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Origins
Haskell is 20 this year



Lazy functional
programming

(Friedman, Wise, Henderson, 
Morris, Turner)

SK combinators, 
graph reduction

(Turner)

Backus 1978
Can programming be liberated 
from the von Neumann style?

Pure functional programming: 
recursion, pattern matching, 

comprehensions etc etc
(ML, SASL, KRC, Hope, Id)

Dataflow architectures
(Dennis, Arvind et al)

John Backus Dec 1924 – Mar 2007 

Lisp machines
(Symbolics, LMI)

Lambda the Ultimate
(Steele, Sussman)



Dataflow architectures
(Arvind et al)

Lazy functional
programming

(Friedman, Wise, Henderson, 
Morris, Turner)

SK combinators, 
graph reduction

(Turner)

Backus
Can programming be liberated 
from the von Neumann style?

Functional programming: 
recursion, pattern matching, 

comprehensions etc etc
(ML, SASL, KRC, Hope, Id)

FP is respectable
(as well as cool)

Go forth and design new 
languages 

and new computers 
and rule the world



Chaos
Many, many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages 
(Miranda, LML, Orwell, Ponder, Alfl, Clean)

Many compilers

Many architectures 
(mostly doomed)



FPCA, Sept 1987: initial meeting. 
A dozen lazy functional programmers, wanting 

to agree on a common language.

 Suitable for teaching, research, and 
application

 Formally-described syntax and semantics

 Freely available 

 Embody the apparent consensus of ideas

 Reduce unnecessary diversity
Absolutely no clue how much work we were taking on

Led to...a succession of face-to-face meetings



WG2.8 June 1992



WG2.8 June 1992

Dorothy

Sarah



Sarah (b. 1993)



Haskell the cat (b. 2002)
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“Learning Haskell is a great way of 
training yourself to think functionally 

so you are ready to take full advantage 
of C# 3.0 when it comes out” 

(blog Apr 2007)

“I'm already looking at 
coding problems and my 

mental perspective is now 
shifting back and forth 

between purely OO and more 
FP styled solutions” 

(blog Mar 2007)

1990 1995 2000 2005 2010



 Package = unit of distribution

 Cabal: simple tool to install package and all 
its dependencies

 Hackage: central 
repository of 
packages, with 
open upload policy

bash$ cabal install pressburger



Package uploads
Running at 300/month
Over 1350 packages 

Package downloads
heading for 1 million

2 years



Type classes



filter :: (a->Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

| p x       = x : filter p xs

| otherwise = filter p xs

Type signature
Polymorphism
(works for any 

type a)

Higher order

Functions defined 
by pattern 
matching

Guards 
distinguish 
sub-cases



member :: a -> [a] -> Bool

member x [] = False

member x (y:ys) | x==y = True

| otherwise = member x ys

Test for equality

 Can this really work FOR ANY type a?

 E.g. what about functions?
member negate [increment, \x. 0-x]



 Similar problems
 sort :: [a] -> [a]

 (+) :: a -> a -> a

 show :: a -> String

 serialise :: a -> BitString

 hash :: a -> Int

 Unsatisfactory solutions
 Local choice

 Provide equality, serialisation for everything, with 
runtime error for (say) functions



 Local choice
 Write (a + b) to mean (a `plusFloat` b) or 

(a `plusInt` b) depending on type of a,b

 Loss of abstraction; eg member is monomorphic

 Provide equality, serialisation for everything, 
with runtime error for (say) functions
 Not extensible: just a baked-in solution for 

certain baked-in functions

 Run-time errors



Similarly:

square :: Num a => a -> a

square x = x*x

Works for any type „a‟, 
provided ‘a’ is an 

instance of class Num

sort      :: Ord a => [a] -> [a]

serialise :: Show a => a -> String

member    :: Eq a   => a -> [a] -> Bool



square :: Num n => n -> n

square x = x*x

class Num a where

(+)    :: a -> a -> a

(*)    :: a -> a -> a

negate :: a -> a

...etc..

