Lecture 2

Software Model Checking via Systematic Testing

Dealing with Data Inputs

Patrice Godefroid

Microsoft Research
Software Model Checking

• How to apply model checking to analyze software?
 - “Real” programming languages (e.g., C, C++, Java),
 - “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:
 - Modeling languages
 - abstraction
 - Programming languages
 - state-space exploration
 - Model checking
 - adaptation
 - Systematic testing
 - Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…
 - Data inputs: DART, EXE, SAGE, PEX, …
 - Killer app: security → biggest impact to date!
Security is Critical (to Microsoft)

• Software security bugs can be very expensive:
 - Cost of each Microsoft Security Bulletin: $Millions
 - Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Many security exploits are initiated via files or packets
 - Ex: MS Windows includes parsers for hundreds of file formats

• Security testing: “hunting for million-dollar bugs”
 - Write A/V (always exploitable), Read A/V (sometimes exploitable), NULL-pointer dereference, division-by-zero (harder to exploit but still DOS attacks), etc.
Hunting for Security Bugs

• Main techniques used by “black hats“:
 - Code inspection (of binaries) and
 - Blackbox fuzz testing

• Blackbox fuzz testing:
 - A form of blackbox random testing [Miller+90]
 - Randomly fuzz (=modify) a well-formed input
 - Grammar-based fuzzing: rules that encode “well-formed”ness + heuristics about how to fuzz (e.g., using probabilistic weights)

• Heavily used in security testing
 - Simple yet effective: many bugs found this way...
 - At Microsoft, fuzzing is mandated by the SDL →
Introducing Whitebox Fuzzing

• Idea: mix fuzz testing with dynamic test generation
 - Dynamic symbolic execution
 - Collect constraints on inputs
 - Negate those, solve with constraint solver, generate new inputs
 - → do “systematic dynamic test generation” (=DART)

• Whitebox Fuzzing = “DART meets Fuzz”
 Two Parts:
 1. Foundation: DART (Directed Automated Random Testing)
 2. Key extensions ("Whitebox Fuzzing"), implemented in SAGE
Automatic Code-Driven Test Generation

Problem:

Given a sequential program with a set of input parameters, generate a set of inputs that maximizes code coverage

= “automate test generation using program analysis”

This is not “model-based testing”
(= generate tests from an FSM spec)
How? (1) **Static** Test Generation

- Static analysis to partition the program's input space [King76,...]

- Ineffective whenever symbolic reasoning is not possible
 - which is frequent in practice... (pointer manipulations, complex arithmetic, calls to complex OS or library functions, etc.)

Example:
```c
int obscure(int x, int y) {
    if (x==hash(y)) error();
    return 0;
}
```

Can't statically generate values for x and y that satisfy "x==hash(y)"!
How? (2) **Dynamic Test Generation**

- Run the program (starting with some random inputs), gather constraints on inputs at conditional statements, use a constraint solver to generate new test inputs

- Repeat until a specific program statement is reached [Korel90,...]

- Or repeat to try to cover **ALL** feasible program paths:
 - **DART** = Directed Automated Random Testing
 = systematic dynamic test generation [PLDI’05,...]
 - detect crashes, assertion violations, use runtime checkers (Purify,...)
DART = Directed Automated Random Testing

Example:
```c
int obscure(int x, int y) {
    if (x==hash(y)) error();
    return 0;
}
```

Run 1:
- start with (random) x=33, y=42
- execute concretely and symbolically:
 - if (33 != 567) | if (x != hash(y))
 constraint too complex
 → simplify it: x != 567
- solve: x==567 → solution: x=567
- new test input: x=567, y=42
 Run 2: the other branch is executed
 All program paths are now covered!

• Observations:
 - Dynamic test generation extends static test generation with
 additional runtime information: it is more powerful
 - see [DART in PLDI'05], [PLDI'11]
 - The number of program paths can be infinite: may not terminate!
 - Still, DART works well for small programs (1,000s LOC)
 - Significantly improves code coverage vs. random testing
DART Implementations

• Defined by symbolic execution, constraint generation and solving
 - Languages: C, Java, x86, .NET,…
 - Theories: linear arith., bit-vectors, arrays, uninterpreted functions,…
 - Solvers: lp_solve, CVCLite, STP, Disolver, Z3,…

