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Abstract
We present Cloud Haskell, a domain-specific language for devel-
oping programs for a distributed computing environment. Imple-
mented as a shallow embedding in Haskell, it provides a message-
passing communication model, inspired by Erlang, without intro-
ducing incompatibility with Haskell’s established shared-memory
concurrency. A key contribution is a method for serializing func-
tion closures for transmission across the network. Cloud Haskell
has been implemented; we present example code and some prelim-
inary performance measurements.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed Programming

General Terms Languages, Reliability, Performance

Keywords Haskell, Erlang, message-passing

1. Introduction
Cloud Haskell is a domain-specific language for cloud computing,
implemented as a shallow embedding in Haskell. It presents the
programmer with a computational model strongly based on the
message-passing model of Erlang, but with additional advantages
that stem from Haskell’s purity, types, and monads.

The message-passing model, popularized by Erlang [1] for
highly-reliable real-time applications and by MPI [6] for high-
performance computing, stipulates that concurrent processes have
no access to each other’s data: any data that needs to be communi-
cated from one process to another are sent explicitly in messages.
We choose this model because it makes the costs of communication
apparent, and because it makes a concurrent process a natural unit
of failure: since processes do not share data, the data of one process
cannot be contaminated by a fault in another.

We use the term “cloud” to mean a large number of processors
with separate memories that are connected by a network and have
independent failure modes. We don’t believe that shared-memory
concurrency is appropriate for programming the cloud. An effective
programming model must be accompanied by a cost model. In
a distributed memory system, the most significant cost, in both
energy and time, is data movement. A programmer trying to reduce
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these costs needs a model in which they are explicit, not one that
denies that data movement is even taking place — which is exactly
the premise of a simulated shared memory.

One reason that this model of distributed computing has not pre-
viously been brought to Haskell is that it requires a way of running
code on a remote system. Our work provides this, in the form of a
novel method for serializing function closures. Without extending
the compiler, our method hides the underlying serialization mech-
anism from the programmer, but makes serialization itself explicit.

In many ways, failure is the defining issue of distributed com-
putation. In a network of hundreds of computers, some of them are
likely to fail during the course of an extended computation; if our
only recourse were to restart the computation from the beginning,
the likelihood of it ever completing would become ever smaller as
the system scales up. A programming system for the cloud must
therefore be able to tolerate partial failure. Here again, Erlang has
a solution that has stood the test of time; we don’t innovate in this
area, but adopt Erlang’s solution (summarized in Section 2.5).

If Erlang has been so successful, you may wonder what Haskell
brings to the table. The short answer is: purity, types, and mon-
ads. As a pure functional language, data is by default immutable,
so the lack of shared, mutable data won’t be missed. Importantly,
immutability allows the implementation to decide whether to share
or copy the data: the choice is semantically invisible, and so can
depend on the locations of the processes. Moreover, pure functions
are idempotent; this means that functions running on failing hard-
ware can be restarted elsewhere without the need for distributed
transactions or other mechanisms for “undoing” effects. Types in
general, and monadic types in particular, help to guarantee prop-
erties of programs statically. For example, a function that has an
externally-visible effect such as sending or receiving a message
cannot have the same type as one that is pure. Monadic types make
it convenient to program in an effectful style when that is appropri-
ate, while ensuring that the programmer cannot accidentally mix up
the pure and effectful code.

The contributions of this paper are as follows.

• A description of Cloud Haskell’s interface functions (Sections
2 and 3). Following Erlang, our language provides a system
for exchanging messages between lightweight concurrent pro-
cesses, regardless of whether they are running on one com-
puter or on many. We also provide functions for starting new
remote processes, and for fault tolerance, which closely fol-
low Erlang. However, unlike Erlang, Cloud Haskell also allows
shared-memory concurrency within one of its processes.
• An additional message-passing interface that uses multiple

typed channels in place of Erlang’s single untyped channel
(Section 4). Each channel is realized as a pair of ports; while
the send port can be transmitted over the network, the receive
port cannot.
• A method for serializing function closures that enables higher-

order functions to be used in a distributed environment (Sec-



tion 5). Starting a remote process means sending a representa-
tion of a function and its environment across the network; our
approach makes the environment explicit, and thus gives the
programmer control over the cost of the message.
• A demonstration of the effectiveness of our approach in the

form of an implementation (discussed in Sections 6 and 7), and
a complete example application (Section 8). We also provide
performance measurements from the k-means clustering algo-
rithm, an iterative algorithm for partitioning data points into
natural groups (Section 9).

2. Processes and messages
We start with an overview of the basic elements of Cloud Haskell:
processes, messages, what can be sent in a message and provision
for failure. All of the elements of our DSL are listed in Figure 2.

2.1 Processes
The basic unit of concurrency in Cloud Haskell is the process: a
concurrent activity that has been “blessed” with the ability to send
and receive messages. As in Erlang, processes are lightweight, with
low creation and scheduling overhead. Processes are identified by
a unique process identifier, which can be used to send messages to
the new process.

In most respects, Cloud Haskell follows Erlang by favoring
message-passing as the primary means of communication between
processes. Our language differs from Erlang, though, in that it also
supports shared-memory concurrency within a single process. The
existing elements of Concurrent Haskell, such as MVar for shared
mutable variables and forkIO for creating lightweight threads, are
still available to programmers who wish to combine message pass-
ing with the more traditional approach. This is illustrated in Fig-
ure 1. Our embedding ensures that mechanisms specific to shared-
memory concurrency cannot be inadvertently used between remote
systems. The key idea that makes this separation possible is that
not all data types can be sent in a message; in particular, MVars and
ThreadIds are not Serializable (see Section 2.3).

2.2 Messages to processes
Any process can send and receive messages. Our messages are
asynchronous, reliable, and buffered. All the state associated with
messaging (e.g., the message buffer) is wrapped in the ProcessM
monad, which is updated with each messaging action. Thus, any
code participating in messaging must be in the ProcessM monad.

Cloud Haskell provides two styles of message passing: untyped
messages, which closely resemble messages in Erlang; and typed
channels, which leverage Haskell’s strong type system to provide
static guarantees about the content of messages. In this section, we
discuss untyped messages; we describe channels in Section 4.

The primitives for untyped messaging are send and expect1:

send :: Serializable a ⇒ ProcessId → a → ProcessM ()
expect :: Serializable a ⇒ ProcessM a

Before we discuss these primitives in detail, let’s look at an
example of their use. ping is a process that accepts “pong” messages
and responds by sending a “ping” to whatever process sent the
pong. The data types are:

data Ping = Ping ProcessId
data Pong = Pong ProcessId
−− omitted: Serializable instance for Ping and Pong

1 Why expect rather than receive ? The intent is that expect is used when
the program expects a message of a particular type. There are more general
receive functions that allow for type-dependent and conditional receives;
these are discussed in Section 3.
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Figure 1. Processes A and B do not share memory, even though
they are running on the same physical processor; instead they
communicate by sending messages, shown by grey arrows. This
makes it easy to reconfigure the application to resemble the situ-
ation shown with processes C and D. Process E has created some
lightweight threads using Concurrent Haskell’s forkIO primitive;
these threads share memory with Process E, and with each other.
However, they cannot send or receive messages from Process E’s
channels, because this requires execution in the ProcessM monad;
threads, in contrast, execute in the IO monad.