FORGET all 
you know 
about OO 
classes!

The class
declaration says 
what the Num 
operations are

Works for any type „n‟ 
that supports the 
Num operations

instance Num Int where

a + b = plusInt a b

a * b = mulInt a b

negate a = negInt a

...etc..

An instance
declaration for  a 

type T says how the 
Num operations are 
implemented on T‟s

plusInt :: Int -> Int -> Int

mulInt :: Int -> Int -> Int

etc, defined as primitives



square :: Num n => n -> n

square x = x*x

square :: Num n -> n -> n

square d x = (*) d x x

The “Num n =>” turns into an 
extra value argument to the 

function.
It is a value of data type Num n

When you write this... ...the compiler generates this

A value of type (Num T) is a 
vector of the Num operations for 

type T



square :: Num n => n -> n

square x = x*x

class Num a where

(+)    :: a -> a -> a

(*)    :: a -> a -> a

negate :: a -> a

...etc..

The class decl translates to:
• A data type decl for Num
• A selector function for 

each class operation

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

data Num a 

= MkNum (a->a->a)

(a->a->a)

(a->a)

...etc...

(*) :: Num a -> a -> a -> a

(*) (MkNum _ m _ ...) = m

A value of type (Num T) is a 
vector of the Num operations for 

type T



dNumInt :: Num Int

dNumInt = MkNum plusInt

mulInt

negInt

...

square :: Num n => n -> n

square x = x*x

An instance decl for type T 
translates to a value 

declaration for the Num 
dictionary for T

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

A value of type (Num T) is a 
vector of the Num operations for 

type T

instance Num Int where

a + b = plusInt a b

a * b = mulInt a b

negate a = negInt a

...etc..



sumSq :: Num n => n -> n -> n

sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n

sumSq d x y = (+) d (square d x)

(square d y)

Pass on d to squareExtract addition 
operation from d

 You can build big overloaded functions by 
calling smaller overloaded functions



class Eq a where

(==) :: a -> a -> Bool

instance Eq a => Eq [a] where

(==) []     []     = True

(==) (x:xs) (y:ys) = x==y && xs == ys

(==) _      _      = False

data Eq = MkEq (a->a->Bool)

(==) (MkEq eq) = eq

dEqList :: Eq a -> Eq [a]

dEqList d = MkEq eql

where

eql []     []     = True

eql (x:xs) (y:ys) = (==) d x y && eql xs ys

eql _      _      = False  

 You can build big instances by building on 
smaller instances



class Num a where

(+) :: a -> a -> a

(-) :: a -> a -> a 

fromInteger :: Integer -> a

....

inc :: Num a => a -> a

inc x = x + 1

Even literals are 
overloaded

“1” means 
“fromInteger 1”

inc :: Num a -> a -> a

inc d x = (+) d x (fromInteger d 1)



Quickcheck (which is just a Haskell 98 library)
 Works out how many arguments
 Generates suitable

test data
 Runs tests

propRev :: [Int] -> Bool

propRev xs = reverse (reverse xs) == xs

propRevApp :: [Int] -> [Int] -> Bool

propRevApp xs ys = reverse (xs++ys) ==

reverse ys ++ reverse xs

ghci> quickCheck propRev

OK: passed 100 tests

ghci> quickCheck propRevApp

OK: passed 100 tests



quickCheck :: Testable a => a -> IO ()

class Testable a where

test :: a -> RandSupply -> Bool

class Arbitrary a where

arby :: RandSupply -> a 

instance Testable Bool where

test b r = b

instance (Arbitrary a, Testable b) 

=> Testable (a->b) where

test f r = test (f (arby r1)) r2

where (r1,r2) = split r

split :: RandSupply -> (RandSupply, RandSupply)



test propRev r

= test (propRev (arby r1)) r2

where (r1,r2) = split r

= propRev (arby r1)

propRev :: [Int] -> Bool

Using instance for (->)

Using instance for Bool



 Equality, ordering, serialisation

 Numerical operations.  Even numeric constants 
are overloaded

 Monadic operations

 And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monad transformers....

class Monad m where

return :: a -> m a

(>>=)  :: m a -> (a -> m b) -> m b

Note the 
higher-kinded

type variable, m



 Type classes are the most unusual feature of 
Haskell‟s type system

1987 1989 1993 1997

Implementation begins

Despair Hack, 
hack, 
hack 

Hey, what’s 
the big deal?

