from s2.e-a:
sources. One is the need for Fr'gn perfcr—a-ce

systems such as the IBM 360/91 [2), CDC S723 (3]
and ILLIAC IV [3] Another is increas.:ng awareress of
the advantages of decentralized systems; tris s
evidenced by the appearance c¢f powerful /2

P

processors, multiprocessor systems sucn as Crro [12)

computer networks such as the ARPA ret, anc
increasingly intelligent terminals.

Increasing module complex:ity also ras
disadvantages. These include (a) inflexitiity ¢°f
structure below the module level resuiting :n z3t=
suboptimal use - of resources and succst ~ai
performance, and (b) inflexibility of medule fc-zlen
resulting in suboptimal systems designn In crcer to

+The research in this paper was supported by Katicral
Science Foundation Grant GJ 32758X.

*x0On Jeave at Digital Equipment Corporation, Maynarg,
Mass. '

)

i
\

1. Communication links: single words and data strings
(low speed).

. Word-by-word inter-computer buffers: single words,
program-controlled.

. Block transfer among computers: data strings.

. Sharing memory among multiple processors: random
access lo global variables.

. Sharing peripheral devices: block transmission
(e.g. disk).

. Broadcast of data/control to multiple, independent
units.

Table 1. Common Communication Mechanisms

reduce these disadvantages, any module set consists of
a range of module types. At some polnt, however,
the number of module types begins to nullify the
advantages that can be gained by standardizing the
modules. Register transfer level modules are already
bumping against this ceiling. Any set of more complex
modules would either take too many module types or
become too inflexible in function or form, if it were
not for that classic idea: stored programs. Since CMs
are programmable, any one module type in the CM
module set can perform any function, and it is not
necessary to have many different CM types. At this
point we envision a CM set where different types of
CM differ only in size of primary memory (Mp) and
design of 1/O ports (eg. ports for communication
between local or remote CMs and ports for interfacing
with conventional device controllers). Any one CM,
however, can occupy only one point in the
cost/performance space. To obtain a variety of levels
of cost and performance, CMs are interconnected into
systems of varying size and complexity.

The CM can also be viewed as part of the
evolution of current centralized computer structures
into highly distributed, intelligent networks. This
evolutionary sequence has proceeded from (a) single
processor with centralized control of /0, through (b)
the addition of interrupts and local control of 10, (c)

1/0 processors, and {d) multiple central and 1/0
processors, finally to (e) multiple, interconnected
computers. Almost every current 1/0 device (eg.

typewriter, card-reader) and secondary storage device
(e.g. magnetic tape, disks) could be controlled by CMs
in future systems. This not only permits more
concurrency as well as autonomy with respect to a
central computing site, but also permits better local
control for higher reliability and better failure
diagnosis.

Communications

The wide range of performance for CM systems,
discussed above, will be possible only if CMs
cooperate efficiently in parallel systems. This requires
that the modules be able to synchronize and
communicate efficiently. In fact, this is the major
factor that differentiates CMs from current
minicomputers.

Various physical communications structures as

well as software protocols have been proposed or

can -

_independently of the central

178

buiit to satisfy the needs of various parallel systems.
One instance is the highly multiplexed switch of the
C.mmp [14) Another is the asynchronous, .extendable
ring of the Distributed Computing System [8) Still
others are the geographically dispersed ALOHA [l] and
ARPA network [12] systems, the bus systems such as
the PDP-11 Unibus [68]), and the synchronized, highly
structured ILLIAC IV system.

The more common communication mechanisms used
in such systems are given in Table 1. These range
from the conventional communications link for pair
dialogues to the shared primary memory which permits
any processor to access any global variable. The
various dimensions of the interconnection problem are
(a) logical switching structure (none: single transmitter-
single receiver; broadcast: single transmitter« muitiple
receiver; Unibus-type: single pair dialogues
broadcasted), (b) physical switching structure (links +
central switch; bus; loop), (c) node separation (local;
distributed), (d) message type (l-bit events; data word;
variable name + data word; data bLlocks), and (e) node
addresses (none; single address; subset of nodes).

This wide variety of systems is representative of
the flexibility required of CM interfaces. This
indicates that CMs must have several communications
ports, each with facilities for handshaking and other
forms of synchronization,

Efficiency often requires that module interfaces
have independent processing power. For instancey in
many cases independently controlled buffers should be
provided that do not have to be directly managed by
the central processor. Interrupt queueing and some
simple interrupt processing might also be performed
processor. CM ports
must therefore have sufficiant power and flexibility to
construct efficient parallel systems.

APPLICATIONS
In order to learn more about how CMs should be
designed, and also to illustrate how they might be

used to design systems, we have investigated a set of
applications, including array processing (Fast Fourier
Transform processing, generalized array processing, and
radar signal processing), sorting, language processing
{compilation apd machine language interpretation), and
process control. In each case, we have tried to bring
out the communications reqguirements and the range of
performance that can be achieved by varying the CM
system structure. In this paper we describe in detail

only the sorting and Fast Fourier Transform
applications, The other applications are discussed
briefly.

