Boolean-Based Optimization
Algorithms & Applications

Joao Marques-Silva

School of Computer Science and Informatics
University College Dublin

MSR Software Sumit, Paris, France, April 2011
Why Optimization? Software Package Upgrades

[Adapted from Argelich&Lynce'08]

- Universe of software packages: \(\{p_1, \ldots, p_n\} \)
- Associate \(x_i \) with \(p_i \): \(x_i = 1 \) iff \(p_i \) is installed
- Constraints associated with package \(p_i \): \((p_i, D_i, C_i) \)
 - \(D_i \): dependencies (required packages) for installing \(p_i \)
 - \(C_i \): conflicts (disallowed packages) for installing \(p_i \)

- Example problem: Maximum Installability
 - Maximum number of packages that can be installed

Package constraints:

\[
(p_1, \{p_2 \lor p_3\}, \{p_4\})
(p_2, \{p_3\}, \{p_4\})
(p_3, \{p_2\}, \emptyset)
(p_4, \{p_2, p_3\}, \emptyset)
\]
Why Optimization? Software Package Upgrades

[Adapted from Argelich&Lynce’08]

- Universe of software packages: \(\{p_1, \ldots, p_n\} \)
- Associate \(x_i \) with \(p_i \): \(x_i = 1 \) iff \(p_i \) is installed
- Constraints associated with package \(p_i \): \((p_i, D_i, C_i) \)
 - \(D_i \): dependencies (required packages) for installing \(p_i \)
 - \(C_i \): conflicts (disallowed packages) for installing \(p_i \)

- Example problem: Maximum Installability
 - Maximum number of packages that can be installed

Package constraints:

\[
\begin{align*}
(p_1, \{p_2 \lor p_3\}, \{p_4\}) \\
(p_2, \{p_3\}, \{p_4\}) \\
(p_3, \{p_2\}, \emptyset) \\
(p_4, \{p_2, p_3\}, \emptyset)
\end{align*}
\]

Pseudo-Boolean formulation:

\[
\begin{align*}
\text{max} & \quad x_1 + x_2 + x_3 + x_4 \\
\text{s. t.} & \quad (x_1 \rightarrow x_2 \lor x_3) \land (x_1 \rightarrow \neg x_4) \land \\
& \quad (x_2 \rightarrow x_3) \land (x_2 \rightarrow \neg x_4) \land \\
& \quad (x_3 \rightarrow x_2) \land (x_4 \rightarrow x_2) \land (x_4 \rightarrow x_3)
\end{align*}
\]
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 - Cardinality Constraints
 - Pseudo-Boolean Constraints

Conclusions & Future Work
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 Cardinality Constraints
 Pseudo-Boolean Constraints

Conclusions & Future Work
Boolean-Based Optimization

- Linear optimization over Boolean domains
 - Can be mildly non-linear (e.g. basic Boolean operators)
Boolean-Based Optimization

- Linear optimization over Boolean domains
 - Can be mildly non-linear (e.g. basic Boolean operators)

- Concrete instantiations:
 - Maximum Satisfiability (MaxSAT)
 - Pseudo-Boolean Optimization (PBO, 0-1 ILP)
 - Weighted-Boolean Optimization (WBO)
 - Can map any problem to any other problem

[Larrosa et al.’08; etc.]
Boolean-Based Optimization

- **Linear optimization over Boolean domains**
 - Can be mildly non-linear (e.g. basic Boolean operators)

- **Concrete instantiations:**
 - **Maximum Satisfiability (MaxSAT)**
 - **Pseudo-Boolean Optimization (PBO, 0-1 ILP)**
 - **Weighted-Boolean Optimization (WBO)**
 - Can map any problem to any other problem

- **Related problems:**
 - Optimization in SMT (MaxSMT)
 - Optimization in CSP (Max-CSP, etc.)
 - Integer Linear Programming (ILP)

[See Larrosa et al.'08; etc.]
What is Maximum Satisfiability?

- CNF Formula:

\[
\begin{align*}
x_6 \lor x_2 & \quad \neg x_6 \lor x_2 & \quad \neg x_2 \lor x_1 & \quad \neg x_1 \\
\neg x_6 \lor x_8 & \quad x_6 \lor \neg x_8 & \quad x_2 \lor x_4 & \quad \neg x_4 \lor x_5 \\
x_7 \lor x_5 & \quad \neg x_7 \lor x_5 & \quad \neg x_5 \lor x_3 & \quad \neg x_3
\end{align*}
\]
What is Maximum Satisfiability?