Incomprehension

Wild enthusiasm



Wadler/
Blott
type 

classes 
(1989)

Multi-
parameter 

type classes 
(1991) Functional 

dependencies 
(2000)

Higher kinded
type variables 

(1995)

Associated 
types (2005)

Implicit 
parameters (2000)

Generic
programming

Testing

Extensible
records (1996) Computation

at the type 
level

“newtype
deriving”

Derivable
type classes

Overlapping 
instances

Variations

Applications



Type classes
and 

object-oriented programming

1. Type-based dispatch, not value-
based dispatch



 A bit like OOP, except that method suite 
passed separately?

 No!!  Type classes implement type-based 
dispatch, not value-based dispatch

class Show where

show :: a -> String

f :: Show a => a -> 

...



 The overloaded value is returned by read2, 
not passed to it.  

 It is the dictionaries (and type) that are 
passed as argument to read2

class Read a where

read :: String -> a

class Num a where

(+) :: a -> a -> a

fromInteger :: Integer -> a

read2 :: (Read a, Num a) => String -> a
read2 s = read s + 2

read2 dr dn s = (+) dn (read dr s) 
(fromInteger dn 2)



So the links to intensional polymorphism are 
closer than the links to OOP.

The dictionary is like a proxy for the 
(interesting aspects of) the type argument of a 
polymorphic function.

f :: forall a. a -> Int
f t (x::t) = ...typecase t...

f :: forall a. C a => a -> Int
f x = ...(call method of C)...

Intensional
polymorphism

Haskell



Type classes
and 

object-oriented programming

1. Type-based dispatch, not value-
based dispatch

2. Haskell “class” ~ OO “interface”



A Haskell class is more like a Java interface
than a Java class: it says what operations  
the type must support.

class Show a where

show :: a -> String

f :: Show a => a -> ...

interface Showable {

String show();

}

class Blah {

f( Showable x ) { 

...x.show()...

} }



 No problem with multiple constraints:

 Existing types can retroactively be made instances 
of new type classes (e.g.  introduce new Wibble
class, make existing types an instance of it)

f :: (Num a, Show a) 

=> a -> ...

class Blah {

f( ??? x ) { 

...x.show()...

} }

class Wibble a where

wib :: a -> Bool

instance Wibble Int where

wib n = n+1

interface Wibble {

bool wib()

}

...does Int support 

Wibble?....



Type classes
and 

object-oriented programming

1. Type-based dispatch, not value-
based dispatch

2. Haskell “class” ~ OO “interface”

3. Generics (i.e. parametric 
polymorphism) , not subtyping



 Haskell has no sub-typing

 Ability to act on argument of various types 
achieved via type classes:

data Tree = Leaf | Branch Tree Tree

f :: Tree -> Int

f t = ...

f‟s argument must 
be (exactly) a Tree

square :: (Num a) => a -> a
square x = x*x

Works for any 
type supporting 

the Num 
interface



 Means that in Haskell you must anticipate 
the need to act on arguments of various  
types

(in OO you can retroactively sub-class Tree)

f :: Tree -> Int

vs

f’ :: Treelike a => a -> Int



 Type annotations:
 Implicit = the type of a fresh binder is inferred

 Explicit = each binder is given a type at its binding 
site

 Cultural heritage:
 Haskell: everything implicit

type annotations occasionally needed

 Java: everything explicit; 
type inference occasionally possible

void f( int x ) { ... }

f x = ...