• Examples of tools/systems implementing DART:
 - **EXE/EGT** (Stanford): independent ['05-'06] closely related work
 - **CUTE** = same as first DART implementation done at Bell Labs
 - **SAGE** (CSE/MSR) for x86 binaries and merges it with “fuzz” testing for finding security bugs (more later)
 - **PEX** (MSR) for .NET binaries in conjunction with “parameterized-unit tests” for unit testing of .NET programs
 - **YOGI** (MSR) for checking the feasibility of program paths generated statically using a SLAM-like tool
 - **Vigilante** (MSR) for generating worm filters
 - **BitScope** (CMU/Berkeley) for malware analysis
 - **CatchConv** (Berkeley) focus on integer overflows
 - **Splat** (UCLA) focus on fast detection of buffer overflows
 - **Apollo** (MIT/IBM) for testing web applications

...and more!
Whitebox Fuzzing [NDSS’08]

- Whitebox Fuzzing = “DART meets Fuzz”
- Apply DART to large applications (not unit)
- Start with a well-formed input (not random)
- Combine with a generational search (not DFS)
 - Negate 1-by-1 each constraint in a path constraint
 - Generate many children for each parent run
 - Challenge all the layers of the application sooner
 - Leverage expensive symbolic execution
- Search spaces are huge, the search is partial... yet effective at finding bugs!
Example

```c
void top(char input[4])
{
    int cnt = 0;
    input = "good"
    Path constraint:
    if (input[0] == 'b') cnt++;
    if (input[1] == 'a') cnt++;
    if (input[2] == 'd') cnt++;
    if (input[3] == '!') cnt++;
    if (cnt >= 4) crash();
}
```

Negate each constraint in path constraint
Solve new constraint → new input
void top(char input[4])
{
 int cnt = 0;
 if (input[0] == 'b') cnt++;
 if (input[1] == 'a') cnt++;
 if (input[2] == 'd') cnt++;
 if (input[3] == '!') cnt++;
 if (cnt >= 4) crash();
}
SAGE (Scalable Automated Guided Execution)

- Generational search introduced in SAGE
- Performs symbolic execution of x86 execution traces
 - Builds on Nirvana, iDNA and TruScan for x86 analysis
 - Don’t care about language or build process
 - Easy to test new applications, no interference possible
- Can analyse any file-reading Windows applications
- Several optimizations to handle huge execution traces
 - Constraint caching and common subexpression elimination
 - Unrelated constraint optimization
 - Constraint subsumption for constraints from input-bound loops
 - “Flip-count” limit (to prevent endless loop expansions)
SAGE Architecture

Input0

Check for Crashes (AppVerifier)

Coverage Data

Constraints

Code Coverage (Nirvana)

Generate Constraints (TruScan)

Input1

Input2

InputN

Solve Constraints (Z3)

SAGE was mostly developed by CSE (2006-2008)

MSR algorithms & code inside (2006-2012)
Some Experiments

- Seven applications – 10 hours search each

<table>
<thead>
<tr>
<th>App Tested</th>
<th>#Tests</th>
<th>Mean Depth</th>
<th>Mean #Instr.</th>
<th>Mean Input Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANI</td>
<td>11468</td>
<td>178</td>
<td>2,066,087</td>
<td>5,400</td>
</tr>
<tr>
<td>Media1</td>
<td>6890</td>
<td>73</td>
<td>3,409,376</td>
<td>65,536</td>
</tr>
<tr>
<td>Media2</td>
<td>1045</td>
<td>1100</td>
<td>271,432,489</td>
<td>27,335</td>
</tr>
<tr>
<td>Media3</td>
<td>2266</td>
<td>608</td>
<td>54,644,652</td>
<td>30,833</td>
</tr>
<tr>
<td>Media4</td>
<td>909</td>
<td>883</td>
<td>133,685,240</td>
<td>22,209</td>
</tr>
<tr>
<td>Compressed</td>
<td>1527</td>
<td>65</td>
<td>480,435</td>
<td>634</td>
</tr>
<tr>
<td>File Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OfficeApp</td>
<td>3008</td>
<td>6502</td>
<td>923,731,248</td>
<td>45,064</td>
</tr>
</tbody>
</table>

Most much (100x) bigger than ever tried before!
Generational Search Leverages Symbolic Execution

- Each symbolic execution is expensive

- Yet, symbolic execution does not dominate search time

\[
\begin{align*}
\text{SymbolicExecutor} & : 25 \text{m30s} \\
\text{TestTask} & : \text{ negligible}
\end{align*}
\]
Since April’07 1st release: many new security bugs found (missed by blackbox fuzzers, static analysis)

