
Haskell Is Not Not ML

Ben Rudiak-Gould1, Alan Mycroft1, and Simon Peyton Jones2

1 University of Cambridge Computer Laboratory
2 Microsoft Research Cambridge

{br276, am}@cl.cam.ac.uk, simonpj@microsoft.com

Abstract. We present a typed calculus IL (“intermediate language”)
which supports the embedding of ML-like (strict, eager) and Haskell-like
(non-strict, lazy) languages, without favoring either. IL’s type system
includes negation (continuations), but not implication (function arrow).
Within IL we find that lifted sums and products can be represented as the
double negation of their unlifted counterparts. We exhibit a compilation
function from IL to AM—an abstract von Neumann machine—which
maps values of ordinary and doubly negated types to heap structures
resembling those found in practical implementations of languages in the
ML and Haskell families. Finally, we show that a small variation in the de-
sign of AM allows us to treat any ML value as a Haskell value at runtime
without cost, and project a Haskell value onto an ML type with only the
cost of a Haskell deepSeq. This suggests that IL and AM may be useful
as a compilation and execution model for a new language which combines
the best features of strict and non-strict functional programming.

1 Introduction

Every functional language in use today is either strict and eagerly evaluated or
non-strict and lazily evaluated. Though most languages make some provision for
both evaluation strategies, it is always clear which side their bread is buttered on:
one evaluation strategy is automatic and transparent, while the other requires
micromanagement by the programmer.

The dichotomy is surprising when one considers how similar lazy functional
programs and eager functional programs look in practice. Most of the differences
between SML and Haskell are independent of evaluation order (syntax, extensible
records, module systems, type classes, monadic effect system, rank-2 types. . .).
Were it not for those differences, it would in many cases be difficult to tell which
language a given code fragment was actually written in. Why, then, is there no
hybrid language which can understand code like

foldl f z l = case l of [] -> z
(x:xs) -> foldl f (f z x) xs

in some way that abstracts over possible evaluation orders?
Designing such a language turns out to be quite difficult. Reducing the signif-

icant notational and cognitive burdens of mixed strict/non-strict programming

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 38–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Haskell Is Not Not ML 39

is an open research problem, which we do not attempt to solve in this paper. In-
stead we address a prerequisite for the success of any hybrid language, which is the
possibility of implementing it easily and efficiently enough to be competitive with
dedicated strict and lazy languages. That is, we discuss the optimization and back
end phases of a hybrid language compiler, leaving the front end for future work.

In Section 2 we introduce a compiler intermediate language (“IL”) which can
support conventional strict and non-strict source languages through different
front-end translations. IL is the centerpiece and the main contribution of this
paper. Section 3 presents toy strict and non-strict languages (“SL” and “LL”)
and their translations to IL. SL and LL are entirely conventional in design,
and are included only as examples of translations to IL. Section 4 introduces an
abstract machine (“AM”) with a von Neumann architecture, which can act as an
execution environment for IL. Our goal is that compilation of SL or LL via IL to
AM should be competitive (in code size and execution speed) with compilation
of SL or LL to purpose-designed, incompatible abstract machines.

With this architecture we can compile ML-like and Haskell-like source code
to a common abstract machine with a single heap. The strict and non-strict lan-
guages cannot share data structures, since they have incompatible type systems,
but they can exchange data via appropriate marshalling code (written in IL).
In Section 5 we aim to get rid of the marshalling and enable direct sharing. By
carefully choosing the representation of the heap data, we can arrange that the
natural injection from ML values into Haskell values is a no-op at runtime, and
the natural projection from Haskell values to pointed ML values carries only the
cost of a Haskell deepSeq operation (in particular, it need not perform copying).

Space constraints have forced us to omit or gloss over many interesting fea-
tures of IL in this conference paper. Interested readers may find additional ma-
terial at the project website [7].

1.1 A Note on Types

We handle recursive types with a form να. T , which denotes the type T with
free occurrences of α replaced by T itself. The ν form can be seen as extending
the tree of types to a graph with cycles; να simply gives a name to the graph
node which it annotates. For example, να. ¬α describes a single negation node
pointing to itself, while να. α is meaningless, since α refers to no node. In this
paper we will treat the ν form as a metasyntactic description of a type graph,
rather than a feature of the concrete syntax of types. This allows us to omit rules
for syntactic manipulation of ν forms, which would complicate the presentation
and yield no new insight.

Rather than attempt to distinguish between inductive types (à la ML) and
coinductive types (à la Haskell), we make all types coinductive, with the caveat
that types may contain values which have no representation as terms in the
language. This is already true of recursive datatypes in Haskell (for example,
uncountably many values inhabit the Haskell list type [Bool], but there are
only countably many expressions of type [Bool]) and it is true of functions in
both ML and Haskell (if S is infinite then S → Bool is uncountable).