- CNF Formula:
 \[
 \begin{align*}
 x_6 \lor x_2 \\
 \neg x_6 \lor x_2 \\
 x_6 \lor \neg x_8 \\
 \neg x_6 \lor x_8 \\
 x_7 \lor x_5 \\
 \neg x_7 \lor x_5 \\
 \end{align*}
 \]

- Formula is unsatisfiable
- MaxSAT:
 - Find assignment that maximizes number of satisfied clauses
 - For above formula, solution is 10
- Can be used for solving (linear) Boolean optimization problems
- There are a number of variants of MaxSAT
The MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are *soft*
 - Find assignment that maximizes number of satisfied *soft* clauses
The MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are *soft*
 - Find assignment that maximizes number of satisfied *soft* clauses

- **Partial MaxSAT:**
 - Hard clauses *must* be satisfied
 - Find assignment that maximizes number of satisfied *soft* clauses
The MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are soft
 - Find assignment that maximizes number of satisfied soft clauses

- **Partial MaxSAT:**
 - Hard clauses must be satisfied
 - Find assignment that maximizes number of satisfied soft clauses

- **Weighted MaxSAT**
 - Weights associated with clauses
 - Find assignment that maximizes sum of weights of satisfied clauses
The MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are *soft*
 - Find assignment that maximizes number of satisfied *soft* clauses

- **Partial MaxSAT:**
 - Hard clauses **must** be satisfied
 - Find assignment that maximizes number of satisfied *soft* clauses

- **Weighted MaxSAT**
 - Weights associated with clauses
 - Find assignment that maximizes sum of weights of satisfied clauses

- **Weighted partial MaxSAT**
 - Weights associated with *soft* clauses
 - Hard clauses **must** be satisfied
 - Find assignment that maximizes sum of weights of satisfied *soft* clauses
Pseudo-Boolean Constraints & Optimization

- **Pseudo-Boolean Constraints:**
 - Boolean variables: \(x_1, \ldots, x_n \)
 - Linear inequalities:
 \[
 \sum_{j \in N} a_{ij} l_j \geq b_i, \quad l_j \in \{x_j, \bar{x}_j\}, \quad x_j \in \{0, 1\}, \quad a_{ij}, b_i \in \mathbb{N}_0^+
 \]

- **Algorithms:**
 - Adapt SAT solver and handle constraints natively
 - Encode constraints to clausal form
 [e.g. Manquinho&Marques-Silva’00]
 [e.g. Een&Sörensson’06]

- **Pseudo-Boolean Optimization:**
 \[
 \text{minimize} \quad \sum_{j \in N} c_j \cdot x_j \\
 \text{subject to} \quad \sum_{j \in N} a_{ij} l_j \geq b_i, \\
 \quad l_j \in \{x_j, \bar{x}_j\}, \quad x_j \in \{0, 1\}, \quad a_{ij}, b_i, c_j \in \mathbb{N}_0^+
 \]
The problem:

\[
\begin{align*}
\text{min} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s. t.} & \quad \sum_{j=1}^{n} a_{i,j} x_j \geq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
Translating PBO to MaxSAT

- The problem:

\[
\begin{align*}
\text{min} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s. t.} & \quad \sum_{j=1}^{n} a_{ij} x_j \geq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

- Weighted partial MaxSAT formulation:
 - Represent pseudo-Boolean constraints as hard clauses
 - Can convert PB constraints to SAT
 - Weighted soft clauses: \((\neg x_j)\) with weight \(c_j\), \(j = 1, \ldots, n\)
 - If negated literals are maximized, then positive literals are minimized
 - If \(c_j = 1\), then instance of partial MaxSAT
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 Cardinality Constraints
 Pseudo-Boolean Constraints

Conclusions & Future Work
Software Package Upgrades with MaxSAT

- **Universe of software packages:** \({\{p_1, \ldots, p_n\}}\)
- **Associate** \(x_i\) **with** \(p_i\): \(x_i = 1\) iff \(p_i\) **is installed**
- **Constraints associated with package** \(p_i\): \((p_i, D_i, C_i)\)
 - \(D_i\): dependencies (required packages) for installing \(p_i\)
 - \(C_i\): conflicts (disallowed packages) for installing \(p_i\)

- **Example problem:** **Maximum Installability**
 - Maximum number of packages that can be installed
 - Package constraints represent **hard** clauses
 - **Soft** clauses: \((x_i)\)

Package constraints:

\[
(p_1, \{p_2 \lor p_3\}, \{p_4\})
(p_2, \{p_3\}, \{p_4\})
(p_3, \{p_2\}, \emptyset)
(p_4, \{p_2, p_3\}, \emptyset)
\]
Software Package Upgrades with MaxSAT

- Universe of software packages: \(\{p_1, \ldots, p_n\} \)
- Associate \(x_i \) with \(p_i \): \(x_i = 1 \) iff \(p_i \) is installed
- Constraints associated with package \(p_i \): \((p_i, D_i, C_i)\)
 - \(D_i \): dependencies (required packages) for installing \(p_i \)
 - \(C_i \): conflicts (disallowed packages) for installing \(p_i \)
- Example problem: **Maximum Installability**
 - Maximum number of packages that can be installed
 - Package constraints represent **hard** clauses
 - Soft clauses: \((x_i) \)

