Microsoft Research Asia

Verified Software Workshop and Summer School 2012

Workshop: August 23–24, 2012
Summer School: August 27–31, 2012
Venue
East China Normal University
Shanghai, China

Tony Hoare
Sir
Microsoft Research
Cambridge

Unifying Theories of Programming

with Stephan van Staden
Goals

• Unify two classical Theories of Programming
• Extend them both
 – to combine sequencing with concurrency
• Generalise them both
 – to apply to specifications, designs, contracts
 – as well as programs and assertions
1. The classical calculi

• The Hoare calculus
 – for proving correctness of sequential programs
• The Milner calculus
 – for defining correct implementation of CCS
Unexpected delight

- The definitions of the basic (triple) judgement of one calculus is the reverse of the definition for the other calculus.
- Each rule in one calculus is the dual of a corresponding rule in the other calculus
 - either by reversal
 - or by lattice duality
Hoare triple: \{p\} q \{r\}

• **defined as** \(p ; q \Rightarrow r \)
 – If you have already done \(p \), then doing \(q \)
 will achieve the overall objective \(r \)

• **example:** \{.. (x+1 \leq n)} x:= x + 1 {..(x \leq n)}

• where \(.. b \) (finally \(b \)) describes all executions that end in a state
 satisfying a single-state predicate \(b \).
Milner triple: $r - q \rightarrow p$

- defined as $q;p \rightarrow r$
 - r may be executed by first executing q and then p.
 - maybe there are other ways of executing r
- Tautology: $(q ; r) \rightarrow q \rightarrow r$ (as in CCS)
 - Proof: $q;r \rightarrow q;r$
- Internal step: $r \rightarrow p =_{\text{def.}} p \rightarrow r$
 - the lattice-dual of refinement
 - the step may reduce the range of subsequent choice
Technical Objections

• Originally, Hoare restricted \(q \) to be a program, and \(p, r \) to be state descriptions.
• Originally, Milner restricted \(p \) and \(r \) to be programs, and \(q \) to be an atomic action.
• Answer: The purpose of generalisation is to remove restrictions.
• The axioms are satisfied by a realistic model of the behaviour of real programs.
 – as shown in the previous lecture
Theorems

• Using the definitions of their basic judgments, we will now prove the remaining rules of both calculi from the axioms of our single algebra.
Rule of consequence

- $p \Rightarrow p' \quad \{p'\} \quad q \quad \{r'\} \quad r' \Rightarrow r$

 $\{p\} \quad q \quad \{r\}$

- $r \Rightarrow r' \quad r' \Rightarrow q \Rightarrow p' \quad p' \Rightarrow p$

 $r \Rightarrow q \Rightarrow p$

- Proof: ; is monotonic, \Rightarrow is transitive.
Sequential composition

{p} q {s} \begin{array}{c}
\hline
{s} q' {r}
\end{array}
{p} q; q' {r}

\begin{array}{c}
\hline
r -q-> s \quad s -q'-> p
\end{array}
r -q; q'-> p

Proof: by associativity of ;
Sequential frame rule

\[r \rightarrow_{q} p \] (operational def of ;)
\[(r;f) \rightarrow_{q} (p;f) \]

- \(r;f \) has same first action as \(r \),
 and then behaves like \(p;f \)

\[\{p\} q \{r\} \]
\[\{f;p\} q \{f;r\} \]

Proof: mon, assoc of ;
Choice

- \{p\} q \{r\} \quad \{p\} q' \{r\}
 \{p\} (q \lor q') \{r\}
 – both choices must be correct

- r -q->p \quad r -q'-> p
 r -(q \lor q')-> p

Proof: \quad \text{distributes through } \lor
Choice and conjunction

\[r \neg q \rightarrow p \]

\[(r \lor r') \neg q \rightarrow p\]
you need execute only one of the alternatives

\[\{p\} q \{r\} \]

\[\{p \land p'\} q \{r\} \]

Proof: monotonicity of ;

Note: the lattice duality
Concurrent Frame Rule

\[
\{p\} q \{r\}
\{p || f\} q \{r || f\}
\]
– adapts a rule to a wider environment \(f \)
– Proof: by frame theorem of my earlier lecture

\[
\frac{r \rightarrow p}{(r || f) \rightarrow (p || f)}
\]
– a step possible for a single thread \(r \) is still possible when \(r \) is executed concurrently with \(f \)
Modular Concurrency

• \{p\} q \{r\} \{p'\} q' \{r'\}
 \{p \parallel p'\} (q \parallel q') \{r \parallel r'\}

 – permits modular proof of concurrent programs.
 – equivalent to exchange law
Concurrent in CCS

\[r -p-> q \quad r' -p'-> q' \]
\[(r || r') -(p || p')-\quad (q || q') \]