- Apps: image processors, media players, file decoders,…
- Bugs: Write A/Vs, Read A/Vs, Crashes,…
- Many triaged as “security critical, severity 1, priority 1” (would trigger Microsoft security bulletin if known outside MS)
- Example: WEX Security team for Win7
 • Dedicated fuzzing lab with 100s machines
 • 100s apps (deployed on 1billion+ computers)
 • ~1/3 of all fuzzing bugs found by SAGE!
- SAGE = gold medal at Fuzzing Olympics organized by SWI at BlueHat’08 (Oct’08)
- Credit due to entire SAGE team + users!
WEX Fuzzing Lab Bug Yield for Win7

How fuzzing bugs found (2006-2009):

- 100s of apps, total number of fuzzing bugs is confidential
- But SAGE didn’t exist in 2006
- Since 2007 (SAGE 1st release), ~1/3 bugs found by SAGE
- But SAGE was then deployed on only ~2/3 of those apps
- Normalizing the data by 2/3, SAGE found ~1/2 bugs
- SAGE was run last in the lab, so all SAGE bugs were missed by everything else!

SAGE is running 24/7 on 100s machines: “the largest usage ever of any SMT solver” N. Bjorner + L. de Moura (MSR, Z3 authors)
SAGE Summary

• SAGE is so effective at finding bugs that, for the first time, we face “bug triage” issues with dynamic test generation

• What makes it so effective?
 - Works on large applications (not unit test, like DART, EXE, etc.)
 - Can detect bugs due to problems across components
 - Fully automated (focus on file fuzzing)
 - Easy to deploy (x86 analysis - any language or build process !)
 • 1st tool for whole-program dynamic symbolic execution at x86 level
 - Now, used daily in various groups at Microsoft
More On the Research Behind SAGE

- How to recover from imprecision in symbolic exec.? PLDI'05, PLDI'11
 • Must under-approximations

- How to scale symbolic exec. to billions of instructions? NDSS'08
 • Techniques to deal with large path constraints

- How to check efficiently many properties together? EMSOFT'08
 • Active property checking

- How to leverage grammars for complex input formats? PLDI'08
 • Lift input constraints to the level of symbolic terminals in an input grammar

- How to deal with path explosion? POPL'07, TACAS'08, POPL'10, SAS'11
 • Symbolic test summaries (more later)

- How to reason precisely about pointers? ISSTA'09
 • New memory models leveraging concrete memory addresses and regions

- How to deal with floating-point instructions? ISSTA'10
 • Prove “non-interference” with memory accesses

- How to deal with input-dependent loops? ISSTA'11
 • Automatic dynamic loop-invariant generation and summarization

+ research on constraint solvers (Z3, disolver,...)
What Next? Towards “Verification”

- When can we safely stop testing?
 - When we know that there are no more bugs! = “Verification”
 - “Testing can only prove the existence of bugs, not their absence.” [Dijkstra]
 - Unless it is exhaustive! This is the “model checking thesis”
 - “Model Checking” = exhaustive testing (state-space exploration)
- Two main approaches to software model checking:

<table>
<thead>
<tr>
<th>Modeling languages</th>
<th>state-space exploration</th>
<th>Model checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SLAM, Bandera, FeaVer, BLAST,...)</td>
<td>abstraction</td>
<td>adaptation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programming languages</th>
<th>state-space exploration</th>
<th>Systematic testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>DART, EXE, SAGE,...</td>
<td>concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,...</td>
<td></td>
</tr>
</tbody>
</table>

Data inputs: DART, EXE, SAGE,...
Exhaustive Testing?

- Model checking is always “up to some bound”
 - Limited (often finite) input domain, for specific properties, under some environment assumptions
 - Ex: exhaustive testing of Win7 JPEG parser up to 1,000 input bytes
 - 8000 bits → 2^{8000} possibilities → if 1 test per sec, 2^{8000} secs
 - FYI, 15 billion years = 473040000000000000 secs = 2^{60} secs!
 → MUST be “symbolic”! 😊 How far can we go?

- Practical goals: (easier?)
 - Eradicate all remaining buffer overflows in all Windows parsers
 - Reduce costs & risks for Microsoft: when to stop fuzzing?
 - Increase costs & risks for Black Hats!
 - Many have probably moved to greener pastures already... (Ex: Adobe)
 - Ex: <5 security bulletins in all the SAGE-cleaned Win7 parsers
 - If noone can find bugs in P, P is observationally equivalent to “verified”!
How to Get There?

