
Tests and Proofs for Code GeneratorsTests and Proofs for Code Generators

PrahladPrahlad SampathSampath

Joint work withJoint work with

A C Rajeev, K C A C Rajeev, K C ShashidharShashidhar (MPI), (MPI), S S RameshRamesh

India Science Lab

Code GeneratorCode Generator

Code generators are tools that take as input “models” in
a modelling language and output various artifacts:

Code
Other models (one man’s model is another man’s code)

Examples of code-generators
Rhapsody code-generator
Matlab/Stateflow simulator
Lex/Yacc
Query optimizers
...

India Science Lab

Why Code GeneratorsWhy Code Generators

More and more complex systems
Difficult to program, and error-prone
Avoid reinventing the wheel

Design-patterns that are well understood
Solutions that can be tuned

Split up the verification process
Verify models, where domain specific abstractions can
effectively simplify verification process.
Verify the code-generator – low level implementation
details need to be considered only in this step

Code-generators are the new compilers!

India Science Lab

Verification of CodeVerification of Code--GeneratorsGenerators
Approaches for verifying generated software:

Just ship the product!
Test the code
Model based testing

Test the equivalence of the “golden” model and the generated
code

Equivalence checking for each run
Prove the equivalence of the model and the generated code

Testing using Automatic Test-case Generation
Generate test-cases for the code-generator

Formal verification
Prove the correctness of the code-generator

Does not scale to industrial tools (yet!)

India Science Lab

The TradeoffsThe Tradeoffs

White-box vs. Black-box

One-off vs. Each-run

Certification vs. Proof

Other issues
Push-button vs. interactive
Portable / Reusable artifacts (eg. Test suites)
Tuneable

India Science Lab

The differenceThe difference

Proving a code generator

m:models, i:inputs:
ModelExec(m, i) CodeExec(CodeGen(m),i)

Testing a code generator
Formany m:models, Formany i:inputs:

ModelExec(m, i) CodeExec(CodeGen(m),i)

Translation validation : fix a model m

i:inputs: ModelExec(m, i) CodeExec(CodeGen(m),i)

India Science Lab

Testing Code GeneratorsTesting Code Generators

Syntax based
Generate models that cover syntactic elements
Generate Code
Perform model-based testing

Generate a large test-suite that achieves various coverage
criteria over the model elements

Issues
Very large test-suites.
Difficult to avoid “duplicates”
Models that are syntactically very different may be very
similar semantically.

India Science Lab

Testing Code GeneratorsTesting Code Generators

Semantics based
Is the semantics of the generated code the same as the
semantics of the model?
Identify coverage over semantics
For each semantic behaviour

Generate model+Input that will exhibit this behaviour

Generate expected output for this model+input

India Science Lab

What would we
like to test?

Syntax and
Semantics

Generator

Automatic
Test-case
Generator

Meta-modelMeta-model Test SpecTest Spec

Models + Inputs + OutputsModels + Inputs + Outputs

Test Harness

Code Generator
Under Test

India Science Lab

Test Harness

Test case

Model

Code Generator
Under Test

Code

Inputs Expected
Outputs

Execution Actual
Outputs

?

India Science Lab

Coverage of SemanticsCoverage of Semantics

Represent semantics as “inference-rules”
Achieve coverage of rules in “proofs”

Proof-rules for Hoare logic

India Science Lab

Coverage of SemanticsCoverage of Semantics

Generate inference trees from rules that achieve
coverage of rules

Generate model+input that would give exhibit
behaviour in inference tree

Reverse semantics!

Generate expected output for given model+input

Bundle the three into a test-case

India Science Lab

Inference rules for Stateflow:

Stateflow SemanticsStateflow Semantics

Entering an atomic state s by a transition

Entering an OR state by a transition, and its child state by default transition

India Science Lab

TestTest--casescases

Input events: e1, e2
Expected actions:

V6.2.1:

India Science Lab

Proofs for Code GeneratorsProofs for Code Generators
Translation validation approach

Calculate the semantics of the model as a set of inference-
trees
Generate a verification condition (pre/post pair) from
each inference tree
Verify these (pre/post) pairs on the program
Push-button on every codegen run

Issues
What happens if translation-validation fails?
Assumes semantics is finite
Assumes that semantics is known!
Program verification can prove pre/post pairs
Assumes a business need for all this extra effort
Simulink/Stateflow – a sweet-spot

India Science Lab

Translation Validation of Translation Validation of StateflowStateflow

India Science Lab

ExampleExample

Around 40 verification conditions
Verified on generated c-code using cbmc