Package constraints:

- \((p_1, \{p_2 \lor p_3\}, \{p_4\})\)
- \((p_2, \{p_3\}, \{p_4\})\)
- \((p_3, \{p_2\}, \emptyset)\)
- \((p_4, \{p_2, p_3\}, \emptyset)\)

MaxSAT formulation:

\[
\varphi_H = \{(\neg x_1 \lor x_2 \lor x_3), (\neg x_1 \lor \neg x_4), (\neg x_2 \lor x_3), (\neg x_2 \lor \neg x_4), (\neg x_3 \lor x_2), (\neg x_4 \lor x_2), (\neg x_4 \lor x_3)\}
\]

\[
\varphi_S = \{(x_1), (x_2), (x_3), (x_4)\}
\]
Minimum Vertex Cover

- The problem:
 - Graph $G = (V, E)$
 - Vertex cover $U \subseteq V$, such that for each edge (v_i, v_j), either $v_i \in U$ or $v_j \in U$.
 - Minimum vertex cover: vertex cover U of minimum size
Minimum Vertex Cover

- The problem:
 - Graph $G = (V, E)$
 - Vertex cover $U \subseteq V$, such that for each edge (v_i, v_j), either $v_i \in U$ or $v_j \in U$.
 - Minimum vertex cover: vertex cover U of minimum size

- Partial MaxSAT formulation:
 - Associate x_i with each $v_i \in V$, such that $x_i = 1$ iff $v_i \in U$, otherwise $v_i \in V - U$.
 - Hard clauses: $(x_i \lor x_j)$ for each edge $(v_i, v_j) \in E$
 - Soft clauses: $(\neg x_i)$ for each vertex v_i
 - I.e. preferable not to include vertices in U
Minimum Vertex Cover

- The problem:
 - Graph $G = (V, E)$
 - Vertex cover $U \subseteq V$, such that for each edge (v_i, v_j), either $v_i \in U$ or $v_j \in U$.
 - Minimum vertex cover: vertex cover U of minimum size

- Partial MaxSAT formulation:
 - Associate x_i with each $v_i \in V$, such that $x_i = 1$ iff $v_i \in U$, otherwise $v_i \in V - U$.
 - **Hard** clauses: $(x_i \lor x_j)$ for each edge $(v_i, v_j) \in E$
 - **Soft** clauses: $(\neg x_i)$ for each vertex v_i
 - i.e. preferable not to include vertices in U

\[\varphi_H = \{(x_1 \lor x_2), (x_1 \lor x_3), (x_1 \lor x_4)\} \]
\[\varphi_S = \{(-x_1), (-x_2), (-x_3), (-x_4)\} \]
Minimum Vertex Cover

- The problem:
 - Graph $G = (V, E)$
 - Vertex cover $U \subseteq V$, such that for each edge (v_i, v_j), either $v_i \in U$ or $v_j \in U$.
 - Minimum vertex cover: vertex cover U of minimum size

- Partial MaxSAT formulation:
 - Associate x_i with each $v_i \in V$, such that $x_i = 1$ iff $v_i \in U$, otherwise $v_i \in V - U$.
 - Hard clauses: $(x_i \lor x_j)$ for each edge $(v_i, v_j) \in E$
 - Soft clauses: $(\neg x_i)$ for each vertex v_i

 - Hard clauses:
 $$\varphi_H = \{(x_1 \lor x_2), (x_1 \lor x_3), (x_1 \lor x_4)\}$$
 - Soft clauses:
 $$\varphi_S = \{(\neg x_1), (\neg x_2), (\neg x_3), (\neg x_4)\}$$
Design Debugging

Correct circuit

Input stimuli: \(\langle r, s \rangle = \langle 0, 1 \rangle \)
Valid output: \(\langle y, z \rangle = \langle 0, 0 \rangle \)

Faulty circuit

Input stimuli: \(\langle r, s \rangle = \langle 0, 1 \rangle \)
Invalid output: \(\langle y, z \rangle = \langle 0, 0 \rangle \)

• The model:
 – Hard clauses: Input and output values
 – Soft clauses: CNF representation of circuit

• The problem:
 – Maximize number of satisfied clauses (i.e. circuit gates)
Binate Covering

- The problem:

\[
\begin{align*}
\min & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s. t.} & \quad \varphi = 1
\end{align*}
\]

- Widely used in Electronic Design Automation (EDA)
 - Logic synthesis (unate); FSM synthesis; etc.

