Computational Networks

A Generalization of Deep Learning Models

A tutorial at ICASSP 2015

Dong Yu, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Jasha Droppo
Outline

• Motivation
• Introduction to Deep Learning and Prevailing Deep Learning Models
• Computational Network: A Unified Framework for Models Expressible as Functions
• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks
• Examples: Acoustic Model, Language Model, and Image Classification
• Summary
Outline

• Motivation

• Introduction to Deep Learning and Prevailing Deep Learning Models

• Computational Network: A Unified Framework for Models Expressible as Functions

• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks

• Examples: Acoustic Model, Language Model, and Image Classification

• Summary
Why Are We All Here Today?

• Deep learning and deep neural networks are hot stuff!
 • Big impact in academic & industrial research.

• Why the widespread adoption?
 • Implementing a (deep) neural network is not difficult
 • Many groups were able to quickly adopt this new approach
 • and it works!

• This led to the “era of low hanging fruit”
 • Apply DNN to new tasks, e.g. ASR, TTS, NLP
 • Invent simple extensions, e.g. NAT, SAT
 • Create deep version of other known networks, e.g. RNN

• But, what next?
The Implementation Bottleneck

• It is easy (and fun!) to dream up new architecture variations, topologies, training strategies
 • Recurrence across arbitrary layers
 • RNN across multiple time delays
 • Complicated weight tying strategies
 • Gating
• It is time-consuming to implement these
 • Requires new coding for forward and back propagation
 • CPU + GPU means twice as much coding & debugging!
• Also true if you want to reproduce published research
• This is a big bottleneck to progress
Motivation: Break the Bottleneck

• Our goal: create a tool to try out new ideas quickly.
 • High risk, high reward, fail fast
 • Achieve flexibility without sacrificing efficiency

• Inspiration: Legos
 • Each brick is very simple and performs a specific function
 • Create arbitrary objects by combining many bricks

• CNTK enables the creation of existing and novel models by combining simple functions in arbitrary ways.

• For example, without writing any code you can
 • Create a DNN, RNN, or LSTM
 • Rearrange LSTM’s gating structure
 • Add novel recurrence
Outline

• Motivation

• Introduction to Deep Learning and Prevailing Deep Learning Models

• Computational Network: A Unified Framework for Models Expressible as Functions

• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks

• Examples: Acoustic Model, Language Model, and Image Classification

• Summary
Deep Neural Networks

• Catchy name for multi-layer perceptron (MLP) with “many” hidden layers
 • In: observations (features)
 • Out: prediction (classes or features)
• Training with back propagation to minimize the cross-entropy at the frame or sequence level
• Optimization important & difficult
• Outputs used as is, or in downstream classifier, e.g. hidden Markov model (HMM), support vector machine (SVM)
Success Across Many Fields

- Including automatic speech recognition (ASR), image classification, and natural language processing.
- Example: Success in ASR across many tasks
Deep Neural Networks Raise All Boats

• Improve across all phonemes [Huang 2014]
Deep Neural Networks Raise All Boats

• Improve across all signal-to-noise ratios [Huang 2014]
The Power of Depth

- Error rates decrease with depth

<table>
<thead>
<tr>
<th># of Layers X # of Neurons</th>
<th>SWBD WER (%) [300hrs]</th>
<th>Aurora 4 WER (%) [10hrs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 2k</td>
<td>24.2</td>
<td>---</td>
</tr>
<tr>
<td>3 x 2k</td>
<td>18.4</td>
<td>14.2</td>
</tr>
<tr>
<td>5 x 2k</td>
<td>17.2</td>
<td>13.8</td>
</tr>
<tr>
<td>7 x 2k</td>
<td>17.1</td>
<td>13.7</td>
</tr>
<tr>
<td>9 x 2k</td>
<td>17.0</td>
<td>13.9</td>
</tr>
</tbody>
</table>
The Power of Depth

• Error rates decrease with depth

• Depth is not just a way to add parameters

<table>
<thead>
<tr>
<th># of Layers X # of Neurons</th>
<th>SWBD WER (%) [300hrs]</th>
<th>Aurora 4 WER (%) [10hrs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 2k</td>
<td>24.2</td>
<td>---</td>
</tr>
<tr>
<td>3 x 2k</td>
<td>18.4</td>
<td>14.2</td>
</tr>
<tr>
<td>5 x 2k</td>
<td>17.2</td>
<td>13.8</td>
</tr>
<tr>
<td>7 x 2k</td>
<td>17.1</td>
<td>13.7</td>
</tr>
<tr>
<td>9 x 2k</td>
<td>17.0</td>
<td>13.9</td>
</tr>
<tr>
<td>1 x 16k</td>
<td>22.1</td>
<td>--</td>
</tr>
</tbody>
</table>
Why DNNs Perform So Well

• It’s a combination of nonlinear feature extraction and log-linear classifier

• Many simple nonlinearities combine to form arbitrarily complex nonlinearities for better feature transformation

• Joint feature learning & classifier design

• Lower-layer feature representations are exploited by the higher layer feature detectors

• Features at higher layers more invariant and discriminative than at lower layers
Limitations of DNNs

• We want features that are **discriminative** and **invariant**
 - **Discriminative**: transfer the raw feature non-linearly into a higher dimensional space in which things that were non-separable become separable
 - **Invariant**: pool or aggregate features in the new space to introduce invariance

• DNNs achieve this through many layers of non-linear transformations with supervision.

• However,
 - DNNs do not explicitly exploit known structures (e.g., translational variability) in the input data
 - DNNs do not explicitly apply operations that reduces variability (e.g., pooling and aggregation)

• Can we build these properties directly in the neural networks?
 - Yes, e.g., convolutional neural networks (CNNs)
Convolutional Neural Networks

• Explicitly models translational variability and enables shift invariance
 • Shared local filters (weights) tiled across image to detect the same pattern at different locations
 • Sub-sampling through pooling (max, average, or other) to reduce variability
Convolutional Neural Networks

• Key to improve image classification accuracy
• Deep CNNs now state of the art for image classification

[Zeiler and Fergus, 2013]
Limitations of CNNs

• CNNs mainly deal with translational variability
• There are more types of variability in image classification
 • horizontal reflections
 • color intensity differences
 • scaling
• Techniques such as data synthesis and augmentation, and local response normalization are needed to deal with these additional variability
• CNNs cannot take advantage dependencies and correlations between samples (and labels) in a sequence
• Recurrent neural networks (RNNs) are designed for this
Recurrent Neural Networks