40 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

Deciding whether to include parametric polymorphism was difficult. There
are several cases in which we would like to speak of polymorphic types, and one
case in which we must do so; on the other hand the introduction of polymorphism
into our languages has no novel features, and would in most cases simply clutter
the discussion and the figures. Instead we adopt a compromise approach. Within
IL, SL and LL, type variables (except those quantified by ν) simply represent
unknown types; there is no instantiation rule and no polymorphic quantification.
We permit ourselves, however, to speak of instantiation within the text of the
paper. E.g. we may say that a term E has the “type” ∀α. (α & α), by which we
mean that for any type T , E[T/α] is well-typed and has the type (T & T).

2 IL

IL is a continuation-passing calculus with a straightforward syntax and seman-
tics. It makes no explicit mention of strictness or non-strictness, but it contains
both notions in a way which will be explained in Section 2.3.

IL types are shown in Fig. 1, and IL expressions in Fig. 2. We will use the
words “expression” and “term” interchangeably in this paper. The type 0 has
a special role in IL; the distinction between 0 and non-0 types, and associ-
ated terms and values, will recur throughout this paper.1 Therefore we adopt
the convention that T ranges only over non-0 types (mnemonic T rue), while U
ranges over all types. For expressions, E ranges only over those of non-0 type; F
ranges over those of type 0 (mnemonic: False); and G ranges over all expressions
(General). Note in particular that Figs. 1 and 2 imply that we do not permit
types such as ¬0 and (0 ∨ 1): the only type containing 0 is 0 itself.

In the spirit of Martin-Löf type theory and the Curry-Howard isomorphism,
we give both a logical and an operational interpretation to IL types and expres-
sions. Logically, types are formulas, and expressions are proofs of those formulas;
operationally, types are sets of values and expressions evaluate to a value from
the set.

Syntax Logical meaning Operational meaning
0 Contradiction. The empty type.
1 Tautology. The unit type.
T1 &T2 Conjunction (there are proofs of T1 and T2). Unlifted product.
T1 ∨ T2 Disjunction (there is a proof of T1 or of T2). Unlifted sum.
¬T From T it is possible to argue a contradiction. Continuation (see text).
α, β, γ Free type variables (of non-0 type).

Fig. 1. Syntax and gloss of IL types

1 Our type 0 is conventionally called ⊥, but in this paper we use the symbol ⊥ for
another purpose.

Haskell Is Not Not ML 41

Syntax Logical meaning Operational meaning
x, y, k Free variables.
λ̄(x :T). F A reductio ad absurdum proof of ¬T . Builds a closure.
E1 ��E2 Proves 0 (a contradiction) from E1, of type

¬T , and E2, of type T .
Enters a closure.

() Proves 1. Unit constructor.
(E1, E2) Proves a conjunction by proving its conjuncts. Pair constructor.
inl E Proves a disjunction by its left case. Union constructor.
inr E Proves a disjunction by its right case. Union constructor.
fst E Proves T1, where E : (T1 &T2). Pair deconstructor.
snd E Proves T2, where E : (T1 &T2). Pair deconstructor.
case . . . caseE {(x)G1; (y)G2} is a case analysis of a

disjunction.
Union deconstructor.

Fig. 2. Syntax and gloss of IL expressions

A striking feature of IL, when compared with most programming calculi,
is that its type system includes logical negation, but no implication (function
arrow). Operationally, ¬T is a continuation which takes a value of type T and
never returns. Logically, the only way to prove ¬T is by reductio ad absurdum:
to prove ¬T , we show that any proof of T can be used to construct a proof of
0. We introduce continuations with the symbol λ̄ and eliminate them with infix
��, reserving λ and juxtaposition for function types (used later in SL and LL).

In its use of ¬ rather than a function arrow, IL resembles Wadler’s dual
calculus [9]. IL, however, has only terms (no coterms), and is intuitionistic (not
classical).

To simplify the discussion, we will often omit type signatures when they are
uninteresting, and we will allow tuple-matching anywhere a variable is bound,
so for example λ̄(x, y). · · · x · · · y · · · is short for λ̄w. · · · fst w · · · snd w · · · .

2.1 Typing and Operational Semantics of IL

Fig. 3 lists the typing rules for IL expressions, and Fig. 4 gives a small-step
operational semantics for IL, with the reduction relation �. These satisfy the
subject reduction property that if Γ � G : U and G � G′, then Γ � G′ : U . The
proof is straightforward.

We say that a term is a value if it has no free variables and is not subject to
any reduction rules. The values in IL are

V ::= () | (V, V) | inl V | inr V | λ̄(x :T). F

Note that there are no values of type 0.

