INFORMATION ASYMMETRIES IN COMMON VALUE AUCTIONS WITH DISCRETE SIGNALS

Vasilis Syrgkanis
Microsoft Research, NYC

Joint with
David Kempe, USC
Eva Tardos, Cornell University
Ad Auctions and Information Asymmetries

Web Impression

hulu

NETFLIX
Ad Auctions and Information Asymmetries

Web Impression

Amazon Cookie x

Kayak Cookie y
Ad Auctions and Information Asymmetries

Web Impression of Unknown Common Value V

Amazon Cookie x

Kayak Cookie y
Common Value Single-Item Auction

Item of Unknown Common Value V

Private Signal x

Private Signal y
Assumptions

- Signal of each bidder comes from Discrete Ordered Set
Assumptions

- Signal of each bidder comes from **Discrete Ordered Set**

- **Informative**: Higher Signal – Higher Expected Value
Assumptions

- Signal of each bidder comes from Discrete Ordered Set

- **Informative:** Higher Signal – Higher Expected Value

- **Affiliated:** Higher Signal – Stochastically Higher Signal for Opponent
Assumptions

- Signal of each bidder comes from **Discrete Ordered Set**

- **Informative**: Higher Signal – Higher Expected Value

- **Affiliated**: Higher Signal – Stochastically Higher Signal for Opponent

- **Signals Drawn from Arbitrary Asymmetric and Correlated Distribution (with full support)**
Traditional Applications

Oil Lease for land with unknown common value V

Access to Test x

Access to Test y
Main Questions

- How do bidders behave in equilibrium?
Main Questions

• How do bidders behave in equilibrium?

• Which auction formats yield higher revenue?
Main Questions

- How do bidders behave in equilibrium?
- Which auction formats yield higher revenue?
- How does extra information affect player utilities and seller’s revenue?
Auctions Considered – Hybrid Auctions

- Highest Bidder Wins.

- Pays his bid with some positive probability κ and the second highest bid with the remaining
Auctions Considered – Hybrid Auctions

- Highest Bidder Wins.
- Pays his bid with some positive probability \(\kappa \) and the second highest bid with the remaining
- \(\kappa = 1 \): First Price Auction
Auctions Considered – Hybrid Auctions

- Highest Bidder Wins.

- Pays his bid with some positive probability κ and the second highest bid with the remaining

 - $\kappa = 1$: First Price Auction

 - $\kappa \to 0$: Limit Equilibrium of Second Price Auction (Equilibrium Selection)
Related Work

- Value of information in auctions: [Milgrom ’79], [Milgrom/Weber ’82], . . .
- Common-value auctions with binary signals: [Banerjee ’05], [Abraham/Athey/Babaioff/Grubb ’12]
- Continuous values/signals: [Engelbrecht-Wiggans/Milgrom/Weber ’83], . . ., [Parreiras ’06]
- Other common-value models: [Rothkopf ’69], [Reece ’78], [Hausch ’87], [Wang ’91], [Laskowski/Slonim ’99], [Kagel/Levin ’02].
- Value of information: [Lehmann ’88], [Persico ’00], [Athey/Levin ’01], [Compte/Jehiel’07], [Es˝o/Szentes ’07]
How do bidders behave in equilibrium?

Theorem. There exists a unique equilibrium which is mixed and can be found constructively.
How do bidders behave in equilibrium?

- Mixed Nash Equilibrium must look as follows:
How do bidders behave in equilibrium?

- Mixed Nash Equilibrium must look as follows:
How do bidders behave in equilibrium?

- Mixed Nash Equilibrium must look as follows:

\[E_V(1,1) \]

\[b_1 b_2 b_3 b_4 b_5 \]

Range of Bids Conditional on Receiving Signal 3

Player X

1 2 3 4 5

Player Y

1 2 3 4
How do bidders behave in equilibrium?

- Mixed Nash Equilibrium must look as follows:

```
\( E \)  \( V \)
1  1  
2  3  4  5

Range of Bids Conditional on Receiving Signal 3
```

<table>
<thead>
<tr>
<th>Player X</th>
<th>Player Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

CDFs of Player X

CDFs of Player Y

\(EV(1,1) \)

\(\bar{b} \)
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:

\[
E_{V}(1,1) \]

CDFs of Player X

CDFs of Player Y

Player Y

Player Z

\(b\)
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:

\[EV(1,1) \]
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:
Unique Equilibrium

There exists a unique equilibrium defined by a recursive process:

$$EV(1,1)$$
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:

![Diagram showing CDFs of players X, Y, and Z with bids and EV(1,1) and \(\bar{b} \).]
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:

![Diagram showing CDFs of Player X and Player Y with bids on the x-axis and EV(1,1) on the y-axis. Initial bids are labeled 1, 2, 3, 4, and 5. CDFs for Player Z are also shown.]
Unique Equilibrium

- There exists a unique equilibrium defined by a recursive process:
Unique Equilibrium

- As κ approaches 0 (Second Price Auction)

CDFs of Player X

CDFs of Player Y

$EV(1,1)$ $EV(1,2)$... $EV(3,3)$... $EV(5,4)$

Player Y

Player Z
A Simple Example: First Price – Binary Signal

- One player receives a binary signal and the other is uninformed

\[F_L^Y(b) \]

