
Under consideration for publication in J. Functional Programming 1

Practical type inference for arbitrary-rank types

31 July 2007

Simon Peyton Jones

Microsoft Research

Dimitrios Vytiniotis

University of Pennsylvania

Stephanie Weirich

University of Pennsylvania

Mark Shields

Microsoft

Abstract

Haskell’s popularity has driven the need for ever more expressive type system features,
most of which threaten the decidability and practicality of Damas-Milner type inference.
One such feature is the ability to write functions with higher-rank types—that is, functions
that take polymorphic functions as their arguments.

Complete type inference is known to be undecidable for higher-rank (impredicative)
type systems, but in practice programmers are more than willing to add type annotations
to guide the type inference engine, and to document their code. However, the choice of
just what annotations are required, and what changes are required in the type system and
its inference algorithm, has been an ongoing topic of research.

We take as our starting point a λ-calculus proposed by Odersky and Läufer. Their sys-
tem supports arbitrary-rank polymorphism through the exploitation of type annotations
on λ-bound arguments and arbitrary sub-terms. Though elegant, and more convenient
than some other proposals, Odersky and Läufer’s system requires many annotations. We
show how to use local type inference (invented by Pierce and Turner) to greatly reduce
the annotation burden, to the point where higher-rank types become eminently usable.

Higher-rank types have a very modest impact on type inference. We substantiate this
claim in a very concrete way, by presenting a complete type-inference engine, written in
Haskell, for a traditional Damas-Milner type system, and then showing how to extend it
for higher-rank types. We write the type-inference engine using a monadic framework: it
turns out to be a particularly compelling example of monads in action.

The paper is long, but is strongly tutorial in style. Although we use Haskell as our
example source language, and our implementation language, much of our work is directly
applicable to any ML-like functional language.

2 Peyton Jones, Vytiniotis, Weirich, and Shields

The online version

The paper is the print queue for the Journal of Functional Programming.

This online version embodies minor corrections or clarifications compared to the

print version. It is available at

http://research.microsoft.com/∼simonpj/papers/higher-rank

At the same URL you can find all the code described in the paper, and a Technical

Appendix giving the proofs.

Here is a brief summary of the changes compared to the published version. Page

references are to the print version (so they stay stable), which you can find at the

above URL.

Nov 06 Minor wording changes and clarifications. Thanks to Norman Ramsey.

Feb 07 Modifications related to multi-branch constructs, Section 7.1. Thanks to

Chuan-kai Lin.

July 07 Section 7.2 (Rich patterns): missing writeTcRef in tcPat.

July 07 Section 8.1 (Implementing subsCheck): remove references to subsCheckRR,

which isn’t previously used (any more).

http://research.microsoft.com/~simonpj/papers/higher-rank

Practical type inference for arbitrary-rank types 31 July 2007 3

1 Introduction

Consider the following Haskell program:

foo :: ([Bool], [Char])

foo = let

f x = (x [True, False], x [’a’,’b’])

in

f reverse

main = print foo

In the body of f, the function x is applied both to a list of booleans and to

a list of characters—but that should be fine, because the function passed to f,

namely reverse, works equally well on lists of any type. If executed, therefore,

one might think that the program would run without difficulty, to give the result

([False,True], [’b’,’a’]).

Nevertheless, the expression is rejected by Haskell’s type checker (and would be

rejected by ML as well), because Haskell implements the Damas-Milner rule that a

lambda-bound argument (such as x) can only have a monomorphic type. The type

checker can assign to x the type [Bool] → [Bool], or [Char] → [Char], but not

∀a.[a] → [a].

It turns out that one can do a great deal of programming in Haskell or ML without

ever finding this restriction irksome. For a minority of programs, however, so-called

higher-rank types turn out to be desirable, a claim we elaborate in Section 2. The

following question then arises: is it possible to enhance the Damas-Milner type

system to allow higher-rank types, but without making the type system, or its

inference algorithm, much more complicated? We believe that the answer is an

emphatic “yes”.

The main contribution of this paper is to present a practical type system and

inference algorithm for arbitrary-rank types; that is, types in which universal quan-

tifiers can occur nested. For example, the Glasgow Haskell Compiler (GHC), which

implements the type system of this paper, will accept the program:

foo :: ([Bool], [Char])

foo = let

f :: (forall a. [a] -> [a]) -> ([Bool], [Char])

f x = (x [True, False], x [’a’,’b’])

in

f reverse

Notice the programmer-supplied type signature for f, which expresses the poly-

morphic type of f’s argument. (The explicit “forall” is GHC’s concrete syntax for

universal quantification “∀”.)

4 Peyton Jones, Vytiniotis, Weirich, and Shields

Our work draws together and applies Odersky & Läufer’s type system for arbitrary-

rank types (Odersky & Läufer, 1996), and Pierce & Turner’s idea of local type

inference (Pierce & Turner, 1998). The resulting type system, which we describe in

Section 4, has the following properties:

• It is a conservative extension of Damas-Milner: any program typeable with

Damas-Milner remains typeable.

• The system accommodates types of arbitrary finite rank; it is not, for example,

restricted to rank 2. We define the rank of a type in Section 3.1.

• Programmer annotations may be required to guide the type inference engine,

but the type system specifies precisely which annotations are required, and

which are optional.

• The annotations required are quite modest, more so than in the system of

Odersky and Läufer.

• The inference algorithm is only a little more complicated than the Damas-

Milner algorithm.

The main claim of this paper is simplicity. In the economics of language design

and compiler development, one should not invest too much to solve a rare prob-

lem. Language users only have so much time to spend on learning a language and

on understanding compiler error messages. Compiler implementors have a finite

time budget to spend on implementing language features, or improving type error

messages. There is a real cost to complexity.

We claim, however, that a suitably-designed system of higher-rank types repre-

sents an extremely modest addition to a vanilla Damas-Milner type system. First,

the language is extended in a simple way: we simply permit the programmer to

write explicitly-quantified types, such as the type of f above. Second, the imple-

mentation changes are also extremely modest. Contrary to our initial intuition, a

type-inference engine for Damas-Milner can be modified very straightforwardly to

accommodate arbitrary-rank types. This is particularly important in a full-scale

compiler like GHC, because the type checker is already extremely complicated. It

supports Haskell’s overloading mechanism, implicit parameters, functional depen-

dencies, records, scoped type variables, existential types, and more besides. Any-

thing that complicates the main type-inference fabric, on which all this is based,

would be hard to justify.

To make this latter claim concrete, we first present a complete implementation of

Damas-Milner for a small language (Section 5), and then give all the changes needed

to make it work at higher rank (Section 6). The implementation is structured using

a monad to carry all the plumbing needed by the type-inference engine, so the code

is remarkably concise and is given in full in the Appendix. We hope that, inter alia,

this implementation of type inference may serve as a convincing example of the

utility of monadic programming.

Practical type inference for arbitrary-rank types 31 July 2007 5

As well as this pedagogical implementation, we have built what we believe is the

first full-scale implementation of the Odersky/Läufer idea, in a compiler for Haskell,

the Glasgow Haskell Compiler (GHC).

Although we use Haskell as our example source language, and as our implementation

language, almost all our work is directly applicable to any functional language. In

a language that has side effects, extra care would be required at one or two points.

2 Motivation

The introduction showed a rather artificial example in which the argument of a func-

tion needed a polymorphic type. Here is another, more realistic, example. Haskell

comes with a built-in type class called Monad:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

One can easily write monad combinators; for example, mapM f applies a monadic

function f to each element of its argument list1:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f [] = return []

mapM f (x:xs) = f x >>= \ y ->

mapM f xs >>= \ ys ->

return (y:ys)

Now suppose instead that one wanted to do the same thing using an explicit data

structure. A value of data type Monad m would be a record of two functions, which

we write using Haskell’s record notation:

data Monad m = Mon { return :: a -> m a,

bind :: m a -> (a -> m b) -> m b }

We rename (>>=) to bind, because bind is now a selector function that extracts

the function from the record. This type declaration would be illegal in Haskell 98,

because the type of return, for example, mentions a type variable a that is not a

parameter of the type Monad. The idea is, of course, that the data structure contains

a polymorphic function of type ∀a.a → m a.

The function mapM now takes an explicit argument record of type Monad m, from

which it extracts the relevant fields by pattern matching2:

1 In Haskell, lambda abstractions extend as far to the right as possible; in this case, both lambdas
extend to the end of the definition.

2 In Haskell, back-quotes turn a function such as bnd into an infix operator.

6 Peyton Jones, Vytiniotis, Weirich, and Shields

mapM :: Monad m -> (a -> m b) -> [a] -> m [b]

mapM m@(Mon { return = ret, bind = bnd }) f xs

= case xs of

[] -> ret []

(x:xs) -> f x ‘bnd‘ \y ->

mapM m f xs ‘bnd‘ \ys ->

ret (y:ys)

Notice that in this function, bnd is used at two different types within a single right-

hand side, so it is crucial that it is polymorphic. In this way, we can use a data type

whose constructor has a rank-2 type to simulate the effect of type classes—indeed,

this is precisely the way in which type classes are implemented internally.

Functions and constructors with higher-rank types now appear quite regularly in

the functional programming literature. For example:

Data structure fusion. Short-cut deforestation (Gill etal., 1993) makes use of

build with type

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

Encapsulation. The encapsulated state monad ST (Launchbury & PeytonJones, 1995)

requires a function runST with type:

runST :: forall a. (forall s. ST s a) -> a

The idea is that runST ensures that a stateful computation, of type ST s a, can

be securely encapsulated to give a pure result of type a.

Dynamic types. Baars and Swierstra describe the following data type

data Equal a b = Equal (forall f . f a -> f b)

as a key part of their approach to dynamic typing (Baars & Swierstra, 2002).

Generic programming. Various approaches to generic, or polytypic, program-

ming make essential use of higher-rank types. For example, the “scrap your boil-

erplate” approach to generic programming (Lämmel & Peyton Jones, 2003) has

functions such as:

gmapT :: forall a. Data a => (forall b. Data b => b -> b)

-> a -> a

Hinze’s work on generic programming also makes extensive use of higher-rank

types (Hinze, 2000).

Invariants. Several authors have explored the idea of using the type system to en-

code data type invariants, via so-called nested data types (Bird & Paterson, 1999;

Okasaki, 1999; Hinze, 2001). For example, Paterson and Bird use the following

data type to encode lambda terms, in which the nesting depth is reflected in the

type:

data Term v = Var v | App (Term v) (Term v) | Lam (Term (Incr v))

data Incr v = Zero | Succ v

Practical type inference for arbitrary-rank types 31 July 2007 7

Then the fold over Term has type:

foldT :: (forall a. a -> n a)

-> (forall a. n a -> n a -> n a)

-> (forall a. n (Incr a) -> n a)

-> Term b -> n b

All of these examples use rank-2 types, but rank-3 types are occasionally useful too.

Here is an example that defines a map function over the Term type above, using a

fixpoint function fixMT:

type MapT = forall a b. (a->b) -> Term a -> Term b

fixMT :: (MapT -> MapT) -> MapT

fixMT f = f (fixMT f)

mapT :: MapT

mapT = fixMT (\mt -> \f t ->

case t of

Var x -> Var (f x)

App t1 t2 -> App (mt f t1) (mt f t2)

Lam t -> Lam (mt (mapI f) t))

Notice that fixMT has a rank-3 type. In order to make the type readable we ab-

breviate the polymorphic type ∀a b.(a → b) → Term a → Term b using a type

synonym MapT. Haskell 98 does not allow polymorphic types as the right hand side

of a type synonym, but it is tremendously useful, as this example shows, so GHC

permits it.

These cases are not all that common, but there are usually no workarounds; if you

need higher-rank types, you really need them! Taken together, we believe they make

a compelling case that adding higher-rank types adds genuinely-useful expressive

power to the language.

3 The key ideas

Motivated by the previous section, we now present a brief, informal account of our

approach to typing higher-ranked programs. The next section will give a formal

description, while Sections 5 and 6 describe the implementation. There is a consid-

erable amount of related work which we allude to only in passing, leaving a more

thorough treatment for Section 9.

8 Peyton Jones, Vytiniotis, Weirich, and Shields

3.1 Higher-ranked types

The rank of a type describes the depth at which universal quantifiers appear contra-

variantly (Kfoury & Tiuryn, 1992):

Monotypes τ, σ0 ::= a | τ1 → τ2

Polytypes σn+1 ::= σn | σn → σn+1 | ∀a.σn+1

Here are some examples:

Int → Int Rank 0

∀a.a → a Rank 1

Int → (∀a.a → a) Rank 1

(∀a.a → a) → Int Rank 2

Throughout this paper we will use the term “monotype”, and the symbol τ , for a

rank-zero type; monotypes have no universal quantifiers whatsoever. We use the

term “polytype”, and symbol σ, for a type of rank one or greater. In the literature,

the term “type” is often used to mean monotype, but we prefer to be more explicit

here.

3.2 Exploiting type annotations

Haskell and ML are both based on the classic Damas-Milner type system (Damas & Milner, 1982),

which we review in Section 4.2. This type system has the remarkable property that

a compiler can infer the principal type for a polymorphic function, without any

help from the programmer. Furthermore, the type inference algorithm is not unduly

complicated. But Damas-Milner stands on a delicate cusp: almost any extension

of the type system either destroys this unaided-type-inference property, or greatly

complicates the type-inference algorithm.

The Damas-Milner type system permits ∀ quantifiers only at the outermost level of

a type scheme, so the examples in Section 2 would all be ill-typed, and it turns out

that type inference becomes difficult or intractable if one permits richer, higher-

ranked types (Section 9).

An obvious alternative is to abandon the goal of unaided type inference, at least

for programs that use higher-ranked types, and instead require the programmer to

supply some type annotations to guide type inference, as we did for function f in

the Introduction. Odersky and Läufer do precisely this, in a paper that is one of

the main inspirations of our work (Odersky & Läufer, 1996). Our intuition is that

programmers are not only willing to provide explicit type annotations; they are

positively eager to do so, as a form of machine-checked documentation, especially

as the types become more complicated.

One problem with the Odersky/Läufer approach is that the annotation burden is

quite heavy, as we shall see in Section 4.5. Often, though, the context makes a type

annotation redundant. For example, consider again our example:

Practical type inference for arbitrary-rank types 31 July 2007 9

f :: (forall a. [a] -> [a]) -> ([Bool], [Char])

f x = (x [True, False], x [’a’,’b’])

The type signature for f makes the type of x clear, without explicitly annotating

the latter. In this case, annotating x directly would not be too bad:

f (x :: forall a. [a]->[a]) = (x [True, False], x [’a’,’b’])

But one would not want to annotate x and provide a separate type signature;

and if f had multiple clauses one would tiresomely have to repeat the annotation.

Similarly, in our Monad example (Section 2), the local variables ret and bnd were

given polymorphic types somehow inferred from the data type declaration for Monad.

The idea of propagating type information around the program, to avoid redundant

type annotations, is called local type inference (Pierce & Turner, 1998). The original

paper used local type inference to stretch the type system in the direction of sub-

typing, but we apply the same technique to support higher-rank types, as we shall

see in Section 4.7.

3.3 Subsumption

Suppose that we have variables bound with the following types:

k :: ∀ab.a → b → b

f1 :: (Int → Int → Int) → Int

f2 :: (∀x .x → x → x) → Int

Is the application (f1 k) well typed? Yes, it is well-typed in Haskell or ML as they

stand; one just instantiates a and b to Int.

Now, what about the application (f2 k)? Even though k’s type is not identical

to that of f2’s argument, this application too should be accepted. Why? Because

k is more polymorphic than the function f2 requires. The former is independently

polymorphic in a and b, while the latter is less flexible.

So there is a kind of sub-typing going on: an argument is acceptable to a function

if its type is more polymorphic than the function’s argument type. Odersky and

Läufer use the term subsumption for this “more polymorphic than” relation. When

extended to arbitrary rank, the usual co/contra-variance phenomenon occurs; that

is, σ1 → Int is more polymorphic than σ2 → Int if σ1 is less polymorphic than σ2.

For example, consider

g :: ((∀b.[b] → [b]) → Int) → Int

k1 :: (∀a.a → a) → Int

k2 :: ([Int] → [Int]) → Int

Since (∀a.a → a) is more polymorphic than (∀b.[b] → [b]), it follows that

((∀a.a → a) → Int)

10 Peyton Jones, Vytiniotis, Weirich, and Shields

is less polymorphic than

((∀b.[b] → [b]) → Int)

and hence the application (g k1) is ill-typed. In effect, k1 requires to be given an

argument of type (∀a.a → a), whereas g only promises to pass it a (less polymor-

phic) argument of type (∀b.[b] → [b]). On the other hand, the application g k2 is

well typed.

3.4 Predicativity

Once one allows polytypes nested inside function types, it is natural to ask whether

one can also call a polymorphic function at a polytype. For example, consider the

following two functions:

revapp :: a -> (a->b) -> b

revapp x f = f x

poly :: (forall v. v -> v) -> (Int, Bool)

poly f = (f 3, f True)

Would the application (revapp (\x->x) poly) be legal? The application would

require us to instantiate the type variable a from revapp’s type with the polytype

∀v .v → v . The function fixMT in Section 2 is a more practical example. It is a

specialised instance of an “ordinary” fix function:

fix :: (a -> a) -> a

fix f = f (fix f)

However, using fix in place of fixMT would mean instantiating fix at the polymor-

phic type MapT. The same issue arises in the context of data structures. Suppose

we have a data type:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Is it legal to have the type (Tree (∀a.a → a)); that is, a Tree whose leaves hold

polymorphic functions? Doing so would require us to instantiate the Leaf construc-

tor at a polymorphic type.

A type system that allows a polymorphic function to be instantiated at a polytype is

called impredicative, while a predicative system only allows a polymorphic function

to be instantiated with a monotype.

The Damas-Milner type system is predicative, of course, and so is the Odersky/Läufer

system. Type inference is much easier in a predicative type system, as we dis-

cuss in Section 5.7, so we adopt predicativity in our type system too. Remarkably,

it is possible to support both type inference and impredicativity, as MLF shows

(Le Botlan & Rémy, 2003), but doing so adds significant new complications to both

the type system and the implementation—see Section 9.2.

Practical type inference for arbitrary-rank types 31 July 2007 11

3.5 Higher-kinded types

Haskell allows abstraction over higher-kinded types, as we have already seen. For

example, our Monad type was defined like this:

data Monad m = Mon { return :: a -> m a,

bind :: m a -> (a -> m b) -> m b }

Here, the type variable m ranges over type constructors, such as Maybe or Tree,

rather than over types. A Haskell compiler will infer that m has kind ∗ → ∗; that is,

m maps types (written “∗”) to types.

The question of type inference for higher kinds is an interesting one. Happily, it

turns out that the solution adopted by Haskell for higher kinds extends smoothly

to work in the presence of higher-rank types, as we know from our experience of

implementing both in GHC. The two features are almost entirely orthogonal. We

therefore do not discuss higher kinds at all in the rest of the paper.

3.6 Summary

This concludes our informal summary of our language extensions, as seen by the

programmer. Next, we turn our attention to a precise description of the type sys-

tem.

4 Type systems for higher-rank types

In this section we give a precise specification of the type system we sketched in-

formally in Section 3. In fact, we will discuss five type systems in all, using the

road-map shown in Figure 1.

The first column, headed “Rank 1” deals with the conventional rank-1 ML-style type

system. There are two standard presentations of this type system, which correspond

to the two cells of this column. Type systems are often specified initially in a non-

syntax-directed style. This style is terse, and well-adapted for proving properties,

but does not usually suggest a type inference algorithm. A standard idea is to re-

cast the rules in syntax-directed form, so that the structure of the typing derivation

is determined by the syntactic structure of the program. With a bit of practice, it

is usually possible to “read off” an inference algorithm from a set of typing rules in

syntax-directed form. We present the textbook Damas-Milner system in both forms

(left-hand column of the table in Figure 1), to introduce in a familiar context our

language, and to review the idea of syntax-directed rules.

Then we will follow exactly the same development for the arbitrary-rank system

(right-hand column of the table). The top right-hand corner is a non-syntax-directed

system, developed by Odersky and Läufer, on which our work is based. From this

12 Peyton Jones, Vytiniotis, Weirich, and Shields

Rank 1 Arbitrary rank
ρ ::= τ ρ ::= τ | σ → σ

Not syntax-directed
Does not lead to an algorithm

Damas-Milner
Section 4.2, page 13

Figure 3

Odersky-Läufer
Section 4.5, page 19

Figure 5

Syntax-directed
Algorithm can be read off

Damas-Milner
Section 4.3, page 14

Figure 4

This paper
Section 4.6, page 20

Figures 6, 7

Bidirectional
Algorithm can be read off

This paper
Section 4.7, page 24

Figure 8

Type contexts Γ ::= Γ, x : σ | ǫ

Polytypes σ ::= ∀a.ρ
Rho-types ρ ::= See table above
Monotypes τ ::= Int | τ1 → τ2 | a
Type variables a, b

Fig. 1: Road map

we derive a syntax-directed system, and then further develop that into a so-called

bidirectional system, for reasons that will become apparent.

These systems differ in their type structure. They all share a common definition

for polytypes (σ) and monotypes (τ), also given in Figure 1. In this figure, and

elsewhere, we use the notation a to mean a sequence of zero or more type variables

a1, . . . , an . The systems differ in their definition of the intermediate rho-types (ρ),

whose distinguishing feature is that they have no top-level quantifiers. The syntax

of rho-types is given, for each system, in Figure 1.

That will then leave us ready to develop an implementation in Sections 5 and 6.

4.1 Notation

We will present all our type systems for a simple language, given in Figure 2.

The language of terms is very simple: it is the lambda calculus augmented with

non-recursive let bindings, and type annotations on both terms and lambda ab-

stractions. This language is carefully chosen to allow us to present the key structural

aspects of type inference for higher-rank types with as few constructs as possible.

For example, we omit recursive bindings because they introduce no new problems.

The type annotations, written using “::” on both terms and abstractions, are

Practical type inference for arbitrary-rank types 31 July 2007 13

Term variables x , y , z

Integers i

Terms t , u ::= i Literal
| x Variable
| \x.t Abstraction
| \(x::σ).t Typed abstraction (σ closed)
| t u Application
| let x = u in t Local binding
| t::σ Type annotation (σ closed)

Fig. 2: Syntax of the source language

the main unusual feature; indeed one of the points of this paper is to show how

they can be used to direct type inference in a simple and predictable way. In this

paper we will assume that the type annotations are closed—that is, they have

no free type variables—which is the case in Haskell 98. There are strong rea-

sons to want open type annotations, which require lexically-scoped type variables

(Shields & Peyton Jones, 2002), but we will avoid that complication here because

it opens up a whole new design space that distracts from our main theme.

Figure 1 defines the syntax of types. A minor point is that in the definition of

polytypes we quantify over a vector of zero or more type variables, a, rather than

quantifying one variable at a time with a recursive definition. These quantifiers are

not required to bind all the free type variables of ρ; that is, a polytype σ can have

free type variables. Otherwise it would not be possible to write higher-rank types,

such as ∀a.(∀b.(a, b) → (b, a)) → [a] → [a]. (Here, and in subsequent examples,

we assume we have list and pair types, written [τ] and (τ1, τ2) respectively; but we

will not introduce any terms with these types.) In our syntax, a σ-type always has

a ∀, even if there are no bound variables, but we will sometimes abbreviate the

degenerate case ∀.ρ as simply ρ.

