Conflict-free Replicated
Data Types —
A principled approach to
Eventual Consistency

Marc Shapiro, INRIA & LIP6
Nuno Preguica, U. Nova de Lisboa

Carlos Baquero, U. Minho
Marek Zawirski, INRIA & UPMC

o< O
TTTTTTTTTTTTTTTT
EEEEEEEEEEE ‘ W ConcoRDanT
EEEEEEEEEEEEEE INRIA N
EEEEEEEEEEEEEEE ‘ pe s
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Replication 0]

Replicated data

Share data = Replicate at many locations
* Performance: local reads
* Availability: immune from network failure
* Fault-tolerance: replicate computation
* Scalability: load balancing

Updates
* Push to all replicas:
- Asynchronous: Reliable Multicast
- Synchronous: Atomic Multicast
e Consistency!

Strong consistency

State Machine Replication
* Arbitrary sequential, deterministic object
* Globally: total order of updates
e All replicas execute updates in same order

Consensus

e Simultaneous N-way agreement
Fault-tolerance: cf FLP85
Doesn't scale
= Atomic Multicast

building block for Commitment, etc.

Eventual consistency

Optimistic approach
* Avoid (foreground) synchronisation
e Speculate: replicas diverge
Reliable broadcast (scalable)
If no conflicts, merge
Otherwise, reconcile;
- arbitrate, merge
- roll back inconsistent replicas, roll forward

Consistent when all replicas have received all
operations & arbitrations

Convergence

H— — 0000

o All operations

v 7—O—O—@—@—>¢eventually reach
o TXe common prertix

oPrefixes equivalent eEquivalence across

(not necessarily equal)
e orange-grey: aborted Oalabn nOoCoC0L0

ered/orange: commute

X

Consensus on next extension of prefix
* In the background
* |Local progress not blocked
e Conflict = rollback

Improve consensus: o Minimise rollbacks

* Leverage future, semantics «Choose wost
prowmising schedule

* Genuine partial replication o Commutativity

Fast Gen.lised Genuine Paxos

© GPaXOS R .
Paxos
Fast Paxos ---+---
70 + FGGC ——
60

2 50
£
eOnaLAN < .l
Paxos is 2
fastest 3
(because £ 30
simplest?)

20 -

P
10 |-/ 4
+

0 2I00 4:)0 6:)0 82)0 1 (;00 1 2100 1 4IOO 1¢ ® colli sion
number of clients
ecovery has
igh cost in
Generalised

Paxos

Throughput on LAN (1024 regs.) [Sutra 2010]

Fast Gen.lised Genuine Paxos

350

300

250

200

latency (ms)

150

100

©) o

GPaxos -+
PaXOS
Fast Paxos ---+---
FGGC ——)
° s o
oem\ Rt
Ge fi‘ %%5
A ;':v':tf'”"'“
._.,F;'—

eConsistently 2.25
0=20% hetter than Paxos (35)
o;ssggi better than Gen. Paxos

o(for this particular benchmark)

10

20 30 40 50 60 70 80 90 1
one-hop messsage delay (ms)

Varying message delay (1024 regs., 360 clients) [Sutra 2010]

Eventual Consistency so far

o Availability ++
Eventual consistency »latency --
* Moved consensus to background eComplexity +*
e Optimistic, speculation srnlD T
= more available, responsive
* High-level operations: leverage semantics

 Knowledge of “future”

Arbitration/merge on conflict
* Surprisingly complex
* Mostly ad-hoc, error-prone

Improved consensus
* Very complex

Scalability?

Conflict-free Replicated Data
Types (CRDTs)

Intuition:
e Conflicts are the problem
* Design data types with no conflicts

CRDTs
* Available, fast
* Reconcile scalability + consistency

Simple sufficient conditions
* Principled, correct

CRDTs: The theory

Sufficient conditions for
correctness without
synchronisation

Query

client
source
/ s

/ \

' @ | \exz'g() >
\ l
& >
< o Example: Amazon shopping cart is
replicated

-ungpeclfled client, e.q., Web front-
en

e One or more

0Ioad balanfer failures may direct
client to different replicas)

