
Marc Shapiro, INRIA & LIP6
Nuno Preguiça, U. Nova de Lisboa

Carlos Baquero, U. Minho
Marek Zawirski, INRIA & UPMC

Conflict-free Replicated
Data Types –

A principled approach to
Eventual Consistency

Replication 101

A principled approach to eventual consistency

Replicated data

Share data ⇒ Replicate at many locations
• Performance: local reads
• Availability: immune from network failure
• Fault-tolerance: replicate computation
• Scalability: load balancing

Updates
• Push to all replicas:
- Asynchronous: Reliable Multicast
- Synchronous: Atomic Multicast

• Consistency?

3

A principled approach to eventual consistency

Strong consistency

State Machine Replication
• Arbitrary sequential, deterministic object
• Globally: total order of updates
• All replicas execute updates in same order

Consensus
• Simultaneous N-way agreement
• Fault-tolerance: cf FLP85
• Doesn't scale
• ≡ Atomic Multicast
• building block for Commitment, etc.

4

A principled approach to eventual consistency

Eventual consistency

Optimistic approach
• Avoid (foreground) synchronisation
• Speculate: replicas diverge
• Reliable broadcast (scalable)
• If no conflicts, merge
• Otherwise, reconcile;
- arbitrate, merge
- roll back inconsistent replicas, roll forward

Consistent when all replicas have received all
operations & arbitrations

5

A principled approach to eventual consistency 6

Convergence

Consensus on next extension of prefix
• In the background
• Local progress not blocked
• Conflict ⇒ rollback

Improve consensus:
• Leverage future, semantics
• Genuine partial replication

0

0

0

•Minimise rollbacks
•Choose most

promising schedule
•Commutativity

•Prefixes equivalent
(not necessarily equal)

•orange-grey: aborted
•red/orange: commute

•All operations
eventually reach
the common prefix

•Equivalence across

A principled approach to eventual consistency

Fast Gen.lised Genuine Paxos

Throughput on LAN (1024 regs.) [Sutra 2010]
7

•Collision
recovery has
high cost in
Generalised
Paxos

•On a LAN
Paxos is
fastest
(because
simplest?)

☺

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600

th
ro

ug
hp

ut
 (K

C
m

d/
s)

 number of clients

GPaxos
Paxos

Fast Paxos
FGGC

Generalised Paxos

Fast Paxos

Paxos

FGGC

A principled approach to eventual consistency

Fast Gen.lised Genuine Paxos

Varying message delay (1024 regs., 360 clients) [Sutra 2010]

8

☺ 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90 100

la
te

nc
y

(m
s)

one-hop messsage delay (ms)

GPaxos
Paxos

Fast Paxos
FGGC

Generalis
ed Paxos

Fas
t P

axos

Paxos

FGGC

WAN typical

•Consistently 2.2δ
•≈20% better than Paxos (3δ)
•≈30% better than Gen. Paxos

(3.5δ)
•(for this particular benchmark)

A principled approach to eventual consistency

Eventual Consistency so far
Eventual consistency

• Moved consensus to background
• Optimistic, speculation
⇒ more available, responsive

• High-level operations: leverage semantics
• Knowledge of “future”

Arbitration/merge on conflict
• Surprisingly complex
• Mostly ad-hoc, error-prone

Improved consensus
• Very complex

Scalability?
9

•Availability ++
•Latency --

•Complexity ++
•Scalability???

A principled approach to eventual consistency

Conflict-free Replicated Data
Types (CRDTs)

Intuition:
• Conflicts are the problem
• Design data types with no conflicts

CRDTs
• Available, fast
• Reconcile scalability + consistency

Simple sufficient conditions
• Principled, correct

10

CRDTs: The theory
Sufficient conditions for

correctness without
synchronisation

A principled approach to eventual consistency

Query

Local at source replica
• Client's choice

12

x2.g()
S

S

source
x1.f(u)

x3

x1

x2

x

client

•Example: Amazon shopping cart is
replicated

•unspecified client, e.g., Web front-
end

•One or more
•load-balancer, failures may direct

client to different replicas

A principled approach to eventual consistency

Update

Two-phase updates
• At source:
- Synchronous
- Atomic

• Downstream:
- Asynchronous
- Atomic

13

D

D

x2.g()
S

S

source
x1.f(u) downstream

D

x3

x1

x2

x

D

•source: client's choice
•Downstream: all replicas

(including source)
•Eventual

client

•Queries are local

A principled approach to eventual consistency

State-based replication

Update at source x1.f(u), x2.g(), …
• Precondition, compute
• Assign payload

Convergence:
• Episodically: send xi payload
• On delivery: merge payloads

14

•merge two valid
states

•produce valid state
•no historical info

available

M

merge

merge
M

x2.g()
S

S

source
x1.f(u) merge

M

x3

x1

x2

x

A principled approach to eventual consistency

State-based specification

15

A principled approach to eventual consistency

If
• payload type forms a semi-lattice
• updates are increasing
• merge computes Least Upper Bound ⊔