 Type annotations:
 Implicit = the type of a fresh binder is inferred

 Explicit = each binder is given a type at its binding 
site

 Reason:
 Generics alone => type engine generates equality 

constraints, which it can solve

 Subtyping => type engine generates subtyping
constraints, which it cannot solve (uniquely)

void f( int x ) { ... }

f x = ...



Here we know that the two arguments have 
exactly the same type

class Eq a where

(==) :: a -> a -> Bool

instance Eq a => Eq [a] where

(==) []     []     = True

(==) (x:xs) (y:ys) = x==y && xs == ys

(==) _      _      = False



 In Java (ish):

 In Haskell:

 Compare...

inc :: Numable -> Numable

Any sub-type of 
Numable

Any super-type of 
Numable

inc :: Num a => a -> a

Result has 
precisely same 

type as argument

x::Float

...(inc x)...

x::Float

...(x.inc)...

Numable Float



 In practice, because many operations work 
by side effect, result contra-variance 
doesn‟t matter too much

 In a purely-functional world, where 
setColour, setPosition return a new x, result 
contra-variance might be much more 
important

x.setColour(Blue);

x.setPosition(3,4);

None of this 
changes x‟s type



 Nevertheless, Java and C# both (now) 
support constrained generics

 Very like

class Blah {

<A extends Numable> A inc( A x)

}

inc :: Num a => a -> a



 Variance simply does not arise in Haskell.

 OOP: must embrace variance
 Side effects => invariance
 Generics: type parameters are co/contra/invariant

(Java wildcards, C#4.0 variance annotations)
 Interaction with higher kinds?  

(Scala is about to remove them!)

 Need constraint polymorphism anyway!

class Monad m where

return :: a -> m a

(>>=)  :: m a -> (a -> m b) -> m b



In a language with
• Generics
• Constrained polymorphism
do you need subtyping too?



What I envy 
about OOP



 The power of the dot
 IDE magic

 overload short function
names

 That is:

 (Yes there is more: use argument syntax to further 
narrow which function you mean.)

Use the type of the first (self) argument to 
(a)“x.”:  display candidate functions 
(b)“x.reset”: fix which “reset” you mean 



 Curiously, this is not specific to OOP, or
to sub-typing, or to dynamic dispatch

 Obvious thought: steal this idea and add this 
to Haskell

module M where

import Button -- reset :: Button -> IO ()

import Canvas -- reset :: Canvas -> IO ()

fluggle :: Button -> ...

fluggle b = ...(b.reset)...



 OOP lets you have a collection of 
heterogeneous objects

void f( Shape[] x );

a::Circle

b::Rectangle

....f (new Shape[] {a, b})...



 You can encode this in Haskell, although it is 
slightly clumsy

data Shape where

MkShape :: Shapely a => a -> Shape

a :: Circle

b :: Rectangle

....(f [MkShape a, MkShape b])...

void f( Shape[] x );

a::Circle

b::Rectangle

....f (new Shape[] {a, b})...



 The ability to make run-time type tests is 
hugely important in OOP.

 We have (eventually) figured out to do this 
in Haskell:

cast :: (Typeable a, Typeable b) => a -> Maybe b

class Typeable a where

typeOf :: a -> TypeRep

instance Typeable Bool where

typeOf _ = MkTypeRep “Bool” []

instance Typeable a => Typeable [a] where

typeOf xs = MkTypeRep “List” [typeOf (head xs) ]



New 
developments in 

type classes



class GNum a b where

(+) :: a -> b -> ???

instance GNum Int Int where

(+) x y = plusInt x y

instance GNum Int Float where

(+) x y = plusFloat (intToFloat x) y

test1 = (4::Int) + (5::Int)

test2 = (4::Int) + (5::Float)

plusInt :: Int -> Int -> Int

plusFloat :: Float -> Float -> Float

intToFloat :: Int -> Float



class GNum a b where

(+) :: a -> b -> ???

