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Code Generator

Code generators are tools that take as input “models” in
a modelling language and output various artifacts:

» Code
» Other models (one man’s model is another man’s code)

Examples of code-generators
» Rhapsody code-generator
» Matlab/Stateflow simulator
» Lex/Yacc
» Query optimizers
> ..
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Why Code Generators

More and more complex systems
Difficult to program, and error-prone
Avoid reinventing the wheel
» Design-patterns that are well understood
» Solutions that can be tuned

Split up the verification process

» Verify models, where domain specific abstractions can
effectively simplify verification process.

» Verify the code-generator — low level implementation
details need to be considered only in this step

Code-generators are the new compilers!

India Science Lab



GM  Verification of Code-Generators &=

Approaches for verifying generated software:
» Just ship the product!
» Test the code

» Model based testing

Test the equivalence of the “golden” model and the generated
code

» Equivalence checking for each run

Prove the equivalence of the model and the generated code
» Testing using Automatic Test-case Generation

Generate test-cases for the code-generator
» Formal verification

Prove the correctness of the code-generator

Does not scale to industrial tools (yet!)
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The Tradeoffs

White-box vs. Black-box

One-off vs. Each-run

Certification vs. Proof

Other issues
» Push-buttonvs. interactive
» Portable / Reusable artifacts (eg. Test suites)
» Tuneable
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The difference

Proving a code generator
VvV m:models, V i:.inputs:
ModelExec(m, i) ~ CodeExec(CodeGen(m),i)

Testing a code generator

Formany m:models, Formany i:inputs:
ModelExec(m, 1) ~ CodeExec(CodeGen(m),i)

Translation validation ; fix a model m
V Ll:inputs: ModelExec(m, 1) ~ CodeExec(CodeGen(m),i)
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Testing Code Generators

Syntax based
» Generate models that cover syntactic elements
» Generate Code

» Perform model-based testing

Generate a large test-suite that achieves various coverage
criteria over the model elements

Issues
» Very large test-suites.
» Difficult to avoid “duplicates”

» Models that are syntactically very different may be very
similar semantically.
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Testing Code Generators

Semantics based

» |Is the semantics of the generated code the same as the
semantics of the model?

» ldentify coverage over semantics

» For each semantic behaviour
Generate model+Input that will exhibit this behaviour
Generate expected output for this model+input
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Meta-model

Syntax and
Semantics
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Coverage of Semantics

Represent semantics as “inference-rules”
Achieve coverage of rules in “proofs”

Proof-rules for Hoare logic
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Coverage of Semantics

Generate inference trees from rules that achieve
coverage of rules

Generate model+input that would give exhibit
behaviour in inference tree

» Reverse semantics!

Generate expected output for given model+input

Bundle the three into a test-case
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Stateflow Semantics

Inference rules for Stateflow:

le*l [ Jirirtfe™ C1 " Marint 0" T4

(=1 h

en: prirtf" E1" ® ) . ..
du printi" 01" Entering an atomic state s by a transition
ex prntf" 1™ : I
Y 1 Hrintf(" C2) Wrintte" T2 {P} entryAct(s) {Q > Erf}
%2[1 JprintfC" C4™) Morintf" T4" (P <aP)r=0s(QT)

(Atom-E)
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en. prirtf" E2"
du: printf(" D2™)
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Test-cases

le“l [ Hprint " <1 parind fC T1)

s \

en: printf" E1") @
du; printf(" 0™
e print " A1)
N 1 Jpritc 2 porintc T2
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=2

en: printf" E2"
du: printf(" D2
ex prirt " X2")

Input events: el, e2
Expected actions: (C1T1E1C2T2E2D1(C3X2T3 E2)

V6.2.1:(C1T1E1C2T2E2D1C3X2T3CAT4 E2)
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Proofs for Code Generators RD)

Translation validation approach

» Calculate the semantics of the model as a set of inference-
trees

» Generate a verification condition (pre/post pair) from
each inference tree

» Verify these (pre/post) pairs on the program
» Push-button on every codegen run

Issues
» What happens if translation-validation fails?
» Assumes semantics is finite
» Assumes that semantics is known!
» Program verification can prove pre/post pairs
» Assumes a business need for all this extra effort
» Simulink/Stateflow — a sweet-spot
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i GM  Translation Validation of Stateflow =
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Around 40 verification conditions
Verified on generated c-code using cbmc
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