Using send and expect, the code for such a process would be:

ping :: ProcessM ()
ping = do Pong partner ← expect

self ← getSelfPid
send partner (Ping self )
ping

The equivalent code in Erlang looks like this:

ping() → receive
{pong, Partner} →

Partner ! {ping, self ()}
end,
ping() .

These two programs have similar structure. Both ping functions
are designed to be run as processes. They each wait for a specific
message to be received; the Haskell expect function matches in-
coming messages by type, whereas in Erlang, messages are usually
pattern-matched against tuples whose first element is a well-known
atom. The programs wait for a “pong” message, and ignore all oth-
ers. The “pong” message contains in its payload the process ID of a
“partner”, to whom the response message is sent; this message con-
tains the process ID of the ping process ( self ). Finally, they wait for
the next message by repeating with tail recursion.



Note that in the Erlang version, Ping and Pong are atoms,
whereas in the Haskell version they are types, and so need to be
declared explicitly. As given, the type declarations are incomplete;
Ping and Pong need to be declared to be instances of the class
Serializable ; we will discuss this in Section 2.3.

The send function is our general-purpose message-sending
primitive; it packages up a chunk of serializable data of arbitrary
type as a bag of bits, together with a representation of that type (a
TypeRep), and transmits both (possibly over the network) to a par-
ticular process, selected by the ProcessId argument. Upon receipt,
the incoming message will be placed in a message queue associ-
ated with the destination process. The send function corresponds to
Erlang’s ! operator.

At the far end of the channel, the simplest way of receiving
a message is with expect, which examines the message queue
associated with the current process and extracts the first message
whose type matches the (inferred) type of expect — a Ping message
in the example. The implementation of expect looks down the
queue for a message with the right type representation, dequeues
that message, parses the bag of bits into a data item of the right
type, and returns it. If there is no message of the appropriate type
on the queue, expect waits for one to arrive.

2.3 Serialization
When we said that the data to be transmitted must be serializable,
we meant that each item must implement the Serializable type
class. This ensures two properties: that it is Binary and that it is
Typeable (see Figure 2: Type classes). Binary means that put and
get functions are available to encode and decode the data item into
binary form and back again; Typeable means that a function typeOf
can be used to produce a TypeRep that captures the item’s type.

While all of Haskell’s primitive data types and most of the com-
mon higher-level data structures are Serializable, and can there-
fore be part of a message, some data types are emphatically not
serializable. One example is MVar, the type of Haskell’s mutable
concurrent variables. Since MVars allows communication between
threads on the assumption of shared memory, it isn’t helpful to
send an MVar to a remote process that may not share memory with
the current process. Although one can imagine a synchronous dis-
tributed variable that mimics the semantics of an MVar, such a vari-
able would have a vastly different cost model from a normal MVar.
Since neither MVar’s cost model nor its implementation could be
preserved in an environment that required communication between
remote systems, we prohibit programmers from using MVars in that
way. Notice, however, that we do not attempt to stop the program-
mer from using MVars within a single process: processes are al-
lowed to use Haskell’s forkIO function to create local threads that
can share memory using MVars. The same is true for TVars: the fact
that they are non-serializable guarantees that STM transactions do
not span processes, but the programmer is free to use STM within a
process. In fact, our implementation uses STM to protect the mes-
sage queue, as discussed in Section 7.

2.4 Starting and Locating Processes
To start a new process in a distributed system, we need a way of
specifying where that process will run. The question of where is
answered with Cloud Haskell’s unit of location, the node. A node
can be thought of as an independent address space. Each node is
named by a NodeId, a unique identifier that contains an IP address
that can be used to communicate with the node. So, to be able to
start a process, we want a function named spawn that takes two
parameters: a NodeId that specifies where the new process should
run, and some expression of what code should be run there. Since
we want to run code that is able to receive messages, the code
should be in the ProcessM monad. The spawn function should then

Basic messaging
instance Monad ProcessM
instance MonadIO ProcessM
send :: Serializable a ⇒ ProcessId → a → ProcessM ()
expect :: Serializable a ⇒ ProcessM a

Channels
newChan :: Serializable a

⇒ ProcessM (SendPort a, ReceivePort a)
sendChan :: Serializable a

⇒ SendPort a → a → ProcessM ()
receiveChan :: Serializable a ⇒ ReceivePort a → ProcessM a
mergePortsBiased :: Serializable a ⇒ [ReceivePort a]

→ ProcessM (ReceivePort a)
mergePortsRR:: Serializable a ⇒ [ReceivePort a]

→ ProcessM (ReceivePort a)

Advanced messaging
instance Monad MatchM
receiveWait :: [MatchM q ()] →ProcessM q
receiveTimeout :: Int → [MatchM q ()]

→ ProcessM (Maybe q)
match :: Serializable a ⇒ (a → ProcessM q) →MatchM q ()
matchIf :: Serializable a ⇒ (a → Bool)

→ (a → ProcessM q) →MatchM q ()
matchUnknown:: ProcessM q →MatchM q ()

Process management
spawn :: NodeId → Closure (ProcessM ())

→ ProcessM ProcessId
call :: Serializable a ⇒ NodeId →

Closure (ProcessM a) →ProcessM a
terminate :: ProcessM a
getSelfPid :: ProcessM ProcessId
getSelfNode :: ProcessM NodeId

Process monitoring
linkProcess :: ProcessId → ProcessM ()
monitorProcess :: ProcessId → ProcessId

→ MonitorAction → ProcessM ()

Initialization
type RemoteTable = [(String,Dynamic)]
runRemote :: Maybe FilePath → [RemoteTable]

→ ( String → ProcessM ()) → IO ()

type PeerInfo = Map String [NodeId]
getPeers :: ProcessM PeerInfo
findPeerByRole :: PeerInfo → String → [NodeId]

Syntactic sugar
mkClosure :: Name → Q Exp
remotable :: [Name] →Q [Dec]

Logging
say :: String → ProcessM ()

Type classes
class (Binary a,Typeable a) ⇒ Serializable a
class Typeable a where typeOf :: a → TypeRep
class Binary t where {put :: t → PutM (); get :: Get t}
encode :: Binary a ⇒ a → ByteString
−− Defined in terms of put

decode :: Binary a ⇒ ByteString → a
−− Defined in terms of get

Figure 2. The interface functions of Cloud Haskell.

return a ProcessId, which can be used with send. Since spawn will
itself depend on messaging, it, too, will be in the ProcessM monad.
So, its type will be something like:



−− wrong
spawn :: NodeId →ProcessM () → ProcessM ProcessId

In combination with the ping and pong functions, spawn could
be used like this:

−− wrong
do pingProc ← spawn someNode ping

pongProc ←spawn otherNode pong
send pingProc (Pong pongProc)

This code is intended to start two new processes, located on
someNode and otherNode, with each process expecting to receive
messages of a particular type. To begin the exchange, we send an
initial Pong message to the ping process.

In Cloud Haskell, the actual type of spawn is

spawn :: NodeId → Closure (ProcessM ())
→ ProcessM ProcessId

The difference between this and our initial guess is that the sec-
ond argument to spawn is Closure (ProcessM ()) rather than just
ProcessM (). Serializing a function means serializing two things:
a representation of its code, and a representation of its environ-
ment — more precisely, the bindings of its free names. A Closure is
exactly this, but the details of closures turn out to be surprisingly
tricky. We discuss this at length in Section 5.