2.2 Nontermination in IL

There is no fix or letrec form in IL, but we can construct nonterminating
expressions even without it. For example, let E be (λ̄(x : να. ¬α). x �� x); then

42 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

Γ, (x :T) � x : T

Γ, (x :T) � F : 0

Γ � λ̄(x :T). F : ¬T

Γ � E1 : ¬T Γ � E2 : T

Γ � E1 ��E2 : 0

Γ � E1 : T1 Γ � E2 : T2

Γ � (E1, E2) : (T1 &T2)

Γ � E : (T1 &T2)

Γ � fst E : T1

Γ � E : (T1 & T2)

Γ � snd E : T2

Γ � E : T1

Γ � inl E : (T1 ∨ T2)

Γ � E : T2

Γ � inr E : (T1 ∨ T2) Γ � () : 1

Γ � E : (T1 ∨ T2) Γ, (x :T1) � G1 : U Γ, (y :T2) � G2 : U

Γ � caseE {(x)G1; (y)G2} : U

Fig. 3. Well-typed IL expressions

fst (E1, E2) � E1

snd (E1, E2) � E2

case (inl E) {(x)G1; (y)G2} � G1[E/x]
case (inr E) {(x)G1; (y)G2} � G2[E/y]

(λ̄x. F)��E � F [E/x]

G1 � G2

C[G1] � C[G2]

Evaluation context
C[] ::= []

| C[]��E | E ��C[]
| (C[], E) | (E, C[])
| inl C[] | inr C[]
| fst C[] | snd C[]
| caseC[] {(x)G1; (y)G2}

Fig. 4. Operational semantics of IL

E �� E is well-typed, and proves 0. We will refer to this term by the name
diverge. It is analogous to (λx. x x)(λx. x x) in the untyped lambda calculus.
It is well-typed in IL because we permit recursive types via the ν construct. In
its logical interpretation, this proof is known variously as Curry’s paradox or
Löb’s paradox; exorcising it from a formal system is not easy. In IL, we do not
try to exorcise it but rather welcome its presence, since any logically consistent
language would not be Turing-complete.

But in IL, unlike ML and Haskell, nontermination cannot be used to inhabit
arbitrary types. The type systems of ML and Haskell, interpreted logically, are
inconsistent in the classical sense of triviality: the expression (letrec x() =
x() in x()) can appear anywhere in a program, and can be given any type
whatsoever.2 IL is not trivial; rather, it is what is known as paraconsistent.
More precisely, IL has the following properties:

– Confluence: for all expressions G1, G2, G3, if G1
∗� G2 and G1

∗� G3, then
there is a G4 such that G2

∗� G4 and G3
∗� G4.

2 A similar expression can be constructed without letrec by using an auxiliary recur-
sive type, as in IL.

Haskell Is Not Not ML 43

– Strong normalization: for any expression E (of non-0 type) there is an integer
n such that any sequence of reductions from E has length at most n.

Together these properties imply that any IL expression of non-0 type reduces
in finitely many steps to a value which does not depend on the order of reduction.
In contrast, we see that no IL expression of type 0 reduces to a value, since there
are no values of type 0. If evaluation terminates it can only be on a non-value,
such as x��E.

2.3 Lifted and Pointed Types in IL

For any type T , there is a natural map from the expressions (including values)
of type T into the values of type ¬¬T : we construct a continuation of type
¬¬T which, given a continuation of type ¬T , passes the value of type T to it.
Symbolically, we take E to (λ̄k. k��E). We will call this mapping lift.

Similarly, for any type T , there is a natural map from the values of type ¬¬¬T
onto the values of type ¬T : we construct a continuation of type ¬T which takes
a value of type T , converts it to a value of type ¬¬T by lift, and passes that to
the continuation of type ¬¬¬T . Symbolically, we take E to (λ̄x. E ��(λ̄k. k��x)).
We will call this mapping colift. It is easy to see that colift ◦ lift is the identity
on types ¬T , so lift is an injection and colift is a surjection.

There is, however, no natural map from ¬¬T to T when T does not begin
with ¬ (i.e. when T is not of the form ¬T ′). In particular, (λ̄(x :¬T).diverge)
of type ¬¬T has no counterpart in T , if T has no leading ¬.

If we say that types T1 and T2 are semantically equivalent if there exist
(co)lifting maps from T1 to T2 and from T2 to T1, then the types ¬kT for T
without a leading ¬ fall into the three semantic equivalence classes shown below,
where we write ¬kT for k successive negations of T .

1. ¬0T
2. ¬1T, ¬3T, ¬5T, ¬7T, . . .
3. ¬2T, ¬4T, ¬6T, ¬8T, . . .

There is a natural identification of classes 1 and 3 with the types of SL and
LL values, respectively, and of class 2 with evaluation contexts in both SL and
LL—more precisely, the types in class 2 are the types of the continuations which
receive the computed values. We will motivate this identification informally with
some examples; later, explicit translations from SL/LL to IL will make it precise.

We have already observed that lift is an injection: what values in ¬¬T does
it miss? A value of type ¬¬T is called with a continuation of type ¬T . It may,
perhaps after some computation, pass a result V of type T to the continua-
tion; because of IL’s purity, any such value is indistinguishable from lift V .
But there are also values of type ¬¬T which do not call the continuation at
all. In principle there may be many values in this category—one could imagine
aborting execution with a variety of error messages, or transferring control to
an exception-handling continuation—but following tradition we will lump all of
these together as a single value ⊥¬¬T . Clearly ⊥ exists not just in types ¬¬T but

44 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

in any type ¬T : consider λ̄(x : T).diverge. Types of the form ¬T are pointed,
and types of the form ¬¬T are lifted. This applies even if T itself begins with ¬,
so each successive double negation adds a level of lifting: e.g. the type ¬¬¬¬1
contains distinguishable values lift lift (), lift ⊥¬¬1, and ⊥¬¬¬¬1.