The same figure also shows type contexts, Γ, which convey the typings of in-scope

variables; Γ binds a term variable, x , to its type σ.

We define ftv(σ) to be the free type variables of σ, and extend the function to

type contexts in the obvious way: ftv(Γ) =
⋃
{ftv(σ) | (x : σ) ∈ Γ}. We use the

notation [a 7→ τ]ρ to mean the capture-avoiding substitution of type variables a by

monotypes τ in the type ρ.

4.2 The non-syntax-directed Damas-Milner system

Figure 3 shows the type checking rules for the well-known Damas-Milner type sys-

tem (Damas & Milner, 1982). In this system, polytypes have rank 1 only, so a ρ-type

is simply a monotype τ , and hence a polytype σ takes the form ∀a.τ . The main

judgement takes the form:

Γ ⊢ t : σ

14 Peyton Jones, Vytiniotis, Weirich, and Shields

Rho-types ρ ::= τ

Γ ⊢ t : σ

int

Γ ⊢ i : Int
var

Γ, (x : σ) ⊢ x : σ

Γ, (x : τ) ⊢ t : ρ
abs

Γ ⊢ (\x.t) : (τ → ρ)

Γ ⊢ t : τ → ρ
Γ ⊢ u : τ

app

Γ ⊢ t u : ρ

Γ ⊢ u : σ
Γ, x : σ ⊢ t : ρ

let

Γ ⊢ let x = u in t : ρ

Γ ⊢ t : σ
annot

Γ ⊢ (t::σ) : σ

a 6∈ ftv(Γ)
Γ ⊢ t : ρ

gen

Γ ⊢ t : ∀a.ρ

Γ ⊢ t : ∀a.ρ
inst

Γ ⊢ t : [a 7→ τ] ρ

Fig. 3: The non-syntax-directed Damas-Milner type system

which means “in environment Γ the term t has type σ”. The alert reader will

nevertheless notice several judgements of the form Γ ⊢ t : ρ, for example in the

conclusion of rule app. As mentioned in Section 4.1, this is just shorthand for the

σ-type ∀.ρ, namely a type with no quantifiers. In the Damas-Milner system we omit

the type-annotated lambda (\(x::σ).t), because a Damas-Milner lambda can only

abstract over a monotype, and that is adequately dealt with by the un-annotated

lambda.

Rule inst quietly makes a very important point: the system is predicative (Sec-

tion 3.4), so type variables may range only over monotypes. We can see this from

the fact that the type variables in inst are instantiated by τ types, not σ types. Ef-

ficient type inference depends crucially on this restriction, a point that we amplify

in Section 5.7.

4.3 The syntax-directed Damas-Milner system

Each rule in Figure 3 has a distinct syntactic form in its conclusion, except for

two: gen (generalisation) and inst (instantiation). Because these two have the

same syntactic form in their premise as in their conclusion, one can apply them

pretty much anywhere; for example, one could alternate gen and inst indefinitely.

This flexibility makes it hard to turn the rules into a type-inference algorithm. For

example, given a term, say \x.x, it is not clear which rules to use, in which order,

to derive a judgement ⊢ \x.x : σ for some σ.

If all the rules had a distinct syntactic form in their conclusions, the rules would

Practical type inference for arbitrary-rank types 31 July 2007 15

Rho-types ρ ::= τ

Γ ⊢ t : ρ

int

Γ ⊢ i : Int

⊢
inst

σ ≤ ρ
var

Γ, (x : σ) ⊢ x : ρ

Γ, (x : τ) ⊢ t : ρ
abs

Γ ⊢ (\x.t) : (τ → ρ)

Γ ⊢ t : τ → ρ
Γ ⊢ u : τ

app

Γ ⊢ t u : ρ

Γ ⊢
poly

u : σ
Γ, x : σ ⊢ t : ρ

let

Γ ⊢ let x = u in t : ρ

Γ ⊢
poly

t : σ′

⊢
sh

σ′ ≤ σ ⊢
inst

σ ≤ ρ
annot

Γ ⊢ (t::σ) : ρ

Γ ⊢
poly

t : σ

a = ftv(ρ) − ftv(Γ)
Γ ⊢ t : ρ

gen

Γ ⊢
poly

t : ∀a.ρ

⊢
inst

σ ≤ ρ

inst

⊢
inst

∀a.ρ ≤ [a 7→ τ] ρ

⊢
sh

σ ≤ σ
′

a 6∈ ftv(σ)

⊢
sh

σ ≤ ρ
skol

⊢
sh

σ ≤ ∀a.ρ

⊢
sh

[a 7→ τ] ρ1 ≤ ρ2

spec

⊢
sh

∀a.ρ1 ≤ ρ2

mono

⊢
sh

τ ≤ τ

Fig. 4: The syntax-directed Damas-Milner type system

be in so-called syntax-directed form, and that would, in turn, fully determine the

shape of the derivation tree for any particular term t . This is a very desirable state

of affairs, because it means that the steps of a type inference algorithm can be

driven by the syntax of the term, rather than having to search for a valid typing

derivation.

Figure 4 shows an alternative form of the typing rules that is syntax-directed. The

main judgement now takes the form:

Γ ⊢ t : ρ

meaning that “in context Γ term t has type ρ”. In contrast to Figure 3, the type ρ

in the judgement is a monotype (recall that in the Damas-Milner system, ρ is the

same as τ).

16 Peyton Jones, Vytiniotis, Weirich, and Shields

The places where type generalisation and instantiation take place are now com-

pletely specified by the syntax of the term. Instantiation is handled by the auxiliary

judgement ⊢
inst

, where

⊢
inst

σ ≤ ρ

means that the outer quantifiers of σ can be instantiated to give ρ. Instantiation is

used in rule var to instantiate the type of a polymorphic variable at its occurrence

sites.

Dually, generalisation is handled by the auxiliary judgement ⊢
poly

which infers a

polytype for a term. It is used in rule let to type the right-hand side of the let.

In the spirit of moving towards an algorithm, gen also specifies that the quantified

type variables a should be exactly the variables that are free in ρ but not in Γ

(contrast rule gen in Figure 3). There is no point in generalising over a variable

that is not free in ρ; but otherwise it is useful to generalise as much possible, subject

to a 6∈ Γ. In this way, we have constrained the valid derivations still further—that

is, moved closer to a deterministic algorithm—without reducing the set of typeable

terms.

There is one further judgement, ⊢
sh

, which we discuss very shortly, in Section 4.4.

We can very nearly regard these new rules as an algorithm. Corresponding to the

judgement ⊢ is an inference algorithm that, given a context Γ and a term t computes

a type τ such that Γ ⊢ t : τ ; and similarly for the other judgements3. However, the

rules still leave one big thing unspecified: in various rules an otherwise-unspecified

τ appears out of nowhere. For example, in rule abs, where does the τ come from?

Given the empty context and the term \x.x, the following judgements all hold, by

choosing the τ in rule abs to be Int, [a] and a respectively:

⊢ (\x.x) : Int → Int

⊢ (\x.x) : [a] → [a]

⊢ (\x.x) : a → a

Of course, we want the last of these, because it is the most general type for \x.x,

the one that is better than all the others, and in Section 5 we will see how to achieve

this. A similar guess must be made in rule inst where we have to choose the types

τ to use when instantiating σ.

The distinction between syntax-directed and non-syntax-directed formulations of

typing judgements is well known. The latter is more simple, elegant, and abstract.

The former is more bulky, using auxiliary judgements to avoid duplication and,

precisely because it is closer to an algorithm, is more concrete. However, although

the trade-off is well known, it is not well documented; Clement et al (1986) is one

of the few papers that discuss the matter, and has the merit of giving a proof of

equivalence of the two systems.

3 This is not the only possible way to regard the typing rules as an algorithm, as we discuss in
Section 9.

Practical type inference for arbitrary-rank types 31 July 2007 17

4.4 Type annotations and subsumption

Rule annot does not form part of most presentations of the Damas-Milner system,

because it deals with type annotations. The term (t::σ) is a term that has been

annotated by the programmer with a polytype σ. For example, consider the term:

(\x.x) :: (∀a.[a] → [a])

This term is well typed, because the most general type of (\x.x) is ∀a.a → a,

and that is certainly more general than ∀a.[a] → [a]. The annotation is a type

restriction, because the annotated term must only be used at the specified type.

For example, this term is illegal:

((\x.x) :: (∀a.[a] → [a])) (True,False)

because, while (\x.x) is applicable to (True,False), the type restriction makes it

inapplicable.

Haskell 98 includes this type annotation construct, but we introduce it here mainly

as an expository device. It turns out that the typing judgements and inference

algorithm for a type-annotated term involve much of the machinery that we will

need later for higher-ranked types. Discussing type-annotated terms here allows

us to introduce this machinery in the well-understood context of Damas-Milner

inference.

In the non-syntax-directed system of Figure 3, type annotations are easy to handle.

Rule annot simply requires that a type-annotated term (t::σ) does indeed have

type σ. Matters become more interesting in the syntax-directed system of Figure 4.

There, rule annot type-checks a type-annotated term in three stages:

• Find t ’s most general type σ′, using ⊢
poly

;

• This type might differ from the programmer-supplied annotation σ, because

the latter is not necessarily the most general type of t . So the next step is to

check that σ′ is at least as polymorphic as σ, using a new judgement form

⊢
sh

, shown in Figure 4;

• Finally, instantiate σ, using ⊢
inst

.

The new judgement form

⊢
sh

σoff ≤ σreq

means “the offered type σoff is at least as polymorphic as the required type σreq”.

In the rest of the paper we will often say “more polymorphic than” instead of the

more precise but clumsier “at least as polymorphic as”. The judgement embodies a

simplified form of the subsumption relationship of Section 3.3—simplified in that it

only deals with rank-1 polytypes. The superscript “sh” is used to indicate shallow

subsumption; will encounter richer versions of subsupmtion shortly.

18 Peyton Jones, Vytiniotis, Weirich, and Shields

Unlike ⊢
inst

, the subsumption judgement compares two polytypes. For example:

Int ≤ Int

Int → Bool ≤ Int → Bool

∀a.a → a ≤ Int → Int

∀a.a → a ≤ ∀b.[b] → [b]

∀a.a → a ≤ ∀bc.(b, c) → (b, c)

∀ab.(a, b) → (b, a) ≤ ∀c.(c, c) → (c, c)

The third example involves only simple instantiation, but the last three illustrate

the general case. Notice that the number of quantified type variables in the left-

hand type can be the same, or more, or fewer, than in the right-hand type, as the

last three examples demonstrate.

It is worth studying carefully the rules for ⊢
sh

, in Figure 4, because they play a

central role in this paper. We reproduce them here for convenience:

a 6∈ ftv(σ)

⊢
sh

σ ≤ ρ
skol

⊢
sh

σ ≤ ∀a.ρ

⊢
sh

[a 7→ τ] ρ1 ≤ ρ2
spec

⊢
sh

∀a.ρ1 ≤ ρ2

mono

⊢
sh

τ ≤ τ

Rule mono deals with the trivial case of two monotypes. When quantifiers are

involved, to prove that σoff ≤ σreq , for any given instantiation of σreq we must be

able to find an instantiation of σoff that makes the two types match. In formal

notation, to prove that ∀a.ρoff ≤ ∀b.ρreq we must prove that

∀τb ∃τa such that [a 7→ τa]ρoff ≤ [b 7→ τb]ρreq

To this end, rule spec is straightforward: it allows us to instantiate the outermost

type variables of σoff arbitrarily to match ρreq . But how can we check that σoff

can be instantiated by spec to match any instantiation of σreq? Suppose we were

to instantiate the outermost type variables of σreq to arbitrary, completely fresh

type constants, called skolem constants. If, having done this we can still make σoff

match, then we will have shown that indeed σoff is at least as polymorphic as

σreq . Cunningly, rule skol does not actually instantiate σreq with fresh constants;

instead, it simply checks that the type variables of σreq are fresh with respect to

σoff (perhaps by alpha-renaming σreq); then these type variables will themselves

serve very nicely as skolem constants, so we can vacuously instantiate ∀a.ρ with

the types a to get ρ. That is the reason for the side condition in skol, a 6∈ ftv(σ).

Notice that one has to apply skol before spec, because the latter assumes a ρ

type to the right of the ≤. That is, we first instantiate σreq with skolem constants,

and then choose how to instantiate σoff to make it match. Let us take a particular

example. To prove that

∀a.a → a ≤ ∀bc.(b, c) → (b, c)

first use skol to skolemise b and c, checking that b and c are not free in ∀a.a → a,

and then use spec to instantiate a with the type (b, c). The derivation looks like

Practical type inference for arbitrary-rank types 31 July 2007 19

Rho-types ρ ::= τ | σ → σ
′

Γ ⊢ t : σ

int

Γ ⊢ i : Int
var

Γ, (x : σ) ⊢ x : σ

Γ, x : τ ⊢ t : σ
abs

Γ ⊢ (\x.t) : (τ → σ)

Γ, x : σ ⊢ t : σ′

aabs

Γ ⊢ (\(x::σ).t) : (σ → σ′)

Γ ⊢ t : (σ → σ′)
Γ ⊢ u : σ

app

Γ ⊢ t u : σ′

Γ ⊢ t : σ
annot

Γ ⊢ (t::σ) : σ

Γ ⊢ u : σ
Γ, x : σ ⊢ t : σ′

let

Γ ⊢ let x = u in t : σ′

a 6∈ ftv(Γ)
Γ ⊢ t : ρ

gen

Γ ⊢ t : ∀a.ρ

Γ ⊢ t : σ

⊢
ol

σ ≤ σ′

subs

Γ ⊢ t : σ′

⊢
ol

σ ≤ σ
′

a 6∈ ftv(σ)

⊢
ol

σ ≤ ρ
skol

⊢
ol

σ ≤ ∀a.ρ

⊢
ol

[a 7→ τ] ρ1 ≤ ρ2

spec

⊢
ol

∀a.ρ1 ≤ ρ2

⊢
ol

σ3 ≤ σ1

⊢
ol

σ2 ≤ σ4

fun

⊢
ol

(σ1 → σ2) ≤ (σ3 → σ4)
mono

⊢
ol

τ ≤ τ

Fig. 5: The Odersky-Läufer type system

this:

mono

(b, c) → (b, c) ≤ (b, c) → (b, c)
inst [a 7→ (b, c)]

∀a.a → a ≤ (b, c) → (b, c)
skol

∀a.a → a ≤ ∀bc.(b, c) → (b, c)

4.5 Higher-rank types

We now turn our attention from the well-established Damas-Milner type system

to the system of arbitrary-rank types proposed by Odersky and Läufer (1996).

Figure 5 presents the Odersky/Läufer type checking rules for our term language,

in non-syntax-directed form.

20 Peyton Jones, Vytiniotis, Weirich, and Shields

Comparing these rules to those of the non-syntax-directed Damas-Milner system in

Figure 3, the three significant differences are these:

• The figure begins by defining rho-types, ρ, to complete the syntax of types:

Rho-types ρ ::= τ | σ → σ′

Crucially, a polytype may appear in both the argument and result positions

of a function type, and hence polytypes may be of arbitrary rank. Providing

this freedom is the whole point of this paper.

• The syntax of terms is extended with a new form of lambda abstraction,

\(x::σ).t , in which the bound variable is explicitly annotated with a polytype,

σ. The argument type of such an abstraction is σ (rule aabs) in contrast to

an ordinary, unannotated lambda abstraction whose argument type is a mere

monotype, τ (rule abs).

• Rule gen is unchanged, but instantiation (rule inst) is replaced by subsump-

tion (rule subs). The idea is that if we know (t : σ′), then we also know

(t : σ) for any σ that is less polymorphic than σ′. Checking the “at least as

polymorphic as” condition is done by the type-subsumption judgement, ⊢
ol

,

shown in Figure 5.

The definition of subsumption ⊢
ol

in Figure 5 is just like that of ⊢
sh

in Figure 4,

with one crucial generalisation: it has an extra rule (fun) which allows it to “look

inside” functions in the usual co- and contra-variant manner. Adding this single

rule allows us to instantiate deeply nested quantifiers, rather than only outermost

quantifiers. For example, we can deduce that:

Bool → (∀a.a → a) ≤ Bool → Int → Int

(Int → Int) → Bool ≤ (∀a.a → a) → Bool

(∀b.[b] → [b]) → Bool ≤ (∀a.a → a) → Bool

None of these types would have been syntactically legal in the Damas-Milner system.

However, as we shall see in the next subsection, ⊢
ol

is a little too small; that is, it

does not relate enough types.

4.6 A syntax-directed higher-rank system

The typing rules of Figure 5 have the same difficulty as those of the non-syntax-

directed rules for Damas-Milner: they are not syntax-directed, and are far removed

from an algorithm. In particular, rule gen allows us to generalise anywhere, and

rule subs allows us to specialise anywhere.

The Damas-Milner idea is to specialise at variable occurrences, and generalise at

lets (Figure 4). The obvious thing to do is simply to use the same idea at higher

rank, which is done in Figure 6. Notice that the specialisation judgement, ⊢
inst

σ ≤ ρ, instantiates only the outermost quantified type variables of σ; and similarly

Practical type inference for arbitrary-rank types 31 July 2007 21

Rho-types ρ ::= τ | σ → σ
′

Γ ⊢ t : ρ

int

Γ ⊢ i : Int

⊢
inst

σ ≤ ρ
var

Γ, (x : σ) ⊢ x : ρ

Γ, x : τ ⊢ t : ρ
abs

Γ ⊢ (\x.t) : (τ → ρ)

Γ, x : σ ⊢ t : ρ
aabs

Γ ⊢ (\(x::σ).t) : (σ → ρ)

Γ ⊢ t : (σ1 → σ2) Γ ⊢
poly

u : σ′ ⊢
dsk

σ′ ≤ σ1 ⊢
inst

σ2 ≤ ρ
app

Γ ⊢ t u : ρ

Γ ⊢
poly

t : σ′

⊢
dsk

σ′ ≤ σ ⊢
inst

σ ≤ ρ
annot

Γ ⊢ (t :: σ) : ρ

Γ ⊢
poly

u : σ
Γ, x : σ ⊢ t : ρ

let

Γ ⊢ let x = u in t : ρ

Γ ⊢
poly

t : σ

a = ftv(ρ) − ftv(Γ)
Γ ⊢ t : ρ

gen

Γ ⊢
poly

t : ∀a.ρ

⊢
inst

σ ≤ ρ

inst

⊢
inst

∀a.ρ ≤ [a 7→ τ] ρ

Fig. 6: Syntax-directed higher-rank type system

the generalisation judgement, Γ ⊢
poly

t : σ, generalises only the outermost type

variables of σ. Any polytypes hidden under arrows are unaffected.

Just as in the syntax-directed Damas-Milner system of Figure 4, we must invoke

subsumption in rule annot of Figure 6, but we use yet another form of subsump-

tion, ⊢
dsk

, for reasons we discuss next. The other new feature of the rules is that

in rule app we must use ⊢
poly

to infer a polytype σ′ for the argument, because the

function may require the argument to have a polytype σ1. These two types may

not be identical, because the argument may be more polymorphic than required,

so again ⊢
dsk

is used to marry up the two.

4.6.1 A problem with subsumption

In the new syntax-directed rules we have used a new form of subsumption (not yet

defined), which we write ⊢
dsk

. If we instead used the Odersky/Läufer subsumption,

⊢
ol

, the type system would be perfectly sound, but it it would type fewer programs

22 Peyton Jones, Vytiniotis, Weirich, and Shields

than the non-syntax-directed system of Figure 5. To see why, consider this program:

let f = \x.\y.y in (f :: ∀a.a → (∀b.b → b))

A Haskell programmer would expect to infer the type ∀ab.a → b → b for the let-

binding for f, and that is what the rules of Figure 6 would do. The type-annotated

occurence of f then requires that f’s type be more polymorphic than the supplied

signature, but alas, under the subsumption rules of Figure 5, it is simply not the

case that

⊢
ol

∀ab.a → b → b ≤ ∀a.a → (∀b.b → b)

although the converse is true. On the other hand the typing rules of Figure 5 could

give the let-binding the type ∀a.a → (∀b.b → b) and then ⊢
ol

would succeed. In

short the syntax-directed rules do not find the most general type for f, under the

ordering induced by ⊢
ol

.

One obvious solution is to fix Figure 6 to infer the type ∀a.a → (∀b.b → b) for the

let-binding for f. Odersky and Läufer’s syntax-directed version of their language

does this simply by generalising every lambda body in rules abs and aabs, so that

the ∀’s in the result type occur as far to the right as possible. Here is the modified

rule abs

Γ, x : τ ⊢
poly

t : σ
eager-abs

Γ ⊢ (\x.t) : (τ → σ)

We call this approach eager generalisation; but we prefer to avoid it. A superficial

but practically-important difficulty is that it yields inferred types that programmers

will find unfamiliar. Furthermore, if the programmer adds a type signature, such

as f::∀ab.a → b → b, he may make the function less general without realising it.

Finally, there is a problem related to conditionals. Consider the term

if ... then (\x.\y.y) else (\x.\y.x)

This term will type fine in Haskell, but eager generalisation would yield ∀a.a →

(∀b.b → b) for the then branch, and ∀a.a → (∀b.b → a) for the else branch—and

it is now un-clear how to unify these two types. Conditionals are not part of the

syntax we treat formally, thus far, but we return to this question in Section 7.1.

4.6.2 The solution: deep skolemisation

Fortunately, another solution is available. The difficulty arises because it is not the

case that

⊢
ol

∀ab.a → b → b ≤ ∀a.a → (∀b.b → b)

But that is strange, because the two types are isomorphic4. So, from a semantic

point of view, the two types should be equivalent; that is, we would like both of the

4 More concretely, if f : ∀ab.a → b → b, then we can construct a System-F term of type
∀a.a → (∀b.b → b), namely:

(Λa.λ(x :a).Λb.λ(y :b). f a b x y) : ∀a.a → (∀b.b → b)

Practical type inference for arbitrary-rank types 31 July 2007 23

pr(σ) = ∀a.ρ

pr(ρ1) = ∀b.ρ2 a ∩ b = ∅
prpoly

pr(∀a.ρ1) = ∀ab.ρ2

pr(σ2) = ∀a.ρ2 a ∩ ftv(σ1) = ∅
prfun

pr(σ1 → σ2) = ∀a.σ1 → ρ2

prmono

pr(τ) = τ

⊢
dsk

σ ≤ σ
′

pr(σ2) = ∀a.ρ a 6∈ ftv(σ1) ⊢
dsk∗

σ1 ≤ ρ
deep-skol

⊢
dsk

σ1 ≤ σ2

⊢
dsk∗

σ ≤ ρ

⊢
dsk∗

[a 7→ τ]ρ1 ≤ ρ2

spec

⊢
dsk∗

∀a.ρ1 ≤ ρ2

⊢
dsk

σ3 ≤ σ1 ⊢
dsk∗

σ2 ≤ ρ4

fun

⊢
dsk∗

(σ1 → σ2) ≤ (σ3 → ρ4)

mono

⊢
dsk∗

τ ≤ τ

Fig. 7: Subsumption with deep skolemisation

following to hold:

∀ab.a → b → b ≤ ∀a.a → (∀b.b → b)

∀a.a → (∀b.b → b) ≤ ∀ab.a → b → b

Hence, perhaps we can solve the problem by enriching the definition of subsumption,

so that the type systems of Figure 5 and 6 admit the same programs. That is the

reason for the new subsumption judgement ⊢
dsk

, defined in Figure 7. This relation

subsumes ⊢
ol

; it relates strictly more types.

