
A Malleable Physical Interface for Copying, Pasting, and 
Organizing Digital Clips 

Florian Block, Nicolas Villar and Hans Gellersen 

Computing Department, Lancaster University 
InfoLab21, Lancaster University, LA1 4WA Lancaster, UK 

{block, villar, hwg}@comp.lancs.ac.uk 

ABSTRACT 
We present a system that extends a typical workstation 
environment with a malleable physical interface for 
working with digital clips. It allows users to pick digital 
clips, give each its own dedicated key for direct access, and 
combine keys dynamically on a physical surface in a way 
that inherently reflects the state of an extended clipboard. 
The system affords copying and pasting of multiple clips 
each directly accessible through its own key shortcut. The 
keys can also be dynamically re-arranged to organize clips, 
and taken from workstation to another to transport clips, 
acting simultaneously as token and as copy-paste-interface 
for a digital object. 

Author Keywords 
Physical Interfaces, Clipboard Extension. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION
Since the introduction of Xerox Star in 1981, the concept of 
data exchange between multiple running applications has 
become commonplace in modern operating systems. In fact, 
it has become a standard mechanism between most 
applications and operating systems in the form of the 
system clipboard, universally accessible by dedicated 
shortcuts to copy and paste a clip (e.g. Ctrl+C, Ctrl+V).  A 
great benefit of the standardized clipboard is the 
transparency that comes from having these dedicated 
keyboard shortcuts, which allow a single clip to be created 
and recalled by simple actions. However, system clipboards 
are usually limited to dealing with a single item of 
information at a time.  

Standard system clipboards can be extended by one of any 

third-party software clipboard extensions, which have as 
primary goal to allow the user to manage multiple clip 
objects at the same time. Having to deal with multiple items 
inevitably requires the user to resort to more complex 
sequences of mouse or keyboard input in order to manage 
the various clips they create and retrieve, with the effect 
that the clipboard is brought to the foreground of attention. 
Other common clipboard extensions aim to allow clipboard 
data to be shared amongst multiple machines or networked 
users, likewise to the effect that usage becomes 
considerably less transparent. 

In this paper we present a design that preserves the ease of 
use of a single-item clipboard while allowing the user to 
manage multiple clips of information. We do this by 
introducing a new interface device, alongside the mouse 
and keyboard, to which we factor out the controls for 
copying, organizing and retrieving clipboard. In addition, 
our system allows a mechanism for transporting clips of 
information between different networked machines.  

Our design is based on the concept of malleable physical 
interfaces – devices made up of basic controls (such as 
buttons) that a user can arrange in accordance with their 
task. In our design we foresee that users can introduce a 
dedicated control for each clipboard item they generate. We 
maintain the simplicity of having a dedicated shortcut for a 
single clip (as found in the conventional system clipboard) 
but we are able to have this for multiple clips (cf. Figure 1). 

Figure 1: Each clip has its own dedicated key control. 

Figure 2 illustrates our realization of this concept: a surface 
is deployed alongside the traditional input devices, on 
which additional keys can be arranged. 

As in existing practice, a user selects an object for copying 
by selecting it in their GUI. Attaching a key to the surface 
at this time has the effect, in a single step, of generating a 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
TEI 2008, February 18–20, 2008, Bonn, Germany. 
Copyright 2008 ACM 978-1-60558-004-3/08/02...$5.00.

Proceedings of the Second International Conference on Tangible and Embedded Interaction (TEI'08), Feb 18-20 2008, Bonn, Germany

117



new clip and of introducing the key as its control. Keys can 
be rearranged and clustered into meaningful groups and 
removed to the effect of also removing the corresponding 
clipboard item from the computer. Clips can also be 
exchanged between two systems by moving keys between 
surfaces. In order to retrieve the content into an application, 
the user simply presses the appropriate key.  

Figure 2: Extending the desktop environment with a 

physical interface for working with clips.  

RELATED WORK 
Clipboard extensions are widely available for standard 
windowing systems. In a research context, related work has 
considered synchronized copying and pasting across 
multiple computers [4], intelligent adaptation of clips to the 
context into which they become pasted [5], web-based 
working with clips [2], and tools optimized for particular 
practices such as programming [8]. Our work is more 
specifically focused on easing work with multiple clips but 
also facilitates work across multiple computers with a web-
based clip repository, and with physical keys as unique 
handles to clips, addressing the problem of synchronization.  