Local at source replica
e Client's choice

>

Update

source
x1.f(u) downstream

client

(s) O O —> esource: client's choice
\ X o Fonns,’rream: alSreplicas
eXZ-g() ° o s (including source
\ \ o Eventual

eQueries are local

Two-phase updates
e At source:
- Synchronous
- Atomic
* Downstream:
- Asynchronous
- Atomic

State-based replication

source

N x1.f(u) merge
/ \ (s @ 0—>
, \ xg) N\ /
{ }) o O O
\ /l merge \
\
\\ //
Update at source x,.f(u), x2.g(), ... e merge two valid
* Precondition, compute states
) eproduce valid state
* Assign payload oo historical info
available
Convergence:

* Episodically: send x; payload
* On delivery: merge payloads

State-based specification

payload Payload type; instantiated at all replicas
initial Initial value

query Query (arguments) : returns
pre Precondition
let Evaluate synchronously, no side effects

update Source-local operation (arguments) : returns
pre Precondition
let FEvaluate at source, synchronously
Side-effects at source to execute synchronously

compare (valuel, value2) : boolean b
Is valuel < wvalue2 in semilattice?

merge (valuel, value2) : payload mergedValue
LUB merge of valuel and value?2, at any replica

State-based conve%gent
objects: CvRD

source
Py x1.f(u) merge

[\ x2.8() \ /
|
@] e

o = Least

\ / Upper Bound
N’ LUB~ merge
If
* payload type forms a semi-lattice ——
o o o
* updates are increasing to history

* merge computes Least Upper Bound L
then replicas converge to LUB of last values

Example CYyRDT

x//\\ xi =1 max
[\ x2:=4 \ 4 /
| @ l o o o O @ > 4
| I' max \
\
\ /
\\//

Example: f = assign, merge = max

Operation-based replication

x x1.f(u) x1.8() edownstream
/| M O—— o > atomic
| \ x2.8() x2.f(v) eat all re;l)licas
, @ \ o o—> eventually
\ l
\] S x.f(v)

e source: 1o sid o (o

efgec’rs k‘\//

esource

*downstream

atomic

At source:

Eventually, at all replicas:
* downstream precondition
* Assign local replica

* source precondition,
computation
* broadcast to all replicas

Operation-based specification

payload Payload type; instantiated at all replicas
initial Initial value
query Source-local operation (arguments) : returns
pre Precondition
let Execute at source, synchronously, no side effects

update Global update (arguments) : returns
atSource (arguments) : returns
pre Precondition at source
let 1st phase: synchronous, at source, no side effects

downstream (arguments passed downstream,)
pre Precondition against downstream state
2nd phase, asynchronous, side-effects to downstream state

Commutative-operation-based
objects: CmRDTs

X
77\
/ \ >
[\ x2.f(v)
() | °o—>
\ /l
\
\\ //

o Delivery order ~ ensures
downstream precondition

, . e happened-before or weaker
If: » (Liveness) all replicas execute ali

dowstreams in precondition order

* (Sdfety) concurrent operations all commute
Then: replicas converge

CvRDT = CmRDT

Operation-based emulation of state-based object
e At source: apply state-based update
* Downstream: apply state-based merge
* Monotonic semi-lattice = commute

State-based emulation of op-based object
e Update: at-source, add op to set of messages
* Merge: union of message sets
* Execute when dpre = true
* Live: eventual delivery, eventual execute
L

. . oUse state or
Commute = semi-lattice operations

eas convenient

CRDTs: The challenge

WWhat interesting objects can
we design with no
synchronisation whatsoever?

Counter

Increment -Lillgglgecfor
* Payload: P = [int,int, ...]

* value() = 2 P[i]
* increment () = P[MyID]++

) merge(f(,zl’)y - [-...max(x.P[iL,y.P[i]),...]

Counter

oN masters
evector of singl
Increment master coun ers
* Payload: P = [int,int, ...] like vector elock

* value() = 2 P[i]
e increment () = P[MyID()]++

* merge(x,y) =
xuy = ([...,max(x.P[il,y.P[i]),...]i

ecant maintaln qlobal
invariant such as x>0

Register

Container for a single atom

Operations:
* read: val
* assign (val)
- Overwrites preceding value
Concurrent assign

* Single value, arbitrary choice?
e All concurrent values!?

