
CERT® Centers
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

The CERT Coordination Center is part of the Software Engineering
Institute.  The Software Engineering Institute is sponsored by the
U.S. Department of Defense.
© 2002 by Carnegie Mellon University

©  2002  Carnegie Mellon University

CERT Experience with
Security Problems in
Software

Tom Longstaff

June 2003



2
©  2002  Carnegie Mellon University

Survivability

Survivability is the ability of a system to fulfill its
mission, in a timely manner, in the presence of attacks,
failures, or accidents.

Survivability focus is on the system mission
•assume imperfect defenses and component failure
•analyze mission risks and tradeoffs
•identify decision points with survivability impact
•provide recommendations with business

justification



3
©  2002  Carnegie Mellon University

CERT’s Areas of Expertise
Vulnerability analysis

Artifact analysis

Insider threats

Survivable Architectures

Function abstraction/extraction

Modeling and simulation

Dependency and critical infrastructure analysis

Best practices and methodologies for testing software

R&D



4
©  2002  Carnegie Mellon University

Critical Need for Better Software
Vulnerabilities Reported to CERT/CC



5
©  2002  Carnegie Mellon University

Rough Stats for 2003

Public Stats available on www.kb.cert.org

Buffer overflows 7

DoS 8

Java 3

Sendmail 2

Linux 12

Microsoft 22

Not Microsoft 80



6
©  2002  Carnegie Mellon University

Critical Need for Better Practices
 Incidents Reported to the CERT/CC



7
©  2002  Carnegie Mellon University

Incident Trends



8
©  2002  Carnegie Mellon University

Inbound Slammer Traffic

UDP Port 1434 Flows

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18

Hour 1/24:00-1/25:18

Fl
ow

s



9
©  2002  Carnegie Mellon University

Slammer: Precursor
Detection UDP Port 1434 - Precursor

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4

Hour 1/24:00 1/25:04

F
lo

w
s

Series1



10
©  2002  Carnegie Mellon University

Focused on hours 6, 7, 8, 13, 14

Identified 3 primary sources,
all from a known adversary

All 3 used a fixed pattern

Identified responders: 2 out of 4
subsequently compromised

Slammer: Precursor
Analysis



11
©  2002  Carnegie Mellon University

The Response Strategy

• The development of software for secure
applications is handled the same way as other
software.

• This typically results in many delivered defects,
including security vulnerabilities (vuls).

Design Develop Deploy PatchMaintainRequirements



12
©  2002  Carnegie Mellon University

There Are Many Vuls to Patch

Vul reports from 1Q 2000 through 2Q 2002 

0

200

400

600

800

1000

1200

Calendar Quarter (2Q 2002 projection using least squares as of  June 3, 2002)

V
ul

 
Re

po
rt

s

Vul Reports 106 332 335 316 634 518 669 617 1064 1091

1Q 
2000

2Q 
2000

3Q 
2000

4Q 
2000

1Q 
2001

2Q 
2001

3Q 
2001

4Q 
2001

1Q 
2002

2Q 
2002



13
©  2002  Carnegie Mellon University

The Administrative Workload

With 5500 vulnerabilities reported in 2002

• Somebody must read each vul description

- 5500 * 20 minutes to read = 229 days

• If an organization is affected by 10% of the vuls

- 550 vuls * 1 hour to install the patch = 69 days

• Just to read security news and patch a single system 229 +
69 = 298 days

With 5 minutes to read new bulletins and a 1% “hit rate”

• Just reading bulletins takes almost 65 days.

• This is over 25% of an administrators time.



14
©  2002  Carnegie Mellon University

What is a Vulnerability?
Different people have different definitions. The CERT/CC has an
internal understanding that a vulnerability:

• Violates an explicit or implicit security policy

• Is usually caused by a software defect

• That similar defects are the same vulnerability (e.g. SNMP was 2
vulnerabilities)

• Often causes unexpected behavior

We specifically exclude from “vulnerability”:

• Trojan horse programs (evil email attachments)

• Viruses and Worms (self propagating code)

• Intruder tools (scanners, rootkits, etc.)