The concept of associating digital objects with physical 
tokens or icons (“phicons”) for tangible manipulation has 
also been explored widely. Ullmer’s mediaBlocks, for 
example, demonstrated the use of physical objects (wooden 
blocks) for copying digital objects from one device to paste 
it on another device [6]. We provide the same support for 
transporting digital data with a physical key but provide a 
complete system integrated with existing clipboard 
mechanisms. Conceptually we are more concerned with 
efficient interfacing of clips than their embodiment for 
tangible interaction. 

A key aspect of our work is the provision of a customised 
physical interface that users can adapt to their task. 
Greenberg and Boyle presented a system that lets users map 
graphical controls to physical interface objects (“phidgets”) 
[3], a mechanisms that for example allows frequently used 
functions to be mapped to dedicated ‘function keys’. In this 
analogy, our interface provides a single dedicated function 
key for copy&paste, operations but we allow as many 
replicas as a users needs for working simultaneously with 
multiple clips. Villar et al. introduced the VoodooIO toolkit 
providing interactive surfaces on which users can freely 
add, manipulate and remove controls such as buttons, dials 
and sliders [7]. We adopt their work as platform for our 
interface, as it makes adding and removing of controls very 

seamless, in terms of effort (a control has a simple pushpin 
connector) as well as speed (a new control is detected 
instantaneously, allowing immediate system response). 

INTERACTION DESIGN 
Our system assumes a standard workstation environment 
with a windowing operating system, and extends this with a 
surface and set of keys that can be attached on the surface.  

Figure 3: The clipboard content can be viewed by pressing on 

the surface, with thumbnails shown in a layout corresponding 

with the spatial layout of the physical interface. 

The surface and the keys attached at any time can be 
thought of as a custom keyboard, attached as additional 
input device to the workstation, dedicated to working with 
clips. Based on this setup, our system supports the 
following clipboard operations, as seen from the user’s 
perspective: 

Copying: To copy an object, the user selects it in the 
GUI, and then attaches a key to the surface. A digital 
copy of the selected object is made and associated as clip 
to the key. For user feedback, a thumbnail of the newly 
generated clip appears on the screen at coordinates 
relative to the position of the key on the surface. After a 
few seconds the thumbnail fades out. The user can create 
multiple clips by repeating the process. 
Organizing: The user can organize clips by rearranging 
the layout of the keys on the surface. For instance, clips 
related to a specific topic can be grouped by 
corresponding arrangement of keys. To support the user 
in recalling key-and-clip associations, the user can press 
down on the surface, which causes all clip thumbnails to 
be shown on the screen, in a layout corresponding to the 
layout of keys on the surface (cf. Figure 3). The 
thumbnails are shown for as long as the user presses on 
the surface, and then fade out. 
Pasting: By pressing a key, a copy of the associated clip 
is pasted into the current application’s context. During 
this process the association is maintained which makes it 
possible to paste the same clips multiple times. 
Transporting: It is possible to transport a clip between 
different workstations by moving the corresponding key 

Proceedings of the Second International Conference on Tangible and Embedded Interaction (TEI'08), Feb 18-20 2008, Bonn, Germany

118



from the surface of one computer to that of another. The 
clip is then removed from the source workstation and 
made locally available on the target. 
Deleting: The user can also dissociate clips by detaching 
the corresponding key. Unless the key becomes re-
attached on the surface (or another computer’s surface) 
within a specified period of time, it loses its association. 
A key that has become dissociated can be associated with 
a new clip at any time. 
Maintaining Persistency: The clips of all keys attached to 
a surface are persistent. This means, the information will 
be available to the user even after a system restart. 

SYSTEM IMPLEMENTATION 
Our implementation extends standard PCs with a 
VoodooIO surface and several VoodooIO buttons as keys. 
Like VoodooIO controls in general, the keys have a coaxial 
pushpin connector for attachment on the surface, and a 
universally unique ID (UID) for their identification. The pin 
connectors keep the keys firmly in place on the surface, and 
supply them with power and network connectivity through 
the surface to the PC. The surface is further augmented with 
sensors to detect pressure on the surface, and to register the 
position of a key when it becomes attached [1].  

