Tests and Proofs for Code Generators

Prahlad Sampath
Joint work with
A C Rajeev, K C Shashidhar (MPI), S Ramesh

i {VIULU

Code Generator

Code generators are tools that take as input “models” in
a modelling language and output various artifacts:

» Code
» Other models (one man’s model is another man’s code)

Examples of code-generators
» Rhapsody code-generator
» Matlab/Stateflow simulator
» Lex/Yacc
» Query optimizers
> ..

India Science Lab

Why Code Generators

More and more complex systems
Difficult to program, and error-prone
Avoid reinventing the wheel
» Design-patterns that are well understood
» Solutions that can be tuned

Split up the verification process

» Verify models, where domain specific abstractions can
effectively simplify verification process.

» Verify the code-generator — low level implementation
details need to be considered only in this step

Code-generators are the new compilers!

India Science Lab

GM Verification of Code-Generators &=

Approaches for verifying generated software:
» Just ship the product!
» Test the code

» Model based testing

Test the equivalence of the “golden” model and the generated
code

» Equivalence checking for each run

Prove the equivalence of the model and the generated code
» Testing using Automatic Test-case Generation

Generate test-cases for the code-generator
» Formal verification

Prove the correctness of the code-generator

Does not scale to industrial tools (yet!)

India Science Lab

The Tradeoffs

White-box vs. Black-box

One-off vs. Each-run

Certification vs. Proof

Other issues
» Push-buttonvs. interactive
» Portable / Reusable artifacts (eg. Test suites)
» Tuneable

India Science Lab

The difference

Proving a code generator
VvV m:models, V i:.inputs:
ModelExec(m, i) ~ CodeExec(CodeGen(m),i)

Testing a code generator

Formany m:models, Formany i:inputs:
ModelExec(m, 1) ~ CodeExec(CodeGen(m),i)

Translation validation ; fix a model m
V Ll:inputs: ModelExec(m, 1) ~ CodeExec(CodeGen(m),i)

India Science Lab

Testing Code Generators

Syntax based
» Generate models that cover syntactic elements
» Generate Code

» Perform model-based testing

Generate a large test-suite that achieves various coverage
criteria over the model elements

Issues
» Very large test-suites.
» Difficult to avoid “duplicates”

» Models that are syntactically very different may be very
similar semantically.

India Science Lab

Testing Code Generators

Semantics based

» |Is the semantics of the generated code the same as the
semantics of the model?

» ldentify coverage over semantics

» For each semantic behaviour
Generate model+Input that will exhibit this behaviour
Generate expected output for this model+input

India Science Lab

Meta-model

Syntax and
Semantics

India Science Lab

Automatic
Test-case
Generator

Wodels + Inputs + Output

<

Code Generator

Under Test

Test Harness

Test Spec

m What would we
like to test?

Test case

Ferll
-

Expected
Outputs

'

Code Generator
Under Test

U

Actual
Code _— _— Outputs

Test Harness

E<

India Science Lab

Coverage of Semantics

Represent semantics as “inference-rules”
Achieve coverage of rules in “proofs”

Proof-rules for Hoare logic

India Science Lab

Coverage of Semantics

Generate inference trees from rules that achieve
coverage of rules

Generate model+input that would give exhibit
behaviour in inference tree

» Reverse semantics!

Generate expected output for given model+input

Bundle the three into a test-case

India Science Lab

Stateflow Semantics

Inference rules for Stateflow:

le*l [Jirirtfe™ C1 " Marint 0" T4

(=1 h

en: prirtf" E1" ®) . ..
du printi" 01" Entering an atomic state s by a transition
ex prntf" 1™ : I
Y 1 Hrintf(" C2) Wrintte" T2 {P} entryAct(s) {Q > Erf}
%2[1 JprintfC" C4™) Morintf" T4" (P <aP)r=0s(QT)

(Atom-E)

=2

en. prirtf" E2"
du: printf(" D2™)
ex printf" X2"

2[1Hprintf" C3") pwint " T3"
& 2[1 Jiprind f(" T30 Mgintf _;L

Entering an OR state by a transition, and its child state by default transition

{P} entryAct(s) {Po> U} (P R) F, Ta(PsW) (PaP) =Es (Q U,
(T aP)r=0s Q> Ui_y Uk

(OR-dE-E)

India Science Lab

Test-cases

le“l [Hprint " <1 parind fC T1)

s \

en: printf" E1") @
du; printf(" 0™
e print " A1)
N 1 Jpritc 2 porintc T2
%2[1 [iprirt " C4™ dprind £ T4"

=2

en: printf" E2"
du: printf(" D2
ex prirt " X2")

Input events: el, e2
Expected actions: (C1T1E1C2T2E2D1(C3X2T3 E2)

V6.2.1:(C1T1E1C2T2E2D1C3X2T3CAT4 E2)

India Science Lab

Proofs for Code Generators RD)

Translation validation approach

» Calculate the semantics of the model as a set of inference-
trees

» Generate a verification condition (pre/post pair) from
each inference tree

» Verify these (pre/post) pairs on the program
» Push-button on every codegen run

Issues
» What happens if translation-validation fails?
» Assumes semantics is finite
» Assumes that semantics is known!
» Program verification can prove pre/post pairs
» Assumes a business need for all this extra effort
» Simulink/Stateflow — a sweet-spot

India Science Lab

i GM Translation Validation of Stateflow =

Stateflow Code C
chart generator program

\
SiSa

Abstract
SyntaxTree
Stateflow Inference tree
semantics builder

Inference
trees

Variable -

. Variable Annotated Yes
mapping mabbine Weaver c CBMC
generator PPN program

Verification
Condition
generator

Verification
conditions

India Science Lab

-
;7 gear_state

; frst] second 4 third .] fourth 1 ':
E \Entr:,r: gear = 1: s_]entry: gear = Z; o entry: gear = 3; entry. gear = 4, :

"~
LS T T -

;. =election_state

. during: CALC_

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

0 apy

: downz=hifting i

' 1

! p— . -

0 after{TVWAIT tick) after{TVWAIT tick)

t [epeed <= down_th] [epeed == up_th)

ILI\. Fils =tate DC K fne _=tate P,
Y —

Around 40 verification conditions
Verified on generated c-code using cbmc

India Science Lab