– provided \(p || p' = \tau \)
– where \(\tau \) is the unobserved atomic transition, which occurs (in CCS) when \(p \) and \(p' \) are an input and an output on the same channel.
Axioms proved from calculi

from Hoare

• \(p ; (q \lor r) \Rightarrow p ; q \lor p ; r \)
• \(p ; r \lor q ; r \Rightarrow (p \lor q) ; r \)

from Milner

• \((p \lor q) ; r \Rightarrow (p ; r) \lor (q ; r) \)
• \(p ; q \lor p ; r \Rightarrow p ; (q \lor r) \)

from both

• \(p ; (q ; r) \Rightarrow (p ; q) ; r \)
• \((p ; q) ; r \Rightarrow p ; (q ; r) \)
• exchange law
Message

• Both the Hoare and Milner rules are derived from the same algebra of programming.

• The algebra is simpler than each of the calculi,

• and stronger than both of them combined.
2. Program Specifications

examples
refinement
unification
Specs

• Our variables (p, q, r, ...) stand for computer programs, designs, contracts, assertions, specifications,...
 – they all describe what happens inside/around a computer that executes a given program.
• The program itself is the most precise description
 – with all the excruciating detail.
• The user specification is the most abstract
 – describing only interactions with environment.
• Designs come in between.
Example specs

• Postcondition:
 – execution ends with array \(A \) sorted

• Conditional correctness:
 – if execution ends, it ends with \(A \) sorted

• Precondition:
 – execution starts with \(x \) even

• Program: \(x := x+1 \)
 – the final value of \(x \) is one greater than the initial
More examples of specs

• Safety:
 – There are no buffer overflows

• Termination:
 – execution is finite (ie., always ends)

• Liveness:
 – no infinite internal activity (livelock)

• Fairness:
 – all waiting is bounded

• Probability:
 – the ratio of heads to tails tends to 1 with time
Also

• Security
 – low programs do not access high variables
• Separation
 – threads do not assign to shared variables
• Communication
 – outputs on channel \texttt{c} are in alphabetical order
• Resource control
 – there are no space leaks
• Responsiveness
 – interval between request and response is $<1\text{sec}$
If P and Q are Specs

then so are

1. $P \lor Q$
2. $P \land Q$
3. $P \parallel Q$
 - describes concurrent execution of P and Q
4. $P;Q$
 - describes sequential execution of P and Q
Refinement: $P \implies Q$

- means that P logically implies Q.
- If P and Q are specs,

 P describes more design decisions than Q.
- If P is a program and Q is its spec,

 P is correct, because it satisfies Q.
- If P and Q are both programs,

 P is more predictable and controllable than Q (but not necessarily faster)
Ideal of verified development

1. Formalise the user specification S
2. construct a design D so that $D \Rightarrow S$
3. replace S by D
4. repeat from 2...
5. until S is a program
6. deliver the program

transitivity of \Rightarrow ensures correctness
Verified decomposition step

1. start with a design \(D \)
2. decide to implement it by \(D1 \bullet D2 \)
 – where \(\bullet \) is a programming operator
3. prove that \(D1 \bullet D2 \Rightarrow D \)
4. implement \(D1 \), delivering program \(P1 \)
 \(\| \) implement \(D2 \), delivering program \(P2 \)
5. now deliver \(P1 \bullet P2 \)
monotonicity of \(\bullet \) ensures validity
Advantages of unification

• Same laws apply
 – for programs, designs, requirements
 – for many forms of correctness

• Tools based on the laws serve many purposes
 – and communicate by sound interfaces

• Scientific controversy is resolved
 – and engineers confidently apply the science
Unification

is the goal of every branch of pure science, because it increases credibility of theory

Diversification

is needed for each application, e.g.,

– Hoare logic: for proofs of correctness,
– Milner logic: for implementation and testing,

and to exploit faster algorithms
In praise of algebra

• Powerful
 – as we have just seen

• Familiar
 – properties are the same as high-school algebra
 – they are reused many times

• Simple
 – pairs vs. triples
 – equations vs. inductive rules
In praise of Algebra

• Flexible
 – extensible
 – modular
 – reusable
• Simplifies proofs
 – for humans,
 – and for computers
• Elegant
Isaac Newton

Communication with Richard Gregory (1694)

“Our specious algebra [the infinitesimal calculus] is fit enough to find out, but entirely unfit to consign to writing and commit to posterity.”
Bertrand Russell

• The method of postulation has many advantages. They are the same as the advantages of theft over honest toil.

Introduction to Mathematical Philosophy.
Gottfried Leibnitz

• Calculemus.