then replicas converge to LUB of last values
Example: Payload = int, merge = max

16

•no reference
to history

•⊔ = Least
Upper Bound
LUB = merge

State-based convergent
objects: CvRDT

M

merge

merge
M

x2.g()
S

S

source
x1.f(u) merge

M

x3

x1

x2

x

A principled approach to eventual consistency

max

If
• payload type forms a semi-lattice
• updates are increasing
• merge computes Least Upper Bound ⊔

then replicas converge to LUB of last values
Example: f = assign, merge = max

17

Example CvRDT

0 1 4

14 4

4 4

4

max

x2 := 4

x1 := 1 max
0

0

0

4

4

4
4

4

M

M

S

S

x3

x1

x2

x
M

A principled approach to eventual consistency

Operation-based replication

At source:
• source precondition,

computation
• broadcast to all replicas

Eventually, at all replicas:
• downstream precondition
• Assign local replica

18

x1.f(u)

x2.g()

D

x3.f(v)

x1.g()
D

x3.g()
D

S

S

D

x2.f(v)

•source: no side
effects

•source
+downstream
atomic

•downstream
atomic

•at all replicas
eventually

x3

x1

x2

x

A principled approach to eventual consistency

Operation-based specification

19

A principled approach to eventual consistency

Commutative-operation-based
objects: CmRDTs

If:	
 •	
 (Liveness) all replicas execute all
	
 	
 dowstreams in precondition order

• (Safety) concurrent operations all commute
Then: replicas converge

20

•Delivery order ≃ ensures
downstream precondition

•happened-before or weaker

x1.f(u)

x2.g()

D

x3.f(v)

x1.g()
D

x3.g()
D

S

S

D

x2.f(v)

x3

x1

x2

x

A principled approach to eventual consistency

CvRDT ≡ CmRDT

Operation-based emulation of state-based object
• At source: apply state-based update
• Downstream: apply state-based merge
• Monotonic semi-lattice ⇒ commute

State-based emulation of op-based object
• Update: at-source, add op to set of messages
• Merge: union of message sets
• Execute when dpre = true
• Live: eventual delivery, eventual execute
• Commute ⇒ semi-lattice

21

•Use state or
operations

•as convenient

CRDTs: The challenge
What interesting objects can

we design with no
synchronisation whatsoever?

A principled approach to eventual consistency

Counter

Increment / decrement
• Payload: P = [int, int, …],
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () = P[MyID]++
• decrement () = N[MyID]++
• merge(x,y) =
	
 x⊔y = ([…,max(x.P[i],y.P[i]),…]i,

	
 	
 […,max(x.N[i],y.N[i]),…]i)

• Positive or negative

23

•like vector
clock

A principled approach to eventual consistency

Counter

Increment / decrement
• Payload: P = [int, int, …],
	
 N = [int, int, …]

• value() = ∑i P[i] – ∑i N[i]
• increment () = P[MyID()]++
• decrement () = N[MyID()]++
• merge(x,y) =
	
 x⊔y = ([…,max(x.P[i],y.P[i]),…]i,

	
 	
 […,max(x.N[i],y.N[i]),…]i)

• Positive or negative

24

•can't maintain global
invariant such as x>0

•N masters
•vector of single-

master counters
•like vector clock

A principled approach to eventual consistency

Register

Container for a single atom
Operations:
• read: val
• assign (val)
- Overwrites preceding value

Concurrent assign
• Single value, arbitrary choice?
• All concurrent values?

25

A principled approach to eventual consistency

Last Writer Wins Register

CvRDT payload: (atom value, timestamp ts)
• assign: overwrite value, increment ts
• Merge takes value with highest

timestamp; other is lost
• x≤y ≝ x.ts ≤ y.ts
• merge (x,y) = x.t < y.t ? y : x

26

•spec: state-based
•values form a semi-

lattice
•no reference to history fi

•Timestamps implement a
total order

•Generally ≈real time but
could be any total order

MM

S

S M

x2≔(2,1)

x1= (0,0)

x2= (0,0)

x3 = (0,0)
x3≔(3,2)

x1≔(1,3)

x3≔(3,2) x3≔(1,3)

x1≔(1,3)

Sx3

x1

x2

x

•Examples:
•NFS
•shared memory?