 Result type of (+) is a function of the 
argument types

 Each method gets a type signature

 Each associated type gets a kind signature

class GNum a b where

type SumTy a b :: *

(+) :: a -> b -> SumTy a b

SumTy is an 
associated type of 

class GNum



 Each instance declaration gives a “witness” 
for SumTy, matching the kind signature

class GNum a b where

type SumTy a b :: *

(+) :: a -> b -> SumTy a b

instance GNum Int Int where

type SumTy Int Int = Int

(+) x y = plusInt x y

instance GNum Int Float where

type SumTy Int Float = Float

(+) x y = plusFloat (intToFloat x) y



 SumTy is a type-level function

 The type checker simply rewrites
 SumTy Int Int -->  Int
 SumTy Int Float --> Float
whenever it can

 But (SumTy t1 t2) is still a perfectly good type, 
even if it can‟t be rewritten.   For example:

class GNum a b where

type SumTy a b :: *

instance GNum Int Int where

type SumTy Int Int = Int

instance GNum Int Float where

type SumTy Int Float = Float

data T a b = MkT a b (SumTy a b)



 Inspired by associated types from OOP

 Fit beautifully with type classes

 Push the type system a little closer to 
dependent types, but not too close!

 Generalise “functional dependencies”

 ...still developing...



 It‟s a complicated world. 

 Rejoice in diversity.  Learn from the 
competition.

 What can Haskell learn from OOP?
 The power of the dot (IDE, name space control)

 What can OOP learn from Haskell?
 The big question for me is: once we have 

wholeheartedly adopted generics, do we still 
really need subtyping?



 See paper “Fun with type functions” [2009] 
on Simon PJ‟s home page



 Consider a finite map, mapping keys to values

 Goal: the data representation of the map 
depends on the type of the key
 Boolean key: store two values (for F,T resp)

 Int key: use a balanced tree

 Pair key (x,y): map x to a finite map from y to 
value; ie use a trie!

 Cannot do this in Haskell...a good program 
that the type checker rejects



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

data Maybe a = Nothing | Just a

Map is indexed by k, 
but parametric in its 

second argument



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

instance Key Bool where

data Map Bool v = MB (Maybe v) (Maybe v)

empty = MB Nothing Nothing

lookup True  (MB _ mt) = mt

lookup False (MB mf _) = mf  

data Maybe a = Nothing | Just a

Optional  value 
for False

Optional value 
for True



class Key k where

data Map k :: * -> *

empty  :: Map k v

lookup :: k -> Map k v -> Maybe v

...insert, union, etc....

instance (Key a, Key b) => Key (a,b) where

data Map (a,b) v = MP (Map a (Map b v))

empty = MP empty

lookup (ka,kb) (MP m) = case lookup ka m of

Nothing -> Nothing

Just m2 -> lookup kb m2

data Maybe a = Nothing | Just a

Two-level 
lookup

Two-level 
map

See paper for lists as keys: arbitrary depth tries



 Goal: the data representation of the map 
depends on the type of the key
 Boolean key: SUM

 Pair key (x,y): PRODUCT

 List key [x]: SUM of PRODUCT + RECURSION

 Easy to extend to other types at will



 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

 Type of the process expresses its protocol

 Client and server should have dual protocols:

run addServer addClient -- OK!

run addServer addServer -- BAD!

Client Server



 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

Client Server

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End

NB punning



 Nothing fancy here

 addClient is similar

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End

addServer :: In Int (In Int (Out Int End))

addServer = In (\x -> In (\y ->

Out (x + y) End))



 Same deal as before: Co is a type-level 
function that transforms a process type into 
its dual

run :: ??? -> ??? -> End

class Process p where

type Co p

run :: p -> Co p -> End

A process A co-process



Just the obvious thing really

class Process p where

type Co p

run :: p -> Co p -> End

instance Process p => Process (In v p) where

type Co (In v p) = Out v (Co p)

run (In vp) (Out v p) = run (vp v) p

instance Process p => Process (Out v p) where

type Co (Out v p) = In v (Co p)

run (Out v p) (In vp) = run p (vp v)

data In v p  = In (v -> p)

data Out v p = Out v p

data End     = End