The key idea is that in deep-skol (Figure 7), we begin by pre-processing σ2 to

float out all its ∀s that appear to the right of a top level arrow, so that they can

be skolemised immediately. We call this rule “deep-skol” because it skolemises

quantified variables even if they are nested inside the result type of σ2. The floating

process is done by an auxiliary function pr(σ), called weak prenex conversion, also

Likewise, if g : ∀a. → (∀b.b → b) then we can also construct:

(Λa.Λb.λ(x :a).λ(y :b). g a x b y) : ∀ab.a → b → b

Section 4.8 discusses System F in more detail.

24 Peyton Jones, Vytiniotis, Weirich, and Shields

defined in Figure 7. For example,

pr(∀a.a → (∀b.b → b)) = ∀ab.a → b → b

In general, pr(σ) takes an arbitrary polytype σ and returns a polytype of the form

pr(σ) = ∀a. σ1 → . . . → σn → τ

There can be ∀s in the σi , but there are no ∀s in the result types of the top-level

arrows. Of course, when floating out the ∀s, we must be careful to avoid accidental

capture, which is the reason for the side condition in the second rule for pr(). (We

can always alpha-convert the type to satisfy this condition.) We call it “weak”

prenex conversion because it leaves the argument types σi unaffected.

To keep the system syntax-directed, we have split the subsumption judgement into

two. The main one, ⊢
dsk

, has a single rule that performs deep skolemisation and

invokes the auxiliary judgement, ⊢
dsk∗

. The latter has the remaining rules for sub-

sumption, unchanged from ⊢
ol

, except that fun invokes ⊢
dsk

on the argument types

but ⊢
dsk∗

on the result types. To see why the split is necessary, consider trying to

check ⊢
dsk

∀a.Int → a → a ≤ Int → ∀a.a → a. Even though the ∀a on the right

is hidden under the arrow, we must still use deep-skol before spec.

The function pr(σ) converts σ to weak-prenex form “on the fly”. Another workable

alternative – indeed one we used in an earlier version of this paper – is to ensure

that all types are syntactically constrained to be in prenex form, using the following

syntax:

σ ::= ∀a.ρ

ρ ::= τ | σ → ρ

This seems a little less elegant in theory, and is a little less convenient in practice

because it is sometimes convenient for the programmer to write non-prenex-form

types — the curious reader may examine the type of everywhere in Section 6.1

of (Lämmel & Peyton Jones, 2003) for an example. The syntactically-constrained

system also seems more fragile if we wanted to move to an impredicative system,

because instantiation could yield a syntactically-illegal type.

The deep-skolemisation approach would not work for ML, because in ML the types

∀ab.a → b → b and ∀a.a → (∀b.b → b) are not isomorphic: one cannot push foralls

around freely because of the value restriction. There are alternative approaches, as

discussed by Rémy (Rémy, 2005), but we do not discuss this issue further here.

4.7 Bidirectional type inference

The revised rules are now syntax-directed, but they share with the original Oder-

sky/Läufer system the property that the type of a lambda abstraction can only

have a higher-rank type (i.e. polytype on the left of the arrow) if the lambda-bound

variable is explicitly annotated; compare rules abs and aabs in Figure 6. Often,

Practical type inference for arbitrary-rank types 31 July 2007 25

though, this seems far too heavyweight. For example, suppose we have the following

definition5:

foo = (\i. (i 3, i True)) :: (∀a.a → a) → (Int, Bool)

In this example it is plain as a pike-staff that i should have the type (∀a.a → a),

even though it is not explicitly annotated as such. Somehow we would like to “push

the type annotation inwards”, so that the type signature for foo can be exploited

to give the type for i. The idea of taking advantage of type annotations in this way

is not new: it was invented by Pierce and Turner, who called it local type inference

(Pierce & Turner, 1998). We use the Pierce/Turner formalism in what follows, and

return to a discussion of their work in Section 9.4.

4.7.1 Bidirectional inference judgements

Figure 8 gives typing rules that express the idea of propagating types inwards. The

figure describes two very similar typing judgements.

Γ ⊢⇑ t : ρ

means “in context Γ the term t can be inferred to have type ρ”, whereas

Γ ⊢⇓ t : ρ

means “in context Γ, the term t can be checked to have type ρ”. The up-arrow

⇑ suggests pulling a type up out of a term, whereas the down-arrow ⇓ suggests

pushing a type down into a term. The judgements ⊢
poly

and ⊢
inst

are generalised in

the same way.

The main idea of the bidirectional typing rules is that a term might be typeable

in checking mode when it is not typeable in inference mode; for example the term

(\x -> (x True, x ’a’)) can be checked with type (∀a.a → a) → (Bool, Char),

but is not typeable in inference mode. However, if we infer the type for a term, we

can always check that the term has that type. That is:

If Γ ⊢⇑ t : ρ then Γ ⊢⇓ t : ρ

Furthermore, checking mode allows us to impress on a term any type that is more

specific than its most general type. In contrast, inference mode may only produce a

type that is some substitution of the most general type. For example, if a variable

has type b → (∀a.a → a) we can check that it has this type and also that it has

types Int → (∀a.a → a) and Int → Int → Int. On the other hand, of these types,

we will only be able to infer b → (∀a.a → a) and Int → (∀a.a → a).

5 In Haskell, one would instead use a separate type signature:

foo :: (forall a. a -> a) -> (Int, Bool)
foo = \i-> (i 3, i True)}

but we use the one-line version to avoid adding declaration type signatures to our little language.

26 Peyton Jones, Vytiniotis, Weirich, and Shields

Rho-types ρ ::= τ | σ → σ

Γ ⊢δ t : ρ δ ::= ⇑ | ⇓

int

Γ ⊢δ i : Int

⊢
inst

δ σ ≤ ρ
var

Γ, (x : σ) ⊢δ x : ρ

Γ, (x : τ) ⊢⇑ t : ρ
abs1

Γ ⊢⇑ (\x.t) : (τ → ρ)

Γ, (x : σa) ⊢
poly

⇓ t : σr

abs2

Γ ⊢⇓ (\x.t) : (σa → σr)

Γ, (x : σ) ⊢⇑ t : ρ
aabs1

Γ ⊢⇑ (\(x::σ).t) : (σ → ρ)

⊢
dsk

σa ≤ σx

Γ, (x : σx) ⊢
poly

⇓ t : σr
aabs2

Γ ⊢⇓ (\(x::σx).t) : (σa → σr)

Γ ⊢⇑ t : (σ → σ′) Γ ⊢
poly

⇓ u : σ ⊢
inst

δ σ′ ≤ ρ
app

Γ ⊢δ t u : ρ

Γ ⊢
poly

⇓ t : σ

⊢
inst

δ σ ≤ ρ
annot

Γ ⊢δ (t::σ) : ρ

Γ ⊢
poly

⇑ u : σ
Γ, x : σ ⊢δ t : ρ

let

Γ ⊢δ let x = u in t : ρ

Γ ⊢
poly
δ t : σ

a = ftv(ρ) − ftv(Γ)
Γ ⊢⇑ t : ρ

gen1

Γ ⊢
poly

⇑ t : ∀a.ρ

a 6∈ ftv(Γ)
Γ ⊢⇓ t : ρ

pr(σ) = ∀a.ρ
gen2

Γ ⊢
poly

⇓ t : σ

⊢
inst
δ σ ≤ ρ

inst1

⊢
inst

⇑ ∀a.ρ ≤ [a 7→ τ] ρ

⊢
dsk

σ ≤ ρ
inst2

⊢
inst

⇓ σ ≤ ρ

Fig. 8: Bidirectional version of Odersky-Läufer

Practical type inference for arbitrary-rank types 31 July 2007 27

Finally, our intention is that any term typable by the uni-directional rules of Fig-

ure 6 is also typable in inference mode by Figure 8. That is:

If Γ ⊢ t : ρ then Γ ⊢⇑ t : ρ

The reverse is of course false. That is the whole point: we expect that the definition

of foo above will be typable with the new rules, whereas it is not with the old ones.

4.7.2 Bidirectional inference rules

Many of the rules in Figure 8 are “polymorphic” in the direction δ. For example,

the rules int, var, app, annot, and let are insensitive to δ, and can be seen as

shorthand for two rules that differ only in the arrow direction. In a real language

there are even more such constructs (case and if are other examples), so the

notational saving is quite worth while.

The rule app, which deals with function application (t u), is of particular interest.

Regardless of the direction δ, we first infer the type σ → σ′ for t , and then check

that u has type σ. In this way we take advantage of the function’s type (which

is often directly extracted from Γ), to provide the type context for the argument.

We then use ⊢
inst

to check that σ′ and ρ are compatible. Notice that, even in the

checking case ⇓, we ignore the required type ρ when inferring the type for the

function t . There is clearly some information loss here: we know the result type, ρ,

for t , but we do not know its argument type. The rules provide no way to express

this partial information about t ’s type—but see the discussion in Section 9.4.

Dually, ordinary (un-annotated) lambda abstractions are dealt with by rules abs1

and abs2. The inference case (abs1) is just as before, but the checking case (abs2)

is more interesting. To check that \x.t has type σa → σr , we bind x to the polytype

σa , even though x is not explicitly annotated, before checking that the body has

type σr . In this way, we take advantage of contextual information, in a simple and

precisely-specified way, to reduce the necessity for type annotations.

We also need two rules for annotated lambda abstractions. In the inference case,

aabs1, we extend the environment with the σ-type specified by the annotation, and

infer the type of the body. In the checking case, aabs2, we extend the environment

in the same way, before checking that the body has the specified type—but we must

also check that the argument type expected by the environment σa is more poly-

morphic than that specified in the type annotation σx . Notice the contravariance!

For example, this expression is well typed:

(\(f::Int->Int). f 3) :: (∀a.a → a) → Int

4.7.3 Instantiation and generalisation

The ⊢
inst

δ judgement also has separate rules for inference and checking. Rule inst1

deals with the inference case: just as in the old inst rule of Figure 6, we simply

28 Peyton Jones, Vytiniotis, Weirich, and Shields

instantiate the outer ∀’s. The checking case, inst2, is more interesting. Here, we

are pushing inward a type ρ, and it meets a variable of known polytype σ. The

right thing to do is simply to check that ρ is more polymorphic than σ, using our

subsumption judgement ⊢
dsk

. Rule annot and var both make use of the ⊢
inst

δ ,

just as they did in Figure 6, but annot becomes slightly simpler. In the syntax-

directed rules of Figure 6, we inferred the most general type for t , and performed a

subsumption check against the specified type; now we can simply push the specified

type inwards, into t .

The reader may wonder why we do not need deep instantiation as well as deep

skolemisation. In particular, here is an alternative version of rule inst1:

pr(σ) = ∀a.ρ
deep-inst1

⊢
inst

⇑ σ ≤ [a 7→ τ] ρ

(The prenex-conversion function pr(σ), was introduced in Section 4.6.2.) This rule

instantiates all the top-level ∀’s of a type, even if they are hidden under the right-

hand end of an arrow. For example, under deep-inst1:

⊢
inst

⇑ ∀a.a → ∀b.b → b ≤ [a 7→ τa , b 7→ τb] a → b → b

Adopting this rule would give an interesting invariant, namely that

Γ ⊢⇑ t : ρ ⇒ ρ is in weak-prenex form

However, there seems to be no other reason to complicate inst1, so we use the

simpler version.

The generalisation judgement Γ ⊢
poly

δ t : σ also has two cases. When we are inferring

a polytype (rule gen1) we need to quantify over all free variables of the inferred ρ

type that do not appear in the context Γ, just as before.

On the other hand, when we check that a polytype can be assigned to a term (rule

gen2), we simply skolemise the quantified variables, checking they do not appear

free in the environment Γ. The situation is very similar to that of deep-skol in

Figure 7, so gen2 must perform weak prenex conversion on the expected type σ, to

bring all its quantifiers to the top. If it fails to do so, the following program would

not typecheck:

f : (∀ab.Int → a → b → b) ⊢
poly

⇓ f 3 : Bool → ∀c.c → c

The problem is that f’s type is instantiated by var before rule app invokes ⊢
inst

⇓ to

marry up the result type with the type of (f 3), and hence before the ∀c.c → c is

skolemised.

Once we use gen2, however, the reader may verify that Γ ⊢⇓ t : ρ is invoked

only when ρ is in weak-prenex form. However, for generality we prefer to define ⊢⇓

over arbitrary ρ-types. For example, this generality allows us to state, without side

conditions, that if Γ ⊢⇑ t : ρ then Γ ⊢⇓ t : ρ.

Practical type inference for arbitrary-rank types 31 July 2007 29

e, f ::= i Literal
| x Variable
| Λα.t Type abstraction
| λ(x : σ).t Value abstraction
| e σ Type application
| f e Value application
| let x : σ = e1 in e2 Local binding

Fig. 9: Syntax of System F

4.7.4 Summary

In summary, the bidirectional type rules reduce the burden of type annotations by

propagating type information inwards. As we shall see when we come to implemen-

tation in Section 5.4, the idea of propagating types inwards is desirable for reasons

quite independent of higher-rank types, so the impact on implementation turns out

to be rather modest.

4.8 Type-directed translation

A type system tells whether a term is well-typed. In some compilers, the type

inference engine also performs a closely-related task, that of performing a type-

directed translation from the implicitly-typed source language into an explicitly-

typed target language. The target language is “explicitly typed” because the term

is decorated with enough type information to make type-checking very simple. The

source language is “implicitly typed” because as much type clutter as possible is

omitted. The business of the type inference engine is to fill in the missing type

information.

One very popular target language is System F (Girard, 1990), an extremely expres-

sive, strongly-typed lambda calculus. Figure 9 gives the syntax of the variant of

System F that we will use here. It differs from the source language in the following

ways:

• The binding occurrence of every variable is annotated with its type.
• An explicit type application (e σ) specifies the types that instantiate a poly-

morphic function f .
• An explicit type abstraction (Λa.e) specifies where and how generalisation

takes place.

For example, consider:

concat = (\ xs -> foldr (++) Nil xs) :: ∀a.[[a]] → [a]

where the types of foldr, (++) and Nil are:

foldr :: ∀xy .(x → y → y) → y → [x] → y

(++) :: ∀z .[z] → [z] → [z]

Nil :: ∀a.[a]

30 Peyton Jones, Vytiniotis, Weirich, and Shields

With explicit type abstractions and applications, concat would look like this:

concat:∀a.[[a]] → [a] = Λa.λ(xs:[[a]]).foldr [a] [a] ((++) a) (Nil a) xs

The “Λa” binds the type variable a; and the type applications instantiate the

polymorphic functions foldr, (++), and the constructor Nil, whose types we give

above for reference.

We cannot give a full introduction to System F here, and readers unfamiliar with

System F may safely skip this section. However, the System F translation is an

extremely useful tool. On the theory side, we use it to prove that our type system is

sound, in Section 4.9.3. In practical terms, the entire compiler after the type checker

processes an explicitly-typed program, which gives the compiler helpful information.

Furthermore, type-checking the System F program at a later stage (which is very

easy to do) gives a very strong consistency check that the intermediate stages

have not performed an invalid transformation (Morrisett, 1995; Tarditi etal., 1996;

Shao, 1997; PeytonJones & Santos, 1998). In the rest of this section we show how

to specify the translation into System F.

4.8.1 Translating terms

The term “type-directed” translation comes from the fact that the translation is

specified in the type rules themselves. For example, the main judgement for our

bidirectional system becomes

Γ ⊢δ t : ρ 7→ e

meaning that t has type ρ, and translates to the System-F term e. Furthermore the

term e will have type ρ in System F’s type system; we write Γ ⊢F e : ρ. (We do not

give the type system for System F here because it is so standard (Pierce, 2002). The

interested reader can find it in the Technical Appendix (Vytiniotis etal., 2005).)

The translated, System F terms have explicit type annotations on binders. For

example, rule abs1 from Figure 8 becomes

Γ, (x : τ) ⊢⇑ t : ρ 7→ e
abs1

Γ ⊢⇑ (\x.t) : (τ → ρ) 7→ (λ(x : τ).e)

The source program did not have an annotation on x , but the translated System F

program does have one.

Many of the other rules in Figure 8 can be modified in a similar routine way and, for

completeness, Figure 10 shows the result. In effect, the translated program encodes

the exact shape of the derivation tree, and therefore amounts to a proof that the

original program is indeed well typed.

Practical type inference for arbitrary-rank types 31 July 2007 31

Γ ⊢δ t : ρ 7→ e

int

Γ ⊢δ i : Int 7→ i

⊢
inst

δ σ ≤ ρ 7→ f
var

Γ, (x : σ) ⊢δ x : ρ 7→ f x

Γ, (x : τ) ⊢⇑ t : ρ 7→ e
abs1

Γ ⊢⇑ (\x.t) : (τ → ρ) 7→ λ(x:τ).e

Γ, (x : σa) ⊢
poly

⇓ t : σr 7→ e
abs2

Γ ⊢⇓ (\x.t) : (σa → σr) 7→ (λx:σa).e

Γ, (x : σ) ⊢⇑ t : ρ 7→ e
aabs1

Γ ⊢⇑ (\(x::σ).t) : (σ → ρ) 7→ λ(x:σ).e

⊢
dsk

σa ≤ σx 7→ f

Γ, (x : σx) ⊢
poly

⇓ t : σr 7→ e
aabs2

Γ ⊢⇓ (\(x::σx).t) : (σa → σr) 7→ λ(x:σa).[x 7→ (f x)]e

Γ ⊢⇑ t : (σ → σ′) 7→ e1 Γ ⊢
poly

⇓ u : σ 7→ e2 ⊢
inst

δ σ′ ≤ ρ 7→ f
app

Γ ⊢δ t u : ρ 7→ f (e1 e2)

Γ ⊢
poly

⇓ t : σ 7→ e

⊢
inst

δ σ ≤ ρ 7→ f
annot

Γ ⊢δ (t::σ) : ρ 7→ f e

Γ ⊢
poly

⇑ u : σ 7→ e1

Γ, x : σ ⊢δ t : ρ 7→ e2

let

Γ ⊢δ let x = u in t : ρ 7→
let x : σ = e1 in e2

Γ ⊢
poly
δ t : σ 7→ e

a = ftv(ρ) − ftv(Γ)
Γ ⊢⇑ t : ρ 7→ e

gen1

Γ ⊢
poly

⇑ t : ∀a.ρ 7→ Λa.e

pr(σ) = ∀a.ρ 7→ f
a /∈ ftv(Γ) Γ ⊢⇓ t : ρ 7→ e

gen2

Γ ⊢
poly

⇓ t : σ 7→ f (Λa.e)

⊢
inst
δ σ ≤ ρ 7→ f

inst1

⊢
inst

⇑ ∀a.ρ ≤ [a 7→ τ] ρ 7→ λ(x:∀a.ρ).x τ

⊢
dsk

σ ≤ ρ 7→ f
inst2

⊢
inst

⇓ σ ≤ ρ 7→ f

Fig. 10: Bidirectional higher-rank type system with translation

32 Peyton Jones, Vytiniotis, Weirich, and Shields

pr(σ) = ∀a.ρ 7→ f

pr(ρ1) = ∀b.ρ2 7→ f a /∈ b
prpoly

pr(∀a.ρ1) = ∀ab.ρ2 7→ λ(x:∀ab.ρ2).Λa.f (x a)

pr(σ2) = ∀a.ρ2 7→ f a 6∈ ftv(σ1)
prfun

pr(σ1 → σ2) = ∀a.σ1 → ρ2 7→ λ(x:∀a.σ1 → ρ2).λ(y:σ1).f (Λa.x a y)

prmono

pr(τ) = τ 7→ λ(x:τ).x

⊢
dsk

σ ≤ σ
′ 7→ f

pr(σ2) = ∀a.ρ 7→ f1

a 6∈ ftv(σ1) ⊢
dsk∗

σ1 ≤ ρ 7→ f2
deep-skol

⊢
dsk

σ1 ≤ σ2 7→ (λx:σ1).f1 (Λa.f2 x)

⊢
dsk∗

σ ≤ ρ 7→ f

⊢
dsk∗

[a 7→ τ]ρ1 ≤ ρ2 7→ f
spec

⊢
dsk∗

∀a.ρ1 ≤ ρ2 7→ λ(x:∀a.ρ).f (x τ)

⊢
dsk

σ3 ≤ σ1 7→ f1 ⊢
dsk∗

σ2 ≤ σ4 7→ f2
fun

⊢
dsk∗

(σ1 → σ2) ≤ (σ3 → σ4) 7→ λ(x:σ1 → σ2).λ(y:σ3).f2 (x (f1 y))

mono

⊢
dsk∗

τ ≤ τ 7→ λ(x:τ).x

Fig. 11: Creating coercion terms

4.8.2 Instantiation, generalisation, and subsumption

The translation of terms is entirely standard, but matters become more interesting

when we consider instantiation and generalisation. Consider rule var from Figure 8:

⊢
inst

δ σ ≤ ρ
var

Γ, (x : σ) ⊢δ x : ρ

What should x translate to? It cannot translate to simply x , because x has type

σ, not ρ! After a little thought we see that the ⊢
inst

judgement should return a

coercion function of type σ → ρ, which can be thought of as concrete—indeed,

executable—evidence for the claim that σ ≤ ρ. Then we can add translation to the

Practical type inference for arbitrary-rank types 31 July 2007 33

var rule as follows:

⊢
inst

δ σ ≤ ρ 7→ f
var

Γ, (x : σ) ⊢δ x : ρ 7→ f x

Figure 10 shows the rules for the ⊢
inst

judgement:

inst1

⊢
inst

⇑ ∀a.ρ ≤ [a 7→ τ] ρ 7→ λ(x:∀a.ρ).x τ

⊢
dsk

σ ≤ ρ 7→ e
inst2

⊢
inst

⇓ σ ≤ ρ 7→ e

The inference case, rule inst1, uses a System F type application (x τ) to record the

types at which x is instantiated. For the checking case, rule inst2 defers to ⊢
dsk

,

which also returns a coercion function.

So much for instantiation. Dually, generalisation is expressed by System-F type

abstraction, as we can see in the rules for ⊢
poly

in Figure 10:

a = ftv(ρ) − ftv(Γ)

Γ ⊢⇑ t : ρ 7→ e
gen1

Γ ⊢
poly

⇑ t : ∀a.ρ 7→ Λa.e

a 6∈ ftv(Γ) pr(σ) = ∀a.ρ 7→ f

Γ ⊢⇓ t : ρ 7→ e
gen2

Γ ⊢
poly

⇓ t : σ 7→ f (Λa.e)

Rule gen1 directly introduces a type abstraction, while but gen2 needs a coercion

function, just like var, to account for the prenex-form conversion. The rules for

prenex-form conversion, and for ⊢
dsk

, are given in in Figure 11.

When reading the rules for type-directed translation, the key invariants to bear in

mind are these:

If this holds then so does this

Γ ⊢δ t : ρ 7→ e Γ ⊢F e : ρ

⊢
inst

δ σ ≤ ρ 7→ e ⊢F e : σ → ρ

⊢
dsk

σ1 ≤ σ2 7→ e ⊢F e : σ1 → σ2

pr(σ1) = σ2 7→ e ⊢F e : σ2 → σ1

This type-directed translation also provides a semantics for our language. To de-

termine the meaning of a term, translate it to System F and evaluate the result.