- Weighted partial MaxSAT formulation:
 - Clauses in \(\varphi \) are hard clauses
 - Weighted soft clauses: \((\neg x_j)\) with weight \(c_j \), \(j = 1, \ldots, n \)
 - If negated literals are maximized, then positive literals are minimized
 - If \(c_j = 1 \), then instance of partial MaxSAT
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 - Cardinality Constraints
 - Pseudo-Boolean Constraints

Conclusions & Future Work
PBO Algorithms

- **Iterative upper bound refinement** [e.g. Barth’95; Aloul et al.’02; Een&Sorensson’06]
 - Let B be an upper bound on $\sum_{j \in N} c_j \cdot x_j$
 - Create constraint: $\sum_{j \in N} c_j \cdot x_j \leq B - 1$
 - Solve with PB solver
 - If SAT, upper bound updated to $B - 1$
 - Repeat while SAT
PBO Algorithms

- **Iterative upper bound refinement** [e.g. Barth’95; Aloul et al.’02; Een&Sorensson’06]
 - Let B be an upper bound on $\sum_{j \in N} c_j \cdot x_j$
 - Create constraint: $\sum_{j \in N} c_j \cdot x_j \leq B - 1$
 - Solve with PB solver
 - If SAT, upper bound updated to $B - 1$
 - Repeat while SAT

- **Iterative lower bound refinement** [e.g. Fu&Malik’06; Morgado&Marques-Silva’10]
 - Plain or unsatisfiable core guided solutions

- **Binary search on values of cost function** [e.g. Fu&Malik’06]
PBO Algorithms

- **Iterative upper bound refinement** [e.g. Barth’95; Aloul et al.’02; Een&Sorensson’06]
 - Let B be an upper bound on $\sum_{j \in N} c_j \cdot x_j$
 - Create constraint: $\sum_{j \in N} c_j \cdot x_j \leq B - 1$
 - Solve with PB solver
 - If SAT, upper bound updated to $B - 1$
 - Repeat while SAT

- **Iterative lower bound refinement** [e.g. Fu&Malik’06; Morgado&Marques-Silva’10]
 - Plain or unsatisfiable core guided solutions

- **Binary search on values of cost function** [e.g. Fu&Malik’06]

- **Branch-and-bound search** [e.g. Manquinho&Marques-Silva’00]
 - Maintain upper bound (UB) of optimum solution
 - Compute estimates of lower bound (LB)
 - Bound search if $LB \geq UB$
 - **Must** integrate SAT techniques
MaxSAT Algorithms

- Branch and bound search
 - Sophisticated lower bounds (on \# of unsatisfiable clauses)
 - Unit propagation
 - Inconsistent subsets
 - Dedicated inference techniques
 - Adapted resolution rule
 - ...

- Cannot use most effective SAT techniques
 - No unit propagation
 - No unrestricted clause learning
 - ...

[Li, Manya & Planes’05]
[Li, Manya & Planes’06]
[Heras & Larrosa’06]
MaxSAT Algorithms

• Branch and bound search
 – Sophisticated lower bounds (on # of unsatisfiable clauses)
 ▶ Unit propagation
 ▶ Inconsistent subsets
 – Dedicated inference techniques
 ▶ Adapted resolution rule
 ▶ ...
 – Cannot use most effective SAT techniques
 ▶ No unit propagation
 ▶ No unrestricted clause learning
 ▶ ...

• Translate to PBO

• Core-guided algorithms
Solving MaxSAT with PB I

- Formula φ with n variables and $m = |\varphi|$ clauses
- Create φ' from φ:
 - Replace each clause ω_i with $\omega'_i = \omega_i \cup \{b_i\}$
 - One new relaxation (or blocking) variable b_i for each clause
 - φ' with m clauses and $n + m$ variables
- Trivial to satisfy φ' by assigning $b_i = 1$, for all i
Solving MaxSAT with PB I

- Formula \(\varphi \) with \(n \) variables and \(m = |\varphi| \) clauses
- Create \(\varphi' \) from \(\varphi \):
 - Replace each clause \(\omega_i \) with \(\omega'_i = \omega_i \cup \{b_i\} \)
 - One new relaxation (or blocking) variable \(b_i \) for each clause
 - \(\varphi' \) with \(m \) clauses and \(n + m \) variables
- Trivial to satisfy \(\varphi' \) by assigning \(b_i = 1 \), for all \(i \)

- Example:
 - CNF formula \(\varphi \):
 \[
 \varphi = \{\{x_1, \neg x_2\}, \{x_1, x_2\}, \{\neg x_1\}\}
 \]
 - Modified formula \(\varphi' \):
 \[
 \varphi' = \{\{x_1, \neg x_2, b_1\}, \{x_1, x_2, b_2\}, \{\neg x_1, b_3\}\}
 \]
Iteratively solve the modified PB/SAT problem:

$$\varphi'' = \varphi' \cup \left\{ \sum b_i \leq k \right\}$$

- Start with $k = m - 1$
- Decrease value of k while φ'' is satisfiable
- Stop when φ'' becomes unsatisfiable
 - Return $k + 1$ (i.e. value of k for last satisfiable φ'')
Solving MaxSAT with PB II

