A Case Study in Database Reliability: Component Types, Usage Profiles, and Testing

C. A. Taylor
IBM Canada Ltd.
colint@ca.ibm.com

M. S. Gittens
IBM Canada Ltd.
mgittens@ca.ibm.com

A. V. Miranskyy
Department of Applied Mathematics
University of Western Ontario
amiransk@uwo.ca

ABSTRACT
Data management lies at the core of most modern information technology deployments. Accordingly, the reliability of the database management system (DBMS) is critical to the reputation and success of both its vendors and their clients. However, there is a dearth of work in the literature focused on the reliability of the DBMS. More specifically, research is yet to be focused on the variables that influence DBMS reliability and the relationships between these variables.

We present an initial case study focused on the relationships between component type, usage profiles, component size, component changes, component usage, and defect yield. The system under study is a distributed enterprise relational DBMS.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program – reliability, validation.
H.2.m [Database Management]: Miscellaneous.

General Terms
Measurement, Reliability, Verification.

Keywords
Database management system, testing, usage profiles, case study.

1. INTRODUCTION
Database management systems tend to be complex evolving software systems. This makes assuring the reliability of a database management system (DBMS) hard. Software reliability engineering (SRE) quantifies the variables that influence reliability in operational profiles which are the tasks that a system is expected to perform and their respective probabilities of occurrence [12]. We are interested in quantifying the variables that influence specifically DBMS reliability. The assignment of test effort is also relevant. Towards improved DBMS reliability and efficient assignment of DBMS testing effort, we explore the

relationships between: DBMS component types; DBMS usage profiles; DBMS component size; DBMS component changes; DBMS component usage; and DBMS defect yield.

The DBMS usage profiles studied are similar to the operational profiles proposed by Musa. However, DBMS usage profiles are particular to the individual industrial context. We recognize that it is important that we be able to extend our findings to other database management systems. Accordingly, we consider a DBMS component set comprised of only fundamental DBMS components that should be present in any enterprise relational DBMS.

We present this case study as an analysis of our perceptions. In Section 2, we discuss related work. The database under study is described in Section 3. In Section 4, we define relevant terms. Our initial perceptions and the associated analysis done to test these perceptions make up Section 5. Finally, Section 6 presents our conclusions and outlines future work.

2. RELATED WORK
Research is scarce in the area of DBMS reliability. All of the related work that we found acknowledges the need for DBMS testing. The majority of studies deal with the implementation of test tooling to solve a particular problem. Only two papers consider the relationships between variables that influence DBMS reliability.

[2], [5], and [14] are focused on test tooling. They each deal with the solution to a different interesting problem in the DBMS testing domain but none consider the general problem of DBMS reliability. Wu et al. also look at DBMS testing in [16]. The need for test-centric usage profiles is implied in the problem definition but a profile-based presentation is not used. The paper’s result is highly specialized.

Somewhat similar to our work is that of Gittens et al. in [7]. That paper looks at reliability measures and metrics in the context of a DBMS. However, it differs from ours with its focus on code coverage and field defects.

Perhaps most similar to our work is Sullivan and Chillerage’s paper, “A comparison of software defects in database management systems and operating systems” [15]. Refreshingly, they do not attempt to over-generalize their results. However, the paper is a comparative study involving two system types and it also focuses on field defects.

While papers focused on DBMS testing are few and far between, we are not aware of any work that explicitly considers DBMS
usage profiles. Our case study considers DBMS testing and usage profiles towards better DBMS reliability. Such a study is long overdue.

3. DATABASE MANAGEMENT SYSTEM UNDER TEST
The DBMS under test (DUT) and study is a distributed enterprise relational DBMS. It provides a set of features that is comparable to the feature sets offered by other vendors in the same market segment. It also supports multiple platforms. The DUT has more than 20 million lines of code. It has evolved over a period of more than 20 years and 10 major versions.

The quality assurance cycle for the DUT includes the Function Test and System Test phases. The Function Test phase precedes the System Test phase and is focused on validating new and existing product feature specifications. System Test immediately follows Function Test. The focus of the System Test phase is ensuring the reliability of new product features deployed in integrated customer-like environments. The defects found in either test phase are entered and tracked using the same source change management system.

4. TERMS
In this section, we define the terms required for our discussion.

4.1 Components
We define a component as a discrete grouping of software system functionality. This grouping can be logical or physical. In this study, we considered two sets of components: the set of architectural components and the set of development components.