1. Identify and patch holes in symbolic execution + constraint solving

2. Tackle “path explosion” with compositional testing and symbolic test summaries [POPL’07, TACAS’08, POPL’10]
The Art of Constraint Generation

- **Static analysis**: abstract away “irrelevant” details
 - Good for focused search, can be combined with DART (Ex: [POPL’10])
 - But for bit-precise analysis of low-level code (function pointers, in-lined assembly, ...) ? In a non-property-guided setting? Open problem...

- **Bit-precise VC-gen**: statically generate 1 formula from a program
 - Good to prove complex properties of small programs (units)
 - Does not scale (huge formula encodings), asks too much of the user

- **SAT/SMT-based “Bounded Model Checking”:** stripped-down VC-gen
 - Emphasis on automation
 - Unrolling all loops is naïve, does not scale

- **“DART”:** the only option today for large programs (Ex: Excel)
 - Path-by-path exploration is slow, but “whitebox fuzzing” can scale it to large executions + zero false alarms !
 - But suffers from “path explosion”...
DART is Beautiful

• Generates formulas where the only “free” symbolic variables are whole-program inputs
 - When generating tests, one can only control inputs!

• Strength: scalability to large programs
 - Only tracks “direct” input dependencies (i.e., tests on inputs); the rest of the execution is handled with the best constant-propagation engine ever: running the code on the computer!
 - (The size of) path constraints only depend on (the number of) program tests on inputs, not on the size of the program
 = the right metric: complexity only depends on nondeterminism!

• Price to pay: “path explosion” [POPL’07]
 - Solution = symbolic test summaries
Example

```c
void top(char input[4])
{
    int cnt = 0;
    if (input[0] == 'b') cnt ++;
    if (input[1] == 'a') cnt ++;
    if (input[2] == 'd') cnt ++;
    if (input[3] == '!') cnt ++;
    if (cnt >= 3) crash();
}
```

Path constraint:

- $I_0 \neq \text{'b'}$
- $I_1 \neq \text{'a'}$
- $I_2 \neq \text{'d'}$
- $I_3 \neq \text{'}!\text{'}$

input = “good”
Compositionality = Key to Scalability

• Idea: compositional dynamic test generation [POPL’07]
 - use summaries of individual functions (or program blocks, etc.)
 • like in interprocedural static analysis
 • but here “must” formulas generated dynamically
 - If \(f \) calls \(g \), test \(g \), summarize the results, and use \(g \)'s summary when testing \(f \)
 - A summary \(\phi(g) \) is a disjunction of path constraints expressed in terms of \(g \)'s input preconditions and \(g \)'s output postconditions:
 \[
 \phi(g) = \lor \phi(w) \quad \text{with} \quad \phi(w) = \text{pre}(w) \land \text{post}(w)
 \]
 - \(g \)'s outputs are treated as fresh symbolic inputs to \(f \), all bound to prior inputs and can be “eliminated” (for test generation)

• Can provide same path coverage exponentially faster!
 • See details and refinements in [POPL’07,TACAS’08,POPL’10]
The Engineering of Test Summaries

• Systematically summarizing everywhere is foolish
 - Very expensive and not necessary (costs outweigh benefits)
 - Not scalable without user help (see work on VC-gen and BMC)

• Summarization on-demand: (100% algorithmic)
 - When? At search bottlenecks (with dynamic feedback loop)
 - Where? At simple interfaces (with simple data types)
 - How? With limited side-effects (to be manageable and “sound”)

• Goal: use summaries intelligently
 - THE KEY to scalable bit-precise whole-program analysis?
 • Necessary, but sufficient? In what form(s)?
 - Computed statically? [POPL’10, ISSTA’10]
 • Stay tuned...
Summaries Cure Search Redundancy

- Across different program paths

- Across different program versions
 - “Incremental Compositional Dynamic Test Generation” [SAS’11]

- Across different applications

- Summaries avoid unnecessary work

- What if central server of summaries for all code?...
SAGAN: Fuzzing in the (Virtual) Cloud

• Since June 2010, new centralized server collecting stats from all SAGE runs!
 - 200+ machine-years of SAGE data

• Track results (bugs, concrete & symbolic test coverage), incompleteness (unhandled tainted x86 instructions, Z3 timeouts, divergences, etc.)

• Help troubleshooting (SAGE has 100+ options...)