Although this semantics is defined by translation, it is fairly simple and what we

might expect. If we erase types in the source and target languages it is easy to verify

that, except for the insertion of coercions, the translation is the identity translation.

Furthermore, the coercions themselves only produce terms that, after type erasure,

are eta-expansions of the identity function.

4.9 Metatheory of higher-rank type systems

In this section we give formal statements of the most important properties of the

type systems and subsumption relations presented so far. Again, the Technical

Appendix (Vytiniotis etal., 2005) contains the proofs of the theorems in this section.

We begin with properties of the various subsumption judgements in Section 4.9.1.

34 Peyton Jones, Vytiniotis, Weirich, and Shields

In Section 4.9.2 we describe the precise connection between the type systems of

this paper: the original Damas-Milner system, the non syntax-directed, the syntax-

directed, and the bidirectional higher-rank type system. Section 4.9.3 gives the most

important properties of the bidirectional system.

4.9.1 Properties of the subsumption judgements

We have now defined three different subsumption relations:

• ⊢
sh

σ1 ≤ σ2 is the Damas-Milner shallow-subsumption relation (Figure 4),

which we now extend to higher-rank types. The only difference is that the

rule mono is replaced with

⊢
sh

ρ ≤ ρ

This way shallow-subsumption naturally applies to the type syntax defined

in Figure 5.

• ⊢
ol

σ1 ≤ σ2 is the Odersky-Läufer subsumption, defined in Figure 5.

• ⊢
dsk

σ1 ≤ σ2 refers to subsumption with deep skolemisation, defined in Fig-

ure 7.

These three relations are connected in the following way: Deep skolemisation sub-

sumption relates strictly more types than the Odersky-Läufer relation, which in

turn relates strictly more types than the Damas-Milner relation.

Theorem 4.1 If ⊢
sh

σ1 ≤ σ2 then ⊢
ol

σ1 ≤ σ2. If ⊢
ol

σ1 ≤ σ2 then ⊢
dsk

σ1 ≤ σ2.

The following theorem captures the essence of ⊢
dsk

; any type is equivalent to its

prenex form.

Theorem 4.2 ⊢
dsk

σ ≤ pr(σ) and ⊢
dsk

pr(σ) ≤ σ.

In contrast notice that only ⊢
ol

σ ≤ pr(σ).

All three relations are reflexive and transitive. However, only deep skolemisation

subsumption enjoys a distributivity property, that lets us distribute type quantifi-

cation among the components of an arrow type:

Theorem 4.3 (Distributivity) ⊢
dsk

∀a.σ1 → σ2 ≤ (∀a.σ1) → ∀a.σ2.

This theorem is essential for showing that the coercion functions generated by our

⊢
dsk

derivations correspond exactly to the System F functions that, after erasure of

types, are βη-convertible to the identity. We defer further discussion for Section 9.5.

Practical type inference for arbitrary-rank types 31 July 2007 35

Γ ⊢
DM

poly

sd t : σ

Syntax-directed
Damas-Milner

Γ ⊢
DM

t : σ
Damas-Milner

Γ ⊢nsd t : σ
Higher-rank

Γ ⊢
poly

sd t : σ
Syntax-directed

higher-rank

Γ ⊢
poly

⇑ t : σ
Bidirectional

inference

Γ ⊢
poly

⇓ t : σ
Bidirectional

checking
⊢
dsk

4.5 (2)

4.5 (1)
=

=

4.8

=
4.9

⊢
sh

4.4 (2)

4.4 (1)
=

=

4.6

4.10=

=

4.7

Fig. 12: Relations between type systems in this paper

4.9.2 Connections between the type systems

At this point we have discussed the five type systems that appeared in the road

map in Figure 1. We started with the Damas-Milner type system, and described its

declarative and syntax-directed forms. We then presented an extension that sup-

ports higher-rank types, the Odersky-Läufer type system, and developed a syntax

directed version. Finally, we introduced the bidirectional type system, an extension

of our syntax-directed version of the Odersky-Läufer system.

This section states the formal connections between all of these systems. The results

of this section are summarised in Figure 12. In some of these results, it matters

whether we are talking about Damas-Milner types and terms, or higher-rank types

and terms. In the figure, dashed lines correspond to connections where we assume

that the types appearing in the judgements are only Damas-Milner types and that

the terms contain no type annotations.

Some of the connections in this figure have already been shown. In particular the

relation between the syntax-directed and the non syntax-directed Damas-Milner

type system is captured by the theorem below.

Theorem 4.4 ((Milner, 1978), (Damas & Milner, 1982)) Suppose that t con-

tains no type annotations and the context Γ contains only Damas-Milner types.

36 Peyton Jones, Vytiniotis, Weirich, and Shields

1. If Γ ⊢
DM

poly

sd t : σ then Γ ⊢
DM

t : σ.

2. If Γ ⊢
DM

t : σ then there is a σ′ such that Γ ⊢
DM

poly

sd t : σ′ and ⊢
sh

σ′ ≤ σ.

We can show an analogous result for the higher-rank systems. We began our dis-

cussion of higher-rank polymorphism with the Odersky-Laufer type system (Sec-

tion 4.5), and developed a syntax-directed version of it (Section 4.6). Recall that

with the Odersky-Läufer definition of subsumption, but without eager generali-

sation, the two type systems did not agree. There were some programs that type-

checked in the original version, but did not typecheck in the syntax-directed version

(Section 4.6.1). By changing the subsumption relation in the syntax-directed ver-

sion to deep skolemisation, we can make it accept all of the programs accepted by

the original type system.

However, it turns out that the two systems are still not equivalent: the syntax-

directed system, using deep skolemisation, accepts some programs that are rejected

by the original typing rules! For example, the derivation

x : ∀b.Int → b ⊢ (x :: Int → ∀b.b) : Int → ∀b.b

is valid in the syntax-directed version. But, because it uses deep skolemisation in

checking the type annotation, there is no analogue in the original system. Fortu-

nately, if we replace subsumption in the orginal system with deep skolemisation,

the two type systems do agree.

In what follows, let ⊢nsd refer to the typing rules of Figure 5 where the ⊢
ol

relation

has been replaced by the ⊢
dsk

relation. Also let Γ ⊢sd t : ρ refer to the syntax-

directed rules in Figure 6.

Theorem 4.5 (Agreement of ⊢nsd and ⊢sd)

1. If Γ ⊢
poly

sd t : σ then Γ ⊢nsd t : σ.

2. If Γ ⊢nsd t : σ then there is a σ′ such that Γ ⊢
poly

sd t : σ′ and ⊢
dsk

σ′ ≤ σ.

The first two clauses of this theorem say that if a term can be typed by the syntax-

directed system, then the non-syntax-directed system can also type it, and with the

same type. The exact converse is not true; for example, in the non-syntax-directed

system we have ⊢nsd \x.\y.y : ∀a.a → ∀b.b → b, but this type is not derivable

in the syntax-directed system. Instead we have ⊢
poly

sd \x.\y.y : ∀ab.a → b → b. In

general, as clause (3) says, if a term in typeable in the non-syntax-directed system,

then it is also typeable in the syntax-directed system, but perhaps with a different

type σ′ that is at least as polymorphic as the original one.

Next, we show that the Odersky-Läufer system is an extension of the Damas-Milner

system. Any term that type checks using the Damas-Milner rules, type checks with

the same type using the Odersky-Läufer rules. Let Γ ⊢
DM

t : σ refer to the Damas-

Milner judgement, defined in Figure 3.

Practical type inference for arbitrary-rank types 31 July 2007 37

Theorem 4.6 (Odersky-Läufer extends Damas-Milner) Suppose t contains

no type annotations and the context Γ only contains Damas-Milner types. If Γ ⊢
DM

t : σ then Γ ⊢nsd t : σ.

Likewise, our version of the Odersky-Läufer syntax-directed system extends the

Damas-Milner syntax-directed system.

Theorem 4.7 (Syntax-directed extension) Suppose t contains no type anno-

tations and the context Γ only contains Damas-Milner types. If Γ ⊢
DM

poly

sd t : σ then

Γ ⊢
poly

sd t : σ.

Furthermore, the bidirectional system extends the syntax-directed system. Any-

thing that can be inferred by Figure 6 can be inferred in the bidirectional system.

(The converse is not true, of course. The point of the bidirectional system is to

typecheck more terms.)

Theorem 4.8 (Bidirectional inference extends syntax-directed system)

1. If Γ ⊢sd t : ρ then Γ ⊢⇑ t : ρ.

2. If Γ ⊢
poly

sd t : σ then Γ ⊢
poly

⇑ t : σ.

Checking mode extends inference mode for the bidirectional system. If we can infer

a type for a term, we should be able to check that this type can be assigned to the

term.

Theorem 4.9 (Bidirectional checking extends inference)

1. If Γ ⊢⇑ t : ρ then Γ ⊢⇓ t : ρ.

2. If Γ ⊢
poly

⇑ t : σ then Γ ⊢
poly

⇓ t : σ.

Finally, the bidirectional system is conservative over the Damas-Milner type sys-

tem. If a term typechecks in the bidirectional system without any higher-rank an-

notations, and with a monotype, then the term type checks in the syntax-directed

Damas-Milner system, with the same type. Let Γ ⊢
DM

sd t : τ refer to the judgement

defined in Figure 4.

Theorem 4.10 (Bidirectional conservative over Damas-Milner) Suppose t

contains no type annotations, and Γ contains only Damas-Milner types. If Γ ⊢δ t : τ

then Γ ⊢
DM

sd t : τ .

4.9.3 Properties of the bidirectional type system

The bidirectional type system, in Figure 8, is a novel contribution of this paper. Any

type system must enjoy the self-consistency properties of type safety and principal

types. In this section we describe these properties in more detail.

38 Peyton Jones, Vytiniotis, Weirich, and Shields

The type safety theorem asserts that the type system rules out ill-behaved programs.

In other words, the evaluation of any well-typed program will produce a value (or

possibly diverge, if the language contains diverging terms). This theorem is proven

with respect to a semantics—rules that describe how programs produce values. In

Section 4.8 we defined the semantics of the bidirectional type system by translation

to System F. To evaluate an expression, we translate it to System F and evaluate

the System F term.

System F is already known to be type safe. Therefore, to show type safety for the

bidirectional type system, all we must do is show that the translation to System

F produces well-typed terms. That way we know that all terms accepted by the

bidirectional system will evaluate without error.

In other words:

Theorem 4.11 (Soundness of bidirectional system)

1. If Γ ⊢δ t : ρ 7→ e then Γ ⊢F e : ρ.

2. If Γ ⊢
poly

δ t : σ 7→ e then Γ ⊢F e : σ.

The proof of this theorem relies on a number of theorems that say that the coercions

produced by the subsumption judgment are well typed. The proof of these theorems

is by a straightforward induction on the appropriate judgment.

Theorem 4.12 (Coercion typing)

1. If pr(σ) = ∀a.ρ 7→ e then ⊢F e : (∀a.ρ) → σ.

2. If ⊢
dsk

σ ≤ σ′ 7→ e then ⊢F e : σ → σ′.

3. If ⊢
dsk∗

σ ≤ σ′ 7→ e then ⊢F e : σ → σ′.

4. If ⊢
inst

δ σ ≤ ρ 7→ e then ⊢F e : σ → ρ.

The bidirectional type system also has the principal types property. In other words,

for all terms typable in a particular context, there is some “best” type for that

term:

Theorem 4.13 (Principal Types for bidirectional system) If there exists some

σ′ such that Γ ⊢
poly

⇑ t : σ′, then there exists σ (the principal type of t in context Γ)

such that

1. Γ ⊢
poly

⇑ t : σ

2. For all σ′′, if Γ ⊢
poly

⇑ t : σ′′, then ⊢
sh

σ ≤ σ′′.

The principal types theorem is very important in practice. It means that an imple-

mentation can infer a single, principal type for each let-bound variable, that will

“work” regardless of the contexts in which the variable is subsequently used.

Notice that, in the second clause of the theorem, all types that are inferred for a

Practical type inference for arbitrary-rank types 31 July 2007 39

given term are related by the Damas-Milner definition of subsumption, ⊢
sh

. The

theorem holds a fortiori if ⊢
sh

is replaced by ⊢
dsk

.

We prove this theorem in the same way that Damas and Milner showed that their

type system has principal types: by developing and algorithm that unambiguously

assigns types to terms and showing that this algorithm is sound and complete

with respect to the rules. The formalisation of the algorithm can be found in the

Technical Appendix (Vytiniotis etal., 2005).

The principal-types theorem above only deals with inference mode. An analogous

version is not needed for checking mode because we know exactly what type the

term should have—there is no ambiguity. And in fact, such a theorem is not true.

For example, the term (\g.(g 3, g True)) typechecks in the empty context with

types (∀a.a → Int) → (Int, Int) and (∀a.a → a) → (Int, Bool), but there is no

type that we can assign to the term that is more general than both of these types.

Even though there are no “most general” types that terms may be assigned in

checking mode, checking mode still statisfies properties that make type checking

predictable for programmers. For example, it is the case that if we can check a

term, then we can always check it at a more specific type. The following theorem

formalises this, and other, claims:

Theorem 4.14

1. If Γ ⊢
poly

⇓ t : σ and ⊢
dsk

σ ≤ σ′ then Γ ⊢
poly

⇓ t : σ′.

2. If Γ ⊢⇓ t : ρ1 and ⊢
dsk

ρ1 ≤ ρ2 and ρ1 and ρ2 are in weak-prenex form, then

Γ ⊢⇓ t : ρ2.

3. If Γ′ ⊢
poly

⇓ t : σ and ⊢
dsk

Γ ≤ Γ′ then Γ ⊢
poly

⇓ t : σ.

4. If Γ′ ⊢⇓ t : ρ and ⊢
dsk

Γ ≤ Γ′ and ρ is in weak-prenex form then Γ ⊢⇓ t : ρ.

The first clause is self explanatory, but the second might seem a little surprising:

why must ρ1 and ρ2 be in weak-prenex form? Here is a counter-example when they

are not. Suppose σ1 = ∀a.a → ∀b.b → ∀c.b → c, σ2 = Int → ∀c.Int → c, and

σ3 = ∀abc.a → b → b → c. Then it is derivable that ⊢⇓ (\x.x 3) : (σ1 → σ2) but

it is not derivable that ⊢⇓ (\x.x 3) : (σ3 → σ2), although ⊢
dsk

σ1 → σ2 ≤ σ3 → σ2.

However, because gen2 converts the checked type into that form before continuing,

any pair of related types may be used for the ⊢
poly

⇓ judgement, so the first clause

needs no side condition.

Just as the first two clauses say that we can make the result type less polymorphic;

dually, the third and fourth clauses allow us to make the context more polymorphic.

The notation ⊢
dsk

Γ ≤ Γ′ means that the context Γ is point-wise more general (using

the relation ⊢
dsk

) than the context Γ′.

We conclude our discussion of the properties of the bidirectional type system by

observing that it lacks some properties of the traditional Damas-Milner system.

40 Peyton Jones, Vytiniotis, Weirich, and Shields

In particular, in Damas-Milner one can always name a sub-expression using let,

without affecting typeability:

Γ ⊢ t1[t2] : τ implies Γ ⊢ let x = t2 in t1[x]

(where x does not appear in t1[]. In the bidirectional system, however, the context

of t2 may provide type information that makes it typeable, so the let form might

fail. To make it succeed, one would need to add a type signature for x .

5 Damas-Milner type inference

The main claim of this paper is that a rather modest overhaul of a vanilla Damas-

Milner type inference engine will suffice to support arbitrary-rank polymorphism.

To demonstrate this claim convincingly, we now describe how to transcribe the

Damas-Milner typing rules of Figure 4 into a type inference algorithm. Then, in later

sections we will show how to modify this algorithm to support higher-rank poly-

morphism. Admittedly, the Damas-Milner inference engine is deliberately crafted so

that it can readily be modified for higher-rank types—but no aspect of the former

is there solely to prepare for the latter.

Our implementations are written in Haskell, and we assume that the reader is

familiar with Haskell including, in particular, the use of monads and do-notation.

We also assume some familiarity with type inference using unification. The complete

source code of our implementations is available in the Appendix, and online.

5.1 Terms and types

The data type Term in Figure 13 is the representation for terms, whose syntax was

given in Figure 2. The data type of types, also given in Figure 13, deserves a little

more explanation. We use a single data type Type to represent σ-types, ρ-types, and

τ -types, and declare type synonyms Sigma, Rho, and Tau as unchecked documenta-

tion about which particular flavour of type is expected at any particular place in the

code.6 The data type Type has constructors for quantification (ForAll), functions

(Fun), constants (TyCon). We maintain the invariant that the Type immediately

inside a ForAll is not itself a ForAll; i.e. that it is a Rho.

More interestingly, it has two different constructors for type variables, because the

implementation distinguishes two kinds of type variable. Consider the syntax of

Damas-Milner types:

σ ::= ∀a.τ

τ ::= Int | τ1 → τ2 | a

6 This tension between static and dynamic checks is a common one when writing software. The
reader is invited to try stratifying the implementation, and compare the result with the version
we present here.

Practical type inference for arbitrary-rank types 31 July 2007 41

---------------- Terms -------------------

data Term = Var Name -- x

| Lit Int -- 3

| App Term Term -- f x

| Lam Name Term -- \x. x

| Let Name Term Term -- let x = f y in x+1

| Ann Term Sigma -- f x :: Int

type Name = String

---------------- Types -------------------

type Sigma = Type

type Rho = Type -- No top-level ForAll

type Tau = Type -- No ForAlls anywhere

data Type = ForAll [TyVar] Rho -- Forall type

| Fun Type Type -- Function type

| TyCon TyCon -- Type constants

| TyVar TyVar -- Always bound by a ForAll

| MetaTv MetaTv -- A meta type variable

data TyVar

= BoundTv String -- A type variable bound by a ForAll

| SkolemTv String Uniq -- A skolem constant; the String is

-- just to improve error messages

data TyCon = IntT | BoolT

(-->) :: Type -> Type-> Type -- Build a function type

arg --> res = Fun arg res

intType :: Tau

intType = TyCon IntT

Fig. 13: The Term and Type data types

The type variable “a” is part of the concrete syntax of types: a → Int and ∀a.a → a

are both legal types. On the other hand, “τ” and “σ” are meta-variables, part of

the language that we use to discuss types, but not part of the language of syntax

of types themselves. For example, τ → τ is not a legal type.

The typing judgements for a type system (Figure 3, for example) uses both kinds

of variables. It uses “a” to mean “a type variable”, and “τ” to mean “some type

obeying the syntax of τ -types”. This distinction is reflected in two distinct data

types of the implementation:

A concrete type variable, written a, b etc., has type TyVar and occurs with

constructor TyVar in a Type.

data TyVar = BoundTv String | SkolemTv String Uniq

type Uniq = Int

42 Peyton Jones, Vytiniotis, Weirich, and Shields

There are two kinds of concrete type variables, corresponding to the two con-

structors of TyVar.

• A bound type variable, whose constructor is BoundTv, is always bound by

an enclosing ForAll; it may appear in (the type annotations of) a source

program; and it is represented by a simple String. No well-formed Type ever

has a free BoundTv.

• A skolem constant, whose constructor is SkolemTv, stands for a constant, but

unknown type. It is never bound by a ForAll, and it can be free in a Type. It

is represented by a Uniq, a unique integer that distinguishes it from others;

the String is just for documentation.

A meta type variable, written τ1, τ2 etc.7, is simply a temporary place-holder

for an as-yet-unknown monotype. It has type MetaTv, and occurs with constructor

MetaTv in a Type.

data MetaTv = Meta Uniq TyRef

It is never quantified by a ForAll (∀τ.τ would not make sense!); and it is created

only by the type inference engine itself. Again we use a Uniq to give its identity;

we will discuss the TyRef part later, in Section 5.7.

Although we give the representation of types here, for the sake of concreteness, much

of the type inference engine is independent of the details of the representation. The

infix function (-->) helps to maintain this abstraction, by allowing the inference

engine to construct a function type without knowing how it is represented internally.

Similarly intType is the Type representing the type Int.

5.2 The type-checker monad

The type constructor Tc is the type-checker monad, whose primitive operations are

given in Figure 14. The monad serves the following roles:

• It supports exceptions, when type inference fails (check).

• It carries the environment Γ (lookupVar and extendVarEnv).

• It allocates fresh meta type variables (newMetaTv).

• It maintains a global, ever-growing substitution that supports unification

(unify).

The function check (Figure 14) is typically used in a context like this

do { ...

; check (..condition..) "Error message"

; ... }

7 It turns out that the implementation does not require a representation for the meta-variable σ.

Practical type inference for arbitrary-rank types 31 July 2007 43

-- Control flow

check :: Bool -> String -> Tc () -- Type inference can fail

-- The type environment

lookupVar :: Name -> Tc Sigma -- Look up in the envt (may fail)

extendVarEnv :: Name -> Sigma -- Extend the envt

-> Tc a -> Tc a

getEnvTypes :: Tc [Sigma] -- Get all types in the envt

-- Instantiation, skolemisation, quantification

instantiate :: Sigma -> Tc Rho

skolemise :: Sigma -> Tc ([TyVar], Rho)

quantify :: [MetaTv] -> Rho -> Tc Sigma

-- Unification and fresh type variables

newMetaTyVar :: Tc Tau -- Make (MetaTv tv), where tv is fresh

newSkolemTyVar :: Tc TyVar -- Make a fresh skolem TyVar

unify :: Tau -> Tau -> Tc () -- Unification (may fail)

-- Free type variables

getMetaTyVars :: [Type] -> Tc [MetaTv]

getFreeTyVars :: [Type] -> Tc [TyVar]

Fig. 14: The TcMonad module

It checks its boolean argument; if it is True, check returns (); but if it is False,

check raises an exception in the monad, passing the specified string as an error

message.

Environment extension (extendVarEnv) is scoped, not a side effect. There is no

need to restore the old environment after a call to extendVarEnv. For example, one

might write:

do { ...

; extendVarEnv "x" ty

(do { ...; t <- lookupVar "x"; ... })

; ...this code does not see the binding... }

The monad also maintains a single, ever-growing substitution that maps meta type

variables (MetaTvs) to monotypes—it does not affect concrete type variables at

all. Unification extends the substitution by side effect; for example, unify t1 t2

extends the substitution so that t1 and t2 are identical. Unification can, of course,

fail. For example unify intType (intType --> intType) will fail. The monad

handles the propagation of such failures behind the scenes.

We will introduce the remaining functions in Section 5.5.

5.3 Simple inference

Figure 4, on page 15, expresses the Damas-Milner type system in syntax-directed

form, which is crucial for eliminating search in type inference. When expressed in

44 Peyton Jones, Vytiniotis, Weirich, and Shields

this way the rules are tantamount to an algorithm. For each judgement form we

have a corresponding Haskell function; for example:

⊢ inferRho :: Term -> Tc Rho

⊢
poly

inferSigma :: Term -> Tc Sigma

⊢
sh

subsCheck :: Type -> Type -> Tc ()

We begin by looking at inferRho, derived from ⊢. Its simplest rule is int, and its

translation is trivial:

inferRho (Lit i) = return intType

The return is necessary to lift intType into the Tc monad. The rule for applications

(app) is a little more interesting:

inferRho (App fun arg)

= do { fun_ty <- inferRho fun

; arg_ty <- inferRho arg

; res_ty <- newMetaTv

; unify fun_ty (arg_ty --> res_ty)

; return res_ty }

That is, we typecheck the function and argument, create a fresh type variable for

the result type, and check that the function type has the right shape. Though the

rules are syntax directed, they frequently conjure up monotypes τ out of thin air,

in this case the τ for the type of the result. In the implementation we create a

fresh meta type variable (using newMetaTv), relying on unification to fill out its

value later. Remember that these meta type variables each stand for a monotype; as

inference proceeds, unification extends an ever-growing substitution, which maps

MetaTvs to monotypes.

