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Abstract
We present a refined approach to parallel array fusion that uses
indexed types to specify the internal representation of each array.
Our approach aids the client programmer in reasoning about the
performance of their program in terms of the source code. It also
makes the intermediate code easier to transform at compile-time,
resulting in faster compilation and more reliable runtimes. We
demonstrate how our new approach improves both the clarity and
performance of several end-user written programs, including a fluid
flow solver and an interpolator for volumetric data.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; Polymorphism; Abstract data types

General Terms Languages, Performance

Keywords Arrays, Data parallelism, Haskell

1. Introduction
Haskell is a great language for programming with arrays. Arrays
are a natural data type for scientific, engineering, and financial
computing, where algorithms are often conceptually functional.
Applications in these disciplines typically rely on good runtime
performance. Hence, to be useful, Haskell array programs need to
perform comparably well to hand-written C programs.

Our Repa library for Haskell does just this [5, 8] — alas, it turns
out that the programmer needs a very detailed knowledge of Repa
to gain this level of performance. For example, consider this simple
function, written with Repa version 1.0:

doubleZip :: Array DIM2 Int -> Array DIM2 Int
-> Array DIM2 Int

doubleZip arr1 arr2
= map (* 2) $ zipWith (+) arr1 arr2

This function appears straightforward, but its performance is aw-
ful, especially if its result is used multiple times. To improve per-
formance, users of Repa 1 need to write the following instead:

doubleZip arr1@(Manifest !_ !_) arr2@(Manifest !_ !_)
= force $ map (* 2) $ zipWith (+) arr1 arr2
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This second version of doubleZip runs as fast as a hand-written
imperative loop. Unfortunately, it is cluttered with explicit pattern
matching, bang patterns, and use of the force function. This clut-
ter is needed to guide the compiler towards efficient code, but it
obscures the algorithmic meaning of the source program. It also
demands a deeper understanding of the compilation method than
most users will have, and in the next section, we will see that these
changes add an implicit precondition that is not captured in the
function signature. The second major version of the library, Repa 2,
added support for efficient parallel stencil convolution, but at the
same time also increased the level of clutter needed to achieve effi-
cient code [8].

The core idea of the present paper is to replace the hard to
understand performance-motivated changes by descriptive types.
Here are our main technical contributions:

• We introduce a novel, extensible approach to Repa-style array
fusion that uses indexed types to specify the representation and
computation methods for arrays (§3).

• We show that our use of type indices scales to more elaborate
array representations, such as the partitioned and cursored rep-
resentations [8] (§4).

• We compare substantial end-user programs written with the
old and new approach, including a fluid flow solver and an
interpolator for volumetric data (§5).

• We simplify reasoning about the performance of client pro-
grams in terms of the source code while reducing intermediate
code size and achieving faster compile times (§5).

Our improvements are fully implemented and available on Hackage
as Repa 3.2.

2. Representation, Fusion, and Code Explosion
We start by reviewing the design problems of original Repa library.
A simplified version of the core definitions of Repa 1 [5] is in
Figure 1. Repa 2 extends the Array type to support more efficient
convolutions [8], which we discuss in §2.3.

Repa 1 introduced delayed arrays to fuse multiple array op-
erations, and minimise the overhead of index-space transforms.
Delayed arrays are represented by a function from indices to ar-
ray elements, as we see in the definition of Array Figure 1. De-
layed arrays contrast with manifest arrays, which are represented
as contiguous blocks of unboxed values. Fusion of operations
on delayed arrays amounts to function composition, as we see
in the definition of map. This gives us the map/map fusion rule,
map f . map g = map (f . g), for free and works similarly
for many other operations, including index space transforms such
as permutation, replication, slicing, and so on.



data Array sh e = Manifest sh (Vector e)
| Delayed sh (sh -> e)

class Shape sh where
toIndex :: sh -> sh -> Int
fromIndex :: sh -> Int -> sh
size :: sh -> Int
...more operations...

data DIM1 = DIM1 !Int
data DIM2 = DIM2 !Int !Int
...more dimensions...

index :: Shape sh => Array sh e -> sh -> e
index (Delayed sh f) ix = f ix
index (Manifest sh vec) ix = indexV vec (toIndex sh ix)

delay :: Shape sh => Array sh e -> (sh, sh -> e)
delay (Delayed sh f) = (sh, f)
delay (Manifest sh vec)
= (sh, \ix -> indexV vec (toIndex sh ix))

map :: Shape sh => (a -> b) -> Array sh a -> Array sh b
map f arr = let (sh, g) = delay arr

in Delayed sh (f . g)

zipWith :: Shape sh => (a -> b -> c)
-> Array sh a -> Array sh b -> Array sh c

zipWith f arr1 arr2
= let (sh1, f1) = delay arr1

(_sh2, f2) = delay arr2
get ix = f (f1 ix) (f2 ix)

in Delayed sh1 get

force :: Shape sh => Array sh e -> Array sh e
force arr
= unsafePerformIO
$ case arr of

Manifest sh vec
-> return $ Manifest sh vec

Delayed sh f
-> do mvec <- unsafeNew (size sh)

fill (size sh) mvec (f . fromIndex sh)
vec <- unsafeFreeze mvec
return $ Manifest sh vec

Figure 1. Essential Repa Version 1 Definitions

The elements of a multi-dimensional Manifest array are stored
in row-major order in a flat, one-dimensional Vector. The Shape
class holds operations to convert between higher-dimensional in-
dex types, such as DIM2, and the flat representation. In particular,
the toIndex and fromIndex functions convert between higher-
dimensional and linear indices, and size yields the total number
of elements in an array of the given shape. Based on the methods
of the Shape class, the function index retrieves a single element
from an array, and delay produces an array’s shape together with
an indexing function to move to the delayed representation. (The
function indexV indexes into the flat Vector.)

As stated in the introduction, although Repa 1 & 2 can produce
efficient code on both sequential and parallel machines [5, 8], they
have some significant shortcomings, which we review next.

2.1 Problem 1: Not Applying force
To illustrate the problems with Repa 1, we will reuse the example
from the introduction:

doubleZip :: Array DIM2 Int -> Array DIM2 Int
-> Array DIM2 Int

doubleZip arr1 arr2
= map (* 2) $ zipWith (+) arr1 arr2

By inlining the definitions from Figure 1 and simplifying, we
see that the composition of map and zipWith fuses to produce the
following:

let (sh1, f1) = delay arr1
(_sh2, f2) = delay arr2
get ix = (f1 ix + f2 ix) * 2

in Delayed sh1 get

The problem is that the array returned by map is not a manifest
array, so is not represented as real unboxed data in a contiguous
block of memory. Instead, it is a delayed array, represented by a
function that takes an array index and computes each element on
the fly. The fused code immediately builds a new Delayed array
without doing any actual work. This is problematic if the consumer
of a delayed array uses elements multiple times. The elements will
be recomputed each time, so sharing of results is lost along with
runtime performance.

If we desire an array represented by real data, then we should
use Repa’s force function, which turns a delayed array into a
manifest array by executing loop-based parallel array filling code.
We would use it in doubleZip as follows:

doubleZip arr1 arr2
= force $ map (* 2) $ zipWith (+) arr1 arr2

The code here fuses map and zipWith by building a new De-
layed array as before. It then fills a freshly-allocated Manifest
array, in parallel, using the element-generating function stored
in the new Delayed array. In other words, the compiled code
will contain an unfolding of the imperative loop provided by
force, where the body performs the per-element function, here
(f1 ix + f2 ix) * 2, where f1 and f2 retrieve elements from
the two input arrays.