• Tell us what works and what does not
SAGAN: Statistics for SAGE

SQL Server 2008 + IIS 7.5 / ASP.NET

Configuration, Statistics, Error logs

SAGE instances

SAGE instances
Picking and Choosing

- Typical SAGE run can fill up 300 GB in 1 week
- Problem: 100s of machines * 300+ GB = lots of data
- Solution: pick and choose what to ship up
 - Configuration files
 - Counters from each SAGE execution
 - Run “heartbeats” at random intervals
 - Crashing test information
- Key principles
 - Enough information to repro SAGE run results
 - Support key analyses for improving SAGE
Are we hitting known problems in symbolic execution?
How to Automate These Steps?

- Automated Synthesis of Symbolic Instruction Encodings from I/O Samples [PLDI'2012]):
 - 6 abstract instruction templates
 - building blocks are bit-vector constraints (SMT-lib format)
 - for 500+ x86 ALU instructions (8/16/32bits, outputs, EFLAGS)
 - new “smart sampling” synthesis algorithm takes <2 hours with Z3
 - synthesis against specific x86 processor as I/O oracle:
How long do we spend in constraint generation and constraint solving?
Most solver queries are fast…
...but solving time often dominates
We can cut off outlying tasks!

`symb exe vs solver time, both <200 sec
(288754 truscan tasks, or 94.93%)`
Why are these constraints (usually) fast to solve?

90.18% of Z3 queries solved in 0.1 seconds or less!
Key Optimizations

• Sound
 - Common subexpression elimination on every new constraint
 • Crucial for memory usage
 - “Related Constraint Optimization”

• Unsound
 - Constraint subsumption
 • Syntactic check for implication, take strongest constraint
 - Drop constraints at same instruction pointer after threshold

• This is the “art of constraint generation”!

• The resulting constraints are mostly conjunctive
How much sharing do we see in symbolic execution?
SAGAN tracks branch flipped

Sampled runs on Windows, many different file-reading applications
Max frequency **17761**, min frequency **592**
Total of 290430 branches flipped, 3360 distinct branches

Summarize this!
Conclusion: Impact of SAGE (In Numbers)

• 400+ machine-years
 - Runs in the largest dedicated fuzzing lab in the world

• 3.4 Billion constraints
 - Largest computational usage ever for any SMT solver

• 100s of apps, 100s of bugs (missed by everything else)

• Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

• Millions of dollars saved
 - for Microsoft + time/energy savings for the world

• DART, Whitebox fuzzing now adopted by (many) others
 (10s tools, 100s citations)
Conclusion: Blackbox vs. Whitebox Fuzzing

- Different cost/precision tradeoffs
 - Blackbox is lightweight, easy and fast, but poor coverage
 - Whitebox is smarter, but complex and slower
 - Note: other recent “semi-whitebox” approaches
 - Less smart (no symbolic exec, constr. solving) but more lightweight: Bunny-the-fuzzer (taint-flow, source-based, fuzz heuristics from input usage), Flayer (fault injection, not necessarily feasible), etc.

- Which is more effective at finding bugs? It depends...
 - Many apps are so buggy, any form of fuzzing find bugs in those!
 - Once low-hanging bugs are gone, fuzzing must become smarter: use whitebox and/or user-provided guidance (grammars, etc.)

- Bottom-line: in practice, use both! (We do at Microsoft)
Acknowledgments

• SAGE is joint work with:
 - MSR: Ella Bounimova, David Molnar,…
 - CSE: Michael Levin, Chris Marsh, Lei Fang, Stuart de Jong,…
 - Interns Dennis Jeffries (06), David Molnar (07), Adam Kiezun (07), Bassem Elkarablieh (08), Marius Nita (08), Cindy Rubio-Gonzalez (08,09), Johannes Kinder (09), Daniel Luchaup (10), Nathan Rittenhouse (10), Mehdi Bouaziz (11), Ankur Taly (11)…

• Thanks to the entire SAGE team and users !
 - Z3 (MSR): Nikolaj Bjorner, Leonardo de Moura,…
 - Windows: Nick Bartmon, Eric Douglas, Dustin Duran, Elmar Langholz, Isaac Sheldon, Dave Weston,…
 • Win8 TruScan support: Evan Tice, David Grant,…
 - Office: Tom Gallagher, Eric Jarvi, Octavian Timofte,…
 - SAGE users all across Microsoft!
Conclusion

- Software Model Checking via Systematic testing
 - Lecture 2: Dealing with Data Inputs

Lecture 3

abstraction

Modeling languages

state-space exploration

Model checking

(LSLAM, Bandera, FeaVer, BLAST, CBMC, YOGI,...)

Programming languages

state-space exploration

Systematic testing

Lecture 1 ——> Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,...

Lecture 2 ——> Data inputs: DART, EXE, SAGE, PEX,...