Vulnerabilities are the technical problems that permit these things to
exist



15
©  2002  Carnegie Mellon University

The Homerun Vul vs. 3 singles and a Double
Most of the most widely discussed vulnerabilities are
“homerun” vuls -- they get you as much as you can get all
in one fell swoop

But three singles and a double will probably score 2 or 3
runs

We use a reasoning system to see how “singles” can be
used to do real damage



16
©  2002  Carnegie Mellon University

Vul Chaining: Project Goal

I n
cr

e a
si

n g
 P

ri v
il e

g e
 L

ev
e l

P0

P1

P2

P3

P4

Vulnerability Path
Allowable Action
Exploitation of Vulnerability

Model the paths that could be
used by attackers when
compromising a system

• Privilege Level

• Incremental Impact

• Implied Impact

Use the model to better
understand how a system is
compromised



17
©  2002  Carnegie Mellon University

Vulnerability Graphs

Compromised
SystemPrerequisite

Incremental Impact

Vulnerability

State with
Implied Impacts

Hacker



18
©  2002  Carnegie Mellon University

Proof-of-Concept

Model Microsoft Windows and Some Applications

• Complex privilege system

- Multiple levels

• Ample sample space

Model Windows “vulnerabilities”

• Good documentation on the nature of the
vulnerabilities

Place the model into an automated reasoning
system



19
©  2002  Carnegie Mellon University

Vul Chaining Status

Performed basic research to understand
vulnerabilities and how they are related

• More rigorous description
• Functional relationship

Developed a prototype system
• Sample vulnerability graphs

Designed complete system

Results to Be Published in Bell Labs Technical
Journal

Seeking Additional Funding to Continue this Work



20
©  2002  Carnegie Mellon University

Critical Need for Better
Engineering Methods

 Sophisticated intruders target

• distributed user workflows

• trust relationships among distributed systems

• limited visibility into and control of remote systems

• people and the meaning they assign to content

• work resources that people rely on
 Many organizations rely solely on insufficient boundary control
and “bolt-on” mechanisms as defense

 Resistance, recognition, and response must be integrated into
the system and application architecture



21
©  2002  Carnegie Mellon University

21st Century State of Practice

ß Society depends on systems whose full behavior
is not known 

ß No programmer can say for sure what a sizable
program does in all uses

ß Planted vulnerabilities and malicious behavior
cannot be detected reliably in delivered software



22
©  2002  Carnegie Mellon University

Vulnerable to More Than
Simple Accidents

ß “Trustworthy” software
developers?

ß Offshore software
production

ß Planted behavior in
delivery channel

ß Reused code from
unknown sources

It is hard enough to
find accidental 
vulnerabilities

Deliberately hidden 
malicious code is 
beyond today’s 
capability to detect



23
©  2002  Carnegie Mellon University

Why is this such a hard
problem?
Software life cycle is complex, with many opportunities to
introduce malicious behavior

Testing focuses on direct functionality and failures, not at
uncovering hidden behavior

Frequently hard to distinguish between accidental
vulnerabilities and planted malicious code

Business makes use of “hidden” behavior to support
intellectual property control



24
©  2002  Carnegie Mellon University

Survivability Engineering

V-RATE

Survivable 
Systems 
Analysis Method

Theory and
Fundamentals

Engineering
Practices

Engineering
Solutions

System
Realities

Intrusion-Aware 
Design and Analysis

Flow-Structure-Quality
Engineering

Function Abstraction

Overall Objective: Develop rigorous system engineering
practices for mission survivability



25
©  2002  Carnegie Mellon University

Function Extraction (FX) Project

• Programmers lack means to say for sure what the behavior of
sizable programs is in all uses.

• Unknown behavior is the source of many problems in software
engineering.