• Iteratively solve the modified PB/SAT problem:

\[\varphi'' = \varphi' \cup \left\{ \sum b_i \leq k \right\} \]

- Start with \(k = m - 1 \)
- Decrease value of \(k \) while \(\varphi'' \) is satisfiable
- Stop when \(\varphi'' \) becomes unsatisfiable
 - Return \(k + 1 \) (i.e. value of \(k \) for last satisfiable \(\varphi'' \))

• Example:
 - Recall modified formula \(\varphi' = \left\{ \left\{ x_1, \neg x_2, b_1 \right\}, \left\{ x_1, x_2, b_2 \right\}, \left\{ \neg x_1, b_3 \right\} \right\} \)
 - Instances of PB/SAT to solve, w/ \(k = 2, 1, 0 \):

\[\varphi'' = \left\{ \left\{ x_1, \neg x_2, b_1 \right\}, \left\{ x_1, x_2, b_2 \right\}, \left\{ \neg x_1, b_3 \right\} \right\} \cup \left\{ \sum b_i \leq k \right\} \]

 - Satisfiable for \(k = 2, 1 \); Unsatisfiable for \(k = 0 \)
 - Return \(k = 1 \)
Core-Guided MaxSAT – MSU1

Example CNF formula (using ',', instead of '∨')

x_6, x_2
$\neg x_6, x_2$
$\neg x_2, x_1$
$\neg x_1$

$\neg x_6, x_8$
$x_6, \neg x_8$
x_2, x_4
$\neg x_4, x_5$

x_7, x_5
$\neg x_7, x_5$
$\neg x_5, x_3$
$\neg x_3$
Core-Guided MaxSAT – MSU1

Formula is \textbf{UNSAT}; Get unsat core
Core-Guided MaxSAT – MSU1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_6, x_2</td>
<td>$\neg x_6, x_2$</td>
<td>$\neg x_2, x_1, b_1$</td>
<td>$\neg x_1, b_2$</td>
<td></td>
</tr>
<tr>
<td>$\neg x_6, x_8$</td>
<td>$x_6, \neg x_8$</td>
<td>x_2, x_4, b_3</td>
<td>$\neg x_4, x_5, b_4$</td>
<td></td>
</tr>
<tr>
<td>x_7, x_5</td>
<td>$\neg x_7, x_5$</td>
<td>$\neg x_5, x_3, b_5$</td>
<td>$\neg x_3, b_6$</td>
<td></td>
</tr>
</tbody>
</table>

$$\sum_{i=1}^{6} b_i \leq 1$$

Add relaxation variables and AtMost1 constraint
Core-Guided MaxSAT – MSU1

x_6, x_2	$\neg x_6, x_2$	$\neg x_2, x_1, b_1$	$\neg x_1, b_2$
$\neg x_6, x_8$	$x_6, \neg x_8$	x_2, x_4, b_3	$\neg x_4, x_5, b_4$
x_7, x_5	$\neg x_7, x_5$	$\neg x_5, x_3, b_5$	$\neg x_3, b_6$

$$\sum_{i=1}^{6} b_i \leq 1$$

Formula is (again) **UNSAT**; Get unsat core
Core-Guided MaxSAT – MSU1

\[x_6, x_2, b_7 \quad \neg x_6, x_2, b_8 \quad \neg x_2, x_1, b_1, b_9 \quad \neg x_1, b_2, b_{10} \]

\[\neg x_6, x_8 \quad x_6, \neg x_8 \quad x_2, x_4, b_3 \quad \neg x_4, x_5, b_4 \]

\[x_7, x_5, b_{11} \quad \neg x_7, x_5, b_{12} \quad \neg x_5, x_3, b_5, b_{13} \quad \neg x_3, b_6, b_{14} \]

\[\sum_{i=1}^{6} b_i \leq 1 \quad \sum_{i=7}^{14} b_i \leq 1 \]

Add new relaxation variables and AtMost1 constraint
Core-Guided MaxSAT – MSU1

\[x_6, x_2, b_7 \quad \neg x_6, x_2, b_8 \quad \neg x_2, x_1, b_1, b_9 \quad \neg x_1, b_2, b_{10} \]

\[\neg x_6, x_8 \quad x_6, \neg x_8 \quad x_2, x_4, b_3 \quad \neg x_4, x_5, b_4 \]

\[x_7, x_5, b_{11} \quad \neg x_7, x_5, b_{12} \quad \neg x_5, x_3, b_5, b_{13} \quad \neg x_3, b_6, b_{14} \]

\[\sum_{i=1}^{6} b_i \leq 1 \quad \sum_{i=7}^{14} b_i \leq 1 \]

Instance is now SAT
Core-Guided MaxSAT – MSU1

\[
x_6, x_2, b_7 \quad \neg x_6, x_2, b_8 \quad \neg x_2, x_1, b_1, b_9 \quad \neg x_1, b_2, b_{10}
\]

\[
\neg x_6, x_8 \quad x_6, \neg x_8 \quad x_2, x_4, b_3 \quad \neg x_4, x_5, b_4
\]

\[
x_7, x_5, b_{11} \quad \neg x_7, x_5, b_{12} \quad \neg x_5, x_3, b_5, b_{13} \quad \neg x_3, b_6, b_{14}
\]

\[
\sum_{i=1}^{6} b_i \leq 1 \quad \sum_{i=7}^{14} b_i \leq 1
\]

MaxSAT solution is \(|\varphi| - I = 12 - 2 = 10 \)
Organization of MSU1

[Fu&Malik'06; Marques-Silva&Manquinho’08; etc.]