• Models dependencies and correlations between samples (and labels) in a sequence
• Information may be fed back from hidden and output layers in the previous time steps
Deep Recurrent Neural Networks

• Combine deep neural networks with recurrent neural networks

• Trained with backpropagation through time (BPTT) and truncated BPTT

![Diagram of Deep Recurrent Neural Networks]
Limitations of Simple RNNs

• Simple RNNs are difficult to train due to diminishing and explosion of gradients over time
 • Can be partially alleviated with gradient thresholding

• Simple RNNs have difficulty modeling long-range dependencies
 • The effect of information from past samples decreases exponentially

• Is it possible to solve the gradient diminishing problem so that we can model long-range dependencies

• Yes, with carefully designed recurrent structures such as long short-term memory (LSTM) RNNs.
Long Short-Term Memory RNNs

• An extension of RNN that addresses vanishing gradient problem
 • Memory cell is linearly time-recurrent
 • Use gates to control and keep long-range information

[Image credit: Graves 2013]
Long Short-Term Memory RNNs

• State-of-the-art performance for many sequential recognition problems:
 • ASR
 • hand written character recognition

• Is a generic model

• May not be optimal for the specific problems at hand which requires designing customized models
Outline

• Motivation

• Introduction to Deep Learning and Prevailing Deep Learning Models

• Computational Network: A Unified Framework for Models Expressible as Functions

• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks

• Examples: Acoustic Model, Language Model, and Image Classification

• Summary
Generalization of Deep Learning Models

• Consider the models we just described...
 • Deep Neural Networks (DNNs)
 • Convolutional Neural Networks (CNNs)
 • Recurrent Neural Networks (RNNs)
 • Long Short-Term Memory (LSTM) RNNs
• ...and some other common machine learning models
 • Gaussian Mixture Models (GMMs)
 • Logistic Regression Models (LRMs)
 • Log-Linear Models (LLMs)

• Common property:
 • Can be described as a series of computational steps
Example: One Hidden Layer NN
Computational Networks

• A generalization of machine learning models that can be described as a series of computational steps.

• Representation:
 • A list of computational nodes denoted as
 \[n = \{ \text{node name} : \text{operation name} \} \]
 • The parent-children relationship describing the operands
 \[\{ n : c_1, \ldots, c_{K_n} \} \]
 • \(K_n \) is the number of children of node \(n \). For leaf nodes \(K_n = 0 \).
 • Order of the children matters: e.g., \(XY \) is different from \(YX \)
 • Given the inputs (operands) the value of the node can be computed.

• Can describe models that are far more complicated than simple conventional neural networks.
Example: CN with Multiple Inputs
Example: CN with Shared Parameters
Example: CN with Recurrence
Forward Computation – No Loop

• Given the root node, the computation order can be determined by a depth-first traverse of the directed acyclic graph (DAG).
• Only need to run it once and cache the order.
Forward Computation – With Loop

• Very important in many interesting models

\[v_{j}(\lambda, y) = y_{(j-\lambda)} \]

• Naive solution:
 • Unroll whole graph over time
 • Compute sample by sample
Forward Computation – With Loop

- Very important in many interesting models

\[v_{ij}(\lambda, y) = y_{(j-\lambda)} \]

Composite Node with loops (strongly connected components) inside

Better solution:
- Reduce each loop (strongly connected component) into a single node
- Only unroll over time inside loops
Forward Computation – With Loop

- Nodes inside the loops need to be computed sample by sample unrolled over time
Forward Computation – With Loop

- Nodes inside the loops need to be computed sample by sample unrolled over time

Key observation: Delay node can be treated as leaf since it’s already computed at t-1
Forward Computation – With Loop

- Nodes inside the loops need to be computed sample by sample unrolled over time

Remove the arrows to the delay node and convert it to a DAG
Forward Computation – With Loop

• May still be slow inside the loops, esp. if loop is long
• Solution: process multiple sequences in a batch
Forward Computation – With Loop

- May still be slow inside the loops, esp. if loop is long
- Solution: process multiple sequences in a batch
Forward Computation – With Loop

• May still be slow inside the loops, esp. if loop is long
• Solution: process multiple sequences in a batch
Forward Computation – With Loop

- What if sequences have different lengths
- Randomly select a new sequence and fill it in

You can signal the start of a new sequence for one or many sequences if sequences have different lengths

New sequence
Forward Computation Efficiency

- Add time stamps to reduce duplicate computation
Forward Computation Efficiency

• Add time stamps to reduce duplicate computation
Forward Computation Efficiency

- Add time stamp to reduce duplicate computation

```
Compute O

O: Softmax
  \[ P^{(2)}: \text{Plus} \]
  \[ T^{(2)}: \text{Times} \quad \text{B}^{(2)}: \text{Weight} \]
  \[ W^{(2)}: \text{Weight} \quad S^{(1)}: \text{Sigmoid} \]
  \[ P^{(1)}: \text{Plus} \]
  \[ T^{(1)}: \text{Times} \quad \text{B}^{(1)}: \text{Weight} \]
  \[ W^{(1)}: \text{Weight} \quad X: \text{Input} \]
```
Training

- Decide training criterion and add corresponding computation nodes

Model update with gradient descent

\[W_{t+1} \leftarrow W_t - \varepsilon \Delta W_t, \]

\[\Delta W_t = \frac{1}{M_b} \sum_{m=1}^{M_b} \nabla W_t J(W; x^m, y^m) \]
Automatic Gradient Computation

• Naive solution: compute and keep gradients at edges

\[\nabla^J_{\mathbf{W}^{(1)}} = \frac{\partial J}{\partial \mathbf{V}^{(1)}} \cdot \frac{\partial \mathbf{V}^{(1)}}{\partial \mathbf{W}^{(2)}} \cdot \frac{\partial \mathbf{V}^{(2)}}{\partial \mathbf{W}^{(1)}} + \frac{\partial J}{\partial \mathbf{V}^{(3)}} \cdot \frac{\partial \mathbf{V}^{(3)}}{\partial \mathbf{W}^{(4)}} \cdot \frac{\partial \mathbf{V}^{(4)}}{\partial \mathbf{W}^{(1)}} \]

\[\nabla^J_{\mathbf{W}^{(2)}} = \frac{\partial J}{\partial \mathbf{V}^{(1)}} \cdot \frac{\partial \mathbf{V}^{(1)}}{\partial \mathbf{W}^{(2)}} \cdot \frac{\partial \mathbf{V}^{(2)}}{\partial \mathbf{W}^{(2)}} \cdot \frac{\partial \mathbf{V}^{(2)}}{\partial \mathbf{W}^{(1)}} \]
Automatic Gradient Computation

• Better solution: compute and keep gradients at nodes

• Small footprint
• Factorize computation: node sums over all paths
• Isolated the gradient computation to each node
Gradient Computation at Node

- Each node has a ComputeInputPartial function to compute partial derivatives with regard to its children.