• FX project goal is automated calculation of the full functional
behavior of programs.
• Transform behavior discovery from error-prone process

in human time scale to precise process in CPU time scale
• Potentially transformational technology for software and

security engineering 

program
code

automated
function
extractor

behavior
catalog

graphic
user 

interface



26
©  2002  Carnegie Mellon University

Function Extraction Technology

ß Programs and their parts are implementations of
mathematical functions or relations (mappings from
domains to ranges)

ß These functions can be extracted by stepwise
abstraction with mathematical precision in an
algebra of functions

ß Development of automated extractors is difficult
(total solution theoretically impossible) but feasible



27
©  2002  Carnegie Mellon University

Dynamic Use of Extractors

Behavior Catalogs

Visibility-Enabled Programs in Execution

Function
Extractor

Composite
behavior for 
this execution

Use explanation of behavior to:

ß   Understand composition 

ß   Examine correctness 

ß   Simplify architecture

ß   Impose control

Execution
Behavior
Log

Pgmrs
Users
Admin



28
©  2002  Carnegie Mellon University

Software Analysis
public class AccountRecord {
   public int acct_num;
   public double balance;
   public int loan_out;
   public int loan_max;
} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {
   public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {
   AdjustRecord adjustRec = new AdjustRecord();
   adjustRec.acct_num = acctRec.acct_num;
   adjustRec.balance = acctRec.balance;
   adjustRec.loan_out = acctRec.loan_out;
   adjustRec.loan_max = acctRec.loan_max;
   adjustRec.default = (adjRec.balance < 0.00);

   while ((adjustRec.balance < 0.00) &&
         (adjustRec.loan_out + 100) <= adjustRec.loan_max))
   {
      adjustRec.loan_out = adjustRec.loan_out + 100;
      adjustRec.balance = adjustRec.balance + 100.00;
   }

   return adjustRec;
}

ß  Unlike other engineering disciplines,
    software engineering has no practical
    means to fully evaluate the expressions
    it produces

What Does This Code Do?



29
©  2002  Carnegie Mellon University

Software Analysis Today
public class AccountRecord {
   public int acct_num;
   public double balance;
   public int loan_out;
   public int loan_max;
} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {
   public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {
   AdjustRecord adjustRec = new AdjustRecord();
   adjustRec.acct_num = acctRec.acct_num;
   adjustRec.balance = acctRec.balance;
   adjustRec.loan_out = acctRec.loan_out;
   adjustRec.loan_max = acctRec.loan_max;
   adjustRec.default = (adjRec.balance < 0.00);

   while ((adjustRec.balance < 0.00) &&
         (adjustRec.loan_out + 100) <= adjustRec.loan_max))
   {
      adjustRec.loan_out = adjustRec.loan_out + 100;
      adjustRec.balance = adjustRec.balance + 100.00;
   }

   return adjustRec;
}

ß  Has been a problem for 40
     years

ß  Read code to learn function,
    find malicious properties

ß  Hard, haphazard, error-prone

ß  Human time scale, fallibilities

ß  Laborious process produces
    suspect knowledge

ß  Change a line and start over

ß  But visibility is vital to
   detecting malicious code



30
©  2002  Carnegie Mellon University

Software Analysis Tomorrow

public class AccountRecord {
   public int acct_num;
   public double balance;
   public int loan_out;
   public int loan_max;
} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {
   public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {
   AdjustRecord adjustRec = new AdjustRecord();
   adjustRec.acct_num = acctRec.acct_num;
   adjustRec.balance = acctRec.balance;
   adjustRec.loan_out = acctRec.loan_out;
   adjustRec.loan_max = acctRec.loan_max;
   adjustRec.default = (adjRec.balance < 0.00);

   while ((adjustRec.balance < 0.00) &&
         (adjustRec.loan_out + 100) <= adjustRec.loan_max))
   {
      adjustRec.loan_out = adjustRec.loan_out + 100;
      adjustRec.balance = adjustRec.balance + 100.00;
   }

   return adjustRec;
}

1.   AccountRecord acctRec
  Object is unchanged
2.   AdjustRecord adjustRec

A new object adjustRec is created and returned,
the contents of which are described in three cases:

CASE 1:
if (acctRec.balance >= 0.00)
then
    adjustRec.acct_num = acctRec.acct_num
    adjustRec.balance    = acctRec.balance
    adjustRec.loan_out   = acctRec.loan_out
    adjustRec.loan_max = acctRec.loan_max
    adjustRec.default     = false