We have likewise observed that colift is a surjection, and by a similar argu-
ment we can show that it merges the two outermost levels of lifting: in the case
of ¬¬¬¬1 it maps lift lift () to lift () and maps both lift ⊥¬¬1 and ⊥¬¬¬¬1 to
the single value ⊥¬¬1.

The maps lift and colift resemble the unit and join operations of a lifting
monad, except that colift is slightly more general than join. In a lifting monad,
unit would map from T to ¬¬T and join from ¬¬¬¬T to ¬¬T .

Our discussion above overlooks the possibility that a continuation of type
¬T might be called more than once. Multiple calls passing the same value are
indistinguishable from a single call because of purity, but there are interesting
terms that pass two or more distinguishable values to their continuation. An
example is λ̄k. k �� inr (λ̄x. k �� inl x) of type ∀α. ¬¬(α ∨ ¬α), which is an IL
interpretation of the story of the devil’s offer from [9]. Inasmuch as we intend to
use double negation to model Haskell lifting, we would like to forbid such values.
We do not discuss this problem further in this paper.

3 SL and LL

SL and LL are simple strict and non-strict programming languages which have
the same syntax, but different translations to IL. They are pure functional lan-
guages; side effects are assumed to be handled via monads or some comparable
approach. SL has no provision for lazy evaluation, and LL has no provision for
eager evaluation.

Fig. 5 shows the syntax of SL/LL expressions (ranged over by e) and types
(ranged over by t). The typing rules and operational semantics are standard, and
we will not give them here. We use case rather than fst and snd to deconstruct
pairs because it simplifies the translation slightly. The term error stands for a
generic divergent expression like 1/0 or Haskell’s undefined.

x, y, z Free variables
α, β Free type vars.

λ(x : t). e
e e

t → t Functions

() 1 Unit
(e, e)
case e {(x, y)e} t ⊗ t Pairs

inl e, inr e
case e {(x)e; (y)e} t ⊕ t Unions

error Proves any type

Fig. 5. SL/LL expressions and types

SL/LL type SL to IL LL to IL
Dv �t� Db �t� ¬¬Db �t�

Dk �t� ¬Db �t�

Db �1� 1
Db �t1 ⊗ t2� Dv �t1� & Dv �t2�
Db �t1 ⊕ t2� Dv �t1� ∨ Dv �t2�
Db �t1 → t2� ¬(Dv �t1� & Dk �t2�)
Db �α� α

Fig. 6. Translation of SL/LL to IL
types

Haskell Is Not Not ML 45

3.1 Translation to IL

Translation of SL/LL types to IL types is shown in Fig. 6. In order to model
the distinction between values and expression contexts mentioned in Section 2.3
we use three different type translations, written Db �t�, Dv �t�, and Dk �t�. Dv �t�
is the type of values on the heap (and of bindings to variables). Dk �t� is the
type of a kontinuation which receives the result of evaluating an expression of
type t. Db �t� is a “bare” type which has not yet been converted to a value or
continuation type by suitable negation.

In the interest of simplicity, SL and LL support only anonymous sums and
products; there is no provision for declaring new datatypes. It is worth noting
that LL’s type system is consequently not quite expressive enough to represent
many Haskell datatypes, because Haskell does not lift at every opportunity. For
example, Haskell’s Bool type is isomorphic (as a “bare” type) to IL’s (1 ∨ 1),
while the closest LL equivalent, 1 ⊕ 1, maps to the IL type (¬¬1 ∨ ¬¬1). Ac-
commodating Haskell types requires a more complex translation, which, however,
introduces no new difficulties.

The representation of functions is interesting. Logical implication P ⇒ Q is
classically equivalent to ¬P ∨ Q, but this will not work as a function type in
our intuitionistic calculus. An IL value of type ¬P ∨ Q is either a value from
¬P or a value from Q; the former includes all divergent functions and the latter
all constant functions, but there are no values which can accept an argument
and return an answer that depends on that argument. The type ¬(P & ¬Q),
again classically equivalent to implication, does not share this problem. Its oper-
ational interpretation is that a function is a continuation which takes two values,
one of type P (the argument) and one of type ¬Q (somewhere to send the re-
sult). This is exactly how function calls work in practical abstract machines: the
two arguments to this continuation are the two values—argument and return
address—pushed onto the stack before jumping to the function’s entry point.