Although our entire approach to parallel array programming
hinges on the correct use of force, the type presented in the Repa 1
API documentation was rather uninformative:

force :: Shape sh => Array sh a -> Array sh a
-- Force an array, so that it becomes Manifest.

From its type alone, force looks like an instance of the identity
function. This coupled with the rather cryptic comment, led many
users to overlook force entirely. Poor documentation aside, our
foundational view that “a type is a name for a set of values” was
of no help in expressing the fact that “if you don’t use this function
your program will be really slow”.

2.2 Problem 2: Runtime Representation Tests
The version of doubleZip using force produces fused, loop-
based code, but is still slower than a straightforward imperative
version. This is because the Array type has two data constructors,
Delayed and Manifest, so indexing functions must perform a run-
time test to distinguish between them. This is a catastrophe if the
test is in an inner loop, which is the native environment for indexing
functions. In some cases GHC can lift such tests out of loops, but in
general such transformations are unsound, because they can change
strictness properties if the loop can perform no iterations.

Tantalisingly, the representation of an array at a particular pro-
gram point does not change from run to run. The programmer al-
ways knows which representation is expected — but, in Repa 1 & 2
they lack a convenient way to express that knowledge. For example,
if we know that only manifest arrays will be passed to doubleZip,
then we should reify this fact by using explicit pattern matching:

doubleZip arr1@Manifest{} arr2@Manifest{}
= force $ map (* 2) $ zipWith (+) arr1 arr2

While this version runs fast, it is awkward due to the implicit
precondition: we need to ensure that all callers of doubleZip force
the arguments to ensure that they are manifest.



The test for array representation is not the only run-time test
that tends to be needlessly performed in an inner loop. An array
also contains size information such as its width and height, which
is often used in each iteration. As these are boxed Int values, a
loop might repeatedly unbox them, wasting cycles. To ensure the
values are unboxed only once, in the preamble of the loop, we need
to place a demand on them at the function entry point. We typically
do this using bang patterns in the pattern that matches Manifest,
and it turns out we also want to demand the flat vector to ensure its
components are unboxed as well:

doubleZip arr1@(Manifest !_ !_) arr2@(Manifest !_ !_)
= force $ map (* 2) $ zipWith (+) arr1 arr2

Finally, doubleZip runs as fast as a hand-written imperative loop.
Unfortunately, the optimisations require reasoning that is not obvi-
ous from the source program, demand a deeper understanding of
the compilation method than most users will have, and add a pre-
condition that is not captured in the function signature.

2.3 Problem 3: Inlining and Code Explosion
In a FORTRAN or C program, the programmer writes explicit
loops. In Repa, the programmer never writes loops; the loops are
in library functions. With respect to Figure 1, the key loop is in the
definition of fill, which is called by force. The loop code itself
is too big to include here, but see [8] for a full definition. The array
operations such as map, zipWith and so on, build Delayed arrays
by composing functions, but do not contain loops.

How does this turn into efficient code? Consider the last, most
efficient version of doubleZip. Inlining zipWith, map, delay,
and force, then simplifying yields:

doubleZip (Manifest !sh1 !vec1) (Manifest !_sh2 !vec2)
= unsafePerformIO
$ do mvec <- unsafeNew (size sh1)

fill (size sh1) mvec
(\ix -> (indexV vec1 ix + indexV vec2 ix) * 2)

vec <- unsafeFreeze mvec
return $ Manifest sh1 vec

The pattern matching in zipWith’s calls to delay are cancelled
by the explicitly Manifest arrays; the Delayed array produced by
zipWith is canceled by the pattern match in map’s use of delay;
and so on. When the definition of fill is inlined, we get a tight
loop, in which the output is built directly from the input vectors
(vec1, vec2) without any intermediates.

Clearly, this fusion depends critically on (a) aggressive inlining
and (b) cancellation of statically-visible array construction and
pattern matching. However, for efficient stencil convolution, we
developed a more complex array representation [8], similar to this:

data Array sh a
= Array { arrayExtent :: sh

, arrayRegions :: [Region sh a] }

Rather than just being Manifest or Delayed, these arrays consist
of a list of rectangular regions. Each region has its own element-
generating function, which is used to speed up the handling of
boundary conditions.

Alas, this representation is fatal for the inline-and-cancel story
outlined above. This is because the list arrayRegions must be
processed by a recursive function, and compilers (including GHC)
are rightly cautious about unrolling recursive functions. In a typical
application the programmer knows the exact number of regions
at any program point, say four boundaries and a central region.
Unrolling five times here would be perfect, but the compiler does
not know this.

To make this work, we ended up manually unrolling code in the
library functions, by pattern matching on the region list. Here is a
typical chunk of Repa 2 library code:

forceWith2 :: (Int -> a -> IO ())
-> Array DIM2 a -> IO ()

forceWith2 write arr
= case arr of

Array sh [r1]
-> do fillRegion2P write sh r1

Array sh [r1, r2]
-> do fillRegion2P write sh r1

fillRegion2P write sh r2
Array sh [r1, r2, r3]
-> do fillRegion2P write sh r1

fillRegion2P write sh r2
fillRegion2P write sh r3

...
Array sh regions
-> mapM_ (fillRegion2P write sh) regions

The details are not important, but it should be clear from the form
how gruesome this is:

• The library only efficiently accommodates a maximum number
of regions. If we use the final alternative of forceWith2 above,
then the code will not fuse.

• There is much repetition in the library code.
• The library functions become very large because of the dupli-

cation, but they must still be inlined!

Aggressive use of INLINE pragmas produces enormous interme-
diate programs, which we hope will then shrink radically through
construction/pattern-matching cancellation. Sadly, this cancella-
tion does not always happen; imagine that the arr argument of
forceWith2 above turned out to be lambda-bound, so that the
case remained in the residual program.

2.4 Summary
The fundamental problem with Repa 1 & 2 is the following: at a
particular point in the code, the programmer typically has a clear
idea of the array representation they desire. For example, it may
consist of three regions, left edge, middle, right edge, each of which
is a delayed array. Although this representation is statically known
to the programmer, it is invisible in the types and only exposed to
the compiler if very aggressive value inlining is used. Moreover, the
programmer’s typeless reasoning can easily fail, leading to massive
performance degradation.

The solution is to expose static information about array repre-
sentation to Haskell’s main static reasoning system; its type sys-
tem.

3. The main new idea: Type Indexing
We are now ready to explain our main technical innovation. In
Repa version 3 we define arrays as a data family [2]:

data family Array rep sh e

An Array represents a partial function from indices of type sh to
elements of type e. The array is defined on a range of indices, from
zero to a maximum called the extent of the array. In this family, rep
is a type index that specifies the representation of the array, while
sh is the shape, and e is the element type as before. Figure 2 gives
two particular instances of Array, where D is for delayed and U is
for (unboxed) manifest arrays respectively.



data family Array rep sh e
data instance Array D sh e = ADelayed sh (sh -> e)
data instance Array U sh e = AUnboxed sh (Vector e)
...etc...

-- The type indices are declared as nullary types
data D -- Delayed
data U -- Manifest, unboxed
...etc...