Ramakrishnan and Gehrke define a simplified set of components that comprise a relational DBMS [13]. We started with this set and removed, combined, and added components to arrive at a set of components that represents the set of fundamental architectural components for a distributed enterprise relational DBMS.

We removed the Commands – Web Forms component included in [13] because it is not fundamental to any DBMS architecture. The Database component was also removed. The DBMS – Query Evaluation Engine component was collapsed, combining its Plan Executor, Parser, Operator Evaluator, and Optimizer subcomponents. The DBMS – Buffer Manager and DBMS – Disk Space Manager subcomponents were also combined. To capture the distributed nature of a DBMS, we added the DBMS – Communication Manager component. This component is similar to the Data Communications Manager component introduced by Date in [4]. We also added the Utilities component. A utilities component makes sense for any enterprise DBMS.

See Figure 1 for the resulting set of architectural components. This set of components corresponds to the generic relational DBMS architecture. The set of architectural components is depicted in the Unified Modeling Language (UML) format. The “DBMS –” prefixes in component names have been removed.

The set of development components is a reflection of two things: (1) the classification scheme used by our development team to categorize development artifacts and (2) the structure of our development organization. This set of components is particular to the DUT. Moreover, it is the unique consequence of the implementation. The cardinality of this set is 80. Like the set of architectural components, security-related components are not included.

Both sets of components represent the same complete system. However, this paper does not address the degree to which the components of each set overlap.

4.2 Component Call Frequency
Component call frequency measures the relative usage of a component within a component set. It is a measure of run time complexity. We define component call frequency as the number of times a particular component is used by a usage profile.

4.3 Usage Profiles
We define a usage profile as a capture of the run time behaviour of a software system for some interval of execution using some measure. In this study, the intervals correspond to two distinct but adjacent phases of our quality assurance cycle: Function Test and System Test. The measure used is component call frequency. The capture itself is a collection of components and their respective component call frequencies. We introduce two usage profiles: the Function Test (FT) Profile and the System Test (ST) Profile.

In general, the FT Profile is a reflection of the DBMS as it was completely specified on the day the profile was compiled. This profile type is meant to capture a product’s behavioural specification. It is the first profile to be executed.

The ST Profile is the second profile to be executed. It is a reflection of a complete DBMS with a subset of new features being exploited. This profile type is meant to capture real client usage.

1 A DBMS – Security component, though appropriate, was not included so as to not make any statements, implied or otherwise, as to the security of the product under study.
4.4 Defects
We define the term defect according to our context. It is thereby
defined as a variance from a desired product attribute. More
concretely, we consider a defect to be a variance from the product
specification or the product documentation found during the
Function Test or System Test phases.

4.5 Lines of Code
The lines of code (LOC) measure of a component captures the
size of the component. We reuse the LOC definition first
provided by Jones in [9] and cited by Kan in [10]. That is, we
define LOC as the number of source code instructions in a
component, including data definitions, but excluding comments
and prologues.

4.6 Lines of Code Changed
Lines of code changed (LOCC) captures the volume of changes
made to a component. LOCC can be partially defined in terms of
LOC. We partially define LOCC as the absolute difference in
LOC for two different versions of the same component. We add
to this definition that LOCC can also include the parts of a
component that were neither added nor removed but changed
from one version of the component to the next.

5. CASE STUDY
We began this study by formulating our perceptions according to
our own practical experiences and the knowledge of local domain
experts. We present our initial perceptions in Section 5.1.

Section 5.2 captures the analysis done to test our perceptions.
Our analysis is based on defect, LOC, LOCC, and component call
frequency data for a recent major release. The FT and ST Profiles
used in our analysis were taken from the same major release.

5.1 Initial Perceptions
In general, we expected to find that the largest numbers of defects
belonged to large components with a large number of changes in
the release under study. We also expected to find that the
component type and usage profile with the highest average
component call frequencies would have the strongest correlation
with number of defects.

5.1.1 Perception 1
We will find positive correlations between number of defects and
LOC, independent of component type and usage profile.
Intuitively, the larger the component, the greater the likelihood
that a defect has been injected during its development. There is
literature to both support and oppose this belief [6]. However,
research in this area has yet to be focused specifically on the
DBMS.

5.1.2 Perception 2
We will also find that the number of defects increases with
component call frequency, independent of component type.
Intuitively, the higher the component call frequency for a
component and usage profile, the greater the test coverage
provided for the component by the profile. This intuition is
somewhat supported by Kit's assertion that the greater the test
coverage, the greater the number of defects [11].