- Basic rule:

\[
\frac{\partial J}{\partial x_{ij}} = \sum_{m,n} \frac{\partial J}{\partial v_{mn}} \frac{\partial v_{mn}}{\partial x_{ij}}
\]

- Sigmoid: since

\[
\frac{\partial v_{mn}}{\partial x_{ij}} = \begin{cases}
 v_{ij} (1 - v_{ij}) & m = i \land n = j \\
 0 & \text{else}
\end{cases}
\]

we have

\[
\frac{\partial J}{\partial x_{ij}} = \sum_{m,n} \frac{\partial J}{\partial v_{mn}} \frac{\partial v_{mn}}{\partial x_{ij}} = \frac{\partial J}{\partial v_{ij}} v_{ij} (1 - v_{ij})
\]

and

\[
\nabla_x^J \leftarrow \nabla_x^J + \nabla_n^J \bullet [\nu \bullet (1 - \nu)]
\]
Gradient Computation at Node

- *Times*: since

\[
\frac{\partial v_{mn}}{\partial x_{ij}} = \begin{cases} y_{jn} & m = i \\ 0 & \text{else} \end{cases}
\]

we have

\[
\frac{\partial J}{\partial x_{ij}} = \sum_{m,n} \frac{\partial J}{\partial v_{mn}} \frac{\partial v_{mn}}{\partial x_{ij}} = \sum_{n} \frac{\partial J}{\partial v_{in}} y_{jn}
\]

or

\[
\nabla_{x}^{J} \leftarrow \nabla_{x}^{J} + \nabla_{n}^{J} y_{j}^{T}
\]

since

\[
\frac{\partial v_{mn}}{\partial y_{ij}} = \begin{cases} x_{mi} & n = j \\ 0 & \text{else} \end{cases}
\]

we have

\[
\frac{\partial J}{\partial y_{ij}} = \sum_{m,n} \frac{\partial J}{\partial v_{mn}} \frac{\partial v_{mn}}{\partial y_{ij}} = \sum_{m} \frac{\partial J}{\partial v_{mj}} x_{mi}
\]

or

\[
\nabla_{y}^{J} \leftarrow \nabla_{y}^{J} + x^{T} \nabla_{n}^{J}
\]
Gradient Computation of CN

- Reverse automatic differentiation: call each node’s `ComputeInputPartial` function following the order below

```plaintext
1: procedure DecideGradientComputationOrder(node, parentsLeft, order)
   ▷ Decide the order to compute the gradient of all descendents of node.
   ▷ `parentsLeft` is initialized to the number of parents of each node.
   ▷ `order` is initialized as an empty queue.
   2: if IsNotLeaf(node) then
   3:     parentsLeft[node] ←
   4:     if parentsLeft[node] == 0 ∧ node ∉ order then
   5:         order ← order + node ▷ Add node to the end of `order`
   6:     for each c ∈ node.children do
   7:         call DecideGradientComputationOrder(c, parentsLeft, order)
   8:     end for
   9: end if
10: end if
11: end procedure
```

- Result is another computation graph that can be optimized (e.g., remove trivial computation, cache duplicate computation) or computed asynchronously
Gradient Computation Efficiency

• Gradient computation is not needed for some nodes.
 • Set NeedGradient=false for constant leaf nodes.
 • Propagate the flag up the graph using the depth-first traversal.
 • Only compute the gradient when NeedGradient=true.

```
1: procedure UPDATE_NEED_GRADIENT_FLAG(root, visited)
    ▷ Enumerate nodes in the DAG in the depth-first order.
    ▷ visited is initialized as an empty set.
2: if root \notin visited then ▷ The same node may be a child of several nodes and revisited.
3:     visited ← visited ∪ root
4:     for each c ∈ root.children do
5:         call UPDATE_NEED_GRADIENT_FLAG(c, visited, order)
6:     if IsNotLeaf(node) then
7:         if node.AnyChildNeedGradient() then
8:             node.needGradient ← true
9:         else
10:            node.needGradient ← false
11:        end if
12:    end if
13: end for
14: end if
15: end procedure
```
Outline

• Introduction to Deep Learning and Prevailing Deep Learning Models
• Computational Network: A Unified Framework for Models Expressible as Functions
• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks
• Examples: Acoustic Model, Language Model, and Image Classification
• Summary
Design Goals of CNTK

• Expression: models and algorithms are descriptions
 • Network definition language (NDL) via plain text
 • Build network via compositions in source code (Simple Network Builder)

• Modularity: to extend to new tasks and new models
 • Abstraction of computation nodes
 • Task-specific readers

• Speed: for state-of-the-art models trained on large data
 • Data parallelism
CNTK: Open Source Toolkit

Computational Network Toolkit (CNTK)

Source code and documents are available at http://cntk.codeplex.com

Uses GIT for version control

Supports Windows and Linux
A Typical Workflow of Using CNTK: train

- Train models use `train` command
A Typical Workflow of Using CNTK: eval

- Evaluate models using `eval` command
A Typical Workflow of Using CNTK: edit

• Edit models to expand the model with more nodes, fewer nodes, etc, using edit command

Data and Label

Data and Label

Model

train
eval

Model 2

edit
A Typical Workflow of Using CNTK: update

• Update the newly edited model using *train* command
A Typical Workflow of Using CNTK: adapt

• Adapt models on new data using adapt command
A Typical Workflow of Using CNTK: write

• Write outputs from a node in the trained model using write command

• A node can be designed to output
 • Activity, e.g., used for training bottleneck features
 • Decoding results, e.g., used for output semantic tags in SLU example
CNTK Architecture

• Abstraction

[Diagram showing the CNTK Architecture with roles such as ICNBuilder, CN (Computation Node), IExecutionEngine, IDataReader, and ILearner with arrows indicating relationships like Build, Evaluate/Gradient, and Get data.]
CNTK Architecture

• Network description

![Diagram](image-url)
CNTK Architecture

• Task-specific readers

![Diagram of CNTK Architecture]

- **LSTM, RNN, DNN**
- **CN Description**
- **Features & Labels**
- **Task-specific reader**
- **ICNBuilder**
- **IDataReader**
- **ILearner**
- **IExecutionEngine**
- **CN**
- **Evaluate/Gradient**