A principled approach to eventual consistency

{1[1,0]}

{1[1,0]} {3[1,1]}

{2[2,0]}

{2[2,0], 3[1,1] }

{2[2,0], 3[1,1]}

MV-Register

≈ LWW-Set Register
• Payload = { (value, VT vv) }
• assign: overwrite value, vv++

Concurrent updates unioned (no lost updates)
• merge (X, Y) =
	
 { x ∈ X | ∄ y∈Y: x.vv < y.vv} ∪
	
 { y ∈ Y | ∄ x∈X: x.vv > y.vv}

27

•A more recent assignment
overwrites an older one

•Concurrent assignments
are merged by union

•Standard VC merge

{0[0,0]}

{0[0,0]}

x1

x2

x

x2≔{3}

x1≔{1} x1≔{2}

•Examples:
•Unison
•CVS, SVN
•Dynamo shopping

cart

M M

M

A principled approach to eventual consistency

{1[2,0], 2[2,0]}

{1[1,0]
 }

Bookstore anomalies

“An add operation is never lost. However,
deleted items can resurface.” [Dynamo, SOSP
2007]

Preferred approach: Set CRDT

28

•delete "1",
replace by "3"

•deleted element
reappears

M M

{1[1,0]}
{0[0,0]}

{0 [0,0]}

x1≔{1} x1≔{1,2}

{3[1,1]}x2≔{3} {1[2,0], 2[2,0], 3[1,1] }

x1

x2

x

A principled approach to eventual consistency

Set

Operations:
• add (atom a)
• remove (atom a)
• lookup (atom a) : boolean

No duplicates
The prototypical CRDT?
• remove does not commute with add
• Approximations: modify semantics

29

•union and
intersection
commute

•not set difference

A principled approach to eventual consistency

Grow-only Set, state-based

Payload = set A
add (atom a)
merge (x,y) = x ∪ y

30

a A
b

c

add (a)
add (b)
add (c)
add (b)

•Build intuition
•Simple examples
•What state do I ned to

store and transmit?

•Assume: state eventuelly delivered
•Why not remove()?
•Trial and error…
•Hmm, let's move on to something else

A principled approach to eventual consistency

A

2P-Set (state)

Add, remove: 2P-set
• Payload = (Grow-Set A, Grow-Set R)
• add (atom a)

remove (atom a) [spre: a ∈ A]
lookup (a) = a ∈ A ∧ a ∉ R
• x≤y ≝ x.A ⊆ y.A ∧ x.R ⊆ y.R
• merge (x,y) = (x.A ∪ y.A, x.R ∪ y.R)

31

•A=added
•R= removed (tombstones)
•Once removed, an element

cannot be added again
•Remove has precedence

over add (absorbing)

•In many distr. sys., uses
of Set, add creates a
unique element, so this is
not a limitation

R

a

b
c

add (a)
add (b)

add (c)
add (b)

remove (a)

add (a)

A principled approach to eventual consistency

U-Set = no tombstones

2P-Set
Special, common case: a unique

• Never add again
• No tombstones

Correct shopping cart

32

A principled approach to eventual consistency

Observed-Remove Set (state)

• Payload: Map M: element to 2P-Set of tokens
• Make add unique:

 add(a) = M.add (a, unique-token)
• Remove the unique elements observed

remove(a) = M.removeAll (a)
• lookup(a) = a ∈ M ∧ a.tokens not empty
• merge (x,y) = merge token sets

33

add(a)

add(a)
S

S

rmv (a)
S

{} {a} {}

{}

add(a)
D

add(a)
D

rmv (a)
D

add(a)
D

{a}

{a} {a,a} {a}

{}

•Can never remove
more tokens than
exist

•Op order ⇒ removed
tokens have been
previously added

•Better shopping
cart

•What anomalies?

x3

x1

x2

x

A principled approach to eventual consistency

Map

Set of (key, value) pairs
Payload: S = { (k, v), … }
• lookup (k) = { v: (k, v) ∈ S }
• add (k, v) = S ≔ S ∪ { (k,v) }
• remove (k, v) = S ≔ S \ { (k,v) }
• removeAll (k) = S ≔ S \ { (k, _) }

CRDT approximations
• 2P-Map
• PN-Map
• LWW Map
• Observed-Remove Map

34

A principled approach to eventual consistency

Graph

Graph = (V, E)
	
 where V = set of atoms
	
 	
 E ⊆ V×V
	
 addVertex (v) → addEdge (v, w)
	
 	
 → removeEdge (v, w)→ removeVertex (v)

