Microsoft[®] Research Faculty Summit 2010

Use of Animation in Information Visualization

George G. Robertson Principal Researcher Microsoft Corporation

Animation

	Helps?	Hurts?
Attention	direct attention	Distraction
Object Constancy	change tracking	false relations
Causality	narrative	false agency
Engagement	increase interest	"chart junk"
Calibration		too slow: boring
		too fast: errors

Principles for Animation

Character Animation (Lasseter 1987, based on Thomas and Johnson 1981) Squash and stretch Exaggeration Anticipation Staging Slow-in / Slow-out

Principles for Animation

Animated Presentations (Zongker, Salesin 2003) Make movement meaningful Avoid unintended perceptions of agency Avoid squash-and-stretch, exaggeration Direct attention, aid comprehension Use anticipation and staging Do one thing at a time Reinforce animation with narration Distinguish dynamics from transitions

Principles for Animation (Tversky et al, 2002)

Congruence Principle

• The structure and content of the external representation should correspond to the desired structure and content of the internal representation

Apprehension Principle

• The structure and content of the external representation should be readily and accurately perceived and comprehended

Principles for Animation

Congruence

Maintain valid data graphics during transitions Use consistent syntactic/semantic mappings Respect semantic correspondence Avoid ambiguity

Apprehension

Group similar transitions Minimize occlusion Maximize predictability Use simple transitions Use staging for complex transitions Make transitions as long as needed, but no longer

Uses of Animation in Information Visualization

Transition Animation

- Short animation keeps user in context during view/data transitions
 Trend Animation
- Show data changes over time

Static Depictions of Motion (Baudisch, 2006)

• Semi-transparent trails to show change over time

Kinetic Visualization (Ware, 1994)

• Objects in a set shown moving together at the same speed

Animation to Illustrate a Process

• Algorithm animation was early example

Cone Tree (CHI 1991)

Hierarchy visualization

- Use of transition animations to retain user context
- Constant time:
 - ~ 1 second (from Newell's theory)
- Use of 3D made it possible to see much more of structure

Polyarchy Visualization (CHI 2002)

Multiple Intersecting Hierarchies

- Show multiple hierarchies
- Search results in context
- Show minimal info needed
- Animated transitions key
 - Keeps user in context
- Six user studies demonstrated value of transition animation

Visual Pivot Animation

Proffitt and Kaiser (1993)

- Rotation and translation motions have different perceptual significance
 - Rotations define 3D form
 - Translations define observer-relative displacements
- Suggests Visual Pivot sliding animation may be perceived as observer-relative while rotating animations may be perceived as defining 3D form
 - User task determines which is more useful

DynaVis (InfoVis 2007): Dynamic Visualization Framework

Animated transitions

- Between chart types
- For new data
- For changed data
- For sorted data

Use of staggered/staged animations was effective

User studies show significant benefits

Trend Visualization (InfoVis 2008)

Gapminder Trendalyzer appears successful in presentations

- Works because presenter draws attention to relevant changes
- Study shows it is most enjoyable & exciting, but not always preferred

Does it work for analysis?

• No: multiple replays make it slowest technique, and not very accurate

Does it scale?

• No: works for up to about 200 data points

Are there alternatives that work better under some conditions?

- Yes: static depictions of trends are faster for analysis
- Yes: small multiples is more accurate

Alternative Trend Visualizations

Traces

- Show all trends simultaneously
- Fade-in bubbles/links to show direction of flow
- Counter-trends pop-out (without replay)
- Clutter may pose problem in some cases
- Could be addressed by automatic anomaly highlighting

Alternative Trend Visualizations

Small Multiples

- Show each trend separately
- Use bubble size to show direction of flow
- Counter-trends pop-out
- No clutter, but user must scan for answer
- Larger dataset size → smaller multiples

Trend visualization techniques must include all three alternatives

- Each has distinct advantages for particular situations
- Trend animation works best for presentation
- Traces works best for analysis when the result is not in the clutter
- Small Multiples works best for analysis when there is key information in the clutter

Conclusion: Most Effective Uses of Animation in Visualization

Transition Animation

- Studies show that fixed time (1/2 to 1 sec) transition animation
 - Improves user task performance time
 - Decreases errors
 - Improves user satisfaction
- Studies show additional improvements for carefully used multi-stage and/or staggered animation sequences

Trend Animation

- Gapminder Trendalyzer appears successful in presentations
- Does not work well for analysis!
- Static animation alternatives work better under some conditions

Microsoft[®]

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Microsoft[®] Research Faculty Summit 2010