Use
Build
Load
Get data
CNTK Architecture

• Learning algorithms

LSTM, RNN, DNN

ICNBuilder

Features & Labels

IDataReader

Task-specific reader

ILearner

SGD/AdaGrad

IExecutionEngine

CN

CN Description

Use

Build

Evaluate/Gradient

Get data

Load
CNTK Architecture

- Computing resources

Diagram

- **ICNBuilder**
 - **Features & Labels**
 - **LSTM, RNN, DNN**
- **CN Description**
- **IDataReader**
- **ICNBuilder**
- **ILearner**
- **IExecutionEngine**
- **CPU/GPU**
- **Evaluate/Gradient**
- **Task-specific reader**
- **SGD/AdaGrad**
Implemented Nodes

• Inputs
 • Input, ImageInput, LookupTable

• One operand
 • ReLU, Sigmoid, Tanh, Log, Cos, Dropout, Negate, Softmax, LogSoftmax

• Matrices and Vectors
 • SumElements, RowSlice, Scale, Times, DiagTimes, Plus, Minus, ElementTimes

• Training criterion
 • SquareError, CrossEntropyWithSoftmax, ClassificationError, ClassBasedCrossEntropyWithSoftMax, GMMLogLikelihood

• Sequence-level training
 • CRF

• Parameters
 • Parameter, Constant

• Tensor
 • KhatriRaoProduct,

• Regularization
 • MatrixL1Reg, MatrixL2Reg,

• Normalization
 • Mean, InvStdDev, PerDimMVNorm

• CNN related
 • Convolution, MaxPooling, AveragePooling

• RNN related
 • Delay

• Bi-directional models related
 • TimeReverse
CNTK Task-specific Readers

• UCIFastReader
 • Space delimited file formats
 • uses BinaryReader to cache and speed up

• HTKMLFReader
 • Speech feature and labels in HTK format

• KaldiReader
 • Speech feature and labels in Kaldi format

• LMSequenceReader
 • Text file sequence reader for language model

• LUSequenceReader
 • Text file sequence reader for language understanding

• DSSMReader
 • For training and evaluating DSSM model for query and document pairs
TIMIT Example

\[
\text{command} = \text{TIMIT_TrainNDL}
\]

\[
\text{TIMIT_TrainNDL} = [
 \text{action} = \text{train}
 \text{deviceId} = \$\text{DeviceNumber}\$
 \text{modelPath} = \$\text{your_model_path}\$
 \text{SimpleNetworkBuilder} = [...]
 \text{SGD} = [...]
 \text{reader} = [...]
]
\]

CPU: -1 or CPU
GPU: >=0
TIMIT DNN Network

SimpleNetworkBuilder=[
 layerSizes=792:512*3:183
 applyMeanVarNorm=true
 trainingCriterion=CrossEntropyWithSoftmax
 evalCriterion=ErrorPrediction
]

\[(y - p)^2\]
TIMIT SGD

\[g_t = m \, g_{t-1} - \alpha \Delta L(\theta_t) \]
\[\theta_t = \theta_{t-1} + g_t \]

SGD=[
 minibatchSize=256:1024
 learningRatesPerMB=0.8:3.2*14:0.08
 momentumPerMB=0.9
]

Epoch 1: minibatch size=256, learning rate= 0.8
Epoch 2-15: minibatch size = 1024, learning rate = 3.2
Epoch 16+: minibatch size = 1024, learning rate = 0.08
reader=[
 readerType=HTKMLFReader
 randomize=Auto
]

features=[
 dim=792
 scpFile=${FBankScpShort}$
]

labels=[
 mlfFile=${MlfDir}\TIMIT.train.mlf
 labelDim=183
 labelMappingFile=${MlfDir}\TIMIT.statelist
]

SLU Example: Reader

```plaintext
reader = [
  readerType = LUSequenceReader,
  features = [
    dim = 2832
  ],
  labelIn = [
    token = $DataDir$/input.txt
  ],
  wordContext = 0:1:2,
  labels = [
    token = $DataDir$/output.txt
  ]
]
```
SimpleNetworkBuilder=[
 rnnType=LSTM
 layerSizes=2832:50:300:127
 recurrentLayer=2
 trainingCriterion=CrossEntropyWithSoftmax
 evalCriterion=CrossEntropyWithSoftmax
]
Non-standard networks can be created using Network Definition Language (NDL)

Nodes and connections can be specified through a series of atomic or macro operations
NDL Example: Single layer Auto-encoder

\[
\begin{align*}
\text{featDim} &= 1000 \\
\text{hiddenDim} &= 100 \\
\text{features} &= \text{Input(featDim, \ tag=feature)} \\
\text{Wh} &= \text{Parameter(hiddenDim,featDim)} \\
\text{Th} &= \text{Times(Wh,features)} \\
\text{Sh} &= \text{Sigmoid(Th)} \\
\text{Wo} &= \text{Parameter(featDim,hiddenDim)} \\
\text{Po} &= \text{Times(Wo,Sh)} \\
\text{MSE} &= \text{SquareError(features, Po, \ tag=criteria)}
\end{align*}
\]
Using Macros in NDL

• Macros can be defined to encapsulate a common set of parameters and/or sequence of operations

\[
RFF(x_1, w_1, b_1) = \text{RectifiedLinear}(\text{Plus} (\text{Times}(w_1, x_1), b_1))
\]

\[
\text{FF}(X_1, W_1, B_1)
\]

\{
 \text{T} = \text{Times}(W_1, X_1)
 \]
 \text{FF} = \text{Plus}(T, B_1)
\}

• Can access internal variables via the dot syntax, e.g.,

\[
L_1 = \text{FF}(X_1, W_1, B_1)
\]

\[L_1.T\] can be used to access the result of Times Op in the macro FF.
Example Macros

\[
\text{FF}(X_1, W_1, B_1) \\
= \begin{cases} \\
T = \text{Times}(W_1, X_1) \\
\text{FF} = \text{Plus}(T, B_1) \\
\end{cases}
\]

Affine transformation

\[
\text{BFF}(\text{in}, \text{rows}, \text{cols}) \\
= \begin{cases} \\
B = \text{Parameter}(\text{rows}, \text{init}=\text{fixed value}, \text{value}=0) \\
W = \text{Parameter}(\text{rows}, \text{cols}) \\
\text{BFF} = \text{FF}(\text{in}, W, B) \\
\end{cases}
\]

Affine transformation given row and column number

\[
\text{SBFF}(\text{in}, \text{rows}, \text{cols}) \\
= \begin{cases} \\
\text{BFF} = \text{BFF}(\text{in}, \text{rows}, \text{cols}) \\
\text{SBFF} = \text{Sigmoid}(\text{BFF}) \\
\end{cases}
\]