5.1.3 Perception 3
Past experience with the DUT suggests that for development
components: (1) the FT Profile will have the larger total number
of component call frequencies and (2) the ST Profile will have the
greater component call frequency variability. It follows from (1),
(2), and Perception 2 that we will find that the set of development
components and the FT Profile lead to stronger positive
correlations with number of defects than the set of development
components and the ST Profile. We assume that differences
between usage profiles in number of component call frequencies
contribute more to total component call frequency than
differences between component call variability.

5.2 Analysis
To test the initial perceptions outlined in Section 5.1, we
calculated the linear correlation between number of defects and
LOC, LOCC, and component call frequency. Both profile types
were considered for each component type. In this section, we
present the relationships between variables with contour plots and
correlation tables.

5.2.1 Contour Plots
To better understand the relations between variables, we produced
contour plots of number of defects versus pairs of explanatory
variables: LOC and component call frequency; and LOCC and
component call frequency; for each component type. Both usage
profiles were considered. A tabular summary of correlations is
provided for each component type in Section 5.2.1.3. The contour
plots use logarithmic scales to deal with the spread of the data.
We have also normalized the axes.

5.2.1.1 Development Components
Figure 2 shows no apparent correlation between number of
defects and variables LOC and component call frequency when
the FT Profile is applied to the set of development components.

![Figure 2. Number of Defects by LOC and Development Component Call Frequency for FT Profile](image)

Like Figure 2, Figure 3 shows no apparent correlation between
number of defects and LOCC and component call frequency when
the FT Profile is applied to development components.

Figure 4 shows no apparent correlation between number of
defects and LOC and component call frequency when the ST
Profile is applied to the set of development components.
Figure 5 appears similar to Figure 4. There is no apparent correlation between number of defects and LOCC and component call frequency for the ST Profile and development components.

Figure 3. Number of Defects by LOCC and Development Component Call Frequency for FT Profile

Figure 4. Number of Defects by LOC and Development Component Call Frequency for ST Profile

Figures 2 through 5 did not obviously support any of our initial perceptions. This implied that further analysis of number of defects and the variables LOC, LOCC, and component call frequency was necessary for development components. Accordingly, we analyze the linear correlation between pairs of variables in Section 5.2.2. The contour plots for architectural components are provided in the next section.

5.2.1.2 Architectural Components

Figure 6 shows an apparent positive correlation between number of defects and variables LOC and component call frequency when the FT Profile is applied to the set of architectural components. The apparent relationship between variables shown in this figure supports Perceptions 1 and 2 to some degree.

Figure 6. Number of Defects by LOC and Architectural Component Call Frequency for FT Profile

Like Figure 6, Figure 7 shows an apparent positive correlation between number of defects and LOCC when the FT Profile is applied to architectural components. Accordingly, this figure also supports Perceptions 1 and 2 to some degree. We note that the correlation appears weaker for this plot than for the LOC plot (Figure 6).

Figure 8 shows the correlation between number of defects and LOC and component call frequency for the ST Profile and architectural components. We observe an apparent positive correlation that supports Perceptions 1 and 2 to some degree.

Figure 7. Number of Defects by LOCC and Architectural Component Call Frequency for FT Profile

Figure 9 also shows an apparent positive correlation. The correlation is between number of defects and LOCC and component call frequency when the ST Profile is applied to architectural components. This figure supports Perceptions 1 and 2 to some degree.

Figure 9. Number of Defects by LOCC and Architectural Component Call Frequency for FT Profile
Without correlation coefficients to compare degree, it is not clear to what degree each of the contour plots in this section support Perceptions 1 and 2. To clarify the degrees, we calculate and summarize correlation coefficients in the next section.

Table 1 summarizes the linear correlations between number of defects and the explanatory variables: LOC, LOCC, and component call frequency; for the set of development components. The correlations for the set of architectural components are summarized in Table 2.

Table 1. Summary of Linear Correlations Between Number of Defects and Explanatory Variables for Development Components

<table>
<thead>
<tr>
<th>Profile Type</th>
<th>LOC</th>
<th>LOCC</th>
<th>Component Call Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Test</td>
<td>0.81</td>
<td>0.89</td>
<td>0.38</td>
</tr>
<tr>
<td>System Test</td>
<td>0.81</td>
<td>0.89</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Neither Perception 1 or 2 are supported by Table 1. The table also implies a lack of support for Perception 3. We note weak component call frequency correlation coefficients for both the FT and ST Profiles for development components. In fact, the ST Profile coefficient is the greater of the two, but the difference is small enough to deem support for Perception 3 inconclusive.