2.5 Fault Tolerance
Fault tolerance in Cloud Haskell is based on ideas from Erlang.
The premise of Erlang-style fault tolerance is that, when something
goes deeply wrong inside a process, the best course of action is
for the process to terminate; attempting to glue the pieces back
together with string and sealing wax will not lead to robustness.
Instead, another process should take over. To make this possible,
one process can monitor another process; if the monitored process
terminates, the monitoring process will be notified. Ascertaining
the origin of the failure and recovering from it are left to the
application or a higher-level framework.

A process can request to be notified in the event that another
process terminates for any reason, or only in the case of a fault
involving the terminating process. Examples of such faults are
uncaught exceptions, and the node on which the process is running
becoming inaccessible. Notifications can be delivered in two ways:
as asynchronous exceptions, which can be caught with Haskell’s
usual exception handling mechanisms; or by message, which can
be received like any other message. The choice is made by the
monitoring process when monitoring is established.

The functions for setting-up process monitoring are:

monitorProcess :: ProcessId → ProcessId
→ MonitorAction → ProcessM ()

linkProcess :: ProcessId → ProcessM ()

monitorProcess a b ma establishes unidirectional process monitor-
ing. That is, process a will be notified if process b terminates. The
third argument determines whether the monitoring process a will
be notified by exception or by message.

linkProcess corresponds to Erlang’s link . It establishes bidirec-
tional process monitoring between the current process and a given
process; if either of those processes terminate abnormally, the other
will receive an asynchronous exception. linkProcess is defined in
terms of monitorProcess.

3. Matching Messages
In Section 2.2, we introduced the expect function, which lets us
receive messages of a particular type. But what if our process wants
to be able to accept messages of multiple types? Ideally, we’d like
to be able to approximate the Erlang receive syntax:

1 math() →
2 receive
3 {add, Pid, Num1, Num2} →
4 Pid ! Num1 +Num2;
5 {divide , Pid, Num1, Num2} when Num2 6=0 →
6 Pid ! Num1 /Num2;
7 {divide , Pid, , } →
8 Pid ! div by zero
9 end,

10 math().

This code will accept and respond to several different messages.
It does this by pattern matching on the values of the messages,
which are (by convention) all tuples. Each pattern has a correspond-
ing message-handling action. Line 3 attempts to match a tuple con-
taining the atom add, a process ID, and two numbers; when it finds
a message of that form, it will invoke the corresponding handler on
line 4, which sends back the sum of the two numbers. In the next
pattern, on line 5, the code responds to a message with a divide
atom, but only if the divisor is not zero; this is controlled by the
when syntax. Finally, the third pattern (line 7) will send back a
div by zero atom in response to all messages not matched by the
previous patterns, which is to say, those cases when the divisor is
zero. Patterns are tested against each message in the order that they
appear, so that the last pattern will be reached only if the first two
fail to match. If no pattern matches, the unmatched message is left
in the message queue, and the whole receive statement is repeated
for the next message. This goes on until a match is found or the
queue is exhausted. How can we provide similar functionality in
Haskell?

3.1 Receiving and Matching
Haskell doesn’t have an atom data type, but an idiomatic way of
representing the different messages is to use type constructors.
Imagine that a process should be able to perform mathematical op-
erations remotely, and should be able to respond to two requests:
Add pid a b, and Divide pid num den. The response should be to
send back either a value Answer Double, or a DivByZero error mes-
sage. It is certainly possible to create a message type that represents
the sum of all of these variants, suitable for use with expect:

data MathOp = Add ProcessId Double Double
| Divide ProcessId Double Double
| Answer Double
| DivByZero

There are several problems with using a sum type like MathOp.
Remember that expect can select messages only by type. Thus, a
process receiving MathOps messages would need to be able to re-
spond to all variants, even those that don’t make sense: presumably,
only client processes should receive Answer and DivByZero while
only the calculating process should receive Add and Divide. More-
over, putting all messages into a single sum type breaks modularity
by exposing details of the calculating process to the client; when
we add a new mathematical operation, every client will need to up-
date its code, even if it doesn’t use that operation. Worse, a single
process that offers more than one service could not keep them sep-
arate; clients of either would be forced to see the interface of both.

To avoid this kind of false dependency between what ought to
be independent modules, it is better to break the single MathOp
type into several types, each of which can be handled separately.
We can imagine three types of messages:

data Add = Add ProcessId Double Double
data Divide = Divide ProcessId Double Double
data DivByZero = DivByZero

In addition to the above types, the answer can be sent to the client
simply as a message of type Double — no wrapper required. But



now we have a different quandary: although expect can receive any
type of message, it can receive only one type of message at a time,
and will block until a message of that type is put into the message
queue. So there’s no way to handle the above message types if we
don’t know the order in which the client is going to send Adds and
Divides. What we need is an alternative to expect that provides the
notion of choice — something like the multi-way choice of Erlang’s
receive syntax.

How might we embed multi-way choice into Haskell? First,
let’s consider how to specify a pair consisting of a message type
and its corresponding action. We introduce match, which accepts a
message handler function as a parameter.

match :: Serializable a ⇒ (a → ProcessM q) →MatchM q ()

When match tests an incoming message, it compares the type of the
message against the type a, the parameter of the message handler.
Any message of that type will be considered “matched”: it will be
removed from the message queue, and given as an argument to the
message handler function.

match is in the MatchM monad, which is responsible for pro-
viding match with the current state of the message queue, and then
providing match’s caller with the result of its test. match will typi-
cally be used with receiveWait, which mimics Erlang’s receive syn-
tax by evaluating a list of MatchMs in order. The value returned by
the selected message action is also the return value of receiveWait.

receiveWait :: [MatchM q ()] →ProcessM q

How can we mimic Erlang’s when clause, which allows message
acceptance to be qualified by a predicate? We do this with matchIf,
whose first parameter is a predicate that is allowed to examine the
incoming message without removing it from the queue. Because
this predicate is pure, it cannot alter the state of the message queue.

matchIf :: Serializable a ⇒ (a → Bool) →
(a → ProcessM q) →MatchM q ()

Now let’s use these tools to implement the math function in
Haskell. Notice that Erlang’s patterns (lines 3, 5 and 7 of the code
on page 4) have been replaced by lambda functions.

−− omitted: Serializable instances for Add, Divide, and
DivByZero types

math :: ProcessM ()
math =

receiveWait
[ match (λ(Add pid num1 num2) →

send pid (num1 +num2)),
matchIf (λ(Divide num2) →num2 6=0)

(λ(Divide pid num1 num2) →
send pid (num1 /num2)),

match (λ(Divide pid ) →
send pid DivByZero) ]

� math

The combination of receiveWait and match closely corresponds
to Erlang’s receive syntax. The MatchMs are tested in order against
each message in the message queue. When a matching message is
found, the corresponding lambda function is invoked.

Notice that matching by message type is not quite the same
as matching by message value. For example, if a particular match
accepts messages of a certain type, then all variants of that type
must be handled. In the above example, this is okay, because the
Add type has only a single variant, built with the Add constructor.
If instead it were a sum type with a second constructor, then the
match call that deals only with the Add constructor would raise
a pattern match exception if a message with the other constructor
were received.