Sigmoid transformation given row and column number
Macros in Effect: Auto-encoder Example

featDim=1000
hiddenDim=100

features=Input(featDim, tag=feature)

L1 = SBFF(features, hiddenDim, featDim)

L2 = BFF(L1, featDim, hiddenDim)

MSE = SquareError(features, L2, tag=criteria)
Invoking NDL Networks

• Invoked in the configuration file using NDLNetworkBuilder

• Each NDL file can contain many network definitions
 • Use run command to determine which network to use

NDLNetworkBuilder=[
 ndlMacros=$NdlDir$/default_macros.ndl
 AutoEncoderNDL=$NdlDir$/mynetwork.ndl
 run=AutoEncoderNDL
]
Stochastic Gradient Descent Learner

- Compute gradient of objective function with respect to model parameters.
 - Gradient descent uses the entire training set.
 - Provable linear convergence.
 - SGD uses a random subset (minibatch) of the training set.
 - Convergence requires decreasing learning rates.
 - Provable sub-linear convergence bound.
 - In practice, convergence only slow as model approaches the optimum.
 - Beneficial when training time is the training bottleneck.

- Parameter update is a function of this gradient.
SGD Learner Configuration

- **Gradient Update Options**
 - Options for CNTK are: none, adagrad, or rmsprop.

- **Learning rate search**

- **Model Averaging (parallel training)**
 - Compile code with USE_MPI defined.
 - At the end of every epoch, all nodes exchange and average their parameters.

- **Regularization**
 - **Gradient Noise**
 - Adds Gaussian noise to each gradient computation.
 - **L2 regularizer**
 - Adds a scaled version of the parameters into the gradient, biasing parameter values to zero.
 - **L1 regularizer**
 - Uses the proximal gradient descent algorithm to shrink the weights
Default Gradient Update

• Conventional SGD is the default
 • Apply learning rate to gradients.
 • Apply momentum to gradients.
 • Subtract result from parameter values.

• Equivalent to setting “Gradient update: none”
Gradient Update: Adagrad

• Scales each dimension by the l_2 norm of all gradients for that dimension up to, and including, the current time.

\[\beta_t[k] = \beta_{t-1}[k] + d_t^2[k], \quad d_t[k] \leftarrow \frac{d_t[k]}{\sqrt{\beta_t[k]+\epsilon}} \]

• Effective gradient scale factor is non-increasing over time.

• Optional: As a final step, the average multiplier over all features is found, and used to re-scale the gradient.

\[m = \sum_{k=0}^{K-1} \frac{1}{\sqrt{\beta_t[k]+\epsilon}}, \quad d_t[k] \leftarrow \frac{d_t[k]}{m} \]

• This preserves the absolute scale of the gradient, retaining only the relative scaling of adagrad.
Gradient Update: RMSProp

- Per-dimension scale factor with two components.
 \[
d_t[k]' = d_t[k] \frac{r_t[k]}{\sqrt{\beta_t[k]} + \epsilon}
 \]
 - A smoothed estimate of the l_2 norm of recent gradients for that dimension up to, and including, the current time.
 \[
 \beta_t[k] = \gamma \beta_{t-1}[k] + (1 - \gamma)d_t^2[k]
 \]
 - An rprop style factor, that increases when the gradient sign matches from one time to the next, and decreases otherwise.
 \[
 r_t[k] = \begin{cases}
 \min(r_{t-1}[k] \cdot w_{inc}, w_{max}) & \text{if signs match} \\
 \max(r_{t-1}[k] \cdot w_{dec}, w_{min}) & \text{otherwise}
 \end{cases}
 \]

- Parameters
 - rms_gamma: Smoothing factor for exponential window variance estimate.
 - rms_wgt_inc, rms_wgt_dec: Factors to multiply each weight by, to increase or decrease its value.
 - rms_wgt_max, rms_wgt_min: Ceiling and floor for the weight factors.

- As in adagrad, the average multiplier over all features is found, and used to re-scale the gradient.
 \[
m = \sum_{k=0}^{K-1} \frac{r_t[k]}{\sqrt{\beta_t[k]} + \epsilon}, \quad d_t[k] \leftarrow \frac{d_t[k]}{m}
 \]
Model Editing Language

- Sometimes it is useful to edit a model
 - Copy parameters from one model or node to another
 - Overwrite parameters
 - Freeze or unfreeze certain parameters during training
- This can be done using CNTK’s Model Editing Language (MEL)
- Examples of MEL functionality:
 - Load multiple CNTK models
 - Copy parameters, a node, or a group of nodes
 - Add new nodes to existing model using “inline” NDL
 - Change node properties, e.g. needGradient or criteria node
MEL example

• MEL can be used to do layer-by-layer discriminative pre-training (DPT)
 • Construct a 1 layer model
 • Train model
 • Use MEL to remove output layer and add a new hidden layer and a new output layer
 • Train new model
 • Repeat until desired depth is reached
MEL Example: DPT

X

L1.S = Sigmoid(CE.P)
L1.P = Plus(L1.T, b1)
L1.T = Times(W1, X)

L2.S = Sigmoid(L2.P)
L2.P = Plus(L2.T, b0)
L2.T = Times(W2, L1.S)

CE.S = Softmax(CE.P)
CE.P = Plus(CE.T, b0)
CE.T = Times(W0 * L2.S)
MEL Example: DPT

• Configuration file to perform edit operation:

AddLayer2=[
 action=edit
 CurrModel=\cntkSpeech.dnn
 NewModel=\cntkSpeech.dnn.0
 editPath=\ add_layer.mel
]

• MEL commands to add a layer to the current model

m1=LoadModel($CurrModel$, format=cntk)
SetDefaultModel(m1)
HDim=512
L2=SBFF(L1.S,HDim,HDim) #CREATE
SetInput(CE.*.T, 1, L2.S) #MODIFY
SetInput(L2.*.T, 1, L1.S)
SaveModel(m1,$NewModel$, format=cntk)
Extending the functionality of CNTK

• You can add a new data reader either to speed up loading time or to support a new data format by implementing the \texttt{IDataReader} interface with two key operations
 • \texttt{StartMinibatchLoop()}
 • \texttt{GetMinibatch()}

• You can add a new node type derived from class \texttt{ComputationNode} by implementing
 • \texttt{EvaluateThisNode()}
 • \texttt{ComputeInputPartial()}

And adding the related instantiation methods to the \texttt{ComputationNetwork} and \texttt{NetworkDefinitionLanguage} classes
Outline

• Motivation

• Introduction to Deep Learning and Prevailing Deep Learning Models

• Computational Network: A Unified Framework for Models Expressible as Functions

• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks

• Examples: Acoustic Model, Language Model, and Image Classification

• Summary
DNN-HMM AM Example

• Design criteria
 • Frame stacking. Input layer is multiple of feature size.
 • Hidden layer width.
 • Model depth.