CASE 2:
if (acctRec.balance < 0.00) and
    (acctRec.loan_out + 100> acctRec.loan_max)
then
    adjustRec.acct_num = acctRec.acct_num
    adjustRec.balance    = acctRec.balance
    adjustRec.loan_out   = acctRec.loan_out
    adjustRec.loan_max = acctRec.loan_max
    adjustRec.default     = true

CASE 3:
if (acctRec.balance < 0.00) and
    (acctRec.loan_out + 100 <= acctRec.loan_max)
then
    adjustRec.acct_num = acctRec.acct_num
    adjustRec.balance    = acctRec.balance + (100.00 * term)
    adjustRec.loan_out   = acctRec.loan_out + (100 * term)
    adjustRec.loan_max = acctRec.loan_max
    adjustRec.default     = true
where
    term   = min(term1, term2)
    term1 = ceiling(0.00 – acctRec.balance)/100.00)
    term2 = 1 + floor((acctRec.loan_max – 100 –
    acctRec.loan_out)/100)

Automated
Behavior 
Extraction

Program Behavior Catalog

Business rules
(design spec) 
in three cases



31
©  2002  Carnegie Mellon University

1.   AccountRecord acctRec
  Object is unchanged
2.   AdjustRecord adjustRec

A new object adjustRec is created and returned,
the contents of which are described in four

CASE 1:
if (acctRec.balance >= 0.00)
then
    adjustRec.acct_num   = acctRec.acct_num
    adjustRec.balance    = acctRec.balance
    adjustRec.loan_out   = acctRec.loan_out
    adjustRec.loan_max   = acctRec.loan_max
    adjustRec.in_default = false
CASE 2:
if (acctRec.balance < 0.00) and
   (acctRec.loan_out + 100 > acctRec.loan_max)
then
    adjustRec.acct_num   = acctRec.acct_num
    adjustRec.balance    = acctRec.balance
    adjustRec.loan_out   = acctRec.loan_out
    adjustRec.loan_max   = acctRec.loan_max
    adjustRec.in_default = true
CASE 3:
if (acctRec.balance < 0.00) and
   (acctRec.loan_out + 100 <= acctRec.loan_max) and
   (term1 <= term2)
then
    adjustRec.acct_num   = acctRec.acct_num
    adjustRec.balance    = acctRec.balance + (100.00 * term1)
    adjustRec.loan_out   = acctRec.loan_out + (100 * term1)
    adjustRec.loan_max   = acctRec.loan_max
    adjustRec.in_default = true
CASE 4:
if (acctRec.balance < 0.00) and
   (acctRec.loan_out + 100 <= acctRec.loan_max) and
   (term1 > term2)
then
    adjustRec.acct_num   = acctRec.acct_num
    adjustRec.balance    = acctRec.balance + (100.00 * term2) - 0.01
    adjustRec.loan_out   = acctRec.loan_out + (100 * term2)
    adjustRec.loan_max   = acctRec.loan_max
    adjustRec.in_default = true
    AdjustRecord.slush.balance = AdjustRecord.slush.balance + 0.01
where
    term1 = ceiling(0.00 – acctRec.balance)/100.00)
    term2 = 1 + floor((acctRec.loan_max – 100 –
            acctRec.loan_out)/100)

Automated
Behavior 
Extraction

public class AccountRecord {
   public int acct_num;
   public double balance;
   public int loan_out;
   public int loan_max;
} // end of AccountRecord
 
public class AdjustRecord
extends AccountRecord {
   public boolean in_default;
   public static AdjustRecord slush;
} // end of AdjustRecord
 
public static AdjustRecord classify_account
(AccountRecord acctRec) {
   AdjustRecord adjustRec = new AdjustRecord();
   adjustRec.acct_num = acctRec.acct_num;
   adjustRec.balance = acctRec.balance;
   adjustRec.loan_out = acctRec.loan_out;
   adjustRec.loan_max = acctRec.loan_max;
   adjustRec.in_default = (adjustRec.balance < 0.00);
   while ((adjustRec.balance < 0.00) &&
         ((adjustRec.loan_out + 100) <= adjustRec.loan_max)) {
      adjustRec.loan_out += 100;
      adjustRec.balance += 100.00;
   }
   if (adjustRec.balance < 0.00) {
      adjustRec.balance -= 0.01;
      AdjustRecord.slush.balance += 0.01;
   }
   return adjustRec;
}