Clearly, receiveWait is more flexible than expect. In fact, expect
is implemented in terms of receiveWait. Its definition is:

expect :: Serializable a ⇒ ProcessM a
expect = receiveWait [match return]

3.2 Matching without Blocking
Whether we use receiveWait or expect, we run the risk that the
function will block until a certain type of message arrives. What
if we want to check the incoming message queue, but not wait
indefinitely? Erlang lets us do this with the receive . . . after syntax:

Pid ! {query, Stuff},
receive
{response, Answer} →

show answer(Answer)
after

50000 →
show error(”Timeout!”)

end

This code will wait at most 50 seconds to receive a response
to its query; after 50 seconds, it will stop waiting and display
an error message. The corresponding function in Cloud Haskell
is receiveTimeout, which is very similar to receiveWait. Like
receiveWait, it takes a list of matches, but it also takes a timeout
value. If the timeout is exceeded, the function returns Nothing.

receiveTimeout :: Int → [MatchM q ()] →
ProcessM (Maybe q)

Thus we can translate the Erlang example into Haskell:

do send pid (Query stuff )
ret ← receiveTimeout 50000

[ match(λ(Response answer) →
return answer) ]

case ret of
Nothing → showError ”Timeout!”
Just ans → showAnswer ans

As with Erlang’s receive . . . after syntax, receiveTimeout can be
called with a timeout value of zero, which has the effect of checking
for a matching message and returning immediately if no match is
found.

4. Messages through channels
In the previous sections, we’ve shown how a message can be sent
to a process. As you can see from the type of send, any serializable
data structure can be sent as a message to any process. Whether
or not a particular message will be accepted (i.e., dequeued and
acted upon) by the recipient process isn’t determined until runtime.
But what about Haskell’s strong typing? Wouldn’t it be nice to
have some static guarantees that messages are sent to receivers who
know how to deal with them?

To offer this assurance, we provide distributed typed channels
as an alternative to sending messages directly to a process. Each
channel consists of two ends, which we call the send port and the
receive port. Messages are inserted via the send port, and extracted
in FIFO order from the receive port. Unlike process identifiers,
channels are created with a specific type: the send port will accept
messages only of that type, and consequently the receive port will
proffer messages only of that type.

The central functions of the channel interface are:

newChan :: Serializable a
⇒ ProcessM (SendPort a, ReceivePort a)

sendChan :: Serializable a ⇒ SendPort a → a → ProcessM ()
receiveChan :: Serializable a ⇒ ReceivePort a → ProcessM a

A critical point is that although a SendPort can be serialized and
copied to other nodes, allowing the channel to accept data from
multiple sources, a ReceivePort is not serializable, and thus cannot



be moved from the node on which it was created. This restriction
is enforced by making SendPort an instance of Serializable , but
not ReceivePort. This is a deliberate design decision; as a conse-
quence, receive ports in Cloud Haskell are more like Erlang pro-
cess identifiers or TCP ports than they are like receive rights in the
Accent [13] and Mach [5, §4.2.3] operating system kernels. This
decision reflects our intended execution environment, in which we
expect channels to be used to communicate across a network. The
ability, offered by Mach, to move a receive port from one place to
another can be very useful for moving responsibility for a service
from one provider to another, but only if this can be done without
the risk of losing messages that are in transit. Although easy in an
operating system like Mach, it is much less so in a distributed en-
vironment, especially when one of the prime reasons for moving a
service to a new server is that the old server has crashed.

We can now reformulate our ping example to use typed chan-
nels. The ping process is given two ports: a receive port on which
to receive pongs, and a send port on which to emit pings. Each
message now contains the send port on which its recipient should
respond; thus the Ping message contains the send port of a channel
of pongs, and vice-versa.

ping2 :: SendPort Ping → ReceivePort Pong →ProcessM ()
ping2 pingout pongin =

do (Pong partner) ← receiveChan pongin
sendChan partner (Ping pongin)
ping2 pingout pongin

4.1 Combining ports
There is an analogy between the expect function and its channel-
based counterpart, receiveChan: both receive a message of a par-
ticular type. The channel-based counterpart of receiveWait is the
mergePorts family of functions, which let us receive a message
from one of several channels.

mergePortsBiased :: Serializable a ⇒ [ReceivePort a] →
ProcessM (ReceivePort a)

mergePortsRR:: Serializable a ⇒ [ReceivePort a] →
ProcessM (ReceivePort a)

Given a list of ReceivePorts of the same message type, these
functions will return a new ReceivePort that, when read with
receiveChan, will provide a message taken from one of the input
ReceivePorts. You can visualize that the mergePorts functions take
several “feeder” ports and squeeze them together into a “merged”
port. Even after producing the merged ReceivePort, the original
ports may continue to be used independently. Messages read from
the merged port are extracted from the queue of the feeder port,
and so it is impossible to receive the same message twice.

mergePortsBiased and mergePortsRR differ in the order that the
input ports are queried, which is significant in the case that more
than one port has a message waiting. Each subsequent read from
the port created by mergePortsBiased will query the feeder ports in
the order that they were provided to mergePortsBiased — so the port
is “biased” towards the first feeder port. So, if the first feeder port
always has a message waiting, it could starve the other ports.

If this biased behavior is undesirable, use mergePortsRR instead.
The port created by mergePortsRR will rotate the order in which the
feeder ports are queried with each subsequent read. The effect is a
fairer “round-robin” multiplexing, which will guarantee that, given
enough reads on the merged port, every feeder port will eventually
have a chance to contribute a message from its queue.

Cloud Haskell also provides a family of combinePorts functions
that can be used to combine ports of different types, but we do not
discuss them in this paper.

5. Closures
As we hinted in Section 2.4, the question of how to transmit func-
tion closures from one node to another is a fundamental one. It must
be addressed by any distributed implementation of a statically-
typed, higher-order programming language. To see how pervasive
this question is, consider sendFunc, which creates an anonymous
function and sends it on a channel:

−− wrong
sendFunc :: SendPort (Int→Int) → Int → ProcessM ()
sendFunc p x = sendChan p (λy →x +y +1)

Notice that the function sent on the channel, (λy → x+y+1), is a
closure that captures its free variables, in this case x. In general,
to serialize a function value requires that one must also serialize
its free variables. However, the types of these free variables are
unrelated to the type of the function value, so it is entirely unclear
how to serialize them.

To understand this problem more deeply, let’s digress for a
moment and consider the problem of specifying equality on lists.

instance Eq a ⇒ Eq [a] where
(x:xs) = = (y:ys) = x = = y && xs = = ys

This says that, provided that Eq a holds, we can make Eq [a] hold.
Eq a means that the equality operator == is defined on values of
type a. Analogously, Eq [a] means that the equality operator is
defined on values of type [a]: indeed, the second line above defines
it. This works because equality is a structural property of the types:
we know that we can define equality on a list exactly when we have
an equality on the elements of that list.

Now lets get back to the problem at hand: specifying that a
function is serializable. We would like to write something like:

instance Serializable (types of the free variables of
an a→b) ⇒ Serializable (a→b) where . . .

but that can’t be expressed, and for good reason: serializability
of a function is not a structural property of the function, because
Haskell’s view of a function is purely extensional. In other words,
all we can do with a function is apply it; we can’t introspect on its
internal structure

It is not acceptable to say that functions are simply not serial-
izable, because any implementation of spawn needs to be able to
specify what function to run on the remote node. For example, con-
sider the task of creating a new remote worker process:

−− wrong
newWorker:: ProcessM ()
newWorker = do (s,r) ← newChan

spawn node (do ans ← . . .
sendChan s ans)

. . .