Last Vriter Wins Register

oExamples:
N xi=(1,3) x1=(1,3) oNFS
/ \ xi1=(0,0) (s O o—> e shared memory?

/ \ x2=(2,1) >/
| | x,=(0,0) -© ® ® >
\\ @I' = (0.0 \ \

/

N/ w=(32) x=(1,3)

CvRDT payload: (atom value, timestamp ts)
* assign: overwrite value, incremenf,fs. o« i
* Merge takes value with highest eyalues forma somi

. . . attice
timestamp; other is lost e no reference to history f
o y<y &£ <
Xy Xt = y 1S o Timestamps implement a

° = < v - *fotal order*
merge (X’y) XT<ytry:x o Generally =real time but
could be any total order

eExamples:
e Unison

MV-Register "
g e Dynamo shopping
cart
PO x1:={1} x1:={2} {21201, 311,17}
%/ @\ {01001} — @ @ I‘ ‘_mrzg o
(\’ {I11,00} \ {21207}
\ @ / {0007} [m) O o—0~>
N {lpay x2={3} it {220 31,17}
o A more recent assignment
overwrites an older one

e(oncurrent assignments
are merged by vnion

~ LWW-Set Register o Standard VC werge
e Payload = { (value, VT wv) }

* assign: overwrite value, vv++
Concurrent updates unioned (no lost updates)
* merge (X,Y) =
{xe X|AyeY:xw <yw}u
{yeY|axeX xvw>yw}

Bookstore anomalies

/@\{o }XI_ W @ X':ZQ{I’Z} O
[0,0] >
{I[/ o} \ {120, 2120} \
\ @ /{0 [0,0]} (M) ® 0>
N/ {lpo} x2={3} {3} {lop 2205 37117}
edeleted element
reappears
odelete’ 1
replace by "3"

“An add operation is never lost. However,

glgéeted items can resurface.” [Dynamo, SOSP
2007]

Preferred approach: Set CRDT

Set

Operations:
* add (atom aq)
* remove (atom a)
* Jookup (atom a) : boolean

No duplicates

The prototypical CRDT?
e remove does not commute with add

* Approximations: modify semantics eunion and
infersection

commute
enot set difference

Grow-only Set, state-based

o Build intuition
o Simple examples

eWhat state do | ned to
store and transmit? a
b
C
add (a)
Payload = set A add gb))
add (c
add (atom a) odd (b)

merge (x,y) = x Uy

o Assume: state eventuelly delivered

e Why not removel()?

e Trial and error...

o Hmm, let's move on to something else

o A=added
oR= removed (tombstones)
eOnce removed, an element
- et State cannot be added again
o Remove has precedence
over add (absorbing)

% A

Add, remove: 2P-set
* Payload = (Grow-Set A, Grow-Set R) add (a)

* add (atom a) add (b)
remove (atom a) [spre:a € A] reZLZV?cﬁa)
lookup (a) =acA Aa¢R add (b

* x<y£xACyAAxRCyR add (a)

e merge (x,y) = (x.A U yA xR U yR)

o ln many distr. sys., uses
of Set, add creafesa
unique element, so this is
not a limitation

U-Set = no tombstones

2P-Set

Special, common case: a unique
* Never add again
* No tombstones

Correct shopping cart

Observed-Remove Set (state)

M // N 0 add(a) {a} rmv (a) 0 add(a) {a}

/ \ o o (o] o>

j \ add(W

, \ s *Can never remove
@ , more tokens than

\] \ \ \ exist

\ J add(a) rmv(a) e(porder = rewoved

N add(a) a a; tokens have been
previously added

* Payload: Map M: element to 2P-Set of tokens
* Make add unique:
add(a) = M.add (a, unique-token)
* Remove the unique elements observed
remove(a) = M.removeAll (a)
* lookup(a) = a € M A a.tokens not empty °Fetier shopping

* merge (x,y) = merge token sets e What anomalies?