The translations from SL and LL terms to IL terms are shown in Fig. 7.
These are the familiar continuation-passing translations of Plotkin [6]. Because

(In the LL to IL translation �e�v abbreviates λ̄k. �e� � k)

SL/LL term Translation (SL to IL) Translation (LL to IL)
�x� � E E ��x x��E

�e e′� � E �e� � λ̄x. �e′� � λ̄x′. x��(x′, E) �e� � λ̄x. x��(�e′�v , E)
�(e, e′)� � E �e� � λ̄x. �e′� � λ̄x′. E �� (x, x′) E �� (�e�v , �e′�v)
�inl e� � E �e� � λ̄x. E �� inl x E �� inl �e�v

�inr e� � E �e� � λ̄x. E �� inr x E �� inr �e�v

�λx. e� � E E ��λ̄(x, k). �e� � k
�()� � E E �� ()
�error� � E diverge
�case e1 {(x)e2; (y)e3}� � E �e1� � λ̄z. case z {(x) �e2� � E; (y) �e3� � E}
�case e1 {(x, y)e2}� � E �e1� � λ̄(x, y). �e2� � E

Fig. 7. Translation of SL/LL to IL terms (type signatures omitted)

46 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

IL has explicit continuations while the continuations in SL/LL are implicit, the
translation must be done in the context of an IL continuation. �e� � E denotes
the IL expression which passes e’s value on to the IL continuation E. This should
be treated as a syntactic unit; � has no meaning on its own. For LL we write
�e�v as a shorthand for λ̄k. �e��k; this notation will prove useful in Section 4.2.

Type signatures have been omitted for space and readability reasons. Restor-
ing the type signatures and adding standard typing rules for SL/LL terms, it
can be shown that the translation of a well-typed SL/LL term is a well-typed IL
term. In fact, we can show that if e : t and (�e��E) : 0, then E : Dk �t�, and (in
LL) that if e : t, then �e�v : Dv �t�. Note the translations of �x� � E, which cap-
ture the essential difference between “ML-like” and “Haskell-like” embeddings
in IL.

Translation Examples. For a first example we consider the SL/LL expression
inl error. In SL this expression will clearly always diverge when evaluated, and
our SL-to-IL translation turns out to yield diverge directly:

�inr error� � k = �error� � λ̄x. k�� inr x = diverge

The LL-to-IL translation instead boxes the divergence:

�inr error� � k = k�� inr (λ̄k′. �error� � k′) = k�� inr (λ̄k′.diverge)

The translations of the nested function application p (q r) are interesting. From
SL we have the following translation, where ∗= denotes a sequence of several (triv-
ial) translation steps, and ∗� denotes a sequence of “clean-up” beta reductions
after the translation proper.

�p (q r)� � k = �p� � λ̄f. �q r� � λ̄x. f ��(x, k)
= �p� � λ̄f. �q� � λ̄f ′. �r� � λ̄x′. f ′

��(x′, λ̄x. f ��(x, k))
∗= (λ̄f. (λ̄f ′. (λ̄x′. f ′

��(x′, λ̄x. f ��(x, k)))�� r)��q)��p
∗� q��(r, (λ̄x. p��(x, k)))

For LL we have

�p (q r)� � k = �p� � λ̄f. f ��((λ̄k′. �q r� � k′), k)
= �p� � λ̄f. f ��((λ̄k′. �q� � λ̄f ′. f ′

��((λ̄k′′. �r� � k′′), k′)), k)
∗= p��λ̄f. f ��((λ̄k′. q��(λ̄f ′. f ′

��((λ̄k′′. r��k′′), k′))), k)

Our operational semantics cannot simplify this term. But it can be shown
that η reduction is safe in IL (in the sense of contextual equivalence), so we may
reduce it to p �� λ̄f. f �� ((λ̄k′. q �� (λ̄f ′. f ′

�� (r, k′))), k). Using the lift operation
from section 2.3, and renaming k′ to x, we get p �� lift ((λ̄x. q �� lift (r, x)), k),
which, modulo lifting, is surprisingly similar to its SL counterpart.

4 AM

AM is an abstract machine designed to run IL code. The primitives of AM are
chosen to resemble machine-code or byte-code instructions. AM is untyped for
reasons of simplicity.

Haskell Is Not Not ML 47

The purpose of AM is to provide a framework for discussing the low-level opti-
mizations that make subtyping possible, which are described in Section 5. We are
not concerned with a formal treatment of compilation as such, nor are we inter-
ested in most of the optimizations found in existing abstract machines. Therefore
we will define AM only informally, and will gloss over most performance issues.

AM is a register machine. Throughout this section register names will be
written in typewriter face. There are two special registers env and arg, which
are used when entering a continuation, as well as a collection of compile-time
constants, which are never assigned to, but are otherwise indistinguishable from
registers. All other registers are local temporaries. There is never a need to save
registers across function calls, because every call is a tail call. AM has no stack.

Registers hold machine words, which can be pointers to heap objects, pointers
to addressable code, or tag values (which will be discussed later).

There are just five instructions in AM:

M ::= x ← y Sets register x equal to register y.
| x ← y[i] Indexed load: Register x gets the value at offset i

within the heap object pointed to by register y.
| x ← new y1, . . . , yn Allocates n consecutive words from the heap,

places the address of the allocated memory in
register x, and stores the operands y1, . . . , yn at
locations x[0], . . . , x[n − 1].

| if x1 = x2
then M∗

else M∗

Compares two registers and executes the first in-
struction sequence if they are equal, the second
instruction sequence if they are not equal. M∗

denotes a sequence of zero or more instructions.
| jump x Transfers control to the instruction sequence

whose address is in register x.