- Clauses characterized as:
 - **Soft**: derived from original soft clauses in φ
 - **Hard**: initial hard or added during execution of algorithm
 - E.g. clauses from cardinality constraints

- While exist unsatisfiable cores
 - Add fresh set B of relaxation variables to soft clauses in core
 - Add new AtMost1 constraint
 \[
 \sum_{b_i \in B} b_i \leq 1
 \]
 - At most 1 relaxation variable from set B can take value 1

- MaxSAT solution is $|\varphi| - I$, where I is number of iterations
 - Minimum number of clauses that must be relaxed for φ to be satisfiable
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 Cardinality Constraints
 Pseudo-Boolean Constraints

Conclusions & Future Work
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 Cardinality Constraints
 Pseudo-Boolean Constraints

Conclusions & Future Work
Cardinality Constraints

• How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?
 – How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_j \leq 1$?

• Solution #1:
 – Use PB solver
 – Difficult to keep up with advances in SAT technology
 – For SAT/UNSAT, best PB solvers already encode to SAT
Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?
 - How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_j \leq 1$?

- Solution #1:
 - Use PB solver
 - Difficult to keep up with advances in SAT technology
 - For SAT/UNSAT, best PB solvers already encode to SAT

- Solution #2:
 - Encode cardinality constraints to CNF
 - Use SAT solver
Equals1, AtLeast1 & AtMost1 Constraints

\[\sum_{j=1}^{n} x_j = 1: \text{ encode with } (\sum_{j=1}^{n} x_j \leq 1) \land (\sum_{j=1}^{n} x_j \geq 1) \]

\[\sum_{j=1}^{n} x_j \geq 1: \text{ encode with } (x_1 \lor x_2 \lor \ldots \lor x_n) \]

\[\sum_{j=1}^{n} x_j \leq 1 \text{ encode with:} \]

- Pairwise encoding
 - Clauses: \(O(n^2) \); No auxiliary variables
- Sequential counter
 - Clauses: \(O(n) \); Auxiliary variables: \(O(n) \)

- Bitwise encoding
 - Clauses: \(O(n \log n) \); Auxiliary variables: \(O(\log n) \)

- ...
Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Define $r = \lceil \log n \rceil$ (with $n > 1$); Auxiliary variables v_0, \ldots, v_{r-1}
 - Associate with x_j the binary representation of $j-1$
 - Create clauses $(-x_j \lor p_i)$, $i = 0, \ldots, r-1$, where
 - $p_i = v_i$ if the binary representation of $j-1$ has value 1 in position i
 - $p_i = \neg v_i$ otherwise
 - If $x_j = 1$, assignment to v_i variables must encode $j-1$
 - All other x variables take value 0
 - If all $x_j = 0$, any assignment to v_i variables is consistent
 - $O(n \log n)$ clauses; $O(\log n)$ auxiliary variables

- An example: $x_1 + x_2 + x_3 \leq 1$

<table>
<thead>
<tr>
<th>$j-1$</th>
<th>v_1</th>
<th>v_0</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>00</td>
<td>$(-x_1 \lor \neg v_1) \land (-x_1 \lor \neg v_0)$</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>01</td>
<td>$(-x_2 \lor \neg v_1) \land (-x_2 \lor v_0)$</td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
<td>10</td>
<td>$(-x_3 \lor v_1) \land (-x_3 \lor \neg v_0)$</td>
</tr>
</tbody>
</table>
General Cardinality Constraints

- General form: $\sum_{j=1}^{n} x_j \leq k$
 - Sequential counter
 - Clauses/Variables: $O(nk)$
 - BDDs
 - Clauses/Variables: $O(nk)$
 - Sorting networks
 - Clauses/Variables: $O(n \log^2 n)$
 - Cardinality Networks:
 - Clauses/Variables: $O(n \log^2 k)$
 - ...