The second argument of spawn, the code that we want to run on
the remote node, is a value closed over its free variables, s, which
is bound to the sendPort on which the remote process should send
back the answer. Thus, serializing this argument requires serializ-
ing a function with a free variable. We can’t avoid this problem,
because the essence of distributed computation is providing a func-
tion like spawn that starts a remote computation; in a higher-order
language like Haskell, that must inevitably involve serializing a clo-
sure of some kind.

5.1 Prior Solutions
One solution to this problem is to “bake in” serialization of function
values — and indeed of all values — as a primitive operation imple-
mented directly by the runtime system. That is, the runtime system
allows one to serialize any value at all, and transports it to the other



end of the wire. Now, function closures can be serialized by serial-
izing their free variables, and adding a representation of their code.
This approach is used by every other higher-order distributed lan-
guage that we know of, including Erlang (see Section 10). How-
ever, making serializability built-in has multiple disadvantages:

• It relies on a single built-in notion of serializability. In contrast,
the Serializable type class introduced in Section 2.3 gives the
programmer control over how values are serialized. For exam-
ple, a data structure might have redundant information cached
in the nodes, which should be reconstructed at the far end rather
than being serialized. This is exactly what type classes are for!
• It is crucial that some types are not serializable. For example,

we do not want the receive port of a channels to be serializ-
able, so that senders know where to send their messages to.
Similarly making TVars non-serializable guarantees that STM
transactions do not span processes.
• Serializing a value and sending it over the network has an

important effect on the cost model; it should not be invisible.

In the object-oriented world, Java RMI [11] also builds-in a lot
of serialization machinery. Java RMI requires the programmer to
specify which objects are serializable (by declaring that they im-
plement the interface Serializable ), but the programer is not re-
quired to actually write the methods that serialize the fields of the
object: that is taken care of by the language implementation itself.
However, Java RMI also uses introspection to provide the program-
mer with fine control over which fields are serialized (the transient
flag prevents serialization), and exactly how the data are encoded
(by providing the private methods writeObject and readObject); it
also allows the programmer to take control of the whole serializa-
tion process by implementing the Externalizable interface, which
means implementing the writeExternal and readExternal methods
by hand. As a consequence, Java RMI avoids the three disadvan-
tages listed above, while still automating serialization for simple
data objects.

For deserialization, however, the Java approach depends cru-
cially on the runtime ability to take an arbitrary type representation
and cough up a deserializer for that type. Haskell lacks this ability
so this option is not open to us. Yet, as we argue above, building-
in serializability of every value is too blunt an instrument. We do
need some built-in support, but we seek something more modest.
Proposing such a mechanism for a language without reflection is
one of the main contributions of this paper.

5.2 Static values
We begin with a simple observation: some functions can be readily
transmitted to the other end of the wire, namely, functions that
have no free variables. For the present we make the simplifying
assumption that every node is running the same code. (We return
to the question of code that varies between nodes in Section 7.1.)
Under this assumption, a closure without free variables can be
readily serialized as a single symbolic code address (aka linker
label).

To distinguish values that can be readily serialized from those
that cannot, we introduce a new type constructor ( Static τ) to
classify such values. The type constructor Static is a new built-in
primitive, enjoying a built-in serialization instance:

instance Serializable ( Static a)

It is helpful to remember this intuition: the defining property of a
value of type ( Static τ ) is that it can be serialized, and moreover,
that it can be serialized without knowledge of how to serialize τ .
Operationally, the implementation serializes a Static value by first
evaluating it, and then serializing the code label for the result of the

Γ ::= x :δ σ

δ ::= S | D

Γ ↓ = {x :s σ | x :s σ ∈ Γ}

Γ ↓ ` e : τ

Γ ` static e : Static τ
(Static intro)

Γ ` e : Static τ

Γ ` unstatic e : τ
(Static elim)

Figure 3. Typing rules for Static

evaluation. Perhaps surprisingly, this works not only for functions,
but also for data values of a type like Static Tree. For these we
simply statically allocate the Tree value (at compile time), and pass
the label of its root.

Along with the new type constructor, we introduce new terms:
(static e) to introduce the type, and (unstatic e) to eliminate it. The
typing judgements for these terms are given in Figure 3. The type
environment Γ is a set of variable bindings, each of the form x :δ σ;
the subscript δ is a static-ness flag, which takes the values S (static)
or D (dynamic). The idea is that top-level variables are flagged as
S by giving them bindings of the form f :S σ; all other variables
have dynamic bindings x :D σ. (It is straightforward to formalise
this idea in the typing judgements for top-level bindings and for
terms; we omit the details.) The postfix operation ↓ filters a type
environment to leave only the S bindings. The rule (Static intro)
states that a term static e is well typed iff all of e’s free variables
are flagged S, for only then will we be able to show that e : τ in the
filtered environment Γ ↓. In short:

• A variable is S-bound iff it is bound at the top level.
• A term (static e) has type (Static τ ) iff e has type τ , and all of
e’s free-variables are S-bound.

Although simple, these rules have some interesting consequences:

• A variable with an S binding may have a non- Static type.
Consider the top-level binding for the identity function:

id :: a → a
id x = x

Because the function id is top-level, its binding in Γ will have
δ = S, in other words id has the non- Static type id :S a→a.
However, (Static id) has type (Static (a → a)).
• A variable with a D binding may have a Static type. For

example

f :: Static a → ( Static a, Int )
f x = (x, 3)

Here, x is lambda-bound and so has a D binding, but x certainly
has a Static type. So fully-dynamic functions can readily com-
pute over values of Static type.
• The free variables of a term (static e) need not have Static

types. For example, this term is well-typed:

static (length ◦ filter id) :: Static ([Bool] → Int )

Looking at the argument to static , we see that all of its free
variables (length, (◦), filter , and id) are bound at top-level and
hence have S bindings. However, all these functions have their
usual types.



5.3 From static values to closures
In our earlier examples sendFunc and newWorker (introduced on
page 6), we wanted to transmit closures that certainly did have
free variables. How do static terms help us? They help by making
closure conversion possible. A closure is just a pair containing a
code pointer and an environment. With the aid of Static terms we
can now try to represent a closure directly in Haskell:

data Closure a where −− Wrong
MkClosure :: Static (env → a) → env → Closure a

MkClosure takes two arguments: a Static function and an envi-
ronment of some (unknown) type env that is appropriate as input to
the function. The fact that the type of the environment is unknown
(strictly, it is existentially quantified) means that two closures with
the same type may nonetheless capture environments with differing
types. For example, consider the list of closures cs:

cs :: [ Closure Int ]
cs = [MkClosure (static negate) 3,

MkClosure (static ord) ’x ’]

Both closures in cs have the same type, Closure Int , but the first
captures an Int as its environment, while the second captures a
Char. (The function ord has type Char→Int.)