Figure 2. Towards the Repa 3 Array Representation

We will give more detail shortly, but we can already see how
type indexing addresses the problems of §2:

• We can give a more informative type to force:

force :: Shape sh => Array D sh e -> Array U sh e

Unlike §2.1, this type statically specifies that the input is de-
layed and the output is manifest. We cannot accidentally force
a manifest array, or forget to force a delayed array in a situation
where a manifest one is needed.

• A function like (f :: Array U sh e -> ...) receives an
argument that can only be built with AUnboxed. There is no
redundant tag-testing to check that the array has the representa-
tion that the programer already knows it has (§2.2).

• When there are exactly (say) three regions in an array, we can
use a type-level list to drive code specialisation, avoiding the
ad-hoc approach of §2.3. Details in §4.2.

Better still, type indexing scales up to allow a variety of different ar-
ray representations, each with a different storage/performance cost
model. Indeed, Repa 3 has no fewer than ten such representations:

• D – Delayed arrays (delayed) §3.1
• C – Cursored arrays (delayed) §4.4
• U – Adaptive unboxed vectors (manifest) §3.1
• V – Boxed vectors (manifest) §4.1
• B – Strict byte arrays (manifest) §4.1
• F – Foreign memory buffers (manifest) §4.1
• P – Partitioned arrays (meta) §4.2
• S – Smallness hints (meta) §5.1.1
• I – Interleave hints (meta) §5.2.1
• X – Undefined arrays (meta) §4.2

We can think of the type indices being generated by this kind
declaration:

kind RepIndex = D | C | U | V | B | X
| P RepIndex RepIndex
| S RepIndex | I RepIndex

With this declaration, Array (P U X) sh e is a valid array type.
GHC’s recent DataKinds extension supports exactly this form of
declaration. However, using data kinds would make the index kind
closed, preventing users from adding new representation indices.
Instead, we proceed as in Figure 2, declaring type indices (such as
D and U) as fresh uninhabited types. An open and extensible set of
array representations enables integration with other array libraries
as the integration with the Accelerate GPGPU library shows.1

Of these, the D and C indices specify delayed array represen-
tations, meaning the array is expressed as a function from (value)

1 https://github.com/AccelerateHS/accelerate-io

-- The Source class ----------------------------------
class Source r e where
data Array r sh e
extent :: Shape sh => Array r sh e -> sh
index :: Shape sh => Array r sh e -> sh -> e
linearIndex :: Shape sh => Array r sh e -> Int -> e

instance Source D e where
data Array D sh e = ADelayed !sh (sh -> e)
extent (ADelayed sh _) = sh
index (ADelayed _ f) ix = f ix
linearIndex (ADelayed sh f) ix = f (fromIndex sh ix)

instance Vector.Unbox e => Source U e where
data Array U sh e = AUnboxed !sh !(Vector e)
...

-- The Target class ----------------------------------
class Target rt e where
data MVec rt e
newMVec :: Int -> IO (MVec rt e)
unsafeWriteMVec :: MVec rt e -> Int -> e -> IO ()
unsafeFreezeMVec :: sh -> MVec rt e

-> IO (Array rt sh e)

instance Vector.Unbox e => Target U e where
data MVec U e = UMVec (IOVector e)
...

-- The Load Class ------------------------------------
class (Shape sh, Source rs e) => Load rs sh e where
loadP, loadS :: Target rt e

=> Array rs sh e -> MVec rt e -> IO ()

Figure 3. Repa 3 Array Representation

indices to array elements. In this paper we refer to cursored arrays
as being “delayed” as well due to the nature of the representation.

The U, V, B and F indices specify manifest representations,
meaning real data in memory. Supporting multiple manifest rep-
resentations makes it easier to interface with third-party array li-
braries, such as bytestring. The Foreign (F) representation al-
lows us to compute array elements and store them directly into for-
eign memory buffers, perhaps provided by the operating system.
This eliminates copying between the GHC heap and foreign mem-
ory that would otherwise be necessary.

Finally, the P, S, I and X indices specify meta representations.
They combine other array types or encode information that does
not directly define array elements. The partitioned (P) and un-
defined (X) representations together provide the partitioned arrays
from §4.2. The smallness hint (S) ensures that an array is evaluated
sequentially, and the interleave hint (I) manage unbalanced work-
loads by making each thread compute alternate array elements.

3.1 Representation-polymorphic Operations
If we know the type index, we know the array representation, but
what if we don’t? Fundamental operations, such as array indexing,
ought to be polymorphic in the representation. Since the represen-
tation of arrays varies with the type index, all polymorphic opera-
tions must involve a corresponding type. The canonical approach
is to make Array an associated type of a class [2]. The resulting
declarations are in Figure 3, which replaces Figure 2.

We see that Array is now an associated type of Source. For
each type index (D, U, V, and so on) we define an instance of
Source, and each such instance gives a data instance decla-
ration for Array. The methods of Source allow us to perform
representation-polymorphic operations on Arrays. The extent



function takes the shape of an array, and index provides shape-
polymorphic indexing. The linearIndex function accesses the
underlying flat representation.

The Source class must be parameterised over the representa-
tion index r as well as the array element type e, because certain
representations restrict the element type. In particular, to store ar-
ray elements unboxed (type index U) we need to know (a) the width
of the unboxed elements, and (b) the data constructor to use when
boxing them. This information is encapsulated in the Unbox class,
defined by the standard Vector library, and used in the instance
declaration for Source U e in Figure 3.

Note that the Source class contains operations that read or
consume an array only. It does not offer operations that construct
an array. We keep array-construction methods separate because, in
general, they depend on both the source and result representations,
and thus require two type indices. We discuss this next.

3.2 Parallel Computation and Array Filling
Repa represents manifest arrays by real data in memory. It con-
structs a manifest array by first allocating a new array, performing
parallel writes to initialise the elements, and then freezing the result
into an immutable version. These three operations2 are bundled into
the Target class (Figure 3). The MVec associated type specifies the
underlying type of one-dimensional mutable vectors. Delayed and
meta representations do not correspond to real data in memory, thus
cannot be written to and are not instances of Target.

The Load class, also shown in Figure 3 forms the bridge be-
tween Source and Target. The loadP function of Load takes an
immutable source array of type Array rs sh e, and a mutable
destination vector of type MVec rt e. Instances of loadP will fork
several threads to concurrently read elements from the source array,
and write them to the destination. The loadS function performs the
same operation sequentially, which we discuss further in §5.1.1.

With Load and Target, we can write the generic parallel array
computation function, computeP, taking the role of force (§2.1):

computeP :: (Load rs sh e, Target rt e)
=> Array rs sh e -> Array rt sh e

computeP arr1
= unsafePerformIO
$ do mvec2 <- newMVec (size $ extent arr1)

loadP arr1 mvec2
unsafeFreezeMVec (extent arr1) mvec2

In Repa 3 we use the name computeP instead of force, because
the provided Load instances only allow delayed and meta repre-
sentations to be used as the source. With these representations,
loadP runs the delayed computations in parallel. To copy data
between manifest representations we provide a separate function
copyP which delays the source array before applying computeP.
In Repa 1 & 2, applying force to an already Manifest array was
a no-op. This behaviour turned out to be unnecessary, and need-
lessly confusing for client programmers.

Finally, we keep the Load and Source classes separate because,
for some array representations (rs), we want to provide a different
loadP instance for each shape (sh). Specifically, the loadP func-
tion for DIM2 cursored arrays uses a column-based traversal order,
which we discuss further in §5.2.1.