[Sinz'05]
[Een&Sorensson'06]
[Een&Sorensson'06]
[Asin et al.'09]
• Encode $\sum_{j=1}^{n} x_j \leq k$ with sorting network:
 – Unary representation
 – Use **odd-even merging networks** [Batcher’68; Een&Sorensson’06; Asin et al.’09; etc.]
 – Recursive definition of **merging networks**
Encode $\sum_{j=1}^{n} x_j \leq k$ with sorting network:
- Unary representation
- Use odd-even merging networks [Batcher’68; Een&Sorensson’06; Asin et al.’09; etc.]
- Recursive definition of merging networks
 - Base Case:
 $$\text{Merge}(a_1, b_1) \triangleq (\langle c_1, c_2 \rangle, \{c_2 = \min(a_1, b_1), c_1 = \max(a_1, b_1)\})$$
• Encode $\sum_{j=1}^{n} x_j \leq k$ with sorting network:
 - Unary representation
 - Use **odd-even merging networks** [Batcher’68; Een&Sorensson’06; Asin et al.’09; etc.]
 - Recursive definition of **merging networks**
 - Base Case:
 $\text{Merge}(a_1, b_1) \triangleq (\langle c_1, c_2 \rangle, \{c_2 = \min(a_1, b_1), c_1 = \max(a_1, b_1)\})$
 - Let:
 $\text{Merge}(\langle a_1, a_3, \ldots, a_{n-1} \rangle, \langle b_1, b_3, \ldots, b_{n-1} \rangle) \triangleq (\langle d_1, \ldots, d_n \rangle, S_{\text{odd}})$
 $\text{Merge}(\langle a_2, a_4, \ldots, a_n \rangle, \langle b_2, b_4, \ldots, b_n \rangle) \triangleq (\langle e_1, \ldots, e_n \rangle, S_{\text{even}})$
• Encode $\sum_{j=1}^{n} x_j \leq k$ with sorting network:
 - Unary representation
 - Use odd-even merging networks [Batcher’68; Een&Sorensson’06; Asin et al.’09; etc.]
 - Recursive definition of merging networks
 ▶ Base Case:
 $\text{Merge}(a_1, b_1) \triangleq (\langle c_1, c_2 \rangle, \{ c_2 = \min(a_1, b_1), c_1 = \max(a_1, b_1) \})$
 ▶ Let:
 $\text{Merge}(\langle a_1, a_3, \ldots, a_{n-1} \rangle, \langle b_1, b_3, \ldots, b_{n-1} \rangle) \triangleq (\langle d_1, \ldots, d_n \rangle, S_{\text{odd}})$
 $\text{Merge}(\langle a_2, a_4, \ldots, a_n \rangle, \langle b_2, b_4, \ldots, b_n \rangle) \triangleq (\langle e_1, \ldots, e_n \rangle, S_{\text{even}})$
 ▶ Then:
 $\text{Merge}(\langle a_1, a_2, \ldots, a_n \rangle, \langle b_1, b_2, \ldots, b_n \rangle) \triangleq$
 $(\langle d_1, c_1, \ldots, c_{2n-1}, e_n \rangle, S_{\text{odd}} \cup S_{\text{even}} \cup S_{\text{mrg}})$
 ▶ Where:
 $S_{\text{mrg}} = \bigcup_{i=1}^{n-1} \{ c_{2i+1} = \min(d_{i+1}, e_i), c_{2i} = \max(d_{i+1}, e_i) \}$
• Recursive definition of sorting networks
 – Base case ($n = 2$):
 \[
 \text{Sort}(a_1, a_2) \triangleq \text{Merge}(a_1, a_2)
 \]
Recursive definition of sorting networks

- Base case ($n = 2$):
 \[\text{Sort}(a_1, a_2) \triangleq \text{Merge}(a_1, a_2) \]

- Let:
 \[\text{Sort}(\langle a_1, \ldots, a_n \rangle) \triangleq (\langle d_1, \ldots, d_n \rangle, S_D) \]
 \[\text{Sort}(\langle a_{n+1}, \ldots, a_{2n} \rangle) \triangleq (\langle d'_1, \ldots, d'_n \rangle, S'_D) \]
 and,
 \[\text{Merge}(\langle d_1, \ldots, d_n \rangle, \langle d'_1, \ldots, d'_n \rangle) \triangleq (\langle c_1, \ldots, c_{2n} \rangle, S_M) \]
• Recursive definition of sorting networks

 - Base case ($n = 2$):
 \[\text{Sort}(a_1, a_2) \triangleq \text{Merge}(a_1, a_2) \]
 - Let:
 \[\text{Sort}(\langle a_1, \ldots, a_n \rangle) \triangleq (\langle d_1, \ldots, d_n \rangle, S_D) \]
 \[\text{Sort}(\langle a_{n+1}, \ldots, a_{2n} \rangle) \triangleq (\langle d'_1, \ldots, d'_n \rangle, S'_D) \]
 and,
 \[\text{Merge}(\langle d_1, \ldots, d_n \rangle, \langle d'_1, \ldots, d'_n \rangle) \triangleq (\langle c_1, \ldots, c_{2n} \rangle, S_M) \]
 - Then:
 \[\text{Sort}(a_1, \ldots, a_{2n}) \triangleq (\langle c_1, \ldots, c_{2n} \rangle, S_D \cup S'_D \cup S_M) \]
Recursive definition of sorting networks