Table 2 confirms support for Perceptions 1 and 2 for the FT Profile and architectural components. However, this support is only moderate. The table also shows that the apparent support for Perceptions 1 and 2 that we observed for the ST Profile in Section 5.2.1.2 is weak, at best.

5.2.2 Correlation Tables

We analyze linear correlation tables to identify relations between pairs of variables, thereby further testing support for our initial perceptions. Table 3 shows the correlations between variables for development components after applying the logarithmic transformation $\ln(x + 1)$ to deal with the spread of the data and 0 input values. The correlations between variables for architectural components is shown in Table 4. For both tables, CCF_{FT} is Component Call Frequency for the FT Profile; CCF_{ST} is Component Call Frequency for the ST Profile; and D is Number of Defects. We discard symmetrical values.

Table 3. Linear Correlations Between Variables for Development Components

<table>
<thead>
<tr>
<th></th>
<th>LOCC</th>
<th>LOC</th>
<th>CCF_{FT}</th>
<th>CCF_{ST}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCC</td>
<td>0.863221</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCF FT</td>
<td>0.422667</td>
<td>0.836234</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCF ST</td>
<td>0.385767</td>
<td>0.469807</td>
<td>0.820096</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.868822</td>
<td>0.81361</td>
<td>0.468769</td>
<td>0.427259</td>
<td>1</td>
</tr>
</tbody>
</table>

For the set of development components, we observe a strong positive correlation between number of defects and LOC which supports Perception 1. We also observe a stronger positive correlation between number of defects and LOCC. We note that LOC and LOCC are correlated, although they are not the focus of this study; and the component call frequencies of the FT and ST Profiles are also correlated.

Table 4. Linear Correlations Between Pairs of Variables for Architectural Components

<table>
<thead>
<tr>
<th></th>
<th>LOCC</th>
<th>LOC</th>
<th>CCF_{FT}</th>
<th>CCF_{ST}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCF FT</td>
<td>0.836234</td>
<td>0.935537</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCF ST</td>
<td>0.89199</td>
<td>0.911675</td>
<td>0.852648</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.985423</td>
<td>0.928207</td>
<td>0.781096</td>
<td>0.871745</td>
<td>1</td>
</tr>
</tbody>
</table>

For the set of architectural components, we observe a strong positive correlation for each pair of variables. The correlation between number of defects and LOC supports Perception 1.

2 After $\ln(x + 1)$ transformation
Perception 2 is supported by the correlations between number of defects and each of FT Profile component call frequency and ST Profile component call frequency.

6. CONCLUSION AND FUTURE WORK

In general, architectural components appear to be more strongly correlated with number of defects than development components. The strongest correlation coefficients belong to the FT Profile and architectural components.

The perception that, in our context, there is a correlation between number of defects and LOC; and number of defects and LOCC, is supported by our case study. So is the perception that number of defects increases with component call frequency, to some degree. Perception 3 – the perception that development components and the FT Profile lead to higher positive correlations with number of defects than the ST Profile – is inconclusive. It appears that this perception holds somewhat but the correlation is weak and the coefficients for development components are similar to the coefficients for architectural components. More work is needed here.

We observed that the explanatory variables LOC, LOCC, and component call frequency explain number of defects better for architectural components than development components. This implies that DBMS testing effort should be assigned to components as they interact and exist to satisfy requirements (architectural components), rather than their definition according to the teams that develop them (development components). This result may be particular to our context.

However, the observations that suggest that DBMS reliability activities such as defect estimation should target architectural-component-based decompositions are not particular to our industrial context. This conclusion can be extended to any DBMS that implements the fundamental components depicted in Figure 1 and is both function tested and system tested.

This paper considers one measure of run time complexity: component call frequency. The consideration of measures of static code complexity has been left to future work. Future work will also address the degree to which architectural components and development components overlap.

With this case study, we have enhanced our understanding of the relationships between: DBMS component types; DBMS usage profiles; DBMS component size; DBMS component changes; DBMS component usage; and DBMS defect yield. Our conclusions also form a meaningful initial contribution to studies in DBMS reliability.

7. REFERENCES

The views expressed in this paper are those of the authors and not necessarily of IBM Canada Ltd. or IBM Corporation.