Z3
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Public Member Functions
ArithRef Class Reference
+ Inheritance diagram for ArithRef:

Public Member Functions

def sort
 
def is_int
 
def is_real
 
def __add__
 
def __radd__
 
def __mul__
 
def __rmul__
 
def __sub__
 
def __rsub__
 
def __pow__
 
def __rpow__
 
def __div__
 
def __truediv__
 
def __rdiv__
 
def __rtruediv__
 
def __mod__
 
def __rmod__
 
def __neg__
 
def __pos__
 
def __le__
 
def __lt__
 
def __gt__
 
def __ge__
 
- Public Member Functions inherited from ExprRef
def as_ast
 
def get_id
 
def sort
 
def sort_kind
 
def __eq__
 
def __ne__
 
def decl
 
def num_args
 
def arg
 
def children
 
- Public Member Functions inherited from AstRef
def __init__
 
def __del__
 
def __str__
 
def __repr__
 
def sexpr
 
def as_ast
 
def get_id
 
def ctx_ref
 
def eq
 
def translate
 
def hash
 
- Public Member Functions inherited from Z3PPObject
def use_pp
 

Additional Inherited Members

- Data Fields inherited from AstRef
 ast
 
 ctx
 

Detailed Description

Integer and Real expressions.

Definition at line 1917 of file z3py.py.

Member Function Documentation

def __add__ (   self,
  other 
)
Create the Z3 expression `self + other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x + y
x + y
>>> (x + y).sort()
Int

Definition at line 1955 of file z3py.py.

1956  def __add__(self, other):
1957  """Create the Z3 expression `self + other`.
1958 
1959  >>> x = Int('x')
1960  >>> y = Int('y')
1961  >>> x + y
1962  x + y
1963  >>> (x + y).sort()
1964  Int
1965  """
1966  a, b = _coerce_exprs(self, other)
1967  return ArithRef(_mk_bin(Z3_mk_add, a, b), self.ctx)
def __add__
Definition: z3py.py:1955
def __div__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x/y
x/y
>>> (x/y).sort()
Int
>>> (x/y).sexpr()
'(div x y)'
>>> x = Real('x')
>>> y = Real('y')
>>> x/y
x/y
>>> (x/y).sort()
Real
>>> (x/y).sexpr()
'(/ x y)'

Definition at line 2052 of file z3py.py.

2053  def __div__(self, other):
2054  """Create the Z3 expression `other/self`.
2055 
2056  >>> x = Int('x')
2057  >>> y = Int('y')
2058  >>> x/y
2059  x/y
2060  >>> (x/y).sort()
2061  Int
2062  >>> (x/y).sexpr()
2063  '(div x y)'
2064  >>> x = Real('x')
2065  >>> y = Real('y')
2066  >>> x/y
2067  x/y
2068  >>> (x/y).sort()
2069  Real
2070  >>> (x/y).sexpr()
2071  '(/ x y)'
2072  """
2073  a, b = _coerce_exprs(self, other)
2074  return ArithRef(Z3_mk_div(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
def __div__
Definition: z3py.py:2052
Z3_ast Z3_API Z3_mk_div(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1 div arg2.The arguments must either both have int type or both ha...
def ctx_ref
Definition: z3py.py:305
def __ge__ (   self,
  other 
)
Create the Z3 expression `other >= self`.

>>> x, y = Ints('x y')
>>> x >= y
x >= y
>>> y = Real('y')
>>> x >= y
ToReal(x) >= y

Definition at line 2186 of file z3py.py.

2187  def __ge__(self, other):
2188  """Create the Z3 expression `other >= self`.
2189 
2190  >>> x, y = Ints('x y')
2191  >>> x >= y
2192  x >= y
2193  >>> y = Real('y')
2194  >>> x >= y
2195  ToReal(x) >= y
2196  """
2197  a, b = _coerce_exprs(self, other)
2198  return BoolRef(Z3_mk_ge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
def __ge__
Definition: z3py.py:2186
Z3_ast Z3_API Z3_mk_ge(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2)
Create greater than or equal to.
def ctx_ref
Definition: z3py.py:305
def __gt__ (   self,
  other 
)
Create the Z3 expression `other > self`.

>>> x, y = Ints('x y')
>>> x > y
x > y
>>> y = Real('y')
>>> x > y
ToReal(x) > y

Definition at line 2173 of file z3py.py.