• Input data
 • Label files (HTK MLF format)
 • start_frame end_frame label_string label_index
 • Traditional script files pointing to HTK parameters
 • `\\path\to\test\dr1\faks0\si1573.fbank_zda`
 • Or, HTK archive format script files
 • `test-dr1-faks0-si1573.fbank_zda=\\path\to\big\file.fbank_zda[0,494]`
 • `test-dr1-faks0-si2203.fbank_zda=\\path\to\big\file.fbank_zda[495,843]`
DNN-HMM AM Example

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMIT_TrainSimple</td>
<td><code>action = train</code> <code>modelPath = $ExpDir$\cntkSpeech.dnn</code> <code>SimpleNetworkBuilder = [</code> <code>layerSizes = 792:512*3:183</code> <code>trainingCriterion = </code> <code>CrossEntropyWithSoftmax</code> <code>evalCriterion = ErrorPrediction</code> <code>layerTypes = Sigmoid</code> <code>initValueScale = 1.0</code> <code>applyMeanVarNorm= true</code> <code>uniformInit = true</code> <code>needPrior = true</code> <code>]</code></td>
</tr>
<tr>
<td>SGD</td>
<td><code>epochSize = 0</code> <code>minibatchSize = 256:1024</code> <code>learningRatesPerMB = 0.8:3.2*14:0.08</code> <code>momentumPerMB = 0.9</code> <code>maxEpochs=25</code></td>
</tr>
<tr>
<td>reader</td>
<td><code>[readerType = HTKMLFReader</code> <code>readMethod = rollingWindow</code> <code>miniBatchMode = Partial</code> <code>randomize = Auto</code> <code>verbosity = 1</code> <code>features = [</code> <code>dim=792</code> <code>scpFile = $ScpDir\TIMIT.train.scp</code> <code>]</code> <code>labels = [</code> <code>mlfFile = $MlfDir\TIMIT.mlf</code> <code>labelDim = 183</code> <code>labelMappingFile= $MlfDir\TIMIT.statelist</code> <code>]</code> <code>]</code></td>
</tr>
</tbody>
</table>
DNN-HMM AM Example: LSTM

\[
\begin{align*}
\mathbf{i}_t &= \sigma \left(W^{(x_i)} \mathbf{x}_t + W^{(h_i)} \mathbf{h}_{t-1} + W^{(c_i)} \mathbf{c}_{t-1} + b^{(i)} \right) \\
\mathbf{f}_t &= \sigma \left(W^{(x_f)} \mathbf{x}_t + W^{(h_f)} \mathbf{h}_{t-1} + W^{(c_f)} \mathbf{c}_{t-1} + b^{(f)} \right) \\
\mathbf{c}_t &= \mathbf{f}_t \cdot \mathbf{c}_{t-1} + \mathbf{i}_t \cdot \tanh \left(W^{(x_c)} \mathbf{x}_t + W^{(h_c)} \mathbf{h}_{t-1} + b^{(c)} \right) \\
\mathbf{o}_t &= \sigma \left(W^{(x_o)} \mathbf{x}_t + W^{(h_o)} \mathbf{h}_{t-1} + W^{(c_o)} \mathbf{c}_t + b^{(o)} \right) \\
\mathbf{h}_t &= \mathbf{o}_t \cdot \tanh \left(\mathbf{c}_t \right),
\end{align*}
\]
DNN-HMM AM Example: LSTM

LSTMComponent(inputDim, outputDim, inputVal)
{
 Wxo = Parameter(outputDim, inputDim)
 Wxi = Parameter(outputDim, inputDim)
 Wxf = Parameter(outputDim, inputDim)
 Wxc = Parameter(outputDim, inputDim)
 bo = Parameter(outputDim, init=fixedvalue, value=-1.0)
 bc = Parameter(outputDim, init=fixedvalue, value=0.0)
 bi = Parameter(outputDim, init=fixedvalue, value=-1.0)
 bf = Parameter(outputDim, init=fixedvalue, value=-1.0)
 Whi = Parameter(outputDim, outputDim)
 Wci = Parameter(outputDim)
 Whf = Parameter(outputDim, outputDim)
 Wcf = Parameter(outputDim)
 Who = Parameter(outputDim, outputDim)
 Wco = Parameter(outputDim)
 Whc = Parameter(outputDim, outputDim)
}
DNN-HMM AM Example: LSTM

\[
delayH = \text{Delay}(\text{outputDim}, \text{output}, \text{delayTime}=1)
\]
\[
delayC = \text{Delay}(\text{outputDim}, \text{ct}, \text{delayTime}=1)
\]
\[
W_{\text{xiInput}} = \text{Times}(W_{\text{xi}}, \text{inputVal})
\]
\[
W_{\text{hidelayHI}} = \text{Times}(W_{\text{hi}}, \text{delayH})
\]
\[
W_{\text{cidelayCI}} = \text{DiagTimes}(W_{\text{ci}}, \text{delayC})
\]
\[
i_t = \sigma \left(W^{(xi)}_t x_t + W^{(hi)} h_{t-1} + W^{(ci)} c_{t-1} + b^{(i)} \right)
\]
\[
it = \text{Sigmoid} \left(\text{Plus} \left(\text{Plus} \left(\text{Plus} \left(W_{\text{xiInput}}, b_i \right), W_{\text{hidelayHI}}, W_{\text{cidelayCI}} \right) \right) \right)
\]
\[
W_{\text{hfdelayHF}} = \text{Times}(W_{\text{hf}}, \text{delayH})
\]
\[
W_{\text{cfdelayCF}} = \text{DiagTimes}(W_{\text{cf}}, \text{delayC})
\]
\[
W_{\text{xinput}} = \text{Times}(W_{\text{x}}, \text{inputVal})
\]
\[
f_t = \sigma \left(W^{(xf)}_t x_t + W^{(hf)} h_{t-1} + W^{(cf)} c_{t-1} + b^{(f)} \right)
\]
\[
ft = \text{Sigmoid} \left(\text{Plus} \left(\text{Plus} \left(\text{Plus} \left(W_{\text{xinput}}, b_f \right), W_{\text{hfdelayHF}}, W_{\text{cfdelayCF}} \right) \right) \right)
\]
DNN-HMM AM Example: LSTM

