Identical Machine Scheduling with Precedence Constraints

We are given a directed acyclic graph on n vertices in which each vertex represents a unit time task. An edge $(u \rightarrow v)$ in the graph implies that task v cannot be started until task u has been completed. Each task can be executed on any of m identical machines. The goal is to minimize the total time needed until all tasks are completed. An obvious lower bound on the value of OPT is n/m or the longest directed path in the graph. It is known that the greedy algorithm, that schedules a job if it is feasible, provides a 2 approximation.

Questions:

1. Is the problem NP-hard if m is fixed?

2. What happens if preemption is allowed?