Map

Set of (key, value) pairs
Payload:S ={ (k,v), ... }
e lookup (k) ={v:(k,v) €S}
e add (k,v) =S :=Su{(kv)}
e remove (k,v) =S = S\{(kv) }
e removeAll (k) =S =S\{(k _)}

CRDT approximations
e 2P-Map
* PN-Map
* LWW Map
* Observed-Remove Map

Graph

Graph = (V, E)
where V = set of atoms

E CVxV eand similarly
addVertex (v) = addEdge (v, w) forw
— removeEdge (v, w)— removeVertex (v)

Any of the set-like CRDTs is OK e

removes

e e.g.2P-Set = 2P-Graph

In the general case, cannot enforce global property,

. eCounter-
e.g. aC)'C|IC examples

next

GC

Tombstone
e 2P-Set: forbid add-remove-add
* Graph: addEdge(u,v) || removeVertex(u)
* Discard when all concurrent addEdge
delivered
- i.e. when removeVertex stable
- Wuu, Bernstein/Golding algorithm
* No consensus
* Not live in presence of crash

Monotonic DAG

eadd: between already-ordered
[elements

erewove: preserves existing
order

e Monotonic between
rewmaining elements
— Lrestrictive meaning]

o Typical application:
cmcurrem text editing

e (avusal order too strong for
add

o Too weak for delete

™ Z

add-between (x, y, z)
edpre: x,ze VAX<z
eeffect:y € V A x<y<z

remove (y)
seffect.ty € V Ax<z

Y

<

Sequence

Sequence of elements of type T
e Co-operative edit buffer:
sequence of atoms

e add-at-location, remove

Two approaches:
* Linked list
e Continuum

e L [
"” [— + N LT P A e >
: " A R e) I
Elements of type (atom v, LTS ts) oLamport
* Explicit (total order) graph x <y <z timestamp
add-after (x, y):

* dpre: add-dfter(..., x) = add-after (x, ...)
* Sequential: add-after (x,y) — add-dafter (x,z) etopcurrent

= YIS <ZISAX<Z<Y AR

e Concurrent: add-dfter (x,y) || add-after (x,z)
AYIts <zlts = x<z<y

Roh's RGA

A AN A A
: ' A R ______________ I
Elements of type (atom v, LTS ts) oLamport
* Explicit (total order) graph x <y <z timestamp
add-after (x, y):

* dpre: add-dfter(..., x) = add-after (x, ...)
* Sequential: add-after (x,y) — add-dafter (x,z) etopcurrent

= YIS <ZISAX<Z<Y AR

e Concurrent: add-dfter (x,y) || add-after (x,z)
AYIts <zlts = x<z<y

Continuum

Assign each element a unique real number
* position

Real numbers not appropriate
* approximate by tree

Layered Treedoc

sparse 8%4- Site 34 Site 79
-ary tree

Site 34 Site 22
Site 34 Site 66 Site 79

binary tree

Edit: Binary tree
Concurrency: Sparse tree

esfronger

Rebalance ‘i

Tree has nice logarithmic properties

Wikipedia, CVS experiments:
e | ots of removes
e Unbalanced over time

Rebalancing changes IDs:
e Strong synchronisation (commitment)
* In the background
e | iveness not essential
e Core-Nebula: small-scale consensus

Take aways

Principled approach to eventual consistency

Two sufficient conditions:
e State: monotonic semi-lattice
e Operation: commutativity

Useful CRDTs
* Register: Last-Writer-Wins, Multi-Value

* =~ Set: 2P (remove wins), OR (add wins)
Map =~ Set + Register

Graph = (Set,Set) + E C VXV
Monotonic DAG

Sequence: list, continuum

Future work

CRDT-based cache for cloud

Strong invariants

* counter = 0
e graph € DAG, tree, XML schema

Approaches:
* Restricted problems
* Consensus
* Eventual conformance: diverge +

fix, probabilistic guarantees °gfgngrta

Quasi-CRDTs
e Common operations commute
* Occasional consensus

TN

—_/\

ConcoRDanT

CRDTs for ==
cloud computing

ConcoRDanT:ANR 2010-2013

* Systematic study, explore design space

e Characterise invariants

* Library of data types: multilog, K-V store
+ composition

When consensus required:

* Mix commutative / non-commutative
semantics

* Move off critical path, non-critical ops

e Speculation + conflict resolution