To make code more concise, we allow indexed-load expressions r[i] wherever
a register operand is expected. For example, the instruction jump env[0] is
equivalent to the two-instruction sequence tmp ← env[0] ; jump tmp.

While IL is indifferent as regards evaluation order, we choose to use eager
evaluation when we compile it to AM.

4.1 Compilation

We have already noted that IL expressions divide naturally into those of type 0
and those not of type 0. In AM this has the following concrete meaning:

– IL expressions of type 0 compile to addressable instruction sequences. These
have an entry point which we jump to when calling a continuation, and they
terminate by jumping to another addressable instruction sequence.

– IL expressions of other types compile to non-addressable instruction se-
quences : these appear within addressable instruction sequences and con-
struct values on the heap.

48 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

Compilation form Expansion
F �E1 ��E2� Γ E �E1� Γ tmp1 ; E �E2� Γ tmp2

env ← tmp1 ; arg ← tmp2
jump env[0]

F �caseE {(x)F1; (y)F2}� Γ E �E� Γ tmp
if tmp[0] = tagLeft

then F �F1� (Γ [tmp[1]/x])
else F �F2� (Γ [tmp[1]/y])

E �x� Γ r r ← Γ (x)
E �()� Γ r r ← new tagUnit
E �(E1, E2)� Γ r E �E1� Γ tmp1 ; E �E2� Γ tmp2

r ← new tagPair, tmp1, tmp2
E �inl E� Γ r E �E� Γ tmp ; r ← new tagLeft, tmp
E �inr E� Γ r E �E� Γ tmp ; r ← new tagRight, tmp
E �fst E� Γ r E �E� Γ tmp ; r ← tmp[1]
E �snd E� Γ r E �E� Γ tmp ; r ← tmp[2]
E �λ̄(x :T). F � Γ r r ← new code, Γ (v1), . . . , Γ (vn)

(see text)
E �caseE1 {(x)E2; (y)E3}� Γ r E �E1� Γ tmp

if tmp[0] = tagLeft
then E �E2� (Γ [tmp[1]/x]) r
else E �E3� (Γ [tmp[1]/y]) r

Fig. 8. AM compilation rules

Fig. 8 lists the rules for compiling an IL expression to an instruction sequence.
There is a separate set of rules for non-0 types (E) and type 0 (F). The E rules
take an extra parameter r, the register which receives the result value.

Within the context of each expansion, register names beginning tmp are in-
stantiated with fresh temporary register names. Each such register is assigned to
exactly once; thus the code is in SSA form as regards temporary registers. This
does not apply to the special registers env and arg, which are overwritten just
before each jump instruction. Note that there is no need to save the old values
of env and arg or of any temporary register, since continuations never return.

When expanding E �λ̄x. F � Γ r, the compiler also expands

F �F � (x
→ arg, y1
→ env[1], . . . , yn
→ env[n]),

where {y1, . . . , yn} = fv(λ̄x. F), and places the expanded code somewhere in the
code segment. The local (fresh) constant register code is set to the entry point
of this code.

4.2 Updating

There is one optimization that every non-strict language implementation must
perform, because compiled code may run exponentially slower without it. This
is thunk memoization or thunk updating, and it is the difference between lazy

Haskell Is Not Not ML 49

evaluation and normal-order reduction. It is described, for example, in [4]. The
details of this process are ugly, and a full treatment would complicate IL and
AM significantly; but we cannot ignore it entirely, since it interacts non-trivially
with the subtyping system of the next section.

For our purposes, a thunk is a heap object constructed by executing E �E� Γ r,
where E was produced by the �e�v rule during translation from LL to IL. Such
an expression has the form λ̄(k : ¬T). F , where F either diverges or computes
a value V and passes it to k. If F successfully computes a value, then before
passing that value to k we must update the thunk by physically overwriting its
heap representation with a new object equivalent to (λ̄(k :¬T). k��V). The new
object is indistinguishable from the old as far as the programmer is concerned:
we know, by virtue of having just evaluated F , that its effect is just k��V . (And
since IL is referentially transparent it cannot have any side effect.)

We might model updating by extending AM with a new instruction

M ::= . . .
| x[i] ← y Indexed store: Overwrites the word at index i in the

heap object pointed to by x with the word in y.

in terms of which the updating step may be written thunk[0] ← ret_payload;
thunk[1] ← val, where thunk points to the heap object to be updated, val
points to the heap representation of V , and ret_payload points to the code
F �k��v� (k
→ arg, v
→ env[1]). When ret_payload is called, env[1] will con-
tain the computed value that we stored in thunk[1]. This form of updating is
similar to updating with an indirection node in GHC [4].

5 Subtyping and Auto-Lifting

It turns out that with a small variation in the design of AM, the natural embed-
ding from unlifted to lifted types becomes a subtyping relationship, allowing us
to treat any ML value as a Haskell value at runtime without cost, and project a
Haskell value onto an ML type with only the cost of a Haskell deepSeq.