A clipboard service on the PC interfaces with the 
VoodooIO API, to receive VoodooIO system events (New 
Key Added, Key Pressed and Key Removed). The service 
further has system-level access to the standard system 
clipboard, and is able to receive and emulate Windows 
clipboard events. Each clipboard service registers with a 
central clipboard server via a standard HTTP protocol. 
Together, these components provide the following system 
functionality: 

Associating Clip with Keys: The clipboard service hooks 
into the standard system clipboard to monitor and access 
its functionality. When a key is attached to the surface, 
the service triggers a clipboard-copy event, to copy the 
current selection into the system clipboard. This data is 
intercepted, producing a separate copy which is bound to 
the UID of the key. A background task takes the copy and 
uploads it to the clipboard server along with the 
associated key UID. This enables the system to retrieve 
clipboard data, either locally (e.g. after a restart) or 
remotely when the key with the associated UID is 
pressed. 
Reviewing Clip Contents: The clipboard service creates a 
thumbnail for each clip, representing its content. If the 
system detects that the surface is pressed it displays the 
thumbnails of all keys that are currently attached to the 
surface, overlaying the workspace.  
Retrieving clips: When a key is pressed, its associated 
clip data is copied back into the system clipboard. The 
clipboard service then triggers a system-level clipboard 
paste event resulting in the appropriate clip being inserted 
into the current application context. 

Moving / Transporting / Deleting Clips: When a key is 
removed from a surface, the service stores a timestamp of 
the removal event and informs the clipboard server of the 
event and where it was registered. This allows the server 
to keep track of the last known location of each key. If 
the key is re-inserted on the same surface within a 
specified time period (20 sec. in our prototype) it retains 
its clip association, thus allowing keys to be rearranged 
without loss of information. However if the key is instead 
attached to a different surface – independently of the time 
between the two events – it is assumed that the intention 
is to transport the clip to a new workstation. In this case 
the clipboard service of the target computer uses the 
key’s UID to retrieve the clip data from the clipboard 
server. In the remaining case, when a key is re-inserted 
on the same surface after a ‘timeout’, this is interpreted as 
re-using the key for a new association (to the object 
presently selected by the user at this point in time), and 
the previous association becomes overridden. 

DISCUSSION
The presented design aimed to extend the functionality of 
the system clipboard without introducing additional 
complexity or overhead into the current practice. Our 
discussion of the efficacy of our design is based around the 
illustration shown in Figure 4. In the left column we 
illustrate the mechanism for using the standard system 
clipboard. Some of the controls of the standard input 
devices are given the dedicated role of copying and pasting 
clips to applications via the universal clipboard mechanism.  

The middle column in Figure 4 shows an approach where 
the clipboard is extended with an additional software 
program (cf. “ECB”, Extended Clipboard). For the ECB to 
implement support for multiple clips, it must by necessity 
introduce additional interaction mechanisms that may 
interfere with a user’s control of an application. For 
example, the user must be able to organize and select the 
different clips. This can result in a further overloading of 
the input devices (e.g. by introducing additional keyboard 
shortcuts on the already limited set of keys) or, 
alternatively, in forcing the user to interact with an 
additional GUI, taking away the focus of the current 
application and implying a context-switch. 

By introducing a dedicated device for dealing with clips we 
remove the need to overload existing input devices with 
additional functionality. Furthermore, since all of the 
management of clip data can be carried out by direct, 
spatially-multiplexed actions in the physical domain, we 
unburden the user from having to switch their application 
context to carry out these tasks. By using a malleable
interface we are able to maintain the one-to-one relationship 
between keys and clips which makes the standard clipboard 
so easy to use. Our interface is able to extend and shrink to 
provide exactly the amount of direct input which is 
necessary for dealing with any particular number of clips at 
any given point in time.  

Proceedings of the Second International Conference on Tangible and Embedded Interaction (TEI'08), Feb 18-20 2008, Bonn, Germany

119



Not only can keys be added or removed, but also arranged 
in a meaningful way. This ability can be used, for example, 
as a memory aid in grouping keys according to the meaning 
of the underlying clips; improving clip accessibility (e.g. 
commonly accessed items can be made more accessible); or 
inclusively as a way to improve the ergonomic layout of the 
interface. At any time the user can obtain an overview of 
the arranged clips with a simple gesture and a visual 
overlay that does not change the focus of the current 
application or overload the keyboard or mouse. 