This algorithm is called “Algorithm W” (Milner, 1978). It traverses the term from

left to right (e.g. in the App case above, we infer the type for fun before arg), using

unification to solve type constraints as it goes. Rather than develop it in full detail,

we instead discuss an important variation of the algorithm.

5.4 Propagating types inward

A type inference engine written using Algorithm W turns out to produce absolutely

horrible error messages. For example, suppose that the context contains:

f :: (Int -> Int) -> Bool

and we perform type inference on the application f (\x.True). The inference en-

gine will infer the type a -> Bool for the argument (\x.True), and then it will

attempt the following unification:

((Int -> Int) -> Bool) = ((a -> Bool) -> r)

The unification will fail, but with a rather opaque error message.

Practical type inference for arbitrary-rank types 31 July 2007 45

No human would do this when doing mental type inference. We know the type

of f, and we use that information when performing inference on f’s argument.

This simple intuition leads to a very well-known technique for improving the error

messages, namely to propagate the expected type inwards. More concretely, we make

a variant of inferRho, called checkRho, thus:

checkRho :: Term -> Rho -> Tc ()

Instead of returning the inferred type as its result, checkRho now takes the expected

type as an argument. We can recover the old inferRho by passing in a type variable:

inferRho :: Term -> Tc Rho

inferRho expr = do { exp_ty <- newMetaTv

; checkRho expr exp_ty

; return exp_ty }

The type variable exp_ty (short for “expected type”) plays the role of a var pa-

rameter in Pascal, or a result-pointer argument in C: it serves as a location in

which checkRho can return its result. This inward-propagation technique is well

known to implementors as “Algorithm M”(Lee & Yi, 1998). We review it here be-

cause exactly the same technology will prove useful in Section 6, to implement the

bidirectional type rules of Section 4.7.

Here, for example is the Lit case for checkRho, which uses unify to ensure that

the expected type exp_ty is indeed equal to intType:

checkRho (Lit i) exp_ty = unify intType exp_ty

Similarly here is the App case, to compare with the code for the same case of

inferRho in the previous section:

checkRho (App fun arg) exp_ty

= do { fun_ty <- inferRho fun

; (arg_ty, res_ty) <- unifyFun fun_ty

; checkRho arg arg_ty

; unify res_ty exp_ty }

First, we infer the type of the function. We expect it to return a function type,

which we split up using unifyFun (to be defined shortly), yielding the argument

and result type of the function. Now we type-check the argument passing in the

expected type of the argument, derived from the function; and finally we unify the

function’s result type with the expected result type exp_ty. Not only are the error

messages better, but the code is shorter too8!

The function unifyFun splits a function type, returning the argument and result

types of the function; it may fail, raising an exception, if the argument is not a

8 Exercise: rewrite the App case of checkRho to use one line fewer, and without using unifyFun.
We chose to use the form given here because it anticipates what we need in Section 6.

46 Peyton Jones, Vytiniotis, Weirich, and Shields

function type. It is needed to implement the matching against the function type

τ → ρ that is implicit in rule app.

unifyFun :: Rho -> Tc (Rho, Rho)

unifyFun (Fun arg_ty res_ty) = return (arg_ty,res_ty)

unifyFun fun_ty = do { arg_ty <- newMetaTv

; res_ty <- newMetaTv

; unify fun_ty (arg_ty --> res_ty)

; return (arg_ty,res_ty) }

First, it checks whether fun_ty is already of the form (arg_ty -> res_ty), in

which case it returns the pair. If not, unifyFun creates fresh type variables for

arg_ty and res_ty and attempts to unify (arg_ty --> res_ty) with the fun_ty.

The first equation is only present for efficiency reasons; it could be omitted without

affecting correctness9.

The code for lambda abstraction uses unifyFun in a dual manner to split the

expected type into the type of the bound variable and the type of the body; then

we extend the environment with a new binding, and check the body.

checkRho (Lam var body) exp_ty

= do { (pat_ty, body_ty) <- unifyFun exp_ty

; extendVarEnv var pat_ty (checkRho body body_ty) }

All this follows directly from rule abs of Figure 4.

5.5 Instantiation and generalisation

When we reach a Var (rule inst), we look it up in the environment (failing if it is

not in scope), instantiate its type with fresh meta type variables, and then check

that the resulting type is compatible with the expected type exp_ty:

checkRho (Var v) exp_ty = do { v_sigma <- lookupVar v

; instSigma v_sigma exp_ty }

The function instSigma implements the judgement ⊢
inst

, thus:

instSigma :: Sigma -> Rho -> Tc ()

instSigma sigma exp_ty = do { rho <- instantiate sigma

; unify rho exp_ty }

Now we consider let bindings, which is where type generalisation occurs (let):

checkRho (Let v rhs body) exp_ty

= do { v_sigma <- inferSigma rhs

; extendVarEnv v v_sigma (checkRho body exp_ty) }

9 Exercise: add another case to optimise the situation where fun_ty is a MetaTv that is already
bound by the substitution.

Practical type inference for arbitrary-rank types 31 July 2007 47

We use inferSigma to infer the (polymorphic) type of rhs. Here is its implemen-

tation, which can be read directly from the ⊢
poly

judgement in Figure 4:

inferSigma :: Term -> Tc Sigma

inferSigma e = do { res_ty <- inferRho e

; env_tys <- getEnvTypes

; env_tvs <- getMetaTyVars env_tys

; res_tvs <- getMetaTyVars [exp_ty]

; let forall_tvs = res_tvs \\ env_tvs

; quantify forall_tvs res_ty }

The function getEnvTypes returns a list of all the types in the (monad-carried)

environment Γ (Figure 14). The function getMetaTyVars finds the free meta type

variables of a list of types, returning a set of MetaTvs. It takes account of the

current substitution, which is why it has a monadic type (Figure 14). We quantify

over forall_tvs, the difference of these two sets, computed using the list-difference

operator (\\):

quantify :: [MetaTv] -> Rho -> Tc Sigma

When we quantify, we can turn an meta type variable into a concrete type variable,

because no further constraints on its value can possibly arise. For example, consider

the Rho

Fun (MetaTv t) (MetaTv t)

where t::MetaTv, and suppose we decide to quantify over t. Then quantify will

return the Sigma

ForAll ["t"] (Fun (TyVar "t") (TyVar "t"))

where the name "t" is chosen arbitrarily10.

Why does quantify have a monadic type? Because res_ty only makes sense in the

context of the substitution, which is carried by the monad. Furthermore, quantify

guarantees to return a type that is fully substituted; this makes it easier to instan-

tiate later, because the proper type variables can all be found without involving

the substitution.

5.6 Subsumption

The code for a type-annotated expression can be read off Figure 4 just like the

other cases:

checkRho (Ann body ann_ty) exp_ty

= do { body_sigma_ty <- inferSigma body

10 Well, almost arbitrarily: it must not conflict with any concrete type variable names already
inside the type we are quantifying over. This is not an issue for Damas-Milner, since all the
for-alls are at the top.

48 Peyton Jones, Vytiniotis, Weirich, and Shields

; subsCheck body_sigma_ty ann_ty

; instSigma ann_ty exp_ty }

The interesting part is the implementation of subsCheck, which implements the ⊢
sh

judgement (Figure 4). Here is the implementation:

subsCheck :: Sigma -> Sigma -> Tc ()

subsCheck sigma1 sigma2@(ForAll _ _) -- Rule SKOL

= do { (skol_tvs, rho2’) <- skolemise sigma2

; subsCheck sigma1 rho2’

; esc_tvs <- getFreeTyVars [sigma1]

; let bad_tvs = filter (‘elem‘ esc_tvs) skol_tvs

; check (null bad_tvs)

"Type not polymorphic enough" }

subsCheck sigma1@(ForAll _ _) rho2 -- Rule INST

= do { rho1’ <- instantiate sigma1

; subsCheck rho1’ rho2 }

subsCheck rho1 rho2 -- Rule MONO

= unify rho1 rho2

The second and third equations (corresponding to rules inst and mono of Figure 4)

are quite straightforward, but the first (rule skol) requires more care. Here is is

again, for reference

⊢
sh

σ ≤ ρ a 6∈ ftv(σ)
skol

⊢
sh

σ ≤ ∀a.ρ

The function skolemise does the alpha-renaming of sigma2, to avoid unfortunate

name clashes as explained in Section 4.4, returning the fresh (concrete) type vari-

ables, or skolem constants, as well as the instantiated type:

skolemise :: Sigma -> Tc ([TyVar], Rho)

skolemise (ForAll tvs ty)

= do { sks <- mapM newSkolemTyVar tvs

; return (sks, substTy tvs (map TyVar sks) ty) }

skolemise ty

= return ([], ty)

These skolem constants, allocated with newSkolemTyVar, still have type TyVar, and

they will not unify with anything except themselves and meta type variables.

After recursively calling subsCheck, we must check the side condition a 6∈ ftv(σ) for

rule skol, namely that the skolemised variables skol_tvs are not free in sigma1.

You might wonder how this could possibly be the case, since skol_tvs are freshly

made, but the recursive call to subsCheck might have bound a meta type variable in

sigma1 to one of the skolems. That is why we wait until after the call to subsCheck

before making the test. For example, consider the term:

Practical type inference for arbitrary-rank types 31 July 2007 49

\x. (x :: (forall a. a->a))

Rule annot will invoke a subsumption check that tries to confirm that the type of

the body of the annotated term (x in this case) is at least as polymorphic as the

type signature ∀a.a → a. By this time, x will be in the environment with type τ ,

a meta type variable, so we end up checking this judgement

τ ≤ ∀a.a → a

We skolemise ∀a.a → a to get b → b (where b is the fresh skolem constant), and

then unify, which binds τ to the type b → b. But rule skol requires that the skolem

constant b not be free in the type on the left of the ≤. It wasn’t to begin with, but

after the unification it may be! The function getFreeTyVars finds the free TyVars

of its argument, which are precisely the skolem constants. Like getMetaTyVars,

getFreeTyVars takes account of the substitution, which is why it has a monadic

type.

An extremely alert reader will realise the correctness of this implementation of

rule skol depends on the fact that type annotations in our source program are

closed (have no free type variables), so that sigma2 is closed. In reality, there are

strong reasons to support lexically-scoped type variables, which allow us to write

open type annotations (Shields & Peyton Jones, 2002), and in any case the same

problem shows up when we move to higher rank. However, with the source language

as currently defined everything is OK; we will return to the issue in Section 6.5.

Before leaving subsCheck, it is worth noting that it has the same type as unify,

except that it applies to σ-types, and degenerates to unify when applied to mono-

types. So we can think of subsCheck as a kind of super-unifier.

5.7 Meta type variables and the Tc monad

So far we have said little about how meta type variables are represented, or how

the Tc monad works. In this section we briefly describe them; the full code is in the

Appendix.

A meta type variable, of type MetaTv is represented like this:

data MetaTv = Meta Uniq TyRef

type TyRef = IORef (Maybe Tau)

-- ’Nothing’ means the type variable is not substituted

-- ’Just ty’ means it has been substituted by ’ty’

type Uniq = Int

A MetaTv has a unique identity, which is just an Int, and a mutable reference

cell of type TyRef. This mutable cell either contains Nothing, indicating that type

variable is not in the domain of the substitution, or contains Just ty, indicating

50 Peyton Jones, Vytiniotis, Weirich, and Shields

that the type variable is mapped to the type ty by the substitution, where ty is

a monotype. We use an IORef for the mutable cell, so any operations that read or

write this cell must be in the IO monad11. We need to “lift” the standard operations

over IORefs (reading, writing, etc) to the Tc monad:

newTcRef :: a -> Tc (IORef a)

readTcRef :: IORef a -> Tc a

writeTcRef :: IORef a -> a -> Tc ()

The fact that types contain these mutable reference is the reason that many of our

operations over types—for example getFreeTyVars—are in the Tc monad.

The Tc monad, then, is the IO monad augmented with an environment, and a way

to report failure12:

newtype Tc a = Tc (TcEnv -> IO (Either ErrMsg a))

Throughout, we maintain the following invariant:

A meta type variable can only be substituted by a τ -type.

This invariant is absolutely crucial. For example, suppose f :: τ , where τ is a meta

type variable. If we see the expression (f ’c’, f True), we will first unify τ with

Char → τ1 and then with Bool → τ2, and will fail with a type error. But if τ were

allowed to be unifiable with ∀b.b → b—that is, if the meta type variables were

really σ variables—this failure would have been premature. (Le Botlan et al. deal

with this issue by using a constraint system to collect the required instantiations

of the type variables; see Section 9.2.)

Similarly, if subsCheck (Section 5.6) is passed two type variables as its arguments,

it will simply unify them. But if a different order of type inference first unified

those type variables with polytypes, the call to subsCheck would need to do a full

subsumption check rather than simple unification.

In short, the invariant that a meta type variable can only be substituted by a

τ -type ensures that the result of type inference does not depend on the order of

type-inference. The invariant is, in turn, a direct consequence of predicativity (Sec-

tion 3.4).

6 Inference for higher rank

Having now completed type inference for Damas-Milner, we are ready to extend

the type-inference engine for higher-rank types.

11 See Peyton Jones (2001) for a tutorial on the IO monad. We could also have used the ST state
transformer monad, since we are not performing any input/output. However, in real life the type
checker does perform some limited I/O, mainly to consult interface files of imported modules,
so we have used the IO monad here.

12 The latter could be done via an exception in the IO monad, but we have elected to make failure
more explicit here.

Practical type inference for arbitrary-rank types 31 July 2007 51

6.1 Changes to the basic structure

In moving to higher rank, we first add a new constructor to the Term data type,

ALam for an annotated lambda:

data Term = ... | ALam Name Sigma Term

The data type of types remains unchanged. Next, we consider the main judgement

⊢. At first it seems that we might need two tcRho functions, one for each direction:

inferRho :: Term -> Tc Rho

checkRho :: Term -> Rho -> Tc ()

Doing this would be very burdensome, because when we scale to a real language

tcRho will have many, many equations. Much more attractive is to exploit the

symmetry implied by the many syntactic forms for which Figure 8 has only one

“polymorphic” rule, mentioning δ. Here is a neat way to express this idea in code:

tcRho :: Term -> Expected Rho -> Tc ()

data Expected t = Check t

| Infer (IORef t)

When checking that an expression has a particular type ty (the ⇓ direction) we

pass (Check ty) as the second parameter, in exactly the way that we discussed

in Section 5.4. When inferring the type of an expression (the ⇑ direction) we pass

(Infer ref) as the second parameter, expecting tcRho to return the result type

by writing to the reference ref. This corresponds exactly to the common technique

of passing as a parameter the address of the result location—a var parameter, in

Pascal terminology.

Unlike the reference cells in a MetaTv, which can be instantiated only to a τ -type,

the reference cell in an Expected Rho can (indeed must) be filled in by a ρ-type;

and we will later encounter tcPat which takes an Expected Sigma argument, which

must be filled in by a σ-type. There is no difficulty here, because these Expected

locations are always written exactly once—there is no question of unification. On

the other hand, we continue to maintain the previous invariant, that a meta type

variable can only be bound to a τ -type, for the reasons discussed in Section 5.7.

As in the Damas-Milner case, we will write a Haskell function for each judgement

form:

⊢δ tcRho :: Term → Expected Rho -> Tc ()

⊢
poly

⇑ inferSigma :: Term -> Tc Sigma

⊢
poly

⇓ checkSigma :: Term -> Sigma -> Tc ()

⊢
inst

δ instSigma :: Sigma -> Expected Rho -> Tc ()

⊢
dsk

subsCheck :: Sigma -> Sigma -> Tc ()

⊢
dsk∗

subsCheckRho :: Sigma -> Rho -> Tc ()

We can write immediately inferRho and checkRho in terms of tcRho:

52 Peyton Jones, Vytiniotis, Weirich, and Shields

checkRho :: Term -> Rho -> Tc ()

checkRho expr ty = tcRho expr (Check ty)

inferRho :: Term -> Tc Rho

inferRho expr = do { ref <- newTcRef (error "inferRho: empty result")

; tcRho expr (Infer ref)

; readTcRef ref }

The interesting one is inferRho, which creates a new mutable cell, calls tcRho

(which should write to the cell), and reads the result. The cell is initialised with an

error value, so that if tcRho erroneously fails to write to the cell any attempt to

look at the result will cause the system to halt with a runtime error.

As we noted in Section 4.7.3, in checking mode we can guarantee that the result

type is in weak-prenex form, so we establish the following invariants:

• For tcRho and instSigma, if the Expected argument is (Check t), then t is

in weak-prenex form.

• For checkRho and subsCheckRho, the second argument is in weak-prenex

form.

These invariants can readily be checked by inspection of the code that follows.

6.2 Basic rules

Now we can look at the definition of tcRho. The code for variables is unchanged:

tcRho (Var v) exp_ty

= do { v_sigma <- lookupVar v

; instSigma v_sigma exp_ty }

The difference is in instSigma, which implements our new “polymorphic” version

of the judgement ⊢
inst

δ . Here is its implementation:

instSigma :: Sigma -> Expected Rho -> Tc ()

instSigma t1 (Infer r) = do { t1’ <- instantiate t1

; writeTcRef r t1’ }

instSigma t1 (Check t2) = subsCheckRho t1 t2

In the inference case, following rule inst1, we instantiate the first argument to

obtain the result type, which we write into the reference cell.

In the checking case, we simply invoke subsCheckRho (rule inst2). In the typing

rules, inst2 invokes ⊢
dsk

(which corresponds to subsCheck), but here in the imple-

mentation we call subsCheckRho (corresponding to ⊢
dsk∗

), an improvement relies

on tcRho’s invariant. We discuss subsCheckRho in Section 6.5.

Because instSigma deals with the Expected argument, it is convenient to re-use it

for literals.

Practical type inference for arbitrary-rank types 31 July 2007 53

tcRho (Lit i) exp_ty = instSigma intType exp_ty -- Was unify

In our Damas-Milner inference engine, we called unify for literals, but we cannot

do that here, because exp_ty has type Expected Rho. Happily, instSigma does

the job very nicely. Indeed, to a first approximation, to move to higher rank, we

simply replace calls to unify with calls to instSigma!

Next, we deal with applications:

tcRho (App fun arg) exp_ty

= do { fun_ty <- inferRho fun

; (arg_ty, res_ty) <- unifyFun fun_ty

; checkSigma arg arg_ty -- Was: checkRho

; instSigma res_ty exp_ty } -- Was: unify

We infer the type of the function, and split its type into its argument and result

parts, using unifyFun from Section 5.4.

Returning to the App case of tcRho, after decomposing the function type with

unifyFun, we use checkSigma to check that the argument has the right type. Finally

we use instRho (in place of unify) to check that the result type of the function is

more polymorphic than the expected type. Again, this code looks almost exactly

like it did in the Damas-Milner case (Section 5.4), except that we use checkSigma

instead of checkRho for the argument type, and instSigma instead of unify for

the result type.

We will discuss checkSigma in Section 6.4, but before moving on, we note that

checkSigma can be used directly in the case for type annotations:

tcRho (Ann body ann_ty) exp_ty

= do { checkSigma body ann_ty

; instSigma ann_ty exp_ty }

6.3 Abstractions

The only tricky case is that for abstractions. For an un-annotated lambda, we treat

the inference and checking cases separately (rules abs1 and abs2 respectively):

tcRho (Lam var body) (Infer ref)

= do { var_ty <- newTyVar

; body_ty <- extendVarEnv var var_ty (inferRho body)

; writeTcRef ref (var_ty --> body_ty) }

tcRho (Lam var body) (Check exp_ty)

= do { (var_ty, body_ty) <- unifyFun exp_ty

; extendVarEnv var var_ty (checkRho body body_ty) }

In the inference case, we invent a fresh meta type variable to stand for the τ -

type of the bound variable, extend the environment, infer the type of the body, and

54 Peyton Jones, Vytiniotis, Weirich, and Shields

update the incoming reference with the function type (var_ty --> body_ty). The

checking case has an incoming type that we can decompose with unifyFun, giving

a Sigma we bind to var in the environment, before checking the body. Notice that

we can call checkRho, rather than checkSigma, because body_ty is guaranteed to

be a ρ-type by the invariant for tcRho (Section 6.1).

The new syntactic form, an annotated lambda, also requires two rules (aabs1 and

aabs2):

tcRho (ALam var var_ty body) (Infer ref)

= do { body_ty <- extendVarEnv var var_ty (inferRho body)

; writeTcRef ref (var_ty --> body_ty) }

tcRho (ALam var var_ty body) (Check exp_ty)

= do { (arg_ty, body_ty) <- unifyFun exp_ty

; subsCheck arg_ty var_ty

; extendVarEnv var var_ty (checkRho body body_ty) }

6.4 Generalisation

The judgement ⊢
poly

δ in Figure 8 infers or checks that a term has a polytype. All its

invocations have a known direction (⇑ or ⇓), as the reader may verify from Figure 8,

so we implement it with two functions, inferSigma and checkSigma. The former

implements rule gen1, and its code is unchanged from the Damas-Milner version

given in Section 5.5.

However, we also need checkSigma, which implements rule gen2. Here is the code,

which is mostly a straight transliteration of the rule:

checkSigma :: Term -> Sigma -> Tc ()

checkSigma expr sigma

= do { (skol_tvs, rho) <- skolemise sigma

; checkRho expr rho

; env_tys <- getEnvTypes

; esc_tvs <- getFreeTyVars (sigma : env_tys)

; let bad_tvs = filter (‘elem‘ esc_tvs) skol_tvs

; check (null bad_tvs)

(text "Type not polymorphic enough") }

We met the function skolemise in Section 5.6, but we must modify it to perform

deep skolemisation, as we discussed in Section 4.6.2. This is easily done, just by

altering its definition so that it looks under Fun arrows:

skolemise :: Sigma -> Tc ([TyVar], Rho)

skolemise (ForAll tvs ty) -- Rule PRPOLY

= do { sks1 <- mapM newSkolemTyVar tvs

; (sks2, ty’) <- skolemise (substTy tvs (map TyVar sks1) ty)

Practical type inference for arbitrary-rank types 31 July 2007 55

; return (sks1 ++ sks2, ty’) }

skolemise (Fun arg_ty res_ty) -- Rule PRFUN

= do { (sks, res_ty’) <- skolemise res_ty

; return (sks, Fun arg_ty res_ty’) }

skolemise ty -- Rule PRMONO

= return ([], ty)

The three equations correspond directly to the three rules of the function pr(σ) in

Figure 7.