This closure type is still not serializable, because env is not
serializable. This is apparently easy to solve, by asking that the
environment be serializable:

data Closure a where −− Still wrong
MkClosure :: Serializable env ⇒

Static (env → a) → env → Closure a
deriving (Typeable)

Now serialization is easy:

instance Binary (Closure a) where
put (MkClosure f env) = put f � put env

But how can we de-serialize a closure? The difficulty is that, at the
receiving end, we do not know the type captured inside the closure,
so we do not know which deserializer to use. Maybe we have to
send a representation of the environment type, and do a run-time
type-class lookup at the receiving end? Maybe we could send some
representation of the deserialization function itself? But that seems
to require a solution to the problem of serializing closures, so an
infinite regress beckons.

Happily, the solution is simple and, with the benefit of hindsight,
obvious: perform both serialization and deserialization at closure-
construction time, not at closure-serialization time. In other words,
we get rid of the existential quantification, and simply require that
the environment be a ByteString.

data Closure a where −− Right
MkClosure :: Static (ByteString → a) →

ByteString → Closure a

Although this may sound draconian, it is perfectly general, because
any environment that is serializable is equipped with encode and
decode functions that will convert it to and from a ByteString. In
effect, this makes the correct deserializer part of the static function
in the closure. Simple, but effective.

It is easy to un-closure-convert: we just apply the function to the
environment.

unClosure :: Closure a → a
unClosure (MkClosure f x) = unstatic f x

The deserialization of the environment takes place in unClosure.
For a function-valued closure it makes sense to apply unClosure
once, and apply the resulting function many times, so that the
deserialization is performed just once.

5.4 Closures in practice
To see closures in action, here is our earlier sendFunc example,
expressed using closures:

sendFunc :: SendPort (Closure ( Int → Int ))
→ Int → ProcessM ()

sendFunc p x = sendChan p clo
where clo = MkClosure (static sfun) (encode x)

sfun :: ByteString → Int → Int
sfun bs y = let x = decode bs

in x +y +1

The type of the items that can be sent on port p is now (Closure
( Int → Int )), instead of just ( Int → Int ). Instead of just sending
a lambda-expression on p, we send clo , a closure containing the
pre-serialized environment encode x, and the static function sfun.
The latter deserializes its argument bs to get the real environment x
that it expects.

Now let’s look at the newWorker example. Using closures we
would rewrite it like this:

newWorker:: ProcessM ()
newWorker = do (s,r) ← newChan

spawn node clo
. . .

where clo = MkClosure (static child ) (encode s)

child :: ByteString → ProcessM ()
child bs = let s = decode bs

in do ans ← . . .
sendChan s ans

The type of spawn is given in Figure 2; it takes a closure as its
second argument.

5.5 Summary
In this section we introduced a rather simple set of language
primitives: a new type constructor Static , with built-in serializa-
tion; a new term form (static e); and a new primitive function
unstatic ::Static a → a.

Building on these primitives we can manually construct closures
and control exactly how and when they are serialized. Performing
manual closure conversion is tiresome for the programmer, and
one might wonder about adding some syntactic sugar. We have
not yet explored this option in depth, preferring to work out the
foundations first. However in the next section we describe some
simple Template Haskell support.

6. Faking it
We have not yet implemented static in GHC, but we have imple-
mented some simple workarounds that allow us (and you, gentle
reader) to experiment with closures without changing GHC. We
describe these workarounds in this section.

6.1 Example
Here is the code for sendFunc using the workarounds; we will use
this as a running example.

sendFunc :: SendPort (Closure ( Int → Int ))
→ Int → ProcessM ()

sendFunc p x = sendChan p ($(mkClosure ’add1) x)

add1 :: Int → Int → Int
add1 x y = x +y +1

$(remotable [’ add1])



The programmer still has to do manual closure conversion, by
defining a top-level function (add1 in this case) whose first argu-
ment is the environment (an Int). However, the code is otherwise
significantly more straightforward than in Section 5.4.

The Template Haskell splice $(mkClosure ’add1) is run at com-
pile time. Its argument ’add1 is Template Haskell notation for the
(quoted) name of the add1 function. mkClosure (with a small m)
operates on the names of functions.

mkClosure :: Name →Q Exp

The splice expands to a call to add1 closure , so the net result is
just as if we had written

sendFunc ch x = sendChan ch (add1 closure x)

What is add1 closure? It is a new top-level function created by the
Template Haskell splice $(remotable [’ add1]).

remotable :: [Name] →Q [Dec]

This splice expands to the following definitions

add1 closure :: Int → Closure Int
add1 closure x = MkClosure (MkS ”M.add1”)(encode x)

add1 dec :: ByteString → Int → Int
add1 dec bs = add1 (decode bs)

remoteTable :: [( String , Dynamic)]
remoteTable = [(”add1”, toDyn add1 dec)]

Thus, a call to mkClosure gives us a closure generator, which will
automatically serialize arguments of the correct type and return
a closure suitable for use with spawn. Next we see how these
definitions work.

6.2 How it works
We fake the Static type by a string, which will serve as the label of
the function to call in the remote process.

newtype Static a = MkS String

We maintain a table in the ProcessM monad that maps these strings
to the appropriate implementation function composed with the en-
vironment deserializer, which in our example is add1 dec. This
table is initialised by the call to runRemote that initialises the
ProcessM monad; the table may be consulted from within the
monad:

runRemote:: Maybe FilePath → [( String ,Dynamic)]
→ ProcessM () → IO ()

lookupStatic :: Typeable a ⇒ String → ProcessM a

The lookupStatic function looks up the function in the table, and
performs a run-time typecheck to ensure that the value returned
has the type expected by the caller. Our fake implementation of
statics is therefore still type-safe; it’s just that the checks happen at
runtime. If either the lookup or typecheck fail, the entire process
crashes, consistent with Erlang’s philosophy of crash-and-recover.

Tiresomely, the programmer has the following obligations:

• In each module, write one call $(remotable [ . . . ]), passing
the names of all of the functions provided as arguments to
mkClosure.
• In the call to runRemote, pass a list a list of all the remoteTable

definitions, imported from each module that has a call to
remotable.

Finally, the closure un-wrapping process becomes monadic,
which is a little less convenient for the programmer:

unClosure :: Typeable a ⇒ Closure a → ProcessM a
unClosure (MkClosure (MkS s) env)

= do f ← lookupStatic s
return (f env)

7. Implementation
Cloud Haskell has been tested with recent versions of the Glas-
gow Haskell Compiler (GHC). The code is evolving rapidly; a
current snapshot is available at http://www.github.com/jepst/
CloudHaskell. Some features of the implementation are:

• Processes use Concurrent Haskell’s lightweight threads. The
low incremental cost of running threads is important, because
a single node may need to support hundreds of processes, and
processes may start and end frequently. Lightweight threads
are also used to service network connections; each incoming
network connection is handled by forking a new thread.
• The mergePorts family of function was tricky to implement. It

would have been simple, and wrong, to fork separate threads
that called receiveChan on each of several ReceivePorts, but
this would cause an unfortunate race condition. Imagine what
would happen if messages were received concurrently on two
ports and were extracted concurrently by two threads. Only one
of the messages can be returned: what is to be done with the
other? Because there is no way to put a message back into
the channel in the original order, we would need to either re-
order the channel (breaking the FIFO property) or discard the
message (breaking reliability).
Haskell’s Software Transactional Memory (STM) helps us
solve this problem elegantly. STM provides a mechanism to
compose receive transactions on individual message queues in
a way that ensures that only one commits.
• Template Haskell was used to write the functions mkClosure

and remotable, which automatically generate code necessary to
invoke remote functions, as described in Section 6.