\[
\begin{align*}
W_{xcInput} &= \text{Times}(W_{xc}, \text{inputVal}) \\
W_{hc\text{delayHC}} &= \text{Times}(W_{hc}, \text{delayH}) \\
\text{bit} &= \text{ElementTimes}(it, \text{Tanh}(\text{Plus}(W_{xcInput}, \text{Plus}(W_{hc\text{delayHC}}, bc)))) \\
\text{bft} &= \text{ElementTimes}(ft, \text{delayC}) \\
\text{ct} &= \text{Plus}(\text{bft}, \text{bit}) \\
W_{xo\text{input}} &= \text{Times}(W_{xo}, \text{inputVal}) \\
W_{h\text{delayHO}} &= \text{Times}(W_{ho}, \text{delayH}) \\
W_{co\text{ct}} &= \text{DiagTimes}(W_{co}, \text{ct}) \\
\text{ot} &= \text{Sigmoid}(\text{Plus}(\text{Plus}(\text{Plus}(W_{xo\text{input}}, bo), \text{WhodelayHO}), W_{co\text{ct}})) \\
\text{output} &= \text{ElementTimes}(\text{ot}, \text{Tanh}(\text{ct})) \\
\end{align*}
\]

\[
\begin{align*}
\mathbf{c}_t &= \mathbf{f}_t \cdot \mathbf{c}_{t-1} + \mathbf{i}_t \cdot \text{tanh} \left(W^{(xc)} x_t + W^{(hc)} h_{t-1} + b \right) \\
\mathbf{o}_t &= \sigma \left(W^{(xo)} x_t + W^{(ho)} h_{t-1} + W^{(co)} c_t + b^{(o)} \right) \\
\mathbf{h}_t &= \mathbf{o}_t \cdot \text{tanh}(\mathbf{c}_t)
\end{align*}
\]
DNN-HMM AM Example: LSTM

• Top level command:

```
action=train
```

• Reader changes

```
reader=[
    readerType=HTKMLFReader
    readMethod=blockRandomize
    frameMode=false
    Truncated=true
    nbrUttsInEachRecurrentIter=32
]
```

- Sequence mode
- Truncated BPTT
- Number of utterances in each minibatch

• SGD block meaning change

```
minibatchsize=20
```

- Truncation size
Prediction-Based AM Example

- A recurrent system with two major components
- Predict, adapt, and correct

[Diagram of a recurrent neural network with prediction and correction DNNs, showing input features, prediction, and correction processes.]

Multi-objective
Prediction Based AM Example

```plaintext
#define basic i/o
featDim=1845
labelDim=183
labelDim2=61
hiddenDim=1024
bottleneckDim=80
bottleneckDim2=500
features=Input(featDim, tag=feature)
lables=Input(labelDim, tag=label)
statelabels=Input(labelDim2, tag=label)
ww=Constant(1)
ccr1=Constant(0.8)
ccr2=Constant(0.2)
```
Prediction Based AM Example

define network
featNorm = MeanVarNorm(features)

DNN_A_delayfeat1=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=1)
DNN_A_delayfeat2=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=2)
DNN_A_delayfeat3=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=3)
DNN_A_delayfeat4=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=4)
DNN_A_delayfeat5=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=5)
DNN_A_delayfeat6=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=6)
DNN_A_delayfeat7=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=7)
DNN_A_delayfeat8=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=8)
DNN_A_delayfeat9=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=9)
DNN_A_delayfeat10=Delay(bottleneckDim, DNN_B_L2.BFF.FF.P, delayTime=10)
DNN_A_delayfeat=Delay(labelDim, DNN_B_CE_BFF.FF.P, delayTime=10)
Prediction Based AM Example

DNN_A_L1 = SBFF_multi8(featNorm, DNN_A_delayfeat1, DNN_A_delayfeat2, DNN_A_delayfeat3, DNN_A_delayfeat4, DNN_A_delayfeat5, DNN_A_delayfeat6, DNN_A_delayfeat7, DNN_A_delayfeat8, DNN_A_delayfeat9, DNN_A_delayfeat10, hiddenDim, featDim, bottleneckDim)

DNN_A_L2 = SBFF(DNN_A_L1, hiddenDim, hiddenDim)
DNN_A_L2_B = SBFF(DNN_A_L1, bottleneckDim2, hiddenDim)
DNN_A_CE_BFF = BFF(DNN_A_L2, labelDim, hiddenDim)

DNN_B_L1 = SBFF_multi(featNorm, DNN_A_L2_B.BFF.FF.P, hiddenDim, featDim, bottleneckDim2)
DNN_B_L2 = SBFF(DNN_B_L1, bottleneckDim, hiddenDim)
DNN_B_CE_BFF = BFF(DNN_B_L2, labelDim2, bottleneckDim)
criterion1 = CrossEntropyWithSoftmax(labels, DNN_A_CE_BFF)
criterion2 = CrossEntropyWithSoftmax(statelabels, DNN_B_CE_BFF)
criterion = Plus(Scale(cr2,criterion2), Scale(cr1,criterion1), tag=Criteria)

Err = ErrorPrediction(labels, DNN_A_CE_BFF, tag=Eval)

LogPrior = LogPrior(labels)
ScaledLogLikelihood = Minus(DNN_A_CE_BFF, logPrior, tag=Output)
Prediction Based AM Example

reader=
 readerType=HTKMLFReader
 readMethod=blockRandomize
 frameMode=false
 Truncated=true

nbruttsineachrecurrentiter=5
features=[
 dim=1845
 scpFile=$scpFilePath$
]

labelDim=183
labelType=Category
labels=[

 mlfFile=$normalLabelFilePath$
]

stateLabels=[
 mlfFile=$predictLableFilePath$
]

Utterance mode for RNN
Truncated BPTT
Main label
Prediction label
Sample, Hidden, and Label dimensions

$SDim=784$

$LDim=10$

$\text{inputWidth}=28$

$\text{inputHeight}=28$

$\text{inputChannels}=1$

$\text{features} = \text{ImageInput}(\text{inputWidth}, \text{inputHeight}, \text{inputChannels}, \text{tag=feature})$