3.3 Bulk Operations
The definitions of map and zipWith using our new setup are shown
in Figure 4. While the bodies of these functions are almost identical

2 The latter two operations have names starting with unsafe because
unsafWriteMVec does no bounds checking, and unsafeFreezeMVec
does not check that further writes do not take place. This is an internal
interface that is not normally used by client programmers.

delay :: (Shape sh, Source r e)
=> Array r sh e -> Array D sh e

delay arr = ADelayed (extent arr) (index arr)

map :: (Shape sh, Source r a)
=> (a -> b) -> Array r sh a -> Array D sh b

map f arr = case delay arr of
ADelayed sh g -> ADelayed sh (f . g)

zipWith :: (Shape sh, Source r1 a, Source r2 b)
=> (a -> b -> c)
-> Array r1 sh a -> Array r2 sh b -> Array D sh c

zipWith f arr1 arr2
= let ADelayed sh1 f1 = delay arr1

ADelayed _ f2 = delay arr2
get ix = f (f1 ix) (f2 ix)

in ADelayed sh1 get

Figure 4. Bulk operations

to the Repa 1 versions from Figure 1, their types now express that
the result has the Delayed (D) representation.

Redoing the doubleZip example from §1 yields:

doubleZip1 :: Array U DIM2 Int -> Array U DIM2 Int
-> Array D DIM2 Int

doubleZip1 arr1 arr2
= map (* 2) $ zipWith (+) arr1 arr2

Here we have given a type signature that explicitly constrains
the input arrays to have Unboxed (U) representation. The result
array must have Delayed (D) representation, corresponding to the
signature of map.

When we apply computeP the result array must have a mani-
fest representation, as only manifest representations can be made
instances of Target. For example, we could constrain the result to
have Unboxed (U) representation as well:

doubleZip2 :: Array U DIM2 Int -> Array U DIM2 Int
-> Array U DIM2 Int

doubleZip2 arr1 arr2
= computeP $ map (* 2) $ zipWith (+) arr1 arr2

There is no need to provide explicit patterns such as Manifest{}
for the parameter variables as we did in §1, because the type index
controls the representation directly. Alternately, if we also leave
the array shape polymorphic, then the most general type we could
assign is the following:

doubleZip3 :: ( Source r1 e, Source r2 e, Target r3 e
, Shape sh, Num e)

=> Array r1 sh e -> Array r2 sh e
-> Array r3 sh e

doubleZip3 arr1 arr2
= computeP $ map (* 2) $ zipWith (+) arr1 arr2

We now return to our stated goal of helping client programmers
write fast programs. The fact that an array’s representation is deter-
mined by its type index provides an easy-to-follow rule specifying
when to attach INLINE pragmas to client-written functions:

If the signature contains any D tags, or type class dictionar-
ies, then you must INLINE it to get fast code, otherwise not.

Inlining forces the user-defined element functions in delayed arrays
to be fused with applications of computeP present in callers. It also
ensures that the instance functions present in type class dictionaries
are inlined and fused appropriately. For doubleZip2, we do not
need to inline it into its caller to get fast code, because the only
code fusion that takes place happens within the function itself.



data F -- Type index for Foreign arrays.

instance Storable a => Source F a where
data Array F sh e

= AForeignPtr sh !Int !(ForeignPtr e)
...

instance Storable e => Target F e where
data MVec F e = FPVec !Int !(ForeignPtr e)
...

Figure 5. Foreign Arrays

4. Foreign, Partitioned, and Cursored Arrays
A major advantage of the type-indexed approach is that it supports
a richer variety of array representations, each supporting different
usage patterns. In a perfect world one might hope for a single silver-
bullet representation that magically does everything well. In the
messier real world, it is a real step forward to express the cost model
clearly but non-intrusively, as we show in this section.

4.1 Representation Polymorphism and Foreign Arrays
The code needed to support foreign memory buffers is shown in
Figure 5. With this representation we can construct an array directly
into a foreign buffer without going via the Haskell heap. This is
achieved with the following function:

computeIntoIOP :: Load rs sh e
=> ForeignPtr e -> Array rs sh e -> IO ()

computeIntoIOP !fptr !arr = loadP arr (FPVec 0 fptr)

Rather than returning the manifest array like computeP, this
function takes the address of a foreign buffer and fills it by side
effect in the IO monad.

4.2 Partitioned Arrays
A partitioned array consists of two neighbouring rectangular re-
gions, each represented by their own Array. If these arrays are
themselves partitioned, we can sub-divide an array into any num-
ber of regions. Our primary use-case is to represent the result of
a stencil convolution, where the element function that defines the
inner region does not need to worry about what to do when applied
close to the border of the array [8].

The representation of partitioned arrays is shown in Figure 6.
The data declaration for Array (P r1 r2) defines a partitioned
array to consist of two sub-arrays (apHead and apTail), together
with a field, apHeadRange, that defines the range of indices cov-
ered by apHead. Somewhat irregularly, the sub-arrays are indexed
directly by the index of the outermost array, so the sub-arrays cover
an index range that may not be zero-based. To index an element in
a partitioned array, we use the rangeMatch field of apHeadRange
to test whether its index is within the range of apHead and if so
index into arr1, otherwise we index into arr2. The Range type
defines a rectangular range of elements between the two indices
with type sh, and our Load instance uses these two fields to com-
pute starting and ending offsets during parallel computation:

instance (LoadRange r1 sh e, Load r2 sh e)
=> Load (P r1 r2) sh e where

loadP (APart { apHeadRange = range
, apHead = arr1, apTail = arr2 }) mvec

= do loadRangeP arr1 mvec range
loadP arr2 mvec

The Load class declaration was given in Figure 3. The above
instance uses the auxiliary class LoadRange (Figure 6), which is
just like Load, except that it only computes and writes elements
in a specified Range. Since apHeadRange only describes apHead,

data P r1 r2 -- Index constructor for partitioned arrays.

-- Source instance for (P r1 r2) -----------------------
instance (Source r1 e, Source r2 e)

=> Source (P r1 r2) e where
data Array (P r1 r2) sh e

= APart { apExtent :: sh
, apHeadRange :: Range sh
, apHead :: Array r1 sh e
, apTail :: Array r2 sh e }

index (APart _ r arr1 arr2) ix
| rangeMatch r ix = index arr1 ix
| otherwise = index arr2 ix

data Range sh
= Range { rangeLow :: sh, rangeHigh :: sh

, rangeMatch :: sh -> Bool }

-- The LoadRange class --------------------------------
class (Source rs e, Shape sh) => LoadRange rs sh e where
loadRangeP, loadRangeS

:: Target rt e
=> Array rs sh e -> MVec rt e -> Range sh -> IO ()

instance LoadRange D e where ...

-- Empty arrays ----------------------------------------
data X
instance Source X e where

data Array X sh e = AUndefined sh
index _ _ = error "element is undefined"

instance LoadRange X sh e where
fillS _ _ = return ()
fillP _ _ = return ()

Figure 6. Partitioned Arrays

we use loadRangeP for apHead, and loadP for apTail. When
we reach the right-most array (at the end of the apTail chain) we
have no explicit description of the range of indices covered. In this
case we use an empty array with type index X (see Figure 6). Thus
a typical partitioned array might have a type like PD5 in Figure 8;
note that X terminates this “list” of partitions.