Fast Fourier Transform

The Fast Fourier Transform (FFT) lends itself to
parallel and pipelined processing [4,5] For an n-point
transform, the algorithm can be represented by an
array of nodes with n rows and log, n columns. At
each node, two values calculated by the nodes in the
previous column are processed, producing a value to

A 1

be used 1 the next column,
column mu«t

The calculations of each
be completed before the calculations of
the next column can procecd. Within any column,
however, the calculations at each node can proceed
independently of the calculations at the other nodes.

For an n-point transform, therefore, four simple
CM implementations are: (a) a full parallel/pipeline
structure using n log n CMs, one for each of the
nodes, (b) a parallel structure using n CMs, one for
each of the nodes in a column, in effect folding the
columns back on themselves, using an appropriate
communications net, (c) a pipeline structure using log.n
CMs, one for each column, and {d) a completely serial
impiementation using just one CM. The speeds in each
case are approximately proportional to the number of
CMs. Furthermore, any node can be implemented using
several CMs for higher speed. In this way, different
performance requirements can be satisfied by
consructing differently structured CM systems.

The
for each

communications
of the four
Private or shared (bus or
buffers required,
interconnection
considerations.

Sorting

requirements are different
implementations discussed.
loop} connections, size of
handshaking protocols and
patterns are some of the

~ Various sorting algorithms can be implemented by
CM systems. Some bucket sorts are chosen for
illustration.

Suppose the file to be sorted is divided among
n CMs, all connected via a ring-type communication
net, Each of the n CMs are pre-assigned a range of
values. The CM examines its portion of the file and
any record which does not fall within its assigned
range is placed on the ring. Records on the ring
circulate until picked up by the CM in whose range
the record key falls. After all the records have been
picked up, each CM will sort the records it collected
(this can be done either internally to the CM or by
reassigning ranges to the CMs and repeating the
distribution process).

Another possibility is to use a tree structure
(Figure 2). Here, each record arriving at a node is
sent to the wupper or lower successor node as
appropriate, until it arrives at a leaf node. Each leaf
node then sorts the records it collected. This tree
indicates a parallel/pipeline structure which can be

Figure 2. Sorting Tree

179

mapped in various ways onfo CM s.ste~s: we cc. =
use one CM for each node in trhe t-c3, ¢ C-e fz¢
each level, for instance. One might ~:1:2 1~a1 t-eve
is a speed mismatch in the ratio 2:1 =:tas2~ 2~y tez
successive levels of the tree; to ccr-2:1 s, we can
use an array stiructure similar to t-at fzr t-e Fase
Fourier Transform. 1t is important t> -2te 1-27 whe
these structures are similar, the t-a°s: gaitern s
different and consequently differe~: co~v.~cazsrs

structures may be indicated.

Other Applications

In generalized array process -
performed by the ILLIAC IV [3]) ard szeziia zec
processing {such as radar signal ¢-2
outstanding feature in many cases is ¢ =
the component CMs. Communica: =~ =
requirements are likely to be high, so 1~2 Clss
configured as an array, a vector, ¢~ -

"
-
w
¢
o

.

3s

v tre

other interconnection structure may te _c23 {eg,
perfect shuffle [13]). Each CM can r2zzstec s acz'y
one of a series of computation steps, =22 .r2 ‘es-~z-
(as in the CDC Star), or each CM ma, zzzly &l tre
steps to one particular data item 2t a t.re {35 15
typical for the ILLIAC V).

In compilation, partitioning t-e cc~z aton
procedure into phases allows pipeiin~z of ci=c s
programs, while techniques similar 1z mire—enta:

compiling [7]) can be applied to obte~ czrz.'e =:m at
the subprogram level. The outstandirg ‘szic-e 0 the

communications structure is the ¢bm~zn caya cTase
(symbol table, etc.) accessed by most ¢ tre Cws at
each stage of the compilation. This cata sir.stu-e
may be stored in one memory (whon rust ‘feld

requests from any of the CMs) or may te c-_:.:atec’
at each CM. These different schemes i~3ly c.fferent
communications structures.

In machine language interpretatic~, zaraile:sm is
obtained by pipelining instruction fetc-, ceccce 2-2
execution, and by multiplying the numter cf exez tSn

units. The demands made on the ctommomiais”s
system involves broadcasting of (s-ze-ereiiield

N - .o .Y
instructions, buffers at the execution _-1s, e A

fine example of a high-performance si-.ci.re .5 1re
360791 [2] Better system utilizaticn e~z t-erefire
better performance) can be achieved f 1~2 CM ¢.stem
is used to execute simultaneously rz-e iran <oe
program, or interpret parallel machine le-z.zzes (il}
A