Suppose that we have a value V of type T , and wish to construct a value
V ′ of type ¬¬T , most likely for the purpose of marshalling data from eager to
lazy code. If T = (T1 & T2), then V can only be (V1, V2) for some values V1
and V2. Then V ′ = λ̄k. k �� (V1, V2). But we cannot compile a fresh address-
able instruction sequence k �� (V1, V2) for each V1 and V2, since V1 and V2 are
not known at compile time. Instead we compile a single instruction sequence
F �k��(v1, v2)� (k
→ arg, v1
→ env[1], v2
→ env[2]) and place pointers to V1
and V2 in the appropriate environment slots at run time.

Similarly, if T = (T1 ∨ T2), then V is inl V1 or inr V2, so we compile
F �k�� inl v1� (k
→ arg, v1
→ env[1]) and F �k�� inr v2� (k
→arg, v2
→ env[1]),
and place V1 or V2 in the environment slot.

In short, the lifted pair (λ̄k. k �� (V1, V2)) will be represented on the heap by
an object of three words, the first being a pointer to the code for k�� (v1, v2) and
the second and third being pointers to V1 and V2. The lifted left injection will

50 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

be represented by an object of two words, the first being a pointer to the code for
k�� inl v1 and the second being a pointer to V1; and similarly for the right injection.
These heap objects are the same size as the heap objects we would construct for
the unlifted values V ; except for the first word, the layout is the same; and since
we compiled just three instruction sequences, the first word of the lifted values can
contain just three different pointers, which are in one-to-one correspondence with
the three tags tagPair, tagLeft, tagRight. So if we simply define our sum and
product tags to be pointers to the appropriate instruction sequence, then a heap
representation of any value of an IL sum or product type is also a value of that
type’s double negation. We will call this auto-lifting.

Auto-lifting also works for tagUnit, but a slightly different approach is
needed for function types, and more generally for any type beginning with ¬.
Further discussion of this may be found at the web site [7].

An obvious but nonetheless interesting observation about auto-lifting is that
it is often polynomially faster than explicit lifting. Explicitly converting from a
strict list to a non-strict list in IL is Θ(n) in the size of the list, while auto-lifting
is free of cost independently of n.

5.1 Coercing LL Values to SL Values

The function deepSeq is not built in to Haskell, but can be defined using type
classes. Its operational effect is to traverse a data structure, forcing each node
as it goes. By forcing we mean, in IL terms, calling each continuation ¬¬T
and ignoring the result T (except for purposes of further traversal). Applying
deepSeq to a data structure has the referentially transparent “side effect” of
causing all nodes in the data structure to be updated with values of the form
λ̄k. k��V (see Section 4.2). If there is no such value—if ⊥ is hiding anywhere in
the data structure—then deepSeq diverges.

We have already arranged that a fully-evaluated LL value is an SL value
in AM. It would seem that if we define our forcing operation in such a way
that it overwrites thunks with valid SL values, then provided deepSeq does not
diverge, we could subsequently treat its argument as having the corresponding
SL type.

Unfortunately, this does not quite work. The trouble is that we cannot al-
ways overwrite a thunk with a valid SL value. Consider, for example, the thunk
λ̄k. k �� (x, x). This has one free variable (x), and so its heap representation in
AM occupies two words (the other being the code pointer). Its SL counterpart, on
the other hand, requires three words (one for the tag and two for the fields of the
pair). We can solve this in some cases by setting aside extra space when we allo-
cate the thunk, but this is not always possible in a practical implementation with
larger tuples and polymorphism. To handle the remaining cases, we are forced to
(re-)introduce indirection nodes. But indirection nodes are not SL values!

Fortunately, the solution is not difficult. We must think of deepSeq not as
a procedure but as a function that returns an SL value as its result. If in-place
updating is possible, deepSeq returns its argument (which is then a valid SL
value); if in-place updating is not possible, deepSeq updates with an indirection
and returns the target of that indirection, which is again a valid SL value.

Haskell Is Not Not ML 51

A related complication arises when we use deepSeq on a data structure with
a mixture of strict and non-strict fields, such as might be defined in a hybrid
language. In such cases we must update not only thunks but also the fields of
SL values. Because of space constraints we do not discuss the details.

6 Conclusions

In this paper we defined an intermediate language IL, containing continuations
but not functions, which can encode naturally both strict and non-strict lan-
guages; and we exhibited an abstract machine, AM, which can execute IL (and,
via translation, strict and non-strict source languages) with an efficiency com-
parable to existing ML and Haskell implementations modulo known optimiza-
tion techniques, while also supporting efficient interconversion between ML data
structures and Haskell data structures.

IL seems to capture fundamental aspects of the relationship between strict
and non-strict languages which we had previously understood only in an ad hoc
manner. The fact that a structure resembling a lifting monad appears within IL,
without any attempt to place it there (Section 2.3) is one example of this. In fact
IL’s three negation classes do the lifting monad one better, since they predict
that lifting leads to a semantic distinction (in the sense of Section 2.3) only in a
value context, not in an expression (continuation) context. It follows that, in a
hybrid strict/lazy language, it makes sense to annotate the strictness of function
arguments, but not of function results—a fact that we recognized long before
discovering IL, but for which we had never had a satisfactory theoretical model.
In this and other ways IL seems to be predictive where previous systems were
phenomenological, and this is its primary appeal.