Returning to checkSigma, once we have obtained the skolemised type ∀a.ρ, we check

that the term indeed has type ρ, using checkRho. Lastly, we must check that none of

the skolem constants a have escaped into the environment. And therein lies a tricky

point. Rule gen2 merely says a 6∈ Γ, but our code calls getFreeTyVars on sigma

as well as env_tys. The reason is this: although the skolem constants skol_tvs

cannot, by construction, appear free in sigma before the call to checkRho, they

may do so afterwards, because a meta type variable in sigma might be unified with

one of them.

Here is a real example. Consider the types of runST and newRef:
runST :: ∀a.(∀s.ST s a) → a

newRef :: ∀s a.a → ST s (Ref s a)

It does not matter exactly what these functions do, but they are described by

Peyton Jones and Launchbury (1995). Now, is this expression well typed?

runST (newRef ’c’)

Certainly not, because the (newRef ’c’) has type ST s (Ref s Char); so we

would have to instantiate runST’s type variable a to (Ref s Char), and then the

s would appear in the result type of runST, which it should not do (see Section 2.5

for an explanation of why not).

Now consider what will happen during inference. First, we will instantiate runST’s

type with a fresh meta type variable τ , giving the type

(∀s.ST s τ) → τ

Next, we will call checkSigma on the expression (newRef ’c’), with expected type

∀s.ST s τ . In turn, checkSigma will skolemise s to s ′, say, and call checkRho to

check that (newRef ’c’) has type ST s ′ τ1. This will succeed, but in doing so it

will bind the meta type variable τ to Ref s ′ Char.

Notice what has happened here. The meta type variable τ in sigma has become

bound to a type involving the skolem constant s ′. That is why we must include

sigma in the call to getFreeTyVars. This point is rather subtle and easily over-

looked, which contradicts our general claim that we can “read off” an algorithm

from the typing rules. Nevertheless, it is unavoidable, and it arises in every imple-

mentation of subsumption in a type-inference system.

56 Peyton Jones, Vytiniotis, Weirich, and Shields

6.5 Subsumption

The subsCheck function, our “super-unifier”, is the heart of the higher-rank type-

inference engine. We need to extend the implementation described in Section 5.6

in two ways:

• We must deal with function types (Section 6.5.1).

• We must refine the implementation of skolemisation (Section 6.5.2).

6.5.1 Subsumption for function types

In this section we will define subsCheckRho, which implements the auxiliary judge-

ment ⊢
dsk∗

in Figure 7. At first it seems simple to read off the implementation from

the rules:

subsCheckRho :: Sigma -> Rho -> Tc ()

-- Invariant: the second argument is in weak-prenex form

subsCheckRho sigma1@(ForAll _ _) rho2 -- Rule SPEC

= do { rho1 <- instantiate sigma1

; subsCheckRho rho1 rho2 }

subsCheckRho (Fun arg1 res1) (Fun arg2 res2) -- Rule FUN

= do { subsCheck arg2 arg1

; subsCheckRho res1 res2 }

subsCheckRho tau1 tau2 -- Rule MONO

= unify tau1 tau2 -- Revert to ordinary unification

Notice the invariant: ⊢
dsk∗

σ ≤ ρ is invoked only when ρ is in weak-prenex form.

Hence subsCheckRho needs no ForAll case for its second argument.

This implementation is not quite right, however, because either argument might be

a meta type variable. In that case, if the other argument is a Fun, we should use

unifyFun to persuade the meta type variable to look like a Fun too. To do this, we

must replace the Fun/Fun equation with two equations, thus:

subsCheckRho t1 (Fun a2 r2)

= do { (a1,r1) <- unifyFun t1; subsCheckFun a1 r1 a2 r2 }

subsCheckRho (Fun a1 r1) t2

= do { (a2,r2) <- unifyFun t2; subsCheckFun a1 r1 a2 r2 }

subsCheckFun :: Sigma -> Rho -> Sigma -> Rho -> Tc ()

subsCheckFun a1 r1 a2 r2

= do { subsCheck a2 a1 ; subsCheckRho r1 r2 }

Practical type inference for arbitrary-rank types 31 July 2007 57

6.5.2 Skolemisation revisited

Next, we turn our attention to the ⊢
dsk

judgement, implemented by subsCheck.

Its implementation follows closely that of checkSigma (Section 6.4), just as rule

deep-skol is similar to gen2.

subsCheck sigma1 sigma2 -- Rule DEEP-SKOL

= do { (skol_tvs, rho2) <- skolemise sigma2

; subsCheckRho sigma1 rho2

; esc_tvs <- getFreeTyVars [sigma1,sigma2]

-- The line above has changed!

; let bad_tvs = filter (‘elem‘ esc_tvs) skol_tvs

; check (null bad_tvs)

(vcat [text "Subsumption check failed:",

nest 2 (ppr sigma1),

text "is not as polymorphic as",

nest 2 (ppr sigma2)])

}

Just as in checkSigma, notice that we had to call getFreeTyVars on sigma2 as

well as sigma1, whereas only the latter is obvious from the rule. In fact, this change

(compared to Section 5.6) is not fundamentally related to higher-rank types: it

arises whenever sigma2 is not a closed type. In the Damas-Milner system of Sec-

tion 5 we assumed that user type annotations were closed, and the only use of

subsCheck passed a user type annotation as sigma2; hence sigma2 can have no free

meta type variables. However, if the language were enhanced to support open type

annotations—i.e. type annotations with free type variables, bound in some outer

scope—then exactly the same problem, with exactly the same solution, would arise

in the Damas-Milner system too.

6.6 Summary

We have now concluded the changes required to adapt a Damas-Milner type-

inference engine to support higher-rank types. A crude way to summarise the

changes is to count lines of code. The implementation in the Appendix is broken

into three modules, with line count (including comments) as follows:

Module Damas-Milner Higher rank

BasicTypes 252 252

TcMonad 292 292

TcTerm 106 151

Total 650 695

The only significant changes are around 35 lines of code required to implement

subsumption checking in TcTerm, plus about another 10 to handle the ALam cases

in tcRho.

58 Peyton Jones, Vytiniotis, Weirich, and Shields

Proportionally, the extra compiler complexity required to support higher-rank types

is remarkably small, even for the tiny language treated here. In a larger, more

realistic language, TcTerm would be much larger (because there would be many

more term forms, but only a few more type forms) but the same 45 extra lines

would suffice, so in percentage terms the addition seems even smaller.

7 Handling a larger language

We have concentrated so far on a very small language, to focus attention on the

central ideas. In this section we sketch briefly how to extend the framework to

handle a full programming language, such as Haskell. Mostly it is a routine matter,

but there are some interesting corners.

7.1 Multi-branch constructs

Our syntax does not include conditional or case expressions. They are easy to add,

but they do introduce a small but important wrinkle to the typing rules, and hence

the implementation. Suppose the syntax included if-expressions:

e ::= . . . | if e1 then e2 else e3

In checking mode, everything is easy; we simply push the result type into the

branches of the conditional, thus:

Γ ⊢⇓ e1 : Bool Γ ⊢⇓ e2 : ρ Γ ⊢⇓ e3 : ρ
if2

Γ ⊢⇓ if e1 then e2 else e3 : ρ

Now imagine that we want to infer the type of an if-expression. We can infer the

type of e2 and of e3, but then we need to check that the two types are the same.

Thus far, however, we have only unified monotypes, but the inferred types of the

branches will be ρ-types. At this point, there are three possible design choices:

1. Insist that the branches are monotyped. This is exactly what will happen if

we expressed conditionals using a function, instead of syntactic form:

cond :: Bool -> a -> a -> a

Since the type variable a can only be instantiated with a monotype, the

branches will be monotyped. It is easy to express this condition directly in

the typing judgement for if:

Γ ⊢⇓ e1 : Bool Γ ⊢⇑ e2 : τ Γ ⊢⇑ e3 : τ
if1a

Γ ⊢⇑ if e1 then e2 else e3 : τ

Note the monotype τ in the two premises and conclusion.

Practical type inference for arbitrary-rank types 31 July 2007 59

2. Elaborate unification to handle polytypes. It is possible to modify the unifier

so that it can unify polytypes: when it encounters a ∀ quantifier in one type,

it insists on a ∀ in the other. This is called “unification under a mixed prefix”

and has been well studied (Miller, 1992). The typing rule is now the same for

both inference and checking, so we can use use a direction-polymorphic rule:

Γ ⊢⇓ e1 : Bool Γ ⊢δ e2 : ρ Γ ⊢δ e3 : ρ
if

Γ ⊢δ if e1 then e2 else e3 : ρ

3. Allow polytyped branches by performing two-way subsumption In this case

we simply check that in inference mode, the two types of the branches are

equivalent in our subsumption relation, and return one of them.

Γ ⊢⇓ e1 : Bool Γ ⊢⇑ e2 : ρ1 Γ ⊢⇑ e3 : ρ2 ⊢
dsk

ρ1 ≤ ρ2 ⊢
dsk

ρ2 ≤ ρ1

if

Γ ⊢⇑ if e1 then e2 else e3 : ρ1

Choices (2) and (3) are more satisfactory than (1), because they ensure that a

conditional (or a case expression, or pattern-matching in a function definition)

does not accidentally kill higher-rank polymorphism.

It is worth noting that although choice (2) types more programs than (1) (but fewer

than (3)), it does lose one property, namely clause (3) of Theorem 4.14. The theorem

says that if a term typechecks in an environment Γ, and we make one of the bindings

in Γ more polymorphic with respect to the deep-skolemisation relation, then the

term should still typecheck. But consider (if x then f1 else f2), where f1 and

f2 have identical, higher-rank types. The program will typecheck under if. But if

we make f1 more polymorphic, and its type has a different “shape” from that of

f2, the program will be rejected. We are not unduly worried about this: it is easy

to make the program work again using a type signature, but the loss of the theorem

is worth noting.

Implementing choice (1) is easy. How can the implementation guarantee to infer

only a monotype for e2 and e3? By passing in a fresh meta type variable, just as

would happen if we used the polymorphic cond function, thus:

tcRho (If e1 e2 e3) exp_ty

= do { checkRho e1 boolType

; exp_ty’ <- zapToMonoType exp_ty

; tcRho e2 exp_ty’

; tcRho e3 exp_ty’ }

zapToMonoType :: Expected Rho -> Tc (Expected Rho)

zapToMonoType (Check ty) = return (Check ty)

zapToMonoType (Infer ref) = do { ty <- newTyVar

; writeTcRef ref ty

; return (Check ty) }

This works because we guarantee only to bind a meta type variable to a monotype.

60 Peyton Jones, Vytiniotis, Weirich, and Shields

Implementing choice (2) is more involved, because we must modify the unification

algorithm to handle polytypes. In particular, when unifying two polymorphic types,

we have to skolemise both using the same skolem constants (which results in the

unsatisfactory situation where the order of bound variables is significant for uni-

fication), subsequently recursively unify the resulting ρ-types, and finally ensure

that no skolem variable escaped by getting unified with a unification variable in

the bodies of types. To make this algorithm independent from the order in which

skolemisation/quantification happens we would have to maintain a separate bijec-

tion between the skolem variables of the two types.

Choice (3) looks more sophisticated than (2). Nevertheless, it is much simpler to

implement, because the subsumption check already implements all the tricky points

we mentioned for choice (2)! Here is the code:

tcRho (If e1 e2 e3) (Infer ref)

= do { checkRho e1 boolType

; rho1 <- inferRho e2

; rho2 <- inferRho e3

; subsCheck rho1 rho2

; subsCheck rho2 rho1

; writeTcRef ref rho1 }

The only unsatisfactory point is that the type rule in (3) arbitrarily chooses to

give the expression type ρ1, rather ρ2. Although these types are equivalent, they

may look different; for example ρ1 = Int → ∀a.Int → a → a, ρ2 = Int → Int →

∀a.a → a. This infelicity could be circumvented by skolemising the return type and

re-generalising at the top-level all of its quantified variables.

7.2 Rich patterns

In a real programming language, lambda abstractions and case expressions can bind

rich, nested patterns. To give the idea, we might extend the syntax for terms thus:

Terms t , u ::= . . .

| \p.t Pattern abstraction

Patterns p ::= x Variable

| _ Wild card

| (p::σ) Type annotated pattern

| (p1, p2) Pair

| . . .

Corresponding to these patterns, we have a new judgement form:

⊢
pat

δ p : σ,Γ

which reads “pattern p has type σ and binds variables described by environment

Γ”. We put the Γ on the right as a clue that it is expected to be an output, rather

Practical type inference for arbitrary-rank types 31 July 2007 61

than an input—but that makes no difference to the mathematical meaning of the

judgement, of course. The typing rule for a pattern abstraction looks like this:

⊢
pat

δ p : σ,Γ′

Γ,Γ′ ⊢δ t : ρ
abs

Γ ⊢δ (\p.t) : (σ → ρ)

We only need one rule, because the cases that were previously treated separately

in abs1, abs2, aabs1, and aabs2, are now handled by ⊢
pat

. The same judgement

⊢
pat

can be used by all constructs that use pattern-matching: case expressions, list

comprehensions, do notation, and so on,

Rather than give the rules for ⊢
pat

, we will jump straight to the code. The main

function tcPat takes an Sigma (not a Rho) as its expected type (because the ar-

gument type of the function can be a σ-type), and returns a list of (Name,Sigma)

bindings (because the pattern can bind type-annotated variables to σ-types):

tcPat :: Pat -> Expected Sigma -> Tc [(Name,Sigma)]

A wild-card pattern is trivial: succeed immediately, returning the empty environ-

ment:

tcPat PWild exp_ty = return []

The variable-pattern case splits into two, just like the non-type-annotated lambda

(Section 6.3).

tcPat (PVar v) (Infer ref) = do { ty <- newTyVar

; writeTcRef ref ty

; return [(v,ty)] }

tcPat (PVar v) (Check ty) = return [(v, ty)]

The code for a type-annotated pattern looks similar to that for a type-annotated

expression (Section 6.2):

tcPat (PAnn p pat_ty) exp_ty = do { checkPat p pat_ty

; instPatSigma pat_ty exp_ty }

The new function instPatSigma checks that the expected type exp_ty is more

polymorphic than the pattern type pat_ty:

instPatSigma :: Sigma -> Expected Sigma -> Tc ()

instPatSigma pat_ty (Infer ref) = writeTcRef ref pat_ty

instPatSigma pat_ty (Check exp_ty) = subsCheck exp_ty pat_ty

Patterns do not become really interesting until one adds pattern-matching over

data constructors, but we postpone that to the next sub-section. Meanwhile, we

can use the new tcPat function to implement rule abs for a pattern-matching

lambda (constructor PLam). Because we have to decompose the function type, it

still takes two cases:

62 Peyton Jones, Vytiniotis, Weirich, and Shields

tcRho (PLam pat body) (Infer ref)

= do { (binds, pat_ty) <- inferPat pat

; body_ty <- extendVarEnvList binds (inferRho body)

; writeTcRef ref (pat_ty --> body_ty) }

tcRho (PLam pat body) (Check ty)

= do { (arg_ty, res_ty) <- unifyFun ty

; binds <- checkPat pat arg_ty

; extendVarEnvList binds (checkRho body res_ty) }

Here, inferPat and checkPat are simple wrappers for tcPat, just as inferRho

and checkRho are wrappers for tcRho (Section 6.1); and extendVarEnvList is like

extendVarEnv, but extends an environment with a list of bindings.

7.3 Higher-ranked data constructors

It is easy to extend tcPat, as new patterns are added to the language. A particularly

important example is that of data constructors, especially if they have higher-ranked

types. For example, consider the following data type declaration, in an extended

version of Haskell supporting higher-rank types:

data T = MkT (forall a. a -> a)

When constructing values of type T, we can simply treat the constructor MkT as an

ordinary function, albeit with a higher-rank type:

MkT :: (∀a.a → a) → T

When pattern-matching over values of type T, however, we need to add something

new. For example, if we see a case expression thus:

case x of

MkT v -> (v 3, v True)

we would like v to be attributed the type ∀a.a → a without the programmer having

to write an explicit annotation. The data type declaration should be enough!

This is easy to achieve. We extend Pat with a new form:

data Pat = ... | PCon Name [Pat]

where the Name is the name of a data constructor that is presumably bound in the

type environment. Correspondingly we extend tcPat as follows13:

13 We use standard Haskell functions
zip :: [a] -> [b] -> [(a,b)]
concat :: [[a]] -> [a]
mapM :: Monad m => (a -> m b) -> [a] -> m [b]

Practical type inference for arbitrary-rank types 31 July 2007 63

tcPat (PCon con ps) exp_ty

= do { (arg_tys, res_ty) <- instDataCon con

; envs <- mapM check_arg (ps ‘zip‘ arg_tys)

; instPatSigma res_ty exp_ty

; return (concat envs) }

where

check_arg (p,ty) = checkPat p ty

The auxiliary function instDataCon looks up the data constructor in the environ-

ment, instantiates its type using instantiate, and splits out the argument types

and result type:

instDataCon :: Name -> Tc ([Sigma], Tau)

Just as with a function application, the argument types of the constructor are

pushed into the argument patterns.

7.4 Data constructors and predicativity

In the preceding discussion, we have implicitly assumed that data types can only

be instantiated with monomorphic types. For example, consider:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

One can construct values of types such as (Tree Int) or (Tree (Tree Int)), but

what about Tree (∀a.a → Int)? More generally, in a type, can the argument of a

type constructor be a σ-type, or must it be a τ -type? Well, the constructor Leaf is a

polymorphic function of type (∀a.a → Tree a), and our restriction to predicativity

therefore requires that we instantiate Leaf only at a τ -type (Section 3.4). So the

simplest solution is to require that type constructors are parameterised only by

monotypes. Then, just as instSigma instantiates a polymorphic function with fresh

meta (mono-)type variables, so instDataCon instantiates the data constructor’s

type with fresh meta (mono-)type variable.

This approach is consistent with our general assumption of predicativity, and it

also finesses some awkward efficiency questions. If one could have (say) a list of

polymorphic functions, when one might ask whether the type [∀a.a → a] is more

polymorphic than [Int → Int]. One might argue that it should certainly be so, but

there are complications. First, in general, the direction of the relationship depends

on the variance of the type parameter—consider types like

data Contra a = Contra (a -> Int)

Here, Contra (Int → Int) would be more, rather than less, polymorphic than

Contra (∀a.a → a). The situation gets more complicated when there are multiple

type arguments, when a type argument appears several times on the right-hand

side, or when a type argument does not appear at all on the right-hand side (so-

called phantom types). Second, if the system does type-directed translation (which

64 Peyton Jones, Vytiniotis, Weirich, and Shields

we discuss in Section 4.8), one would actually need to traverse the entire list at

runtime, coercing each function in the list from type (∀a.a → a) to (Int → Int).

List traversal is a rather expensive operation to happen “behind the scenes” as a

result of type inference.

Still, one can make a case for special treatment for tuples, which are ubiquitous in

functional programs, and allow them to have polymorphic components. Tuples are

all co-variant, of course, and they come with special syntax for construction and

pattern-matching. So a possible syntax for types could be this:

Polytypes σ ::= ∀a.ρ

Rho-types ρ ::= σ1 → σ2 | (σ1, . . . , σn) | τ

Monotypes τ ::= τ1 → τ2 | (τ1, . . . , τn) | K τ | a

so that types like (∀a.a → a, Int) would be legal. Along with this would come

special typing judgements for tuples:

Γ ⊢⇑ ti : ρi (1 ≤ i ≤ n)
tup1

Γ ⊢⇑ (t1, . . . , tn) : (ρ1, . . . , ρn)

Γ ⊢⇓ ti : σi (1 ≤ i ≤ n)
tup2

Γ ⊢⇓ (t1, . . . , tn) : (σ1, . . . , σn)

There would be similar extra typing judgements for patterns. Lastly, one could add

an extra case to the subsumption judgement:

⊢
dsk

σi ≤ σ′
i (1 ≤ i ≤ n)

tuple

⊢
dsk

(σ1, . . . , σn) ≤ (σ′
1, . . . , σ

′
n)

These new typing rules lead directly to new cases in the implementation.

These extensions would allow one to construct, pass around, and pattern-match

tuples with polymorphic components. However, a function such as

fst :: ∀ab.(a, b) → a

can still only be used predicatively, because it is an ordinary polymorphic function.

For example, the application

fst (id :: ∀a.a → a, Int)

would be rejected. Still, the situation is no different with higher rank functions (one

cannot apply map to a higher-rank function, for the same reason), so perhaps it is

acceptable. GHC does not currently implement the impredicative-tuple extension,

so we do not have any concrete experience to report on this question.

8 Type-directed translation

In Section 4.8 we showed how to incorporate a type-directed translation into the

typing rules of the language. We now briefly discuss the following question: how can

we adapt our type inference engine so that it performs type-directed translation at

the same time as type inference?

Practical type inference for arbitrary-rank types 31 July 2007 65

Fortunately, the answer is very straightforward. First, we must add type abstraction

and application to the Term data type:

data Term = ...

| TyLam Name Term -- Type abstraction

| TyApp Term Tau -- Type application

The extra constructors are only used in the output of type inference, not the input.

Notice that the argument of a type application is a τ -type; remember that the sys-

tem is predicative. Next, we need to adjust the type of tcRho to return a translated

term:

tcRho :: Term -> Expected Rho -> Tc Term

where the returned Term has all the type abstractions and applications that are

implicit in the source term. Similarly, checkRho, inferRho, and tcPat all return

translated terms and patterns respectively.

For the most part, the changes are routine. For example, the code for lambdas

becomes:

tcRho (Lam pat body) (Check exp_ty)

= do { (pat_ty, body_ty) <- unifyFun exp_ty

; (pat’, binds) <- checkPat pat pat_ty

; body’ <- extendVarEnvList binds (checkRho body body_ty)

; return (Lam pat’ body’) }

tcRho (Lam pat body) (Infer ref)

= do { (pat’, pat_ty, binds) <- inferPat pat

; (body’, body_ty) <- extendVarEnvList binds (inferRho body)

; writeTcRef ref (pat_ty --> body_ty)

; return (Lam pat’ body’) }

Our other key function, subsCheck, gets the following very interesting type:

subsCheck :: Sigma -> Sigma -> Tc (Term -> Term)

The call (subsCheck s1 s2) returns a coercion that transforms a Term of type s1

into a Term of type s2. The way to think of it is this: subsCheck proves that a type

s1 is more polymorphic than a type s2; it returns a proof of this claim, in the form

of a function that when applied to a term of type s1 returns a term of type s2. We

will see how to write subsCheck shortly, but let us first consider a call, in the Var

case of tcRho:

tcRho (Var v) exp_ty

= do { v_sigma <- lookupVar v

; coercion <- instSigma v_sigma exp_ty

; return (coercion (Var v)) }

Recall that instSigma is a derivative of subsCheck (Section 6.2), and hence also

66 Peyton Jones, Vytiniotis, Weirich, and Shields

returns a Term->Term coercion function. We simply apply the function returned by

instSigma to (Var v), to coerce it to the expected type exp_ty.

8.1 Implementing subsCheck

The implementation of subsCheck is a straightforward extension of the code we

developed in Sections 5.6 and 6.5. One interesting case is subsCheckFun, which

recursively calls subsCheck and composes the two coercions it gets back:

subsCheckFun :: Sigma -> Rho -> Sigma -> Rho -> Tc (Term -> Term)

subsCheckFun a1 r1 a2 r2

= do { co_arg <- subsCheck a2 a1

; co_res <- subsCheckRho r1 r2

; return (\f -> Lam "x" (co_res (App f (co_arg (Var "x"))))) }

The coercion function it returns takes a function-typed term, f, and produces the

function-typed term

\x. co_res (f (co_arg x))

That is, first apply the argument coercion co_arg to x; then apply f, then coerce

the result with the result coercion co_res14.