Player Y

\[F_H^Y(b) \]

\[F_Z^Y(b) \]

Player Z

\[E[V|L] \quad E[V] \quad E[V|H] \]
A Simple Example: First Price – Binary Signal

\[F^Z(b)(E[V|H] - b) = E[V|H] - E[V] \]

\[\Pr[H] F^Y_H(b)(E[V|H] - b) + \Pr[L] (E[V|L] - b) = 0 \]
A Simple Example: First Price – Binary Signal

- One player receives a binary signal and the other is uninformed

\[
F^Y_H(b) = \frac{\Pr[L] (b - E[V|L])}{\Pr[H] (E[V|H] - b)}
\]

\[
F^Z(b) = \frac{E[V|H] - E[V]}{E[V|H] - b}
\]
A Simple Example: Limit to Second Price

- One player receives a binary signal and the other is uninformed.
A Simple Example: Limit to Second Price

- One player receives a binary signal and the other is uninformed
Second Price Selection – No Revenue Collapse

- Different prediction than the collapsed revenue equilibrium predicted by tremble-robust equilibrium selection of Abraham et al.
Only one informed bidder

- Informed Bidder bids “truthfully”
- Uninformed Bidder simulates informed bidder’s bid
- First and Second Price: Revenue Equivalent
Complete Revenue Ranking

• **Our Result:** The equilibrium revenue is a non-increasing function of the probability κ that the winner pays his bid.
Complete Revenue Ranking

• **Our Result:** The equilibrium revenue is a non-increasing function of the probability κ that the winner pays his bid.

• Complete Revenue Ranking among Hybrid Auctions
Complete Revenue Ranking

- **Our Result:** The equilibrium revenue is a non-increasing function of the probability κ that the winner pays his bid.

- Complete Revenue Ranking among Hybrid Auctions
 - First Price – Worst Revenue
Complete Revenue Ranking

- **Our Result:** The equilibrium revenue is a non-increasing function of the probability κ that the winner pays his bid.

- **Complete Revenue Ranking among Hybrid Auctions**
 - First Price – Worst Revenue
 - Revenue monotonically increases as we move from first price to second price
Complete Revenue Ranking

- **Our Result:** The equilibrium revenue is a non-increasing function of the probability κ that the winner pays his bid.

- **Complete Revenue Ranking among Hybrid Auctions**
 - First Price – Worst Revenue
 - Revenue monotonically increases as we move from first price to second price
 - Limit Equilibrium of Second Price Selected, has highest revenue among hybrid auctions
Should seller reveal his private signals?

Web Site Visitor of Unknown Common Value V

Amazon Cookie x

MSN Cookie z

Kayak Cookie y
Failure of the Linkage Principle

- **Linkage Principle [Milgrom-Weber’82]:** In common value settings, the more information you link to the price of the winning bidder the higher the revenue.
- **Implication:** Seller should always reveal affiliated signals.
Failure of the Linkage Principle

- **Linkage Principle [Milgrom-Weber’82]:** In common value settings, the more information you link to the price of the winning bidder the higher the revenue.

- **Implication:** Seller should always reveal affiliated signals.

- **Our Result:** Fails when bidders have asymmetric information!

- **Implication:** Revealing policy not necessarily optimal in a market with information asymmetry!
Failure of the Linkage Principle

- **Linkage Principle [Milgrom-Weber’82]:** In common value settings, the more information you link to the price of the winning bidder the higher the revenue.

- **Implication:** Seller should always reveal affiliated signals.

- **Our Result:** Fails when bidders have asymmetric information!

- **Implication:** Revealing policy not necessarily optimal in a market with information asymmetry!
 - Breaks even in first price auction when each bidder and the auctioneer have binary signals of different accuracy.
Failure of the Linkage Principle

- First Price Auction
- Value either 0 or 1, a prior is 1 with prob. a
- Player Y gets a binary signal that is correct with p_Y
- Player Z gets a binary signal that is correct with p_Z
- Seller has a signal that is correct with q

$U_Y + U_Z$: without revelation
$U_Y + U_Z$: with revelation

$p_Y = 0.9, p_Z = 0.75, q = 0.7$
How does extra information affect player utilities?

Third Party Information Sellers

Buy Access to Extra Cookies

Kayak Cookie z

Amazon Cookie y

Ad Space
Surprising Externality Effects

- Obviously, information can have negative externalities
Surprising Externality Effects

- Obviously, information can have negative externalities

But...

- Information can also have positive externalities
Surprising Externality Effects

- Obviously, information can have negative externalities

But…

- Information can also have positive externalities
 - E.g. both bidders might strictly prefer that a specific bidder receives the extra signal
Recap

• **Information Asymmetries** in Common Value Auctions

• **Unique Equilibrium** if winner pays his bid with positive probability

• **Failure of the Linkage Principle** – Not always optimal for seller to reveal information even in pure common value

• **Complete Revenue Ranking**
 - Limit Equilibrium of Second Price \geq Hybrid \geq First Price

• Extra Information can have **positive externalities**