$\text{labels} = \text{Input}(LDim, \text{tag=label})$

convolution

$\text{kernelWidth}=5$

$\text{kernelHeight}=5$

$\text{outputChannels}=24$

$\text{horizontalSubsample}=2$

$\text{verticalSubsample}=2$
NDL Example: CNN

```plaintext
# weight[outputChannels, kernelWidth * kernelHeight * inputChannels]
cvweight=Parameter(outputChannels, 25)

cv = Convolution(cvweight, features, kernelWidth, kernelHeight, outputChannels, horizontalSubsample, verticalSubsample, zeroPadding=false)

# one bias per channel
cvbias=Parameter(outputChannels, 1)

cvplusbias=Plus(cv, cvbias);
nlcv=Sigmoid(cvplusbias);

#outputWidth = (m_inputWidth-m_kernelWidth)/m_horizontalSubsample + 1;
outputWidth=12

#outputHeight = (m_inputHeight-m_kernelHeight)/m_verticalSubsample + 1;
outputHeight=12
```
#maxpooling

windowWidth=2
windowHeight=2
stepW=2
stepH=2

mp=MaxPooling(nlcv, windowWidth, windowHeight, stepW, stepH)

#m_outputSizePerSample = m_outputWidth * m_outputHeight * m_channels;
mpoutputSizePerSample=864

Layer operations
HDim=128
L1 = SBFF(mp, HDim, mpoutputSizePerSample)
CE = SMBFF(L1, LDim, HDim, labels, tag=Criteria)
Err=ErrorPrediction(labels, CE.BFF, tag=Eval)

rootNodes defined here
OutputNodes=(CE.BFF)
Class-based RNN LM Example

• RNN example with additional class info included in output layer
Class-based RNN LM Example

- **Top level commands and parameters**
  ```plaintext
topology=nn.topology
  action=train
  minibatchSize=10
  deviceId=auto
  defaultHiddenActivity=0.1
  
  # labels in classbasedCrossEntropy is dense
  # and contain 4 values for each sample
  labels=Input(4, tag=label)
  
  The initial (default) activity for delay nodes
```

- **Network Definition**
  ```plaintext
  ndlCreateNetwork=[
    featDim=10000
    labelDim=10000
    hiddenDim=200
    nbrClass=50
    initScale=6
    
    features=SparseInput(featDim, tag=feature)
  ]

  Vocabulary Size
  Hidden Layer Size
  Number of Classes
  Enlarge initial weight value ranges by 6 times
Class-based RNN LM Example

\[
\begin{align*}
W_{\text{Feat2Hid}} &= \text{Parameter}(\text{hiddenDim}, \text{featDim}, \text{init}=\text{uniform}, \text{initValueScale}=\text{initScale}) \\
W_{\text{Hid2Hid}} &= \text{Parameter}(\text{hiddenDim}, \text{hiddenDim}, \text{init}=\text{uniform}, \text{initValueScale}=\text{initScale})
\end{align*}
\]

\# WHid2Word is special that it is hiddenSize X labelSize
\[
W_{\text{Hid2Word}} = \text{Parameter}(\text{hiddenDim}, \text{labelDim}, \text{init}=\text{uniform}, \text{initValueScale}=\text{initScale})
\]
\[
W_{\text{Hid2Class}} = \text{Parameter}(\text{nbrClass}, \text{hiddenDim}, \text{init}=\text{uniform}, \text{initValueScale}=\text{initScale})
\]

\[
\begin{align*}
\text{PastHid} &= \text{Delay}(\text{hiddenDim}, \text{HidAfterSig}, \text{delayTime}=1, \text{needGradient}=\text{true}) \\
\text{HidFromFeat} &= \text{Times}(W_{\text{Feat2Hid}}, \text{features}) \\
\text{HidFromRecur} &= \text{Times}(W_{\text{Hid2Hid}}, \text{PastHid}) \\
\text{HidBeforeSig} &= \text{Plus}(\text{HidFromHeat}, \text{HidFromRecur}) \\
\text{HidAfterSig} &= \text{Sigmoid}(\text{HidBeforeSig})
\end{align*}
\]

\[
\begin{align*}
\text{Out} &= \text{Times}(W_{\text{Hid2Word}}, \text{HidAfterSig}) \ # \text{word part} \\
\text{ClassProbBeforeSoftmax} &= \text{Times}(W_{\text{Hid2Class}}, \text{HidAfterSig})
\end{align*}
\]

\[
\text{cr} = \text{ClassBasedCrossEntropyWithSoftmax} (\text{labels}, \text{HidAfterSig}, W_{\text{Hid2Word}}, \text{ClassProbBeforeSoftmax}, \text{tag} = \text{Criteria})
\]

\[
\text{EvalNodes} = (\text{Cr}) \\
\text{OutputNodes} = (\text{Cr})
\]

Customized Initialization

Info from Past Hidden

Special Node for Class Based Classification

Same Node Can be Used for Difference Purposes
Class-based RNN LM Example

• SGD section

SGD=[
    learningRatesPerSample=0.1
    momentumPerMB=0
    gradientClippingWithTruncation=true
    clippingThresholdPerSample=15.0
    maxEpochs=40
    gradUpdateType=None

    modelPath=${ExpFolder}\modelRnnCNTK
    loadBestModel=true

    # settings for Auto Adjust Learning Rate
    AutoAdjust=[
        autoAdjustLR=adjustAfterEpoch
        reduceLearnRateIfImproveLessThan=0.001
        continueReduce=true
        learnRateDecreaseFactor=0.5
    ]
]
Outline

• Motivation

• Introduction to Deep Learning and Prevailing Deep Learning Models

• Computational Network: A Unified Framework for Models Expressible as Functions

• Computational Network Toolkit: A Generic Toolkit for Building Computational Networks

• Examples: Acoustic Model, Language Model, and Image Classification

• Summary
Summary

• Computational networks generalize many existing deep learning models

• You may design new computational networks to attack new problems by exploiting problem-specific structures and domain knowledge

• We described the forward and backward computation algorithms and theories for CNs with and without recurrent loops

• CNTK implements CNs so that you only need to focus on designing the CNs instead of implementing learning algorithms for your specific CN
Summary

• CNTK is a powerful tool that supports CPU/GPU and runs under Windows/Linux

• CNTK is extensible with the low-coupling modular design: adding new readers and new computation nodes is easy

• Network definition language, macros, and model editing language makes network design and modification easy

• We have shown many examples to indicate that CNTK can support DNN, CNN, RNN, class-based LM, LSTM, and PAC-AM and to solve AM, LM, and SLU problems
Additional Resources

• CNTK Reference Book
  • Contains all the information you need to understand and use CNTK

• Codeplex source code site
  • https://cntk.codeplex.com/
  • Contains all the source code and example setups
  • You may understand better how CNTK works by reading the source code
  • New functionalities are added constantly
Please Contribute!

• If you write your own readers or computation nodes we would like them to be checked-in to the main branch

• CNTK becomes more powerful when all computation nodes and readers people want to use are available