In a similar way, type abstractions are generated by subsCheck, and type applica-

tions by subsCheckRho (see Section 6.5), but we omit the details here.

8.2 Patterns

One complication is that in principle patterns must be translated as well as terms.

For example, consider:

f = (\(t::Int->Int). \x. t (t x)) :: (∀a.a → a) → Int → Int

This is well-typed in our system. The outer type signature gives a rather restrictive

type to f, requiring f to be applied to a polymorphic argument, but the signature

on t is more generous: any Int->Int function will do. When type-checking the

pattern (t::Int->Int), the call to subsCheck inside checkPat (Section 6.3) will

generate a non-trivial coercion, which must be recorded in the translated pattern.

GHC does exactly this, and uses the coercions, recorded in the pattern, during the

desugaring of nested pattern-matching, subsequent to type inference. Again, we

omit the details.

14 The alert reader will notice that this formulation is not quite right, because the Lam "x" might
capture a free variable "x" in f, but that is easily fixed by generating a fresh variable name, or
by using an extra let binding.

Practical type inference for arbitrary-rank types 31 July 2007 67

8.3 Type classes

One of Haskell’s most distinctive features is its type class system. Again, it turns out

that the type inference engine we have described extends smoothly to embrace type

classes, including their (non-trivial) type-directed translation. All that is needed is

a mechanism to gather type constraints, which can conveniently be handled by the

Tc monad, a constraint solver (which is entirely new), and a way to record the

solution in the translated term (which works in much the same way as the type-

directed translation we have already seen). We have found the mechanism required

to support type classes in a non-higher-rank system (such as Haskell 98) requires

virtually no change to support higher rank types; in that sense, the two features

are almost entirely orthogonal.

8.4 Summary

In this section we have briefly sketched how the type inference engine can be ex-

tended to support type-directed translation, including that required by Haskell’s

type classes. We have only given sketchy details, for reasons of space, but GHC uses

precisely the scheme we sketch, so we know that it scales up without difficulty.

9 Related work

In this section we discuss how our work fits into the wider context of research in

type inference algorithms.

9.1 Finite-rank fragments of System F

System F is a very well-studied language whose type system is impredicative, and

has arbitrary-rank types (Girard, 1990). It is extremely expressive: indeed, we take

System F as the “gold standard” for expressiveness, to which we aspire. From a pro-

gramming point of view, however, System F is extremely verbose and burdensome

to write, because it is explicitly typed. Here is an example:

Λa. λ(g : ∀b.b → a). (g [Char] ’x’, g [Bool] True)

Every binder must be annotated with its type (e.g. (g : ∀b.b → a)). Furthermore,

the terms must include explicit type abstractions and type applications—the forms

Λa.e and e [σ] respectively.

Many people have studied the question: if we erased from System F all the type

abstractions, type applications, and binder annotations, could they be reconstructed

by type inference? The answer is a definite “no”. Even the question “is any type at

all derivable for this expression” is undecidable (Wells, 1999).

68 Peyton Jones, Vytiniotis, Weirich, and Shields

Well, then, perhaps there is a useful subset of System F for which we can perform

type inference? This question has been studied by stratifying System F by rank; the

rank-K subset of System F consists of all expressions that can be typed using types

of rank ≤ K . Kfoury and Wells show that typeability is decidable for rank ≤ 2, and

undecidable for all ranks ≥ 3 (Kfoury & Wells, 1994). For the rank-2 fragment, the

same paper gives a type inference algorithm. This inference algorithm is somewhat

subtle, does not interact well with user-supplied type annotations, and has not, to

our knowledge, been implemented in a production compiler. All of these results are

for the standard, impredicative, System F. We do not know of analogous results for

the predicative fragment of System F.

9.2 MLF

A big disadvantage of the Kfoury/Wells approach is that the finite-rank fragments

of System F do not have principal types. Given a typeable expression, their infer-

ence algorithm will find a type for it, but it cannot guarantee to find a principal

type—that is, one that is more general than any other derivable type for the same

expression. This is a serious problem in practice, where we want to infer the type

of a function and expect that type to be compatible with all possible call sites for

that function. This desire is especially pressing when we want to support separate

compilation with stable interfaces.

Recently, Le Botlan and Rémy—building on previous work by Garrigue and Rémy

on extending ML with semi-explicit first-class polymorphism (Garrigue & Remy, 1999)—

have described a new and ingenious type system, MLF , which supports the impred-

icative polymorphism of System F while retaining principal types (Le Botlan & Rémy, 2003).

They achieve this remarkable rapprochement using a form of constrained polymor-

phism, with a constraint domain very reminiscent of Huet’s classic higher-order

unification algorithm (Huet, 2002). Hence their system is actually more expressive

than System F.

Like us, they do not attempt to infer higher-ranked polymorphism, and instead

accept that the programmer will have to guide the type system using annotations.

Also like us, every program typeable by Damas-Milner can be typed in MLF without

any annotations at all. Though not described in their paper, they also suggest that

annotations may be propagated as we have described here.

However, unlike us, they allow type variables to be instantiated to type schemes.

Furthermore, their type system can discover an appropriate instantiation with-

out the aid of any annotations, at least for arguments which are simply “passed

through” functions. Additionally, MLF only supports covariant instantiation of type

schemes.

The price they pay for these remarkable results is a somewhat complicated type

system. The constraints require that higher-ranked types be encoded in a form

which makes manifest any potential sharing of type variables. The programmer

Practical type inference for arbitrary-rank types 31 July 2007 69

must perform this encoding, and be prepared to interpret the type schemes and

constraints which come back from type inference and type errors. On the other

hand, even more recent work (Leijen & Löh, 2005) indicates that this complexity

eventually may not be daunting.

Overall, we can say MLF supports impredicativity but with a somewhat more indi-

rect approach to higher-ranked types and a more sophisticated inference algorithm,

while our system supports higher-ranked types directly and has a simple inference

algorithm, but without support for impredicativity. Is the additional power of im-

predicativity worth the extra complexity? We have found it hard to find convincing

examples that require impredicativity—but a few years ago no one thought much

about higher-ranked types either. At least we can observe that there is a potential

cost/benefit trade-off to be made, with our system and MLF occupying interestingly

different points on the design spectrum.

9.3 Type inference in general

Considering how many papers there are on type systems, there is surprising little

literature on type inference that is aimed unambiguously at implementors. Cardelli’s

paper was the first widely-read tutorial (Cardelli, 1987), with Hancock’s tutorial

shortly afterwards (Hancock, 1987). More recently Mark Jones’s paper “Typing

Haskell in Haskell” gave an executable implementation of Haskell’s type system

(Jones, 1999). Apart from the higher-rank aspect, the distinguishing feature of our

presentation is the pervasive use of a monad to structure the type inference engine,

and the use of the Expected Rho argument to represent the bidirectional nature of

local type inference.

9.4 Partial type inference

The idea of employing type annotations written by the programmer to guide type

inference is well known. Pierce and Turner call it partial type inference15 in their

influential paper (1998): “the job of a partial type inference algorithm should be to

eliminate especially those type annotations that are both common and silly—i.e.

those that can neither be justified on the basis of their value as checked documen-

tation, nor ignored because they are rare”.

Their paper presents a particular instantiation of partial type inference, which they

call local type inference, to which our work has many similarities. They employ the

idea of pushing types inward to reduce the annotation burden; and we adopted

their presentation of the type system using two judgements (one for inference and

one for checking). However, the focus of their work is on type systems that allow

15 “Partial” in the sense that not every program that can be typed will be accepted by the inference
algorithm, rather than in the sense that type inference may diverge.

70 Peyton Jones, Vytiniotis, Weirich, and Shields

sub-typing, such as System F≤. Even inferring type arguments (which is relatively

simple in our work) then becomes tricky! These difficulties led them to a “fully

un-curried” style of function application and abstraction, which is not necessary

for us, as well as an interesting constraint solver that we do not need. Furthermore,

in their system, no type can be inferred for a lambda abstraction, unless its binder

is annotated; that is, they lack a rule like abs2 from Figure 8.

One shortcoming of local type inference is that it only pushes completely known

types inwards. For example, suppose bar has type ∀a.(Int → a) → a, and consider

the definition

foo w = bar (\x. x+w)

Since the call to bar is instantiated at some unknown type α, local type infer-

ence will not push the partially-known type Int → α into the anonymous function

passed to bar, and the program will be rejected. Odersky, Zenger and Zenger de-

veloped a more sophisticated scheme, called coloured local type inference, that is

capable of propagating partial, as well as total, type information down the tree

(Odersky etal., 2001). In effect, local type inference uses ⇑ and ⇓ in judgements,

whereas coloured local type inference goes further and pushes ⇑ and ⇓ into types

as well. The system is, however, rather complex.

Coloured type inference was, like local type inference, originally developed in the

context of a sub-typing system. It is possible that it could be adapted for the higher-

rank setting, but we have not yet attempted to do so, because we have not found

motivating examples that are untypeable without it. For example, our system has no

difficulty with the funcction foo above, simply because we are not concerned with

sub-typing. For us it is simple to pass partial information downwards, by passing

(Check t) as the Expected Rho parameter to the inference engine, where t is a

type with unbound meta type variables. On the other hand, being able to pass in

partial type information could still be useful: notably, in Section 4.7 we discussed

the information-loss of rule app in Figure 8.

An important point of our bidirectional system is that the types of terms may be

determined with the help of user annotations that are not “on” the terms them-

selves, but maybe further away. A different approach to partial type inference, as

suggested by Rémy (Rémy, 2005), is to introduce an elaboration phase prior to the

actual type inference. During the elaboration phase, bidirectional propagation of

user annotations determines the polymorphic shapes of terms. Shapes capture poly-

morphic information that cannot be inferred and originates in annotations. During

elaboration monomorphic information is kept abstract. However at the end of the

elaboration phase, each term need only be checked against its polymorphic shape—

and the monomorphic type information can be inferred with a unification-based

mechanism. Additionally, in his paper Remy discusses the predicative fragment of

System F and System F closed under η-expansion, and describes the necessary

changes if side-effects are to be added.

Practical type inference for arbitrary-rank types 31 July 2007 71

9.5 Deep skolemisation subsumption

It turns out that our deep skolemisation relation corresponds to the predicative

restriction of a subsumption relation (denoted with ⊢
η

σ1 ≤ σ2) originally proposed

by Mitchell (Mitchell, 1988).

Theorem 9.1 ⊢
dsk

σ1 ≤ σ2 if and only if ⊢
η

σ1 ≤ σ2.

Mitchell’s original relation, also referred to as Mitchell’s containment relation, is

used in type inference for the System F language, closed under η-expansion. Mitchell

showed that a derivation of ⊢
η

σ1 ≤ σ2 exists iff there exists a System F function

of type σ1 → σ2 that, after erasure of types, βη-reduces to the identity. Cru-

cial to this is the distributivity property, which in our system is given by Theo-

rem 4.3. The impredicative version of type containment was shown to be undecid-

able (Tiuryn & Urzyczyn, 1996). Mitchell’s containment was originally presented

in a declarative style; syntax-directed presentations of containment are also well

known (Tiuryn, 2001; Longo etal., 1995). In particular, Longo et al. (Longo etal., 1995)

employ an idea similar to our deep skolemisation. To the best of our knowledge, no

one had previously considered whether the predicative variant of the containment

relation was decidable, although it is not a hard problem; our algorithm in Figure 7

shows that it is decidable.

9.6 Improving error messages

Historically, the most common approach to inference for ML-style type systems, is

the “top-down, left-right” approach, called Algorithm W (Damas & Milner, 1982),

which we introduced in Section 5.3. One big improvement is to use the “pushing

types inwards” trick that we have used extensively in this paper (Section 5.4). For a

long time this idea was folk lore, but its properties are studied by Lee and Yi (1998),

where it is called Algorithm M. This approach is a “cheap and cheerful” approach

to improving error messages: it is simple to implement, gives a big improvement in

most cases, and rewards the programmer for supplying type signatures, but it does

not guarantee an improvement.

The trouble is that even Algorithm M has a left-to-right bias. For example:

f ys = head ys && ys

The uses of ys cannot both be correct—because the first implies that ys is a list,

while the second implies that it is a boolean—but which is wrong? The left-to-

right algorithm arbitrarily reports the second as an error, because when processing

head ys it refines the type of ys to [τ], for some unknown, meta type τ .

A more principled alternative is to remove the arbitrary left-to-right order. Instead

of incrementally solving the typing constraints by unification, get the inference

algorithm to return a set of constraints, and solve them all together. Each constraint

72 Peyton Jones, Vytiniotis, Weirich, and Shields

can carry a location to say which source location gave rise to it, so the error message

can say “these two uses of ys are incompatible”, rather than “the second use is

wrong” or “the first use is wrong”. Apart from generating better error messages,

this approach scales better to richer type systems where the constraints are more

complicated than simple equalities—for example, subtype constraints, or Haskell’s

class constraints. See Pottier and Rémy (2004) for a rather detailed treatment of

this idea, which is also the basis for Helium’s type checker (Heeren etal., 2003).

Incidentally, it should be fairly easy to adapt the type inference engine in this

paper to use the constraint-gathering approach. The Tc monad could carry an

updatable bag of constraints; calls to unify would simply add a constraint to the

bag, rather than solving the constraint immediately; and the constraint solver would

be triggered by a call to getFreeTyVars or getMetaTyVars. In short, almost all

of the necessary changes could be hidden in the implementation of the monadic

primitives of Figure 14.

10 Summary

This is a long paper, but it has a simple conclusion: higher-rank types are definitely

useful, occasionally indispensable, and much easier to implement than one might

guess. Every language should have them!

Acknowlegements

We would like to thank a number of people have given us extremely helpful feedback

about earlier drafts of this paper: Umut Acar, Arthur Baars, Pal-Kristian Engstad,

Matt Hellige, Dean Herrington, Ian Lynagh, Greg Morrisett, Amr Sabry, Yanling

Wang, Keith Wansbrough, Geoffrey Washburn, Joe Wells, and Carl Witty. We are

particularly indebted to Andres Löh, François Pottier, Josef Svenningsson, Norman

Ramsey and his students, and the JFP referees, for their detailed and insightful

comments. Extra thanks to Norman Ramsey for help with Latex magic.

References

Baars, Arthur L, & Swierstra, S. Doaitse. (2002). Typing dynamic typing. Pages 157–166
of: ACM SIGPLAN International Conference on Functional Programming (ICFP’02).
Pittsburgh: ACM.

Bird, Richard, & Paterson, Ross. (1999). De Bruijn notation as a nested datatype. Journal
of Functional Programming, 9(1), 77–91.

Cardelli, L. (1987). Basic polymorphic typechecking. Science of Computer Programming,
8(2), 147–172.

Clement, D, Despeyroux, J, Despeyroux, T, & Kahn, G. (1986). A simple applicative
language: Mini-ML. Pages 13–27 of: ACM Symposium on Lisp and Functional Pro-
gramming. ACM.

Practical type inference for arbitrary-rank types 31 July 2007 73

Damas, Luis, & Milner, Robin. (1982). Principal type-schemes for functional programs.
Pages 207–12 of: Conference record of the 9th annual acm symposium on principles of
programming languages. New York: ACM Press.

Garrigue, Jacques, & Remy, Didier. (1999). Semi-explicit first-class polymorphism for ML.
Journal of information and computation, 155, 134–169.

Gill, A, Launchbury, J, & Peyton Jones, SL. (1993). A short cut to deforestation. Pages
223–232 of: ACM Conference on Functional Programming and Computer Architecture
(FPCA’93). Cophenhagen: ACM Press. ISBN 0-89791-595-X.

Girard, J-Y. (1990). The system F of variable types: fifteen years later. Huet, G (ed),
Logical foundations of functional programming. Addison-Wesley.

Hancock, P. (1987). A type checker. Pages 163–182 of: Peyton Jones, SL (ed), The
implementation of functional programming languages. Prentice Hall.

Heeren, B, Hage, J, & Swierstra, SD. (2003). Scripting the type inference process. In:
(ICFP03, 2003).

Hinze, Ralf. (2000). A new approach to generic functional programming. Pages 119–
132 of: 27th ACM Symposium on Principles of Programming Languages (POPL’00).
Boston: ACM.

Hinze, Ralf. (2001). Manufacturing datatypes. Journal of Functional Programming, 1.

Huet, G. (2002). Higher order unification 30 years later. 15th international workshop on
higher order logic theorem proving and its applications (IWHOLTP’02). LNCS.

ICFP03. (2003). ACM SIGPLAN International Conference on Functional Programming
(ICFP’03). Uppsala, Sweden: ACM.

ICFP05. (2005). ACM SIGPLAN International Conference on Functional Programming
(ICFP’05). Tallinn, Estonia: ACM.

Jones, Mark. (1999). Typing Haskell in Haskell. Meijer, Erik (ed), Proceedings of
the 1999 haskell workshop. Technical Reports, nos. UU–CS–1999–28. Available at
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-28.pdf.

Kfoury, AJ, & Tiuryn, J. (1992). Type reconstruction in finite rank fragments of second-
order lambda calculus. Information and Computation, 98(2), 228–257.

Kfoury, AJ, & Wells, JB. (1994). A direct algorithm for type inference in the rank-2
fragment of the second-order lambda calculus. Pages 196–207 of: ACM Symposium on
Lisp and Functional Programming. Orlando, Florida: ACM.

Lämmel, Ralf, & Peyton Jones, Simon. (2003). Scrap your boilerplate: a practical approach
to generic programming. Pages 26–37 of: ACM SIGPLAN International Workshop on
Types in Language Design and Implementation (TLDI’03). New Orleans: ACM Press.

Launchbury, J, & Peyton Jones, SL. (1995). State in Haskell. Lisp and Symbolic Compu-
tation, 8(4), 293–342.

Le Botlan, D, & Rémy, D. (2003). MLF: raising ML to the power of System F. In:
(ICFP03, 2003).

Lee, Oukseh, & Yi, Kwangkeun. (1998). Proofs about a folklore let-polymorphic type
inference algorithm. ACM Transactions on Programming Languages and Systems, 20(4),
707–723.

Leijen, Daan, & Löh, Andres. (2005). Qualified types for MLF. In: (ICFP05, 2005).

Longo, Giuseppe, Milsted, Kathleen, & Soloviev, Sergei. (1995). A logic of subtyping
(extended abstract). Pages 292–299 of: |lics95|.

Miller, Dale. (1992). Unification under a mixed prefix. J. symb. comput., 14(4), 321–358.

Milner, R. (1978). A theory of type polymorphism in programming. Jcss, 13(3).

Mitchell, John C. (1988). Polymorphic type inference and containment. Inf. comput.,
76(2-3), 211–249.

ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-28.pdf

74 Peyton Jones, Vytiniotis, Weirich, and Shields

Morrisett, G. 1995 (Dec.). Compiling with types. Ph.D. thesis, Carnegie Mellon University.

Odersky, M, & Läufer, K. (1996). Putting type annotations to work. Pages 54–67 of: 23rd
ACM Symposium on Principles of Programming Languages (POPL’96). St Petersburg
Beach, Florida: ACM.

Odersky, Martin, Zenger, Matthias, & Zenger, Christoph. (2001). Colored local type
inference. 28th ACM Symposium on Principles of Programming Languages (POPL’01).
London: ACM.

Okasaki, C. (1999). From fast exponentiation to square matrices: an adventure in types.
Pages 28–35 of: ACM SIGPLAN International Conference on Functional Programming
(ICFP’99). Paris: ACM.

Peyton Jones, Simon. (2001). Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. Pages 47–96 of: Hoare,
CAR, Broy, M, & Steinbrueggen, R (eds), Engineering theories of software construc-
tion, Marktoberdorf Summer School 2000. NATO ASI Series. IOS Press.

Peyton Jones, SL, & Santos, A. (1998). A transformation-based optimiser for Haskell.
Science of Computer Programming, 32(1-3), 3–47.

Pierce, Benjamin. (2002). Types and programming languages. MIT Press.

Pierce, Benjamin C., & Turner, David N. (1998). Local type inference. Pages 252–265
of: 25th ACM Symposium on Principles of Programming Languages (POPL’98). San
Diego: ACM.

Pottier, F, & Rémy, D. (2004). ML. Pierce, BC (ed), Advanced topics in types and
programming languages. MIT Press.

Rémy, Didier. (2005). Simple, partial type inference for System F, based on type contain-
ment. In: (ICFP05, 2005).

Shao, Zhong. 1997 (June). An overview of the FLINT/ML compiler. Proc. 1997 ACM
SIGPLAN workshop on types in compilation (TIC’97).

Shields, Mark, & Peyton Jones, Simon. (2002). Lexically scoped type variables. Microsoft
Research.

Tarditi, D, Morrisett, G, Cheng, P, Stone, C, Harper, R, & Lee, P. (1996). TIL: A
type-directed optimizing compiler for ML. Pages 181–192 of: ACM Conference on
Programming Languages Design and Implementation (PLDI’96). Philadelphia: ACM.

Tiuryn, J, & Urzyczyn, P. (1996). The subtyping problem for second order types is
undecidable. Pages 74–85 of: |lics96|.

Tiuryn, Jerzy. (2001). A sequent calculus for subtyping polymorphic types. Inf. comput.,
164(2), 345–369.

Vytiniotis, Dimitrios, Weirich, Stephanie, & Peyton Jones, Simon. 2005 (July). Practical
type inference for arbitrary-rank types, Technical Appendix. Tech. rept. MS-CIS-05-14.
University of Pennsylvania.

Wells, JB. (1999). Typability and type checking in system F are equivalent and undecid-
able. Ann. Pure Appl. Logic, 98, 111–156.

Practical type inference for arbitrary-rank types 31 July 2007 75

A Appendix

In the Appendix we give the complete code for the higher-rank type-inference en-

gine.