- Base case \((n = 2)\):
 \[
 \text{Sort}(a_1, a_2) \triangleq \text{Merge}(a_1, a_2)
 \]
- Let:
 \[
 \text{Sort}\left(\langle a_1, \ldots, a_n \rangle\right) \triangleq \left(\langle d_1, \ldots, d_n \rangle, S_D\right)
 \]
 \[
 \text{Sort}\left(\langle a_{n+1}, \ldots, a_{2n} \rangle\right) \triangleq \left(\langle d'_1, \ldots, d'_n \rangle, S'_D\right)
 \]
 and,
 \[
 \text{Merge}\left(\langle d_1, \ldots, d_n \rangle, \langle d'_1, \ldots, d'_n \rangle\right) \triangleq \left(\langle c_1, \ldots, c_{2n} \rangle, S_M\right)
 \]
- Then:
 \[
 \text{Sort}(a_1, \ldots, a_{2n}) \triangleq \left(\langle c_1, \ldots, c_{2n} \rangle, S_D \cup S'_D \cup S_M\right)
 \]

Let \(\langle z_1, \ldots, z_n \rangle\) be the sorted output.
The constraint \((\text{for } \leq k)\) is:
\[z_i = 0, \quad i > k\]
Example: Sort $\langle a_1, a_2, a_3, a_4 \rangle$

where each Merge block contains 1 min (\equiv AND) and 1 max (\equiv OR) operators
Outline

Boolean-Based Optimization

Practical Applications

Boolean Optimization Algorithms

CNF Encodings
 - Cardinality Constraints
 - Pseudo-Boolean Constraints

Conclusions & Future Work
Pseudo-Boolean Constraints

- General form: $\sum_{j=1}^{n} a_j \cdot x_j \leq b$
 - Operational encoding
 - Clauses/Variables: $O(n)$
 - Does not guarantee arc-consistency
 - BDDs
 - Worst-case exponential number of clauses
 - Polynomial watchdog encoding
 - Let $\nu(n) = \log(n) \log(a_{\text{max}})$
 - Clauses: $O(n^3 \nu(n))$; Aux variables: $O(n^2 \nu(n))$
 - BDD-based encoding
 - Clauses: $O(n^3 \log(a_{\text{max}}))$; Aux variables: $O(n^3 \log(a_{\text{max}}))$
- ...
Encoding PB Constraints with BDDs I

- Encode $3x_1 + 3x_2 + x_3 \leq 3$
- Construct BDD
 - E.g. by analyzing variables by decreasing coefficients
- Extract ITE-based circuit from BDD
Encoding PB Constraints with BDDs I

- Encode $3x_1 + 3x_2 + x_3 \leq 3$
- Construct BDD
 - E.g. by analyzing variables by decreasing coefficients
- Extract ITE-based circuit from BDD
Encoding PB Constraints with BDDs II

- Encode $3x_1 + 3x_2 + x_3 \leq 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:
Conclusions

- Well-known **Boolean-based decision procedures**
 - Z3, Yices, BarcelogicTools, Minisat, Picosat, etc.
 - Many practical applications
Conclusions

• Well-known Boolean-based decision procedures
 – Z3, Yices, BarcelogicTools, Minisat, Picosat, etc.
 – Many practical applications

• Upcoming Boolean-based optimization procedures
 – SAT-based: MaxSAT; PBO; WBO
 – SMT-based: MaxSMT
 – ...

Conclusions

• Well-known **Boolean-based decision procedures**
 – Z3, Yices, BarcelogicTools, Minisat, Picosat, etc.
 – Many practical applications

• Upcoming **Boolean-based optimization procedures**
 – SAT-based: MaxSAT; PBO; WBO
 – SMT-based: MaxSMT
 – ...

• Several (**many?**) exciting applications
 – Software package upgrades
 – Bug localization in C code
 – Design debugging
 – ...

[Argelich et al.’09]
[Jose & Majumdar’11]
[Safarpour et al.’07]
Conclusions

- **Well-known Boolean-based decision procedures**
 - Z3, Yices, BarcelogicTools, Minisat, Picosat, etc.
 - Many practical applications

- **Upcoming Boolean-based optimization procedures**
 - SAT-based: MaxSAT; PBO; WBO
 - SMT-based: MaxSMT
 - ...

- **Several (many?) exciting applications**
 - Software package upgrades
 - Bug localization in C code
 - Design debugging
 - ...

- **Many new lines of research**
 - Core-guided approaches
 - CNF encodings of constraints
 - Integration with relaxation-based approaches
 - ...

[Argelich et al.'09]
[Jose & Majumdar'11]
[Safarpour et al.'07]