2174  def __gt__(self, other):
2175  """Create the Z3 expression `other > self`.
2176 
2177  >>> x, y = Ints('x y')
2178  >>> x > y
2179  x > y
2180  >>> y = Real('y')
2181  >>> x > y
2182  ToReal(x) > y
2183  """
2184  a, b = _coerce_exprs(self, other)
2185  return BoolRef(Z3_mk_gt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_gt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2)
Create greater than.
def ctx_ref
Definition: z3py.py:305
def __gt__
Definition: z3py.py:2173
def __le__ (   self,
  other 
)
Create the Z3 expression `other <= self`.

>>> x, y = Ints('x y')
>>> x <= y
x <= y
>>> y = Real('y')
>>> x <= y
ToReal(x) <= y

Definition at line 2147 of file z3py.py.

2148  def __le__(self, other):
2149  """Create the Z3 expression `other <= self`.
2150 
2151  >>> x, y = Ints('x y')
2152  >>> x <= y
2153  x <= y
2154  >>> y = Real('y')
2155  >>> x <= y
2156  ToReal(x) <= y
2157  """
2158  a, b = _coerce_exprs(self, other)
2159  return BoolRef(Z3_mk_le(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
def __le__
Definition: z3py.py:2147
def ctx_ref
Definition: z3py.py:305
Z3_ast Z3_API Z3_mk_le(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2)
Create less than or equal to.
def __lt__ (   self,
  other 
)
Create the Z3 expression `other < self`.

>>> x, y = Ints('x y')
>>> x < y
x < y
>>> y = Real('y')
>>> x < y
ToReal(x) < y

Definition at line 2160 of file z3py.py.

2161  def __lt__(self, other):
2162  """Create the Z3 expression `other < self`.
2163 
2164  >>> x, y = Ints('x y')
2165  >>> x < y
2166  x < y
2167  >>> y = Real('y')
2168  >>> x < y
2169  ToReal(x) < y
2170  """
2171  a, b = _coerce_exprs(self, other)
2172  return BoolRef(Z3_mk_lt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
def __lt__
Definition: z3py.py:2160
Z3_ast Z3_API Z3_mk_lt(__in Z3_context c, __in Z3_ast t1, __in Z3_ast t2)
Create less than.
def ctx_ref
Definition: z3py.py:305
def __mod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> y = Int('y')
>>> x % y
x%y
>>> simplify(IntVal(10) % IntVal(3))
1

Definition at line 2100 of file z3py.py.

2101  def __mod__(self, other):
2102  """Create the Z3 expression `other%self`.
2103 
2104  >>> x = Int('x')
2105  >>> y = Int('y')
2106  >>> x % y
2107  x%y
2108  >>> simplify(IntVal(10) % IntVal(3))
2109  1
2110  """
2111  a, b = _coerce_exprs(self, other)
2112  if __debug__:
2113  _z3_assert(a.is_int(), "Z3 integer expression expected")
2114  return ArithRef(Z3_mk_mod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
def __mod__
Definition: z3py.py:2100
Z3_ast Z3_API Z3_mk_mod(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1 mod arg2.The arguments must have int type.
def ctx_ref
Definition: z3py.py:305
def __mul__ (   self,
  other 
)
Create the Z3 expression `self * other`.

>>> x = Real('x')
>>> y = Real('y')
>>> x * y
x*y
>>> (x * y).sort()
Real

Definition at line 1978 of file z3py.py.

1979  def __mul__(self, other):
1980  """Create the Z3 expression `self * other`.
1981 
1982  >>> x = Real('x')
1983  >>> y = Real('y')
1984  >>> x * y
1985  x*y
1986  >>> (x * y).sort()
1987  Real
1988  """
1989  a, b = _coerce_exprs(self, other)
1990  return ArithRef(_mk_bin(Z3_mk_mul, a, b), self.ctx)
def __mul__
Definition: z3py.py:1978
def __neg__ (   self)
Return an expression representing `-self`.

>>> x = Int('x')
>>> -x
-x
>>> simplify(-(-x))
x

Definition at line 2127 of file z3py.py.

2128  def __neg__(self):
2129  """Return an expression representing `-self`.
2130 
2131  >>> x = Int('x')
2132  >>> -x
2133  -x
2134  >>> simplify(-(-x))
2135  x
2136  """
2137  return ArithRef(Z3_mk_unary_minus(self.ctx_ref(), self.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_unary_minus(__in Z3_context c, __in Z3_ast arg)
Create an AST node representing -arg.The arguments must have int or real type.
def as_ast
Definition: z3py.py:296
def ctx_ref
Definition: z3py.py:305
def __neg__
Definition: z3py.py:2127
def __pos__ (   self)
Return `self`.

>>> x = Int('x')
>>> +x
x

Definition at line 2138 of file z3py.py.