However, the critical point is this: the loadP instance for parti-
tioned arrays can be completely unfolded by the GHC simplifier at
compile-time. For example, given the following call:

loadP (arr :: Array (P D (P D X)) DIM2 Float)

GHC can inline the code for loadP at type (P D (P D X)), which
produces code with a call to loadP at type (P D X). GHC can
inline that too, yielding code that calls loadP at type X, and that
can be inlined trivially. The result is a sequence of two calls to
loadRangeP, each at type D:

case arr of { APart _ range1 arr11 arr12 ->
case arr12 of { APart _ range2 arr21 _ ->
do loadRangeP arr11 mvec range1

loadRangeP arr21 mvec range2
return () }} -- loadP at X

Now GHC can inline the two calls to loadRangeP at type D. We
end up with a sequence of two loops, each executed in parallel.

This kind of inlining is guaranteed not to diverge, because the
type of arr12 becomes smaller in each recursive call, providing a
structural termination condition for loadP. This is similar to the
termination conditions used by theorem proving languages such
as Coq [3] and Agda [10]. The use of type indices to guide the
compiler solves the code explosion problem discussed in §2.3, as
our array filling functions are now unfolded only as many times as
needed for the source array.



class Source r a => Structured r a where
type TR r
smap :: Shape sh

=> (a -> b)
-> Array r sh a -> Array (TR r) sh b

szipWith :: (Shape sh, Source r c)
=> (c -> a -> b)
-> Array r0 sh c -> Array r sh a
-> Array (TR r) sh b

instance Vector.Unbox a => Structured U a where
type TR U = D
smap = map
szipWith = zipWith

instance (Structured r1 a, Structured r2 a)
=> Structured (P r1 r2) a where

type TR (P r1 r2) = P (TR r1) (TR r2)

smap f (APart sh range arr1 arr2)
= APart sh range (smap f arr1) (smap f arr2)

szipWith f arr1 (APart sh range arr21 arr22)
= APart sh range (szipWith f arr1 arr21)

(szipWith f arr1 arr22)

Figure 7. Structured Maps

4.3 Structure Preserving Maps
Say we have arr :: Array (P D (P D X)) DIM2 Float. As
we saw at the end of §4.2, the application loadP arr will compile
to two beautiful loops, one for each partition. However, suppose
we also map a function across every element before loading from
it, like with (loadP (map negate arr)). Referring to Figure 4,
we see that map always produces a delayed result, with type index
D. The loadP only sees a delayed array, and will generate a single
loop in which each indexing operation performs a conditional test
on arr to determine which partition to use. Disaster: this is slower
than not having partitioned arrays in the first place.

What we want is for map to be structure-preserving: given a par-
titioned array, it should produce a partitioned array. However map
should not always produce an array with the same representation
as its input. Given a manifest array, map should produce a delayed
array. In short, the appropriate representation of map’s result is a
function of the representation of its input. This is just what type
functions are for!

Figure 7 implements this idea. We use a new class Structured,
whose methods are smap and szipWith. The class has an associ-
ated type TR (short for Target Representation), which computes the
result representation from its argument. We can see a use of TR in
the type of smap.

The U instance of Structured is simple, we just use the de-
fault map implementation from Figure 4. The (P r1 r2) instance
from Figure 7 is more interesting, as it preserves the partitioning
structure of the source array.

Continuing on to szipWith, note that its type is right biased.
The structure of its result is taken from the structure of the second
array argument, ignoring that of the first. Preserving the partition-
ing of both source arrays would be significantly more complicated.
For example:
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data C -- The type index for cursored arrays.

instance Source C sh a where
data Array C sh e

= forall cursor. ACursored
{ cursoredExtent :: sh
, makeCursor :: sh -> cursor
, shiftCursor :: sh -> cursor -> cursor
, loadCursor :: cursor -> e }

extent (ACursored ex _ _ _) = ex
index (ACursored _ makec _ loadc) = loadc . makec
linearIndex (ACursored sh makec _ loadc)

= loadc . makec . fromIndex sh

instance Load C DIM2 e where
loadP (ACursored (DIM2 w h) makec shiftc loadc) marr
= fillCursoredBlock2P ...

type PD5 = P C (P D (P D (P D (P D X))))
mapStencil2 :: Source r sh a

=> Boundary a -> Stencil DIM2 a
-> Array r DIM2 a -> Array PD5 DIM2 a

Figure 8. Cursored Arrays

The number of partitions in the result depends on the number of
partitions in the input arrays, which is a static property, as well as
the sizes of those partitions, which can be a dynamic property.

Repa 3 includes the original zipWith as well as our new
szipWith function. With plain zipWith, if the overall shape of
the source arrays is different, then the shape of the result is their
intersection. Performing this intersection is straightforward when
there is no internal structure to worry about. In contrast, szipWith
preserves the structure of the second source array, but the overall
shape of both source arrays must match.

4.4 Cursored Arrays
The cursored arrays of [8] are used to optimise stencil convolu-
tions, by sharing intermediate values between the computation of
adjacent pixels. Figure 8 contains the definition of cursored arrays
using our new type-indexed framework. The Array declaration in
Figure 8 takes the role of the Generator from Repa 2, with the
role of makeCursor, shiftCursor and so on being as per [8].

The definition of fillCursoredBlock2P in the Load instance
of Figure 8 is as per [8]. As discussed there, its definition con-
tains loops that have been hand-specialised with the unroll-and-
jam transformation [1] to separate array reads from array writes.
This in turn enables LLVM’s global value numbering transforma-
tion [14], which recovers sharing of intermediate results between
the computation of successive array elements. To improve cache
performance, these loops also traverse the source and result arrays
in column-wise order, as per the diagram in §5.2.1. This means that
fillCursoredBlock2P is specialised for arrays of rank-2, hence
the DIM2 constraint in the Load instance it is used in.

The mapStencil2 function takes a stencil definition, a source
array, a description of what to do at the boundary; and produces a
partitioned array. This function is also specialised to rank-2 arrays,
so the result is split into five partitions, one for inner region and one
for each of the four borders. As the use of cursored arrays tends to
increase the size of the intermediate code due to loop unrolling,
we used a Cursored (C) array for the inner region only, defining
the borders in terms of Delayed (D) arrays. The runtime cost of
computing the border regions is typically only a tiny fraction of the
cost of computing the internal region, and using delayed arrays for
the borders keeps the compile-times and resulting executable size
down.



Figure 9. Fluid Solver output for 4, 10, and 100 Jacobi iterations.

5. Applications and Pragmatics
In this section we discuss two end-user applications that were first
written with Repa 2, and then modified to work with Repa 3 by the
first author. Providing a better way to implement these applications
was the reason we started this paper. The first is available in the
gloss-examples package, and the second in the repa-examples
package. Gloss is a graphics library that depends on Repa.

5.1 Fluid Flow
Figure 9 shows output from a fluid flow solver written by Ben
Lambert-Smith. This is an implementation of Jos Stam’s stable
fluid algorithm [18], which is a fast approximate algorithm in-
tended for animation and games, rather than accurate engineering
simulation. It performs a finite time-step simulation on a 2-d grid. It
is numerically stable for arbitrary sized time-steps, which makes it
attractive for real-time animation where the frame-rate of the sim-
ulation may vary depending on system load. We discuss the differ-
ence between the three images of Figure 9 in §5.1.2.