A.1 Type inference

module TcTerm where

import BasicTypes

import Data.IORef

import TcMonad

import List((\\))

import Text.PrettyPrint.HughesPJ

--

-- The top-level wrapper --

--

typecheck :: Term -> Tc Sigma

typecheck e = do { ty <- inferSigma e

; zonkType ty }

-- The expected type --

data Expected a = Infer (IORef a) | Check a

--

-- tcRho, and its variants --

--

checkRho :: Term -> Rho -> Tc ()

-- Invariant: the Rho is always in weak-prenex form

checkRho expr ty = tcRho expr (Check ty)

inferRho :: Term -> Tc Rho

inferRho expr

= do { ref <- newTcRef (error "inferRho: empty result")

; tcRho expr (Infer ref)

; readTcRef ref }

tcRho :: Term -> Expected Rho -> Tc ()

-- Invariant: if the second argument is (Check rho),

-- then rho is in weak-prenex form

tcRho (Lit _) exp_ty

= instSigma intType exp_ty

tcRho (Var v) exp_ty

76 Peyton Jones, Vytiniotis, Weirich, and Shields

= do { v_sigma <- lookupVar v

; instSigma v_sigma exp_ty }

tcRho (App fun arg) exp_ty

= do { fun_ty <- inferRho fun

; (arg_ty, res_ty) <- unifyFun fun_ty

; checkSigma arg arg_ty

; instSigma res_ty exp_ty }

tcRho (Lam var body) (Check exp_ty)

= do { (var_ty, body_ty) <- unifyFun exp_ty

; extendVarEnv var var_ty (checkRho body body_ty) }

tcRho (Lam var body) (Infer ref)

= do { var_ty <- newTyVarTy

; body_ty <- extendVarEnv var var_ty (inferRho body)

; writeTcRef ref (var_ty --> body_ty) }

tcRho (ALam var var_ty body) (Check exp_ty)

= do { (arg_ty, body_ty) <- unifyFun exp_ty

; subsCheck arg_ty var_ty

; extendVarEnv var var_ty (checkRho body body_ty) }

tcRho (ALam var var_ty body) (Infer ref)

= do { body_ty <- extendVarEnv var var_ty (inferRho body)

; writeTcRef ref (var_ty --> body_ty) }

tcRho (Let var rhs body) exp_ty

= do { var_ty <- inferSigma rhs

; extendVarEnv var var_ty (tcRho body exp_ty) }

tcRho (Ann body ann_ty) exp_ty

= do { checkSigma body ann_ty

; instSigma ann_ty exp_ty }

--

-- inferSigma and checkSigma

--

inferSigma :: Term -> Tc Sigma

inferSigma e

= do { exp_ty <- inferRho e

; env_tys <- getEnvTypes

; env_tvs <- getMetaTyVars env_tys

; res_tvs <- getMetaTyVars [exp_ty]

; let forall_tvs = res_tvs \\ env_tvs

; quantify forall_tvs exp_ty }

checkSigma :: Term -> Sigma -> Tc ()

checkSigma expr sigma

= do { (skol_tvs, rho) <- skolemise sigma

; checkRho expr rho

Practical type inference for arbitrary-rank types 31 July 2007 77

; env_tys <- getEnvTypes

; esc_tvs <- getFreeTyVars (sigma : env_tys)

; let bad_tvs = filter (‘elem‘ esc_tvs) skol_tvs

; check (null bad_tvs)

(text "Type not polymorphic enough") }

--

-- Subsumption checking --

--

subsCheck :: Sigma -> Sigma -> Tc ()

-- (subsCheck args off exp) checks that

-- ’off’ is at least as polymorphic as ’args -> exp’

subsCheck sigma1 sigma2 -- Rule DEEP-SKOL

= do { (skol_tvs, rho2) <- skolemise sigma2

; subsCheckRho sigma1 rho2

; esc_tvs <- getFreeTyVars [sigma1,sigma2]

; let bad_tvs = filter (‘elem‘ esc_tvs) skol_tvs

; check (null bad_tvs)

(vcat [text "Subsumption check failed:",

nest 2 (ppr sigma1),

text "is not as polymorphic as",

nest 2 (ppr sigma2)])

}

subsCheckRho :: Sigma -> Rho -> Tc ()

-- Invariant: the second argument is in weak-prenex form

subsCheckRho sigma1@(ForAll _ _) rho2 -- Rule SPEC

= do { rho1 <- instantiate sigma1

; subsCheckRho rho1 rho2 }

subsCheckRho rho1 (Fun a2 r2) -- Rule FUN

= do { (a1,r1) <- unifyFun rho1; subsCheckFun a1 r1 a2 r2 }

subsCheckRho (Fun a1 r1) rho2 -- Rule FUN

= do { (a2,r2) <- unifyFun rho2; subsCheckFun a1 r1 a2 r2 }

subsCheckRho tau1 tau2 -- Rule MONO

= unify tau1 tau2 -- Revert to ordinary unification

subsCheckFun :: Sigma -> Rho -> Sigma -> Rho -> Tc ()

subsCheckFun a1 r1 a2 r2

= do { subsCheck a2 a1 ; subsCheckRho r1 r2 }

instSigma :: Sigma -> Expected Rho -> Tc ()

-- Invariant: if the second argument is (Check rho),

-- then rho is in weak-prenex form

instSigma t1 (Check t2) = subsCheckRho t1 t2

instSigma t1 (Infer r) = do { t1’ <- instantiate t1

; writeTcRef r t1’ }

78 Peyton Jones, Vytiniotis, Weirich, and Shields

A.2 The monad and its operations

module TcMonad(

Tc, -- The monad type constructor

runTc, ErrMsg, lift, check,

-- Environment manipulation

extendVarEnv, lookupVar,

getEnvTypes, getFreeTyVars, getMetaTyVars,

-- Types and unification

newTyVarTy,

instantiate, skolemise, zonkType, quantify,

unify, unifyFun,

-- Ref cells

newTcRef, readTcRef, writeTcRef

) where

import BasicTypes

import qualified Data.Map as Map

import Text.PrettyPrint.HughesPJ

import Data.IORef

import List(nub, (\\))

--

-- The monad itself --

--

data TcEnv

= TcEnv { uniqs :: IORef Uniq, -- Unique supply

var_env :: Map.Map Name Sigma -- Type environment for term variables

}

newtype Tc a = Tc (TcEnv -> IO (Either ErrMsg a))

unTc :: Tc a -> (TcEnv -> IO (Either ErrMsg a))

unTc (Tc a) = a

type ErrMsg = Doc

instance Monad Tc where

return x = Tc (_env -> return (Right x))

fail err = Tc (_env -> return (Left (text err)))

m >>= k = Tc (\env -> do { r1 <- unTc m env

; case r1 of

Left err -> return (Left err)

Right v -> unTc (k v) env })

failTc :: Doc -> Tc a -- Fail unconditionally

failTc d = fail (docToString d)

check :: Bool -> Doc -> Tc ()

Practical type inference for arbitrary-rank types 31 July 2007 79

check True _ = return ()

check False d = failTc d

runTc :: [(Name,Sigma)] -> Tc a -> IO (Either ErrMsg a)

-- Run type-check, given an initial environment

runTc binds (Tc tc)

= do { ref <- newIORef 0

; let { env = TcEnv { uniqs = ref,

var_env = Map.fromList binds } }

; tc env }

where

lift :: IO a -> Tc a

-- Lift a state transformer action into the typechecker monad

-- ignores the environment and always succeeds

lift st = Tc (_env -> do { r <- st; return (Right r) })

newTcRef :: a -> Tc (IORef a)

newTcRef v = lift (newIORef v)

readTcRef :: IORef a -> Tc a

readTcRef r = lift (readIORef r)

writeTcRef :: IORef a -> a -> Tc ()

writeTcRef r v = lift (writeIORef r v)

--

-- Dealing with the type environment --

--

extendVarEnv :: Name -> Sigma -> Tc a -> Tc a

extendVarEnv var ty (Tc m)

= Tc (\env -> m (extend env))

where

extend env = env { var_env = Map.insert var ty (var_env env) }

getEnv :: Tc (Map.Map Name Sigma)

getEnv = Tc (\ env -> return (Right (var_env env)))

lookupVar :: Name -> Tc Sigma -- May fail

lookupVar n = do { env <- getEnv

; case Map.lookup n env of

Just ty -> return ty

Nothing -> failTc (text "Not in scope:" <+> quotes (pprName n)) }

--

-- Creating, reading, writing MetaTvs --

--

newTyVarTy :: Tc Tau

newTyVarTy = do { tv <- newMetaTyVar

80 Peyton Jones, Vytiniotis, Weirich, and Shields

; return (MetaTv tv) }

newMetaTyVar :: Tc MetaTv

newMetaTyVar = do { uniq <- newUnique

; tref <- newTcRef Nothing

; return (Meta uniq tref) }

newSkolemTyVar :: TyVar -> Tc TyVar

newSkolemTyVar tv = do { uniq <- newUnique

; return (SkolemTv (tyVarName tv) uniq) }

readTv :: MetaTv -> Tc (Maybe Tau)

readTv (Meta _ ref) = readTcRef ref

writeTv :: MetaTv -> Tau -> Tc ()

writeTv (Meta _ ref) ty = writeTcRef ref (Just ty)

newUnique :: Tc Uniq

newUnique = Tc (\ (TcEnv {uniqs = ref}) ->

do { uniq <- readIORef ref ;

; writeIORef ref (uniq + 1)

; return (Right uniq) })

--

-- Instantiation --

--

instantiate :: Sigma -> Tc Rho

-- Instantiate the topmost for-alls of the argument type

-- with flexible type variables

instantiate (ForAll tvs ty)

= do { tvs’ <- mapM (_ -> newMetaTyVar) tvs

; return (substTy tvs (map MetaTv tvs’) ty) }

instantiate ty

= return ty

skolemise :: Sigma -> Tc ([TyVar], Rho)

-- Performs deep skolemisation, retuning the

-- skolem constants and the skolemised type

skolemise (ForAll tvs ty) -- Rule PRPOLY

= do { sks1 <- mapM newSkolemTyVar tvs

; (sks2, ty’) <- skolemise (substTy tvs (map TyVar sks1) ty)

; return (sks1 ++ sks2, ty’) }

skolemise (Fun arg_ty res_ty) -- Rule PRFUN

= do { (sks, res_ty’) <- skolemise res_ty

; return (sks, Fun arg_ty res_ty’) }

skolemise ty -- Rule PRMONO

= return ([], ty)

--

-- Quantification --

Practical type inference for arbitrary-rank types 31 July 2007 81

--

quantify :: [MetaTv] -> Rho -> Tc Sigma

-- Quantify over the specified type variables (all flexible)

quantify tvs ty

= do { mapM_ bind (tvs ‘zip‘ new_bndrs) -- ’bind’ is just a cunning way

; ty’ <- zonkType ty -- of doing the substitution

; return (ForAll new_bndrs ty’) }

where

used_bndrs = tyVarBndrs ty -- Avoid quantified type variables in use

new_bndrs = take (length tvs) (allBinders \\ used_bndrs)

bind (tv, name) = writeTv tv (TyVar name)

allBinders :: [TyVar] -- a,b,..z, a1, b1,... z1, a2, b2,...

allBinders = [BoundTv [x] | x <- [’a’..’z’]] ++

[BoundTv (x : show i) | i <- [1 :: Integer ..], x <- [’a’..’z’]]

--

-- Getting the free tyvars --

--

getEnvTypes :: Tc [Type]

-- Get the types mentioned in the environment

getEnvTypes = do { env <- getEnv;

; return (Map.elems env) }

getMetaTyVars :: [Type] -> Tc [MetaTv]

-- This function takes account of zonking, and returns a set

-- (no duplicates) of unbound meta-type variables

getMetaTyVars tys = do { tys’ <- mapM zonkType tys

; return (metaTvs tys’) }

getFreeTyVars :: [Type] -> Tc [TyVar]

-- This function takes account of zonking, and returns a set

-- (no duplicates) of free type variables

getFreeTyVars tys = do { tys’ <- mapM zonkType tys

; return (freeTyVars tys’) }

--

-- Zonking --

-- Eliminate any substitutions in the type

--

zonkType :: Type -> Tc Type

zonkType (ForAll ns ty) = do { ty’ <- zonkType ty

; return (ForAll ns ty’) }

zonkType (Fun arg res) = do { arg’ <- zonkType arg

; res’ <- zonkType res

; return (Fun arg’ res’) }

zonkType (TyCon tc) = return (TyCon tc)

zonkType (TyVar n) = return (TyVar n)

zonkType (MetaTv tv) -- A mutable type variable

= do { mb_ty <- readTv tv

82 Peyton Jones, Vytiniotis, Weirich, and Shields

; case mb_ty of

Nothing -> return (MetaTv tv)

Just ty -> do { ty’ <- zonkType ty

; writeTv tv ty’ -- "Short out" multiple hops

; return ty’ } }

--

-- Unification --

--

unify :: Tau -> Tau -> Tc ()

unify ty1 ty2

| badType ty1 || badType ty2 -- Compiler error

= failTc (text "Panic! Unexpected types in unification:" <+>

vcat [ppr ty1, ppr ty2])

unify (TyVar tv1) (TyVar tv2) | tv1 == tv2 = return ()

unify (MetaTv tv1) (MetaTv tv2) | tv1 == tv2 = return ()

unify (MetaTv tv) ty = unifyVar tv ty

unify ty (MetaTv tv) = unifyVar tv ty

unify (Fun arg1 res1)

(Fun arg2 res2)

= do { unify arg1 arg2; unify res1 res2 }

unify (TyCon tc1) (TyCon tc2)

| tc1 == tc2

= return ()

unify ty1 ty2 = failTc (text "Cannot unify types:" <+> vcat [ppr ty1, ppr ty2])

unifyVar :: MetaTv -> Tau -> Tc ()

-- Invariant: tv1 is a flexible type variable

unifyVar tv1 ty2 -- Check whether tv1 is bound

= do { mb_ty1 <- readTv tv1

; case mb_ty1 of

Just ty1 -> unify ty1 ty2

Nothing -> unifyUnboundVar tv1 ty2 }

unifyUnboundVar :: MetaTv -> Tau -> Tc ()

-- Invariant: the flexible type variable tv1 is not bound

unifyUnboundVar tv1 ty2@(MetaTv tv2)

= do { -- We know that tv1 /= tv2 (else the

-- top case in unify would catch it)

mb_ty2 <- readTv tv2

; case mb_ty2 of

Just ty2’ -> unify (MetaTv tv1) ty2’

Nothing -> writeTv tv1 ty2 }

unifyUnboundVar tv1 ty2

Practical type inference for arbitrary-rank types 31 July 2007 83

= do { tvs2 <- getMetaTyVars [ty2]

; if tv1 ‘elem‘ tvs2 then

occursCheckErr tv1 ty2

else

writeTv tv1 ty2 }

unifyFun :: Rho -> Tc (Sigma, Rho)

-- (arg,res) <- unifyFunTy fun

-- unifies ’fun’ with ’(arg -> res)’

unifyFun (Fun arg res) = return (arg,res)

unifyFun tau = do { arg_ty <- newTyVarTy

; res_ty <- newTyVarTy

; unify tau (arg_ty --> res_ty)

; return (arg_ty, res_ty) }

occursCheckErr :: MetaTv -> Tau -> Tc ()

-- Raise an occurs-check error

occursCheckErr tv ty

= failTc (text "Occurs check for" <+> quotes (ppr tv) <+>

text "in:" <+> ppr ty)

badType :: Tau -> Bool

-- Tells which types should never be encountered during unification

badType (TyVar (BoundTv _)) = True

badType _ = False

A.3 Basic types

module BasicTypes where

-- This module defines the basic types used by the type checker

-- Everything defined in here is exported

import Text.PrettyPrint.HughesPJ

import Data.IORef

import List(nub)

import Maybe(fromMaybe)

infixr 4 --> -- The arrow type constructor

infixl 4 ‘App‘ -- Application

-- Ubiquitous types --

type Name = String -- Names are very simple

84 Peyton Jones, Vytiniotis, Weirich, and Shields

-- Expressions --

-- Examples below

data Term = Var Name -- x

| Lit Int -- 3

| App Term Term -- f x

| Lam Name Term -- \ x -> x

| ALam Name Sigma Term -- \ x -> x

| Let Name Term Term -- let x = f y in x+1

| Ann Term Sigma -- (f x) :: Int

atomicTerm :: Term -> Bool

atomicTerm (Var _) = True

atomicTerm (Lit _) = True

atomicTerm _ = False

-- Types --

type Sigma = Type

type Rho = Type -- No top-level ForAll

type Tau = Type -- No ForAlls anywhere

data Type = ForAll [TyVar] Rho -- Forall type

| Fun Type Type -- Function type

| TyCon TyCon -- Type constants

| TyVar TyVar -- Always bound by a ForAll

| MetaTv MetaTv -- A meta type variable

data TyVar

= BoundTv String -- A type variable bound by a ForAll

| SkolemTv String Uniq -- A skolem constant; the String is

-- just to improve error messages

data MetaTv = Meta Uniq TyRef -- Can unify with any tau-type

type TyRef = IORef (Maybe Tau)

-- ’Nothing’ means the type variable is not substituted

-- ’Just ty’ means it has been substituted by ’ty’

instance Eq MetaTv where

(Meta u1 _) == (Meta u2 _) = u1 == u2

instance Eq TyVar where

(BoundTv s1) == (BoundTv s2) = s1 == s2

(SkolemTv _ u1) == (SkolemTv _ u2) = u1 == u2

type Uniq = Int

data TyCon = IntT | BoolT

Practical type inference for arbitrary-rank types 31 July 2007 85

deriving(Eq)

-- Constructors

(-->) :: Sigma -> Sigma -> Sigma

arg --> res = Fun arg res

intType, boolType :: Tau

intType = TyCon IntT

boolType = TyCon BoolT

-- Free and bound variables

metaTvs :: [Type] -> [MetaTv]

-- Get the MetaTvs from a type; no duplicates in result

metaTvs tys = foldr go [] tys

where

go (MetaTv tv) acc

| tv ‘elem‘ acc = acc

| otherwise = tv : acc

go (TyVar _) acc = acc

go (TyCon _) acc = acc

go (Fun arg res) acc = go arg (go res acc)

go (ForAll _ ty) acc = go ty acc -- ForAll binds TyVars only

freeTyVars :: [Type] -> [TyVar]

-- Get the free TyVars from a type; no duplicates in result

freeTyVars tys = foldr (go []) [] tys

where

go :: [TyVar] -- Ignore occurrences of bound type variables

-> Type -- Type to look at

-> [TyVar] -- Accumulates result

-> [TyVar]

go bound (TyVar tv) acc

| tv ‘elem‘ bound = acc

| tv ‘elem‘ acc = acc

| otherwise = tv : acc

go bound (MetaTv _) acc = acc

go bound (TyCon _) acc = acc

go bound (Fun arg res) acc = go bound arg (go bound res acc)

go bound (ForAll tvs ty) acc = go (tvs ++ bound) ty acc

tyVarBndrs :: Rho -> [TyVar]

-- Get all the binders used in ForAlls in the type, so that

-- when quantifying an outer for-all we can avoid these inner ones

tyVarBndrs ty = nub (bndrs ty)

where

bndrs (ForAll tvs body) = tvs ++ bndrs body

bndrs (Fun arg res) = bndrs arg ++ bndrs res

bndrs _ = []

86 Peyton Jones, Vytiniotis, Weirich, and Shields

tyVarName :: TyVar -> String

tyVarName (BoundTv n) = n

tyVarName (SkolemTv n _) = n

-- Substitution

type Env = [(TyVar, Tau)]

substTy :: [TyVar] -> [Type] -> Type -> Type

-- Replace the specified quantified type variables by

-- given meta type variables

-- No worries about capture, because the two kinds of type

-- variable are distinct

substTy tvs tys ty = subst_ty (tvs ‘zip‘ tys) ty

subst_ty :: Env -> Type -> Type

subst_ty env (Fun arg res) = Fun (subst_ty env arg) (subst_ty env res)

subst_ty env (TyVar n) = fromMaybe (TyVar n) (lookup n env)

subst_ty env (MetaTv tv) = MetaTv tv

subst_ty env (TyCon tc) = TyCon tc

subst_ty env (ForAll ns rho) = ForAll ns (subst_ty env’ rho)

where

env’ = [(n,ty’) | (n,ty’) <- env, not (n ‘elem‘ ns)]

-- Pretty printing class --

class Outputable a where

ppr :: a -> Doc

docToString :: Doc -> String

docToString = render

dcolon, dot :: Doc

dcolon = text "::"

dot = char ’.’

-------------- Pretty-printing terms ---------------------

instance Outputable Term where

ppr (Var n) = pprName n

ppr (Lit i) = int i

ppr (App e1 e2) = pprApp (App e1 e2)

ppr (Lam v e) = sep [char ’\\’ <> pprName v <> text ".", ppr e]

ppr (ALam v t e) = sep [char ’\\’ <> parens (pprName v <> dcolon <> ppr t)

<> text ".", ppr e]

ppr (Let v rhs b) = sep [text "let {",

nest 2 (pprName v <+> equals <+> ppr rhs <+> char ’}’) ,

text "in",

Practical type inference for arbitrary-rank types 31 July 2007 87

ppr b]

ppr (Ann e ty) = pprParendTerm e <+> dcolon <+> pprParendType ty

instance Show Term where

show t = docToString (ppr t)

pprParendTerm :: Term -> Doc

pprParendTerm e | atomicTerm e = ppr e

| otherwise = parens (ppr e)

pprApp :: Term -> Doc

pprApp e = go e []

where

go (App e1 e2) es = go e1 (e2:es)

go e’ es = pprParendTerm e’ <+> sep (map pprParendTerm es)

pprName :: Name -> Doc

pprName n = text n

-------------- Pretty-printing types ---------------------

instance Outputable Type where

ppr ty = pprType topPrec ty

instance Outputable MetaTv where

ppr (Meta u _) = text "$" <> int u

instance Outputable TyVar where

ppr (BoundTv n) = text n

ppr (SkolemTv n u) = text n <+> int u

instance Show Type where

show t = docToString (ppr t)

type Precedence = Int

topPrec, arrPrec, tcPrec, atomicPrec :: Precedence

topPrec = 0 -- Top-level precedence

arrPrec = 1 -- Precedence of (a->b)

tcPrec = 2 -- Precedence of (T a b)

atomicPrec = 3 -- Precedence of t

precType :: Type -> Precedence

precType (ForAll _ _) = topPrec

precType (Fun _ _) = arrPrec

precType _ = atomicPrec

-- All the types are be atomic

pprParendType :: Type -> Doc

pprParendType ty = pprType tcPrec ty

pprType :: Precedence -> Type -> Doc

88 Peyton Jones, Vytiniotis, Weirich, and Shields

-- Print with parens if precedence arg > precedence of type itself

pprType p ty | p >= precType ty = parens (ppr_type ty)

| otherwise = ppr_type ty

ppr_type :: Type -> Doc -- No parens

ppr_type (ForAll ns ty) = sep [text "forall" <+>

hsep (map ppr ns) <> dot,

ppr ty]

ppr_type (Fun arg res) = sep [pprType arrPrec arg <+> text "->",

pprType (arrPrec-1) res]

ppr_type (TyCon tc) = ppr_tc tc

ppr_type (TyVar n) = ppr n

ppr_type (MetaTv tv) = ppr tv

ppr_tc :: TyCon -> Doc

ppr_tc IntT = text "Int"

ppr_tc BoolT = text "Bool"

	Introduction
	Motivation
	The key ideas
	Higher-ranked types
	Exploiting type annotations
	Subsumption
	Predicativity
	Higher-kinded types
	Summary

	Type systems for higher-rank types
	Notation
	The non-syntax-directed Damas-Milner system
	The syntax-directed Damas-Milner system
	Type annotations and subsumption
	Higher-rank types
	A syntax-directed higher-rank system
	Bidirectional type inference
	Type-directed translation
	Metatheory of higher-rank type systems

	Damas-Milner type inference
	Terms and types
	The type-checker monad
	Simple inference
	Propagating types inward
	Instantiation and generalisation
	Subsumption
	Meta type variables and the Tc monad

	Inference for higher rank
	Changes to the basic structure
	Basic rules
	Abstractions
	Generalisation
	Subsumption
	Summary

	Handling a larger language
	Multi-branch constructs
	Rich patterns
	Higher-ranked data constructors
	Data constructors and predicativity

	Type-directed translation
	Implementing subsCheck
	Patterns
	Type classes
	Summary

	Related work
	Finite-rank fragments of System F
	MLF
	Type inference in general
	Partial type inference
	Deep skolemisation subsumption
	Improving error messages

	Summary
	References
	Appendix
	Type inference
	The monad and its operations
	Basic types