Malicious code
case skims
accounts

Detecting Malicious Code



32
©  2002  Carnegie Mellon University

FX Bottom Line

ß FX is a foundation for a new science of visible
computing

ß Opportunity to move software engineering into
the visible computing era

ß Modest investment now can produce substantial
payoff



33
©  2002  Carnegie Mellon University

Future State
For Acquisition:

A community exists that can
repeatedly examine code for
undesired behavior

Methodologies and
technologies exist to make
this feasible and cost effective

For Development:

Software is more self-aware of
its behavior and may
determine when undesired
behavior is attempted

The software engineering
process supports full
accountability of all members
of the life cycle for
responsibility



34
©  2002  Carnegie Mellon University

Emergent Algorithms

Survivability is an emergent property of a system.

Desired system-wide properties “emerge” from local actions and
distributed cooperation.

An emergent property need not be a property of any individual node or
link.

Collective or crowd behavior emerges from the rules for individuals
and their interactions with their neighbors.



35
©  2002  Carnegie Mellon University

CERT and TSP
PSP-data shows that programmers inject a defect about every
10 lines of code written.

Most commercial applications have a defect density of about 2
defects per KSLOC (MS Win 2000, with 30 million LOC, was
released with 63,000 known defects1)

If only 5% of these defects were potential security concerns,
there would be 100 security defects per MSLOC.

1 Business Week On Line – Software Hell, Dec 1999 and 
  CNN Interactive – Will Bugs Scare Off Users Of Windows 2000, Feb 17, 2000



36
©  2002  Carnegie Mellon University

TSP and Secure Systems
The TSP provides a framework, a set of processes, and
disciplined methods for producing quality software.

Software produced with TSP has one or two orders of
magnitude fewer defects than current practice.

• 0.02 defects/KSLOC vs. 2 defects/KSLOC

• 20 defects per MSLOC vs. 2000 defects per MSLOC

If 5% of the defects are potential security holes, with TSP
there would be 1 vulnerability per MSLOC.



37
©  2002  Carnegie Mellon University

TSP and Secure Systems
TSP also addresses the need for

• professional behavior

• a supportive environment

• sound software engineering practice

• operational processes

• software metrics

TSP could be extended to provide the process, training, and
support required to consistently produce secure software
products.



38
©  2002  Carnegie Mellon University

TSP For Secure Systems
TSP for Secure Systems is a joint effort of the TSP team and
SEI’s NSS (CERT) group.

The work is based on  proven TSP quality practices and
CERT’s extensive security skills and knowledge.

TSP secure augments PSP training and TSP introduction
with specialized security training.

• secure design process

• secure implementation practices

• secure review and inspection methods

• secure test process

• security-related predictive measures



39
©  2002  Carnegie Mellon University

TSP For Secure Systems
The goal of the project is to develop a TSP-based method that
can predictably produce secure software.

The TSP for Secure Systems project is developing a process
and support system that will

• support secure systems development practices

• predict the likelihood of latent security defects

• be dynamically tailored to respond to new threats

TSP for Secure Systems will be tested in several pilots.



40
©  2002  Carnegie Mellon University

Some Questions
•Can development practices that lead to security defects be identified?
•Can a process be developed to implement these practices?
•Can measures and tools be developed to establish predictability?
•What are the design principles for secure software?
•Can “security patterns” be defined?
•Can the vulnerability of software be quantified?
•Can repair costs be predicted?
•What are the properties of security defects?

• Clustering
• Density
• Morphology

•What are the emergent properties of security defects?

• Building a system with secure components
•What are the reuse trade-offs?



41
©  2002  Carnegie Mellon University

Predictions Driving the
Research Agenda

Insiders and planted vulnerabilities control the cyber
battlefield

Predictive analysis and preemption
replaces incident response as the
primary security model

Computers/Internet access replaced
by numerous devices, each of which is
automatically maintained

Security shifts from a perimeter set of
controls to understanding the nature of the traffic



42
©  2002  Carnegie Mellon University