Any of the set-like CRDTs is OK
• e.g. 2P-Set ⇒ 2P-Graph

In the general case, cannot enforce global property,
e.g. acyclic

35

•and similarly
for w

•Counter-
examples
next

•delay
concurrent
removes

A principled approach to eventual consistency

GC

Tombstone
• 2P-Set: forbid add-remove-add
• Graph: addEdge(u,v) || removeVertex(u)
• Discard when all concurrent addEdge

delivered
- i.e. when removeVertex stable
- Wuu, Bernstein/Golding algorithm

• No consensus
• Not live in presence of crash

36

A principled approach to eventual consistency

Monotonic DAG

37

⊢

I
α

I
δ

⊣

N
β

R
γ

A
ε

⊢ ⊣

•add: between already-ordered
elements

•remove: preserves existing
order

•Monotonic between
remaining elements
[restrictive meaning]

•Typical application:
concurrent text editing

add-between (x, y, z)
•dpre:	
 x,z ∈ V ∧ x < z
•effect:	
y ∈ V ∧ x<y<z

remove (y)
•effect: y ∉ V ∧ x<z

•Causal order too strong for
add

•Too weak for delete

A principled approach to eventual consistency

Sequence

Sequence of elements of type T
• Co-operative edit buffer:

sequence of atoms
• add-at-location, remove

Two approaches:
• Linked list
• Continuum

38

I R I

’

AN

L

⊣⊣⊢⊢

A principled approach to eventual consistency

I
00.1

R
31.3

I
30.3

Roh's RGA

Elements of type (atom v, LTS ts)
• Explicit (total order) graph x < y < z

add-after (x, y):
• dpre: add-after(..., x) → add-after (x, ...)
• Sequential: add-after (x,y) → add-after (x,z)
	
 ⇒ y.ts < z.ts ∧ x < z < y

• Concurrent: add-after (x,y) || add-after (x,z)
	
 ∧ y.lts < z.lts ⇒ x < z < y

39

•Lamport
timestamp

•Concurrent
behaviour
consistent

⊢⊢ ⊣⊣

’
40.2

A
20.2

N
10.1

L
40.3

A principled approach to eventual consistency

Roh's RGA

Elements of type (atom v, LTS ts)
• Explicit (total order) graph x < y < z

add-after (x, y):
• dpre: add-after(..., x) → add-after (x, ...)
• Sequential: add-after (x,y) → add-after (x,z)
	
 ⇒ y.ts < z.ts ∧ x < z < y

• Concurrent: add-after (x,y) || add-after (x,z)
	
 ∧ y.lts < z.lts ⇒ x < z < y

40

•Lamport
timestamp

•Concurrent
behaviour
consistent

I
00.1

R
31.3

I
30.3

⊢⊢ ⊣⊣

’
40.2

A
20.2

N
10.1

L
40.3

A principled approach to eventual consistency

Continuum

Assign each element a unique real number
• position

Real numbers not appropriate
• approximate by tree

41

⊣⊣⊢⊢ I
0

R
100.25

I
100.5

’
-1.00

A
101

N
100

L
-1.01

A principled approach to eventual consistency

Layered Treedoc

42

Site 34 Site 79

Site 34 Site 66 Site 79

sparse 864-
-ary tree

binary tree

Site 34 Site 22

Edit: Binary tree
Concurrency: Sparse tree

A principled approach to eventual consistency

Rebalance

Tree has nice logarithmic properties
Wikipedia, CVS experiments:

• Lots of removes
• Unbalanced over time

Rebalancing changes IDs:
• Strong synchronisation (commitment)
• In the background
• Liveness not essential
• Core-Nebula: small-scale consensus

43

•stronger
form of GC

A principled approach to eventual consistency

Take aways

Principled approach to eventual consistency
Two sufficient conditions:

• State: monotonic semi-lattice
• Operation: commutativity

Useful CRDTs
• Register: Last-Writer-Wins, Multi-Value
• ≈ Set: 2P (remove wins), OR (add wins)
• Map ≈ Set + Register
• Graph ≈ (Set, Set) + E ⊆ V×V
• Monotonic DAG
• Sequence: list, continuum

44

A principled approach to eventual consistency

Future work
CRDT-based cache for cloud
Strong invariants

• counter ≥ 0
• graph ∈ DAG, tree, XML schema

Approaches:
• Restricted problems
• Consensus
• Eventual conformance: diverge +

fix, probabilistic guarantees
Quasi-CRDTs

• Common operations commute
• Occasional consensus

45

•exponential
backoff

A principled approach to eventual consistency

CRDTs for
cloud computing

ConcoRDanT: ANR 2010–2013
• Systematic study, explore design space
• Characterise invariants
• Library of data types: multilog, K-V store

+ composition
When consensus required:

• Mix commutative / non-commutative
semantics

• Move off critical path, non-critical ops
• Speculation + conflict resolution

46

A principled approach to eventual consistency 47