6.1 Related Work

The benefits of continuation-passing style for compilation, and the existence of
call-by-name and call-by-value CPS translations, have been known for decades
[6]. The notion of continuations as negations was introduced by Griffin [3]. Re-
cently several authors have introduced computational calculi to demonstrate
the call-by-value/call-by-name duality within a classical framework, including
Curien and Herbelin’s lambda-bar calculus [2], Wadler’s dual calculus [9], and
van Bakel, Lengrand, and Lescanne’s X [8]. Wadler explicitly defines the function
arrow in terms of negation, conjunction and disjunction. On the practical side,
a previous paper by Peyton Jones, Launchbury, Shields, and Tolmach [5] stud-
ies the same practical problem as the present work, proposing a monad-based
intermediate language also called IL.

The present work represents, we believe, a happy medium between the the-
oretical and practical sides of the problem we set out to solve. IL is straightfor-
wardly and efficiently implementable on stock hardware, while retaining some of
the interesting features of its theoretical cousins; it is also substantially sim-
pler than the previous proposal by Peyton Jones et al, while preserving its

52 B. Rudiak-Gould, A. Mycroft, and S. Peyton Jones

fundamental design goal. The notion of auto-lifting described in this paper may
also be new to the literature, though it was known to the authors before this
research began.

6.2 Future Work

The work described in this paper is part of an ongoing research project. Again
we invite interested readers to visit the project web site [7], which will con-
tain additional material omitted from this paper as well as updates on further
progress.

As of this writing, and undoubtedly as of publication time, a large amount of
work remains to be done. We have not implemented a compiler based on IL and
AM, and many issues must be investigated and resolved before we can do so.
Some optimizations can be accommodated quite well within IL as it stands—for
example, the “vectored return” optimization of the STG-machine [4] is valid as
a consequence of de Morgan’s law. Others require further work. The minimalist
design of AM can accommodate extensions for stack-based evaluation, register
arguments and the like, if these can be represented neatly in IL. Since the use
of continuation-passing calculi as intermediate languages is well understood [1],
it seems likely that this can be done using known techniques.

Adding polymorphism to IL is not difficult, and the translation from the
source language to IL remains straightforward as long as the source language is
strict or non-strict. Unfortunately, attempts to introduce unrestricted polymor-
phism into a hybrid language lead to subtle difficulties. IL does not cause these
difficulties, but only exposes them; we hope that further study of IL will expose
a sensible solution as well.

Acknowledgements

This work was supported by a studentship from Microsoft Research Cambridge.
We are grateful to Philip Wadler and the anonymous reviewers for helpful
comments.

References

1. Andrew W. Appel, Compiling With Continuations. Cambridge University Press,
1992. ISBN 0–521–41695–7.

2. Pierre-Louis Curien and Hugo Herbelin, The duality of computation. Proc. ICFP
2000. http://pauillac.inria.fr/~herbelin/habilitation/icfp-CurHer00-
duality+errata.ps

3. Timothy G Griffin, A formulae-as-types notion of control. Proc. POPL 1990.
4. Simon Peyton Jones, Implementing lazy functional languages on stock hardware: the

Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

http://pauillac.inria.fr/~herbelin/habilitation/icfp-CurHer00-
duality+errata.ps

Haskell Is Not Not ML 53

5. Simon Peyton Jones, John Launchbury, Mark Shields, and Andrew Tolmach, Bridg-
ing the gulf: a common intermediate language for ML and Haskell. Proc. POPL 1998.
http://www.cartesianclosed.com/pub/intermediate_language/neutral.ps

6. Gordon D. Plotkin, Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science 1:125–159, 1975. http://homepages.inf.ed.ac.uk/
gdp/publications/cbn_cbv_lambda.pdf

7. Ben Rudiak-Gould, The NotNotML project website. http://www.cl.cam.ac.
uk/~br276/notnotML/

8. Steffen van Bakel, Stéphane Lengrand, and Pierre Lescanne, The language X :
circuits, computations and Classical Logic. Proc. ICTCS 2005. http://www.
doc.ic.ac.uk/~svb/Research/Abstracts/vBLL.html

9. Philip Wadler, Call-by-value is dual to call-by-name. Proc. ICFP 2003, pp. 189–201.
http://homepages.inf.ed.ac.uk/wadler/papers/dual/dual.pdf

http://www.cartesianclosed.com/pub/intermediate_language/neutral.ps
http://homepages.inf.ed.ac.uk/
gdp/publications/cbn_cbv_lambda.pdf
http://www.cl.cam.ac.
uk/~br276/notnotML/
http://www.
doc.ic.ac.uk/~svb/Research/Abstracts/vBLL.html
http://homepages.inf.ed.ac.uk/wadler/papers/dual/dual.pdf

	Introduction
	A Note on Types

	IL
	Typing and Operational Semantics of IL
	Nontermination in IL
	Lifted and Pointed Types in IL

	SL and LL
	Translation to IL

	AM
	Compilation
	Updating

	Subtyping and Auto-Lifting
	Coercing LL Values to SL Values

	Conclusions
	Related Work
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