Another benefit of the malleability particular to the 
VoodooIO technology is the ability to move keys between 
surfaces. The ability to decouple keys from surfaces 
provides a natural way for transporting information 
between machines. The clip information is, effectively, 
embodied by the key which provides its interface. Having a 
physical item to represent a digital clip of information 
addresses the problem of synchronicity described in [5] 
when working with shared clipboards. Since VoodooIO 
components are uniquely identifiable we envision that in 
addition as acting as tokens and interfaces to clips, in future 
implementations keys could also act as security keys – 
making data only accessible on authorised workstations. 

Due to the effortless way in which VoodooIO keys can be 
brought in and out of surfaces, or moved between surfaces, 
we are able to explore interaction scenarios where the 
concept of interface presence (both temporal and spatial) 
acts as an additional input modality. Even though each key 
contains only a binary input element - a button which can 
be pressed, mapped to the action of pasting a clip - we are 
able to encapsulate all the other actions necessary to work 
with clips (copying, organizing, transporting) to the 
different ways in which the key is made present to the 
system: on a surface, off a surface, somewhere on a surface, 
on one surface after another. 

REFERENCES 
1. Block, F., Gellersen, H., Hazas, M., Molyneaux, D. and 

Villar, N. Locating Physical Interface Objects on 
Interactive Surfaces. Proc. Workshop on Mobile and 

Embedded Interactive Systems (MEIS’06), Dresden, Oct. 
2006, Lecture Notes in Informatics, Springer –Verlag. 

2. Dix, A., Catarci, T., Habegger, B., loannidis, Y., 
Kamaruddin, A., Katifori, A., Lepouras, G., Poggi, A., 
and Ramduny-Ellis, D. 2006. Intelligent context-
sensitive interactions on desktop and the web. Proc. Intl. 
Workshop on Context in Advanced interfaces, AVI ’06, 
Venice, Italy, May 2006, ACM Press, New York, 23-27 

3. Greenberg, S. and Boyle, M. Customizable physical 
interfaces for interacting with conventional applications. 
Proc. 15th Annual ACM Symp. on User interface 
Software and Technology (UIST ’02), Paris, France, 
Oct. 2002 ACM Press, New York, 31-40. 

4. Miller, R. C. and Myers, B. A. Synchronizing clipboards 
of multiple computers. In Proc. 12th Annual ACM 
Symposium on User interface Software and Technology
(UIST '99), Asheville, NC, USA, Nov. 1999, ACM 
Press, New York, 65-66. 

5. Stylos, J., Myers, B. A., and Faulring, A. Citrine: 
providing intelligent copy-and-paste. In Proc. 17th 
Annual ACM Symposium on User interface Software 
and Technology (UIST '04), Santa Fe, NM, USA, Oct. 
2004, ACM Press, New York, 185-188 

6. Ullmer, B., Ishii, H., and Glas, D. mediaBlocks: 
physical containers, transports, and controls for online 
media. In Proc. 25th Annual Conference on Computer 
Graphics and interactive Techniques SIGGRAPH '98. 
ACM Press, New York, 379-386. 

7. Villar, N., Gilleade, K., Ramduny-Ellis, D. and 
Gellersen, H. VoodooIO Gaming Kit: A real-time 
adaptable gaming controller. Proc. of ACM Intl. Conf. 
on Advances in Computer Entertainment Technology 
(ACE 2006), Hollywood, June 2006, ACM Press. 

8. Wallace, G., Biddle, R., and Tempero, E. 2001. Smarter 
cut-and-paste for programming text editors. Proc. 2nd 
Australasian Conf. on User Interfaces, Queensland, 
Australia, Jan. 2001. ACM Intl. Conf. Proceeding 
Series, vol. 14, 56-63. 

Figure 5: Conceptual views of the standard system clipboard (left), software-extended clipboard (middle) 

 and a clipboard extension via a malleable interface (right). 

Proceedings of the Second International Conference on Tangible and Embedded Interaction (TEI'08), Feb 18-20 2008, Bonn, Germany

120