7.1 Dynamic code update
Erlang has a nice feature that allows program modules to be up-
dated over the wire. So, when a new version of code is released,
it can be transmitted to every host in the network, where it will
replace the old version of the code, without having to restart the
application. We decided not to go in this direction with our frame-
work, partly because code update is a problem that can be sepa-
rated from the other aspects of building a distributed computing
framework, and partly because solving it is hard. The hardness is
especially prohibitive in Haskell’s case, which compiles programs
to machine code and lets the operating system load them, whereas
Erlang’s bytecode interpreter retains more control over the loading
and execution of programs.

Because we have not implemented dynamic code update, Cloud
Haskell code needs to be distributed to remote hosts “out of band”.
In our development environment this was usually done with scp
and similar tools. Furthermore, this imposes on the programmer
the responsibility to ensure that all hosts are running the same
version of the compiled executable. Because TypeReps are nom-
inal, and because we don’t make any framework-level provision
for rectifying incompatible message types, sending messages be-
tween executables that use the same name to refer to message types
with different structure would most probably crash the deserializ-
ing process. A simple solution is to include with a TypeRep a fin-
gerprint of the complete type definition and everything it depends
on. GHC already computes such fingerprints as part of its recompi-
lation checking, so it should not be hard to incorporate fingerprints
in a TypeRep.



8. A complete Cloud Haskell Application
As a practical example, we present a complete, albeit trivial, ex-
ample of a distributed application. The application provides a re-
mote counter, which can be incremented and queried by a client
process; it is based on an Erlang program, presented by Armstrong
and colleagues [1]. We’ll discuss every step necessary to actually
get results from this example, including the configuration and de-
ployment processes.

Deploying a distributed application involves creating several
nodes and making sure that those nodes can communicate. Each
running instance of the program creates a new node. While one
could in principle multiplex several nodes of a distributed appli-
cation on a single physical computer, the benefits and challenges
of distributed computing are more apparent when the application is
running on several computers connected by a network. There are in-
numerable possible network configurations, and we’ll address only
the relatively simple case of a local TCP network with no firewall.
We’ll assume that each computer on which we deploy the applica-
tion has a unique name. This example only needs two computers;
we assume that they are named acs−01 and acs−02.

Cloud Haskell supports several configuration options, only a
few of which are necessary here. These options can be set in a con-
figuration file, which is loaded by the program, or on the command
line. Here, we’ll describe how to create a suitable configuration file.

The example application distinguishes two kinds of nodes: the
worker node will initially wait passively for instruction, whereas
the master node will find a worker node, spawn a thread on it,
and use it to compute. Even though all nodes have to run the same
program, their initial action is determined by this attribute, which
we call their role. The role of a node is simply a string, which
is part of the per-node configuration. This application looks for a
configuration file named config in the current directory.

We arbitrarily select the computer acs−01 to host the master
node, and the computer acs−02 to host the worker node. The
program, given opposite, should be compiled for both machines.
Each machine also needs its own configuration file, named config .
Here is the configuration for acs−01:

cfgRole MASTER
cfgHostName acs−01
cfgKnownHosts acs−01 acs−02

And here is the configuration file for acs−02:
cfgRole WORKER
cfgHostName acs−02
cfgKnownHosts acs−01 acs−02

The cfgRole option sets the role of the node. The cfgHostName
option should match the name by which the host is accessible on
the network. The cfgKnownHosts option sets a list of hosts where
nodes might be running. The getPeers function uses the value
of cfgKnownHosts to contact any running nodes on each of the
named machines. getPeers will then return a PeerInfo , which can be
examined with findPeerByRole to see what other nodes are available
on the network.

Of the three options given in the above configuration files,
only cfgRole is strictly necessary. If cfgHostName isn’t speci-
fied, the framework will ask the operating system for it. Also,
cfgKnownHosts is optional, because getPeers will try to discover
peers on the local network via UDP broadcast. Nevertheless, to
ensure that the example applications runs on as many networks as
possible, it is safer to explicitly set these values.

Once the configuration file and binary executable have been dis-
tributed to both of the hosts, we can run the program. Because the
master node expects that the worker node will already be available,
we start the program on the worker node first.

Here’s the code for the example application:

1 module Main where
2 −− omitted: module imports
3 data CounterMessage = CounterQuery ProcessId
4 | CounterShutdown
5 | CounterIncrement
6 deriving (Typeable)
7 −− omitted: Serializable instance of CounterMessage
8

9 counterLoop :: Int → ProcessM ()
10 counterLoop val
11 = do val’ ← receiveWait [match counterCommand]
12 counterLoop val ’
13 where
14 counterCommand (CounterQuery pid)
15 = do send pid val
16 return val
17 counterCommand CounterIncrement = return (val +1)
18 counterCommand CounterShutdown = terminate
19

20 $( remotable [’ counterLoop] )
21

22 increment :: ProcessId → ProcessM ()
23 increment cpid = send cpid CounterIncrement
24

25 shutdown :: ProcessId → ProcessM ()
26 shutdown cpid = send cpid CounterShutdown
27

28 query :: ProcessId → ProcessM Int
29 query counterpid =
30 do mypid ← getSelfPid
31 send counterpid (CounterQuery mypid)
32 expect
33

34 go "MASTER" =
35 do aNode ← liftM (head . flip
36 findPeerByRole "WORKER") getPeers
37 cpid ← spawn aNode ($(mkClosure ’counterLoop) 0)
38 increment cpid
39 increment cpid
40 newVal ← query cpid
41 say (show newVal) −− prints out 2
42 shutdown cpid
43

44 go "WORKER" =
45 receiveWait []
46

47 main = runRemote (Just "config")
48 [Main. remoteTable] go

When the program starts, it first calls Cloud Haskell’s function
runRemote (line 47), which is responsible for reading the config-
uration file, starting system services, and finally starting the main
application-level process, which in this case is named go. Notice
that runRemote is given a list of function lookup tables, one for
each module; these tables are generated by remotable. The lookup
tables are merged and stored in the ProcessM monad, where they
are accessible to unClosure.

The go function is defined in two parts: one, on line 34, defines
the behaviour of the node designated as master, while the other, on
line 44, indicates that worker nodes should idly wait for the master
to start a process: in this application, all work is initiated by the
master. On line 35, the master calls getPeers to discover other nodes
on the network. It picks the first worker node and calls spawn on
line 37 to start the counterLoop function on that node. The closure
in spawn’s second argument is created and the closure’s argument is
automatically serialized. Using the ID of the new process, the main
program then sends two increment commands (on lines 38 and 39)
to the counter and then queries the new value (line 40), which it
outputs, before asking the process to shut itself down.



counterLoop maintains the state of the counter and responds to
messages pertaining to that counter. It understands three messages:
increment, which will increment the value of the counter; query,
which will send the current value of the counter to the sender;
and shutdown, which will end the counter process. The type of
these messages is declared on line 3; convenience functions, de-
fined on lines 22, 25, and 28, are used to send the messages. The
counterLoop function demonstrates a technique for storing process-
local state: the function tail-recursively calls itself after processing
each message, each time giving itself a new value for the counter.
Handling a query message doesn’t change the counter, so it tail-
recurses with the same value, whereas the increment message is
handled by tail-recursing with the successor of the current value.