2139  def __pos__(self):
2140  """Return `self`.
2141 
2142  >>> x = Int('x')
2143  >>> +x
2144  x
2145  """
2146  return self
def __pos__
Definition: z3py.py:2138
def __pow__ (   self,
  other 
)
Create the Z3 expression `self**other` (** is the power operator).

>>> x = Real('x')
>>> x**3
x**3
>>> (x**3).sort()
Real
>>> simplify(IntVal(2)**8)
256

Definition at line 2024 of file z3py.py.

2025  def __pow__(self, other):
2026  """Create the Z3 expression `self**other` (** is the power operator).
2027 
2028  >>> x = Real('x')
2029  >>> x**3
2030  x**3
2031  >>> (x**3).sort()
2032  Real
2033  >>> simplify(IntVal(2)**8)
2034  256
2035  """
2036  a, b = _coerce_exprs(self, other)
2037  return ArithRef(Z3_mk_power(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_power(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1^arg2.
def __pow__
Definition: z3py.py:2024
def ctx_ref
Definition: z3py.py:305
def __radd__ (   self,
  other 
)
Create the Z3 expression `other + self`.

>>> x = Int('x')
>>> 10 + x
10 + x

Definition at line 1968 of file z3py.py.

1969  def __radd__(self, other):
1970  """Create the Z3 expression `other + self`.
1971 
1972  >>> x = Int('x')
1973  >>> 10 + x
1974  10 + x
1975  """
1976  a, b = _coerce_exprs(self, other)
1977  return ArithRef(_mk_bin(Z3_mk_add, b, a), self.ctx)
def __radd__
Definition: z3py.py:1968
def __rdiv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

>>> x = Int('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(div 10 x)'
>>> x = Real('x')
>>> 10/x
10/x
>>> (10/x).sexpr()
'(/ 10.0 x)'

Definition at line 2079 of file z3py.py.

2080  def __rdiv__(self, other):
2081  """Create the Z3 expression `other/self`.
2082 
2083  >>> x = Int('x')
2084  >>> 10/x
2085  10/x
2086  >>> (10/x).sexpr()
2087  '(div 10 x)'
2088  >>> x = Real('x')
2089  >>> 10/x
2090  10/x
2091  >>> (10/x).sexpr()
2092  '(/ 10.0 x)'
2093  """
2094  a, b = _coerce_exprs(self, other)
2095  return ArithRef(Z3_mk_div(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_div(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1 div arg2.The arguments must either both have int type or both ha...
def __rdiv__
Definition: z3py.py:2079
def ctx_ref
Definition: z3py.py:305
def __rmod__ (   self,
  other 
)
Create the Z3 expression `other%self`.

>>> x = Int('x')
>>> 10 % x
10%x

Definition at line 2115 of file z3py.py.

2116  def __rmod__(self, other):
2117  """Create the Z3 expression `other%self`.
2118 
2119  >>> x = Int('x')
2120  >>> 10 % x
2121  10%x
2122  """
2123  a, b = _coerce_exprs(self, other)
2124  if __debug__:
2125  _z3_assert(a.is_int(), "Z3 integer expression expected")
2126  return ArithRef(Z3_mk_mod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_mod(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1 mod arg2.The arguments must have int type.
def __rmod__
Definition: z3py.py:2115
def ctx_ref
Definition: z3py.py:305
def __rmul__ (   self,
  other 
)
Create the Z3 expression `other * self`.

>>> x = Real('x')
>>> 10 * x
10*x

Definition at line 1991 of file z3py.py.

1992  def __rmul__(self, other):
1993  """Create the Z3 expression `other * self`.
1994 
1995  >>> x = Real('x')
1996  >>> 10 * x
1997  10*x
1998  """
1999  a, b = _coerce_exprs(self, other)
2000  return ArithRef(_mk_bin(Z3_mk_mul, b, a), self.ctx)
def __rmul__
Definition: z3py.py:1991
def __rpow__ (   self,
  other 
)
Create the Z3 expression `other**self` (** is the power operator).

>>> x = Real('x')
>>> 2**x
2**x
>>> (2**x).sort()
Real
>>> simplify(2**IntVal(8))
256

Definition at line 2038 of file z3py.py.