The fluid is represented as a pair of 2-d arrays, one for the
density at each point, and one for the velocity. The density is a
scalar floating point value, while the velocity is a 2-d vector. The
majority of the runtime is spent in a function called the linear
solver, which performs matrix relaxation involving the discrete
Laplace operator (∇2). The linear solver is used to diffuse the
density and velocity fields throughout the grid, as well as apply
a projection operator to the velocity field, which makes it mass-
preserving [18].

Our implementation of the linear solver uses Repa’s support
for stencil convolution, using the cursored arrays from §4.4, and
repeatedly computes the following for each grid element:

u′′i, j = (ui, j +a . (u′i−1, j + u′i+1, j + u′i, j−1 + u′i, j+1)) / c

For each time step we perform several relaxation iterations to allow
the solution to converge. In the above equation, u is the grid in
the previous time step, u′ is the grid in the current time step and
the previous relaxation iteration, and u′′ is the grid in the current
time step and current iteration. The a and c values are constants
determined by simulation parameters, such as the diffusion rate.

The linear solver is written to be polymorphic in the type of
array elements. It is then specialised to 2-d vectors (for the velocity)
as well as scalar floats (for the density) using GHC’s specialisation
pragmas [12].

5.1.1 Scheduling and Smallness Hints
In the Repa version, the linear solver is called four times: once on
the scalar density field, and three times on the vector velocity field.
Each time it is called, it iteratively performs 40 convolutions with
the appropriate stencil, for a total of 160 convolutions per time-step.
As the algorithm is intended for real-time simulation, at 30 frames
(steps) per second it must perform 30× 160 = 4800 convolutions
per second, or one every 200 microseconds. This interval is of the
same order of magnitude as the context switch latency on a typical
desktop operating system [7].

Figure 10. Fluid Thread Activity

data S r
instance Source (S r) sh e
data Array (S r) sh e

= HintSmall (Array r sh e)
...

instance ( Shape sh, Load r sh e)
=> Load (S r) sh e where

loadP (HintSmall arr) marr = loadS arr marr
loadS (HintSmall arr) marr = loadS arr marr

type PS5 = P C (P (S D) (P (S D) (P (S D) (P (S D) X))))
mapStencil2 :: Source r DIM2 a

=> Boundary a -> Stencil DIM2 a
-> Array r DIM2 a -> Array PS5 DIM2 a

Figure 11. Smallness Hints

When benchmarking the fluid solver using ThreadScope [4], we
noticed that for a grid of size 100× 100 it was spending over half
its time stalled while waiting for worker threads to be scheduled.
For context, with a single thread, a grid of size 150×150 is about
largest that will run smoothly at 30 frames per second on our
desktop machine. We present concrete numbers in Figure 12.

The left of Figure 10 is a ThreadScope plot for the 100×
100 version showing the problem. This plot was taken on an
2×QuadCore Intel Harpertown server running Linux Kernel 2.6.32.
To minimise the chance of our benchmark being interrupted by the
operating system, it was run with only 7 threads (out of 8 possible),
leaving the final core for the OS. We use thread affinity to bind
each Haskell thread to a single core. In the figure, the 7 horizontal
traces show the period each thread was active. The graph at the top
shows how many threads were active at each point in time.

The graph shows two bursts of high activity where the bench-
mark was performing a matrix relaxation step, and the start of a
third one on the far right hand side. As mentioned in §5.1, the ma-
trix relaxation is performed using a stencil convolution, which uses
the partitioned array representation from §4.2. Each burst of high
activity, where the plot shows all seven threads active, corresponds
to the computation of the inner region of the array. The four short
bursts after it correspond to the computation of the border regions.
Because computation of a border region is so little work, more time
is spent waiting for the computation to be scheduled than actually
computing it.

We address this problem with smallness hints, which are wrap-
pers for Repa’s usual Delayed (D) and Cursored (C) type indices.
The definition is given in Figure 11. Whereas the application of
computeP from §4.2 to an array of type Array D DIM2 Int will
proceed in parallel, application to an Array (S D) DIM2 Int
will proceed sequentially. This behaviour is straightforward to add



to our existing framework, as the evaluation method for each ar-
ray representation is given by the corresponding instance of the
Load class. Given some inner representation r, the Load instance
for S r simply redirects applications of both loadP and loadS to
the loadS method for r.

We force the borders of a partitioned array to be evaluated se-
quentially by modifying the definition of mapStencil2 from §4.2.
All that is needed is to wrap the existing border definition in the
HintSmall constructor. The effect on the type of mapStencil2 is
also shown in Figure 11.

The ThreadScope plot in the right of Figure 10 is for the same
benchmark, now using smallness hints for the border partitions.
Now only the main thread is active between each high-activity
burst, yet the period of low activity is shorter.

There is a design choice about whether to preserve smallness
hints in the result of an smap operation §4.3. Although computa-
tion of a particular region in a delayed array may correspond to a
small amount of work, after we map a function across every ele-
ment, computation of the same region in the result may be more
expensive. For now we arrange smap to preserve the smallness hint
in the result array, though we will return to this in §5.2.2.

5.1.2 Gauss-Seidel vs Jacobi relaxation
The reference C implementation of Jos Stam’s fluid flow algorithm
was supplied with [18]. The linear solver in this version uses Gauss-
Seidel matrix relaxation while we use Jacobi relaxation. Relative
to the equation in §5.1, Gauss-Seidel relaxation replaces the u′i−1, j
and u′i, j−1 terms with u′′i−1, j and u′′i, j−1 respectively. In the reference
version these array elements are read from the array currently being
written to. Jacobi relaxation uses the equation as written.

Although the “fast forwarding” of array elements in Gauss-
Seidel reduces the number of iterations needed to achieve conver-
gence, its use of destructive update makes it difficult to parallelise.
Destructive update also causes problems for optimising compilers
such as LLVM (which GHC uses for back-end compilation) as they
must worry about potential aliasing between the source and result
arrays. In contrast, Jacobi relaxation is kinder to optimising com-
pilers, and easier to parallelise, but requires more iterations than
Gauss-Seidel as it does not converge as fast.

For Stam’s algorithm, the penalty for using an insufficient num-
ber of iterations is an unattractive image with too much numerical
dissipation [18]. Figure 9 shows the result of simulating 100 time
steps from identical initial conditions, using 4, 10 and 100 Jacobi
iterations in the linear solver. For low iteration counts, the swirls
present in the right-most image do not appear in the output.

To ensure a fair comparison, our Repa implementation using Ja-
cobi relaxation must use more iterations than the reference imple-
mentation. We determined an appropriate number by first simulat-
ing the initial conditions used in Figure 9 using 1000 Gauss-Seidel
iterations, treating this as the ideal output. We then measured the
mean-square error between the ideal output, and the output using
20 Gauss-Seidel iterations, which is what Stam’s reference imple-
mentation uses. Finally, we increased the number of Jacobi itera-
tions until the error in the output was reduced to the same level as
the reference version. Using 38 Jacobi iterations achieves the same
error figure, which we round up to 40 for good measure.

5.1.3 Comparison
Figure 12 shows the relative runtimes between Stam’s C imple-
mentation using Gauss-Seidel relaxation (with 20 iterations), and
the same program modified to use Jacobi relaxation (with 40 iter-
ations). We also show relative runtime for the Repa version using
Jacobi relaxation with 1, 2 and 4 threads.

The overall shape of this plot is as we would expect. At small
array sizes the sequential C versions are faster as they preallocate
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Figure 12. Runtimes for Fluid Flow Solver

buffers for the source and result arrays, and swap them after every
iteration. This improves data locality, reducing the cache miss rate.
In contrast, the Repa version allocates a fresh result buffer for
every iteration, leaving old buffers to be reclaimed by the garbage
collector.