In t\'te case of process contrel cs~c. .t~z tre
computation can usually be done in pa-z 2 2 ler~s
of multiple independent control tasks. < s,ste~ o
this type is typical of (a) telephcre s« "¢~z 2%
control of switching paths in terms ¢® zeec rc.le
requests), (b) discrete process control (¢35 a tra~s'er
machine requiring simultaneous solution ¢f 213 tsze2n
equations on a time-sampled basis), ang 2, ¢.Cse3- SR
time-sampled contro! (e.g. simultanes_s <2 ts~ ¢
multiple independent control equations fcr vasous
loops). In each case, while many operat s~s a-e ci-e

in parallel, each operation is small, and .~zzzerce~t of
other operations. Cormunications amcrz tre
control tasks is provided by multipie lr-s 10 proces
.inputs and outputs and to other computers (See Fg.re

w

vaér Zo

w

-

permits a single
output to be

links fron single
variable to at least

2 C's controlled by
multiple C's
] - r_
. Process
to
Control
Output
link
Switchind® | % to
othc'r
L\—# computer ;

links for
control and global
cocunication state and

variable transmission

Figure 3. Process control for a set
of computers permitting

redundant control paths,

3). Each CM also requires communications to all other

CMs in corder to access common input variables,
communicate global state wvariables, and to report
status. The communicatior, requirements are similar to
those encountered when using muitiple CMs for

compilation or interpretation.

CONCLUSION
We have discussed the architecture of CMs and the
possibility of constructing computing systems with
them. Although several questions remain to be
answered about the CM’s architecture, several

creliminary conclusions emerged from this study: (a) a
microprccessor is included within each CM (b) the
structure of the I/O ports is crucial, and (¢) more than
one 1/0 port is needed per CM. Table 2 gives some
of the characteristics we expect CM systems to have,
based on the applications we investigated.

Major questions remain. Can, CM structures
successfuily compete with conventional computers? (We
do not recessarily expect them to execute machine
languaze faster than an emulated machine, but, given a
set of applications, we wonder how well a CM system
would do compared to a conventional computer.) How
well will a CM structure fit a set of applications? [s

Attribute Values

o. of processors 1

Vemory size 1K words and over
Word size 8 to 16 bits

0. of ports 2toy

*vo. of C\M types . 1to?

to. of C\fs in a system A few to several thousand

Ton'a 2, Properties of CMs and C'M Systems

180

there a general structure sutable for most
applications? (Some work has bcen done in this
direction - [11]) How can we dewgn for a given

reliability requirement? How do we specify the
communication requirements for a given application,” and
how do we design physical commur.cation structures

and inter-module protocols to fit trese? These and
other questions must be answered. They will be
subjects of further research.

_ REFERENCES
1, Abramson, N, "The ALOHA System - Another

Alternative for Computer Communications,” FJCC
Proceedings 1970, Vol. 37, pp. 281-285.

2. Anderson, D. W., Sparacio, F. J, Tomasulo, RM,
"The IBM System/ 360 Model 91: Machine Pnilcsophy
and Instruction-Handling,” 1BM Journal of Research and
Development, Vol. 11, pp. 8-24, Jaruary, 1967.

3. Barnes et al, "The llliac IV Comguter,” IEEE Trans.
Computers, Vol. C-17, No. 8, pp.' 746-757, August
1968.)

4. Bergland, G. P. "Fast Fourier Transform Hardware
Implementations--An Overview”, IEEE Trans. on Audio
and Electroacoustics, Vol. AU-17, pp. 104-119, June
2, 1969.

and Morrow, R.

5. Brigham, E. O E., "The Fast
Fourier Transform,” IEEE Spectrum, Vol. 4, pp. 63-70,
December 1967.

6. Digital Equipment Corporation, "FCP-11 Interface

Manual,” DEC-11-HIAB-D, Digital Equipment Corgcratmn,
Maynard, Mass., 1971.

Z Earley, J. and Caizergues, P. "A Methed for
Incrementally Compiling Langues with Nested Statement
Structure”, Comm. of the ACM, Vol 15, pp.
1040-1044, December 1972.

8 Farber, D. J and Larson, K. C., "The System
Architecture of the Distributed Computer System - The
Communications System,” Symposium on Computer
Networks, The Polytechnic Institute of Brooklyn, Aprii,
1972. '

9. Hintz, R. G. and Tate, D. P, "Control Data
STAR-100 Processor Design,” IEEE Ccrmputer Scciety
International Conference, September 1972.

10. Lapidus, G., "MOS/LS! Launctes the Low-Cost
Processor,” IEEE Spectrum, Vol. 9, pp. 33-30,

November 1972.

11. Lesser, V. R, "Dynamic Control Structures and
their use in Emulation”, Ph.D. Thesis, Cemputer Science
Dept., Stanford University, August 1972.

12. Roberts, L. G., Wessler, B. D., "Computer
Network Deveiopment to Achieve Resocurce Sharing,”

SJCC Proceedings 1970, Vol. 36, pp. 543-549,

13. Stone, H. S., "Parallel Processing with the
Perfect Shuffle,” IEEE Trans. Computers, Vol. C-20,
pp. 153-160, February 1971,

14. Wulf, W. A, Bell, C. G, "Cmmp - A

Multi-Mini-Processor,” FJCC Proceedings 1972, Vol. 41,
Part 1l, pp. 765-777.

et A I e