2039  def __rpow__(self, other):
2040  """Create the Z3 expression `other**self` (** is the power operator).
2041 
2042  >>> x = Real('x')
2043  >>> 2**x
2044  2**x
2045  >>> (2**x).sort()
2046  Real
2047  >>> simplify(2**IntVal(8))
2048  256
2049  """
2050  a, b = _coerce_exprs(self, other)
2051  return ArithRef(Z3_mk_power(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
Z3_ast Z3_API Z3_mk_power(__in Z3_context c, __in Z3_ast arg1, __in Z3_ast arg2)
Create an AST node representing arg1^arg2.
def __rpow__
Definition: z3py.py:2038
def ctx_ref
Definition: z3py.py:305
def __rsub__ (   self,
  other 
)
Create the Z3 expression `other - self`.

>>> x = Int('x')
>>> 10 - x
10 - x

Definition at line 2014 of file z3py.py.

2015  def __rsub__(self, other):
2016  """Create the Z3 expression `other - self`.
2017 
2018  >>> x = Int('x')
2019  >>> 10 - x
2020  10 - x
2021  """
2022  a, b = _coerce_exprs(self, other)
2023  return ArithRef(_mk_bin(Z3_mk_sub, b, a), self.ctx)
def __rsub__
Definition: z3py.py:2014
def __rtruediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2096 of file z3py.py.

2097  def __rtruediv__(self, other):
2098  """Create the Z3 expression `other/self`."""
2099  return self.__rdiv__(other)
def __rtruediv__
Definition: z3py.py:2096
def __rdiv__
Definition: z3py.py:2079
def __sub__ (   self,
  other 
)
Create the Z3 expression `self - other`.

>>> x = Int('x')
>>> y = Int('y')
>>> x - y
x - y
>>> (x - y).sort()
Int

Definition at line 2001 of file z3py.py.

2002  def __sub__(self, other):
2003  """Create the Z3 expression `self - other`.
2004 
2005  >>> x = Int('x')
2006  >>> y = Int('y')
2007  >>> x - y
2008  x - y
2009  >>> (x - y).sort()
2010  Int
2011  """
2012  a, b = _coerce_exprs(self, other)
2013  return ArithRef(_mk_bin(Z3_mk_sub, a, b), self.ctx)
def __sub__
Definition: z3py.py:2001
def __truediv__ (   self,
  other 
)
Create the Z3 expression `other/self`.

Definition at line 2075 of file z3py.py.

2076  def __truediv__(self, other):
2077  """Create the Z3 expression `other/self`."""
2078  return self.__div__(other)
def __div__
Definition: z3py.py:2052
def __truediv__
Definition: z3py.py:2075
def is_int (   self)
Return `True` if `self` is an integer expression.

>>> x = Int('x')
>>> x.is_int()
True
>>> (x + 1).is_int()
True
>>> y = Real('y')
>>> (x + y).is_int()
False

Definition at line 1930 of file z3py.py.

1931  def is_int(self):
1932  """Return `True` if `self` is an integer expression.
1933 
1934  >>> x = Int('x')
1935  >>> x.is_int()
1936  True
1937  >>> (x + 1).is_int()
1938  True
1939  >>> y = Real('y')
1940  >>> (x + y).is_int()
1941  False
1942  """
1943  return self.sort().is_int()
def sort
Definition: z3py.py:748
def is_int
Definition: z3py.py:1930
def is_real (   self)
Return `True` if `self` is an real expression.

>>> x = Real('x')
>>> x.is_real()
True
>>> (x + 1).is_real()
True

Definition at line 1944 of file z3py.py.

1945  def is_real(self):
1946  """Return `True` if `self` is an real expression.
1947 
1948  >>> x = Real('x')
1949  >>> x.is_real()
1950  True
1951  >>> (x + 1).is_real()
1952  True
1953  """
1954  return self.sort().is_real()
def sort
Definition: z3py.py:748
def is_real
Definition: z3py.py:1944
def sort (   self)
Return the sort (type) of the arithmetical expression `self`.

>>> Int('x').sort()
Int
>>> (Real('x') + 1).sort()
Real

Definition at line 1920 of file z3py.py.

Referenced by ArithRef.__add__(), ArithRef.__div__(), ArithRef.__mul__(), ArithRef.__pow__(), ArithRef.__rpow__(), and ArithRef.__sub__().

1921  def sort(self):
1922  """Return the sort (type) of the arithmetical expression `self`.
1923 
1924  >>> Int('x').sort()
1925  Int
1926  >>> (Real('x') + 1).sort()
1927  Real
1928  """
1929  return ArithSortRef(Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
Arithmetic.
Definition: z3py.py:1835
def sort
Definition: z3py.py:1920
Z3_sort Z3_API Z3_get_sort(__in Z3_context c, __in Z3_ast a)
Return the sort of an AST node.
def as_ast
Definition: z3py.py:296
def ctx_ref
Definition: z3py.py:305