At large array sizes, the working set no longer fits in cache
and the single threaded Repa Jacobi solver is faster than the C
version. This is because cursored arrays allows the Repa version to
share intermediate computations, which reduces overall instruction
count and memory bandwidth. For large array sizes the benchmark
is memory bound, so performance does not scale linearly with an
increased number of threads.

The C reference implementation could be improved by hand-
applying the unroll-and-jam transformation that is baked into the
Repa library. We tried various permutations of -funroll-loops
when compiling with GCC 4.2.1, but inspection of the assembly
output revealed it was not recovering the same inter-stencil shar-
ing as the Repa version due to aliasing problems — even though
the loops were indeed unrolled. Compiling with Clang 3.0 (which
uses LLVM for the backend) did not significantly improve matters.
On the other hand, we could also improve the Repa version by pre-
allocating the source and result arrays and using the ForeignPtr
support to swap and reuse the same buffers between iterations.

5.2 Unbalanced Workloads
Figure 13 shows three example applications with unbalanced work-
loads, all written with Repa. The first is a Mandelbrot set visualisa-
tion computed with the escape-time algorithm. In the output image,
the pixels in the (approximate) Mandelbrot set are rendered black
and take about 10 times longer to compute than the others.

The second is output from a real-time ray tracer, where parts
of the image showing many reflections take longer to compute
than the others. Although ray tracing is known in the folklore
as “embarassingly parallel” as every pixel in the output can be
computed independently, it is not embarrassingly data parallel due
to the unbalanced workload.

The final example is an interpolator for volumetric data, which
implements the algorithm described in [17]. This example was writ-
ten by Michael Orlitzky using Repa 2, and then modified to work
with Repa 3 by the first author. The left-most image at the bottom
of Figure 13 shows one slice though a 256×256×109×16-bit data
volume from a Magnetic Resonance Imaging (MRI) machine. The
bottom-center image is from the source data, and shows a scaled
region of the top-right portion of the brain. The bottom-right im-
age shows the same region after interpolation. In a straightforward



Figure 13. Unbalanced Workloads

implementation, every element in the output volume is computed
independently and takes the same amount of time. However, we
can improve the overall runtime by returning a constant zero value
(black pixel) for voxels corresponding to the air surrounding the
physical object. This is done by summing the surrounding voxels
in the source data, and testing the sum against a user defined thresh-
old. This is faster than calculating the true interpolated result, but
again makes the workload unbalanced.

5.2.1 Spacial Correlation and Interleaved Evaluation
The workloads of our three examples are unbalanced because the
cost to compute each array element is not uniform throughout the
array. The standard Repa evaluation method chunks the underly-
ing row-major vector evenly between the available threads. When
using cursored arrays we instead proceed column-wise as this is
more cache-efficient when performing convolutions on 2-d matri-
ces. The figure below shows both of these methods, assuming we
are computing the matrix with three threads.

1 1 1 1 1
1 1 2 2 2
2 2 2 2 3
3 3 3 3 3

1 1 2 2 3
1 1 2 2 3
1 1 2 2 3
1 1 2 2 3

1 2 3 1 2
3 1 2 3 1
2 3 1 2 3
1 2 3 1 2

Chunked Column-wise Interleaved

With both the Chunked and Column-wise method, the spacial cor-
relation between features in the result array, and computational
workloads maps directly onto the physical processors. The left of
Figure 14 is a ThreadScope plot that shows the effect of this cor-
relation in sharp relief. The plot is for the interpolator on seven
threads, which shows the threads that compute non-zero data in the
result take significantly longer to run. The plot is for the entire run
of the program, and the high-activity bursts at the beginning and
end are due to reading source data and writing the output to file.

A well known solution to this problem is to move to an in-
terleaved evaluation method instead [15], also shown in the fig-
ure above. When applied to ray tracing this approach is classically

Figure 14. Interpolator Thread Activity

data I r1
instance Source (I r1) sh e
data Array (I r1) sh e

= HintInterleave (Array r1 sh e)

instance ( Shape sh, Load D sh e)
=> Load (I D) sh e where

loadP (HintInterleave (ADelayed sh getElem)) marr
= fillInterleavedP (size sh) (unsafeWriteMArr marr)

(getElem . fromIndex sh)
loadS (HintInterleave arr) marr = loadS arr marr

instance Structured rs a => Structured (I rs) a where
type TR (I rs) = I (TR rs)
...

Figure 15. Interleave Hints

known as image space partitioning to distinguish it from object
space partitioning which divides the model being rendered. As
with all static load-balancing strategies, there is still a chance that
the runtime-workload will correlate with the assigned thread index,
though this would be unlikely for the three applications shown in
Figure 13. Lee and Raghavendra [6] compare related strategies.

We implement our new interleaved evaluation method similarly
to the smallness hints from §5.1.1, with the main definitions given
Figure 15. Whereas application of computeP to an array of type
Array D DIM2 Int will use chunked evaluation, application to
an Array (I D) DIM2 Int now uses interleaved evaluation, im-
plemented by fillInterleavedP. The right of Figure 14 shows
the result of using interleaved evaluation for the interpolator. All
threads now run for approximately the same period of time, and of
the overall runtime of the program is shorter.

5.2.2 Hint Propagation and Interaction
The Load instance in Figure 15 only works for Delayed (D) arrays,
and not Cursored (C) arrays as well. As described in §4.4, cursored
arrays are used to share intermediate computations between adja-
cent array elements, and this process depends on a particular traver-
sal order. As adjacent elements must be computed in the same loop
iteration, using interleaved evaluation with cursored arrays would
be of no benefit.

Smallness hints and interleave hints interact in a natural way. If
a delayed array is wrapped in an Interleave (I) hint, this signals that
its parallel computation will be unbalanced. If it is then wrapped in
a Smallness (S) hint as well, this signals that it is a small amount
of work relative to some larger computation. The combination of



hints yields a type index of (S (I D)). When the array is finally
computed, the instances given in Figures 11 and 15 effectively
ignore the interleave hint, as the sequential evaluation enforced by
smallness cannot itself be unbalanced. If the two hints are applied
in the other order, to yield an index of (I (S D)) then there
is no available Load instance, because hinting that a sequential
computation is unbalanced does not make sense.

Finally, note that the Structured instance in Figure 15 propa-
gates the interleave hint to the result representation. The declaration
of Structured was given in Figure 7. We preserve this hint be-
cause the Structured class methods, namely smap and szipWith
are bulk operations, meaning they apply the same function to every
array element. In practice, it is highly unlikely that applying such
an operation to an array defining an unbalanced workload would
make it more balanced, so it is better to retain the unbalancedness.
For example, suppose we apply our ray-tracer to a 3d model and
then convert the output image to greyscale:

image :: Array U DIM2 Float
image = computeP $ smap toGreyScale $ raytrace model

The result of evaluating raytrace model will have the type
Array (I D) DIM2 (Float, Float, Float), where the tuple
contains red, green, blue color values. Applying smap toGreyScale
the produces Array (I D) DIM2 Float, where the result gives a
luminance value for each pixel. The array defined by the raytrace
is unbalanced, and when fused with toGreyScale it remains un-
balanced.