Notice that it is not necessary to do any explicit thread synchro-
nization in this program. All messages sent to the counter process
are handled synchronously, in FIFO order, so it is impossible to
create a race condition on the counter.

9. Performance
One goal of a distributed system is to be able coordinate compute-
and data-intensive algorithms among many nodes without incurring
a performance overhead. Here we discuss the performance of our
implementation of the k-means algorithm. The algorithm is used to
identify natural clusters within sets of data points; its input is a set
of data points and an integer k, and its output is an assignment of
each point to one of k clusters.

The k-means algorithm can be described as a generalization of
MapReduce [4]. Each node is assigned a role of either mapper or
reducer; the data points are divided evenly between the mappers.
Each mapper then calculates the distance between each of its data
points and the (initially random) centroid of each cluster, and on
that basis assigns each point to the nearest cluster. The new as-
signments are collected by the reducer nodes and used to generate
new cluster centroids. The new centroids are sent back to the map-
pers and used to repeat the algorithm, until either the centroids stop
changing or the maximum number of iterations is reached.
k-means is computationally demanding, data intensive, and eas-

ily partitioned, and so provides a useful test case for Cloud Haskell.
We compared the performance of a Cloud Haskell implementa-
tion of k-means with the Apache Mahout implementation, which
is based on the Hadoop framework. We deployed both versions on
an Amazon EC2 cluster, giving them one million randomly gener-
ated 100-dimensional data points as input, and extracted k = 10
clusters. The number of iterations was fixed at five. We used one
reducer node, while the number of mapper nodes was varied be-
tween one and 80. Each node was executed on an Amazon instance
of type m1.small, which is a single core virtual machine with 1.7
GB of memory. The results of the tests are summarized in Figure 4.

The results show that Cloud Haskell has performance roughly
comparable with that of the Hadoop framework, and in some cases
superior. Although the Hadoop implementation performs better
with fewer nodes, the Cloud Haskell version overtakes it as more
nodes are added, and retains this lead. The greatest bottleneck in
Cloud Haskell’s performance is acquiring and loading the data; we
hope to address this issue by improving file handling.

10. Related work
As should be clear, our main inspiration comes from Erlang [1],
whose tremendous success for distributed programming led us to
emulate its best features. A second inspiration is the Ciel execution
engine and Skywriting language of Murray et al [9, 10].

In scientific computing, the most scalable solution for dis-
tributed parallel computation is the Message Passing Interface
(MPI). As its name suggests, MPI is similar to our framework in
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Figure 4. The run-time of the k-means algorithm, implemented
under Cloud Haskell and Hadoop. The input data was one million
100-dimensional data points.

its preference for communication by messages. Unlike our frame-
work, MPI is language-independent; interfaces are available for
Fortran, C, and C++, and an array of different implementations
have been optimized for a variety of supercomputer architectures.
In comparison, Cloud Haskell, as a DSL embedded in Haskell, is
not easily available from other languages. This is of course a weak-
ness, but it is also a great strength. Haskell’s type system separates
shared-memory concurrency, distributed-memory concurrency and
pure computation, giving programmers powerful reasoning tools
that are not available when using a subroutine library called from a
language with a weaker type system.

There have been lots of mechanisms for executing functions on
remote systems, staring with Birrell and Nelson’s RPC [3]. Spe-
cific to Java is the Remote Method Invocation (RMI) mechanism
[11]. CORBA provides the Interface Description Language (IDL)
[19] to define implementation-language-independent remote func-
tions. Web services often use the SOAP standard to implement re-
mote procedure call. However, none of these mechanisms deal with
the problem of transmitting first-class functions that capture their
environment. Although it may be argued that any object-oriented
language that supports mobile objects does as a consequence also
support mobile functions, there have been few full implementations
of mobile objects. A notable exception is Emerald [8], which dealt
with the issue of environment capture by copying the relevant parts
of the environment into an object when it was created. All objects,
including stack frames, were mobile; serialization was handled by
the run-time system and depended on introspection.

Implementing a framework for distributed computing in Haskell
has been done before. One example is Glasgow Distributed Haskell
[12], which differs form our work in that it maintains the semantics
of shared-memory concurrency in a distributed environment, rather
than insisting on message-based communication between nodes.
We argue that this is undesirable because it gives the programmer
no model for reasoning about the costs of the computation.

Another example is Eden [? ], an extension to Haskell that pro-
vides distributed processes that encapsulate functions. The con-
struction, use, and serialization of these processes are built into the
implementation, which will copy all of the bindings needed for the
evaluation of a function’s free variables. Eden also supports a rich
library of higher-order functions, as well as a debugging tools such
a trace viewer.

Our operations on channels are somewhat reminiscent of Con-
current ML’s events [14]. However, Concurrent ML does not sup-



port distribution because that would be incompatible with its model
of synchronization. paraML, an experimental variant of Concurrent
ML, did have a distributed implementation; its serialization mech-
anism was entirely built-in [2].

The Acute language does a very solid job of dealing with type-
safe marshalling, based on passing type representations at runtime
[16]. Serialization is mostly built-in, with some programmer con-
trol offered for “rebinding”, when values should be rebound rather
than serialized. HashCaml, currently in alpha-release, is a variant
of OCaml that supports type-safe distributed programming, includ-
ing serialization of function values. Like Acute it uses explicit type
passing, the details of how the free variables of function closures
are marshalled are hazy. Rossberg’s language Alice likewise sup-
ports type-safe distributed programming [15]. The Clean language
supports type-safe saving of arbitrary values (including function
closures) into files [18]; a recent paper proposes a mechanism (not
yet implemented) for solving class constraints at runtime [17, §4.2].

A fundamental feature of all of these systems is that serializa-
tion of funciton closures is built-in. In contrast, our work puts the
programmer in complete control of serialization, via the usual type-
class mechanism. Exposing closure conversion is a significant bur-
den — albeit one that can be relieved with some syntactic sugar.
The payoff is that the programmer can reason about the cost of
sending a message. We do not argue that our approach is always
better, but rather that it offers a new and unexplored design point.

11. Conclusions and Future Work
Cloud Haskell, as presented in this paper, provides a good starting
point for building a distributed application. However, as yet it is no
more than this: we have a lot of work left to do to make “Haskell in
the Cloud” a reality.

Our ongoing work is on two levels. At the lower level, we plan
to implement Static and the corresponding type inference rules in
GHC. This will remove the need for the workarounds described
in Section 6. At the higher level, we have designed a framework
that builds on the interface described here. In it, the main unit of
abstraction changes from the process to the task: an idempotent,
restartable block of code that produces a well-defined result. The
task layer of the framework, like the process layer presented in this
paper, is accessible as a domain-specific language (DSL) embedded
in Haskell as a monad.

Whereas the DSL described here lets programmers start pro-
cesses, exchange messages, and detect failure, the task-based
framework takes care of allocating tasks to physical resources, re-
solving data dependencies between tasks, and automatically recov-
ering from failure. To make this possible, the task layer represents
the computation as a directed acyclic graph, in which tasks are the
vertices and the data dependencies between them are the edges, and
are exposed to the programmer as promises. We hope that the task
layer will provide functionality similar to well-known distributed
frameworks such as MapReduce [4] and Dryad [7], although our
immediate inspiration comes from the Skywriting project [9, 10].
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