6. Challenges of Array Fusion
This section summaries the remaining challenges we see to the
Repa-style approach to array fusion. We continue the similarly
named section in [8].

6.1 Unboxing Outside Loops
In [8] we used boilerplate code involving deepSeqArray to force
GHC to unbox array objects outside of loops. Adding this code
worked around limitations in the simplifier for GHC’s core IR. For
example, consider the following function which takes an array of
indices, a matrix and yields elements from the matrix diagonal:

diagonals :: Array U DIM1 Int -> Array U DIM2 Int
-> Array U DIM1 Int

diagonals xs ys
= computeP $ R.map (\i -> ys ‘index‘ (DIM2 i i)) xs

As the ys array is only used inside the worker function passed
to map, with lazy evaluation this array will only be demanded if
xs contains at least one element. As the GHC simplifier mostly3

tries to preserve the termination behaviour of the program during
transformation, it does not float this unboxing out of the loop. It
must guard against the case where evaluation of ys diverges, hence
the components of ys end up being unboxed repeatedly for every
iteration. Even with pointer tagging [9], the cost of unboxing values
in inner loops can easily dominate the runtime of an array program.

With Repa 2 and GHC 7.2 we needed to use deepSeqArray to
place a demand on the components of ys, to ensure their unboxings
are floated outside the loop:

diagonals xs ys
= ys ‘deepSeqArray‘

computeP $ map (\i -> ys ‘index‘ (DIM2 i i)) xs

In GHC 7.4.1 we implemented case-floating. This transform op-
erates much like let-floating [11], except that it moves single-
alternative case expressions.

3 In GHC 7.4.1, non-termination is not preserved by eta expansion, but
correct termination behaviour can be gained with -fpedantic-bottoms.

With case-floating, instead of needing deepSeqArray we can
achieve fast code by using a lighter-weight bang pattern:

diagonals xs !ys = ...

This then desugars to:

diagonals xs ys
= case ys of { _ ->

computeP $ map (\i -> ys ‘index‘ (DIM2 i i)) xs }

When the definition of index is inlined we get:

diagonals xs ys
= case ys of { _ ->

computeP $ map (\i ->
case ys of { AUnboxed sh uvec ->
case sh of { DIM2 w h -> ..w h uvec i..}}) xs }

Now, as ys is demanded on entry to the function, the inner match
against AUnboxed sh uvec can be unconditionally moved to top
level. However, hoisting the match against DIM2 w h is only sound
when the shape of an array is defined as a strict field, though from
Figure 3 we see that it is. Moving the match on DIM2 w h to the
outer case expression based on this strictness information is our
new case-floating transform:

diagonals xs ys
= case ys of { AUnboxed sh uvec ->

case sh of { DIM2 w h ->
computeP $ map (\i -> ..w h uvec i..) xs }}

In practice, we advise users to add bang patterns to all array param-
eters for functions using the Repa library. Although the xs param-
eter above does not need one, adding it does not hurt, and this is an
easy-to-follow rule.

Sadly, bang patterns are not always sufficient. Suppose ys is
defined as a top-level CAF:

ys = fromList ...
diagonals xs
= computeP $ map (\i -> ys ‘index‘ (DIM2 i i)) xs

In this situation the language definition does not allow us to place a
bang on ys. This would imply that ys should be evaluated as soon
as the program starts, which is problematic if it happened not to
terminate. Instead we add a seq, like so:

ys = fromList ...
diagonals xs = ys ‘seq‘

computeP $ map (\i -> ys ‘index‘ (DIM2 i i)) xs

The seq desugars to a case-expression as above. The fact that seqs
must still be added to get efficient code is not kind to beginning
Haskell programmers, but we do not see a way to avoid it with the
current language semantics.

6.2 Fake Nested Parallelism via Laziness
The following example is like diagonals from the previous sub-
section, except that it first increments every element in the matrix.

diagonals2 :: Array U DIM1 Int -> Array U DIM2 Int
-> Array U DIM1 Int

diagonals2 xs ys
= let ys2 :: Array U DIM2 Int

ys2 = computeP $ map (+ 1) ys
in computeP $ map (\i -> ys2 ‘index‘ (DIM2 i i)) xs

At runtime, the binding for ys2 involving the first computeP will
be suspended by lazy evaluation. This binding will be forced by
the second computeP expression when it tries to evaluate the ini-
tial element in the overall result of diagonals2. When one par-
allel computation invokes another it is nested parallelism, which
Repa does not support. Our current implementation will print a
warning to stderr and then run the inner computeP sequentially.



Although this behaviour provides the expected result at the value
level, sequential evaluation is unlikely to be what the user intended
— especially because they wrote computeP (with a parallel P). To
ensure that both applications of computeP actually run in paral-
lel, evaluation of ys2 must complete before the second computeP
starts. Once again, this can be fixed with a bang pattern:

diagonals2 xs ys
= let ys2 :: Array U DIM2 Int

!ys2 = computeP $ map (+ 1) ys
in computeP $ map (\i -> ys2 ‘index‘ (DIM2 i i)) xs

The Repa library is written so that when the first parallel compu-
tation is evaluated, it unsafely initialises a globally shared gang of
threads (with unsafePerformIO). All subsequent parallel compu-
tations run on this single gang of threads, and hence only one can
run at a time. We do not create thread gangs dynamically because
a single, well balanced data parallel computation is always enough
to keep all threads busy. If we had multiple gangs running concur-
rently, then they would contend for cache and thrash the OS sched-
uler. Importantly, using an unsafely initialised gang of threads does
not violate observational purity (other than on stderr), because
all Repa computations still return the correct value, even though
nested computations may run sequentially.

Should we change Repa to support slow nested parallel compu-
tations that the user probably didn’t mean to write? Probably not!
Until we have a way to statically guarantee that only one parallel
computation runs at a time, we offer the following function in the
default API:

computeMP :: (Load rs sh e, Target rt e, Monad m)
=> Array rs sh e -> m (Array rt sh e)

computeMP arr
= let arr2 = computeP arr

in arr2 ‘seq‘ return arr2

The function computeMP is like computeP, except that it forces
completion at a particular point in a monadic computation. Writing
diagonals2 with do-notation and using computeMP will achieve
the same result as adding the bang pattern to ys2. In fact, only
computeMP is exposed in the top-level Repa module. The user
needs to go looking to find computeP, before they can get them-
selves in trouble with fake nested parallelism.

Note that computeMP is parametric in the monad as we only
need a well defined notion of sequence, rather than a particular
monadic effect. Of course, the user could instantiate this to the ST
monad and still run two parallel computations concurrently, just
like they could instantiate it to IO and use forkIO to achieve the
same result. Both of these operations would be considered “safe”
in the Haskell development culture. It would be nice if our types
could enforce all the desired performance characteristics, but as of
now they are only a guide.

7. Related Work
For general related work on high-level array libraries, we refer to
the relevant discussions in the previous two papers on Repa [5,
8]. Here we only review work on using type indices to guide
representations.

The MTLX (Monad Transformer Library indeXed) library [16]
uses type indices to allow multiple distinct instances of a monadic
effect to coexist in the same computation. For example, a monadic
computation can have access to state for a fresh name supply as
well as an event counter, and the type of the computation reveals
which state objects it accesses.

The C++ parallel array library POOMA [13] uses templates
with tags that are like type indices to specify the representation of
arrays. Instead of Repa-style delayed arrays, POOMA use expres-
sion templates to reify expressions and to facilitate array fusion.
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