Fun with type functions

Oleg Kiselyov Simon Peyton Jones Chung-chieh Shan
May 3, 2010

Abstract

Tony Hoare has always been a leader in writing down and proving prop-
erties of programs. To prove properties of programs automatically, the
most widely used technology today is by far the ubiquitous type checker.
Alas, static type systems inevitably exclude some good programs and
allow some bad ones. Thus motivated, we describe some fun we have
been having with Haskell, by making the type system more expressive
without losing the benefits of automatic proof and compact expression.
Specifically, we offer a programmer’s tour of so-called type families, a re-
cent extension to Haskell that allows functions on types to be expressed
as straightforwardly as functions on values. This facility makes it easier
for programmers to effectively extend the compiler by writing functional
programs that execute during type-checking.

This paper gives a programmer’s tour of type families as they are
supported in GHC.

Source code for all the examples is available at http://research.
microsoft.com/~simonpj/papers/assoc-types/fun-with-type-funs/fun-
with-type-funs.zip

1 Introduction

The type of a function specifies (partially) what it does. Although weak
as a specification language, static types have compensating virtues: they
are

o lightweight, so programmers use them;
e machine-checked with minimal programmer assistance;
o ubiquitous, so programmers cannot avoid them.

As a result, static type checking is by far the most widely used verification
technology today.

Every type system excludes some “good” programs, and permits some
“bad” ones. For example, a language that lacks polymorphism will reject
this “good” program:

f :: [Int] -> [Bool]l -> Int
f is bs = length is + length bs

Why? Because the length function cannot apply to both a list of Ints and
a list of Bools. The solution is to use a more sophisticated type system
in which we can give length a polymorphic type.

Conversely, most languages will accept the expression

speed + distance

where speed is a variable representing speed, and distance represents
distance, even though adding a speed to a distance is as much nonsense
as adding a character to a boolean.

The type-system designer wants to accommodate more good programs
and exclude more bad ones, without going overboard and losing the virtues
mentioned above. In this paper we describe type families, an experimen-
tal addition to Haskell with precisely this goal. We start by using type
families to accommodate more good programs, then turn in Section 5 to
excluding more bad programs. We focus on the programmer, and our
style is informal and tutorial. The technical background can be found
elsewhere [5-7, 42]. The complete code described in the paper is available
. That directory also contains the online version of the paper with addi-
tional appendices, briefly describing the syntax of type functions and the
rules and pitfalls of their use. Appendix C gives an alternative derivation
of typed sprintf using higher-order type-level functions.

2 Associated types: indexing types by
types

Haskell has long offered two ways to express relations on types. Multipa-
rameter type classes express arbitrary, many-to-many relations, whereas
type constructors express specifically functional relations, where one type
(the ‘argument’) uniquely determines the other. For example, the relation
between the type of a list and the type of that list’s elements is a functional
relation, expressed by the type constructor [1 :: * -> * which maps an
arbitrary type a to the type [al of lists of a. A type constructor maps
its argument types uniformly, incorporating them into a more complex
type without inspecting them. Type functions, the topic of this paper,
also establish functional relations between types, but a type function may
perform case analysis on its argument types.

For example, consider the relation between a monad that supports
mutable state and the corresponding type constructor for reference cells.
The I0 monad supports the following operations on reference cells of type
I0Ref a:

newIORef :: a -> I0 (IORef a)
readIORef :: IORef a -> I0 a
writeIORef :: IORef a -> a -> I0 ()

Similarly, the ST s monad supports the analogous operations on reference
cells of type STRef s a:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -=> a -> ST s ()

It is tempting to overload these operations using a multiparameter type
class:

class Mutation m r where

newRef :ta->m (r a)
readRef :: r a ->ma
writeRef :: r a ->a ->m ()

instance Mutation I0 IORef where
newRef = newIORef
..etc...

instance Mutation (ST s) (STRef s) where
newRef = newSTRef
..etc...

This approach has two related disadvantages. First, the types of newRef
and the other class operations are too polymorphic: one could declare an
instance such as

instance Mutation I0 (STRef s) where ...

even though we intend that the I0 monad has exactly one reference type,
namely I0Ref. Second, as a result, it is extremely easy to write programs
with ambiguous typings, such as

readAndPrint :: I0 O
readAndPrint = do { r <- newRef ’x’; v <- readRef r; print v }

We know, from the type signature, that the computation is performed in
the I0 monad, but type checker cannot select the type of r, since the I0
monad could have reference cells of many different types. Therefore, we
must annotate r with its type explicitly. Types are no longer lightweight
when they have to be explicitly specified even for such a simple function.

The standard solution to the second problem is to use a functional
dependency:

class Mutation m r | m -> r where ...

The “m -> r” part says that every m is related to at most one r. Func-
tional dependencies have become a much-used extension of Haskell, and
we return to a brief comparison in Section 6. Meanwhile, the main purpose
of this paper is to explain an alternative approach in which we express the
functional dependency at the type level in an explicitly functional way.

2.1 Declaring an associated type

The class Mutation does not really have two type parameters: it has
one type parameter, associated with another type that is functionally
dependent. Type families allow one to say this directly:

class Mutation m where
type Ref m :: * -> %

newRef ::a->m (Ref m a)
readRef :: Ref ma ->m a
writeRef :: Refma ->a ->m ()

instance Mutation IO where
type Ref I0 = IORef

newRef = newIORef
readRef = readIORef
writeRef = writeIORef

instance Mutation (ST s) where
type Ref (ST s) = STRef s
newRef = newSTRef
readRef = readSTRef
writeRef = writeSTRef

The class declaration now introduces a type function Ref (with a specified
kind) alongside the usual value functions such as newRef (each with a
specified type). Similarly, each instance declaration contributes a clause
defining the type function at the instance type alongside a witness for
each value function.

We say that Ref is a type family, or an associated type of the class
Mutation. It behaves like a function at the type level, so we also call
Ref a type function. Applying a type function uses the same syntax as
applying a type constructor: Ref m a above means to apply the type
function Ref to m, then apply the resulting type constructor to a.

The types of newRef and readRef are now more perspicuous:

newRef :: Mutation m => a -=> m (Ref m a)
readRef :: Mutation m => Ref m a -> m a

Furthermore, by omitting the functionally determined type parameter
from Mutation, we avoid the ambiguity problem exemplified by readAndPrint
above. When performing type inference for readAndPrint, the type of r
is readily inferred to be Ref I0 Char, which the type checker reduces to
IORef Char. In general, the type checker reduces Ref IO to IORef, and
Ref (ST s) to STRef s.

These type equalities aside, Ref behaves like any other type construc-
tor, and it may be used freely in type signatures and data type declara-
tions. For example, this declaration is fine:

data T m a = MKT [Ref m a]

2.2 Arithmetic

In the class Mutation of Section 2.1, we used an associated type to avoid
a two-parameter type class, but that is not to say that associated types
obviate multiparameter type classes. By declaring associated types in
multiparameter type classes, we introduce type functions that take multi-
ple arguments. One compelling use of such type functions is to make type
coercions implicit, especially in arithmetic. Suppose we want to be able to
write add a b to add two numeric values a and b even if one is an Integer
and the other is a Double (without writing fromIntegral explicitly). We
also want to add a scalar to a vector represented by a list without writing
repeat explicitly to coerce the scalar to the vector type. The result type
should be the simplest that is compatible with both operands. We can
express this intent using a two-parameter type class, whose parameters

are the argument types of add, and whose associated type SumTy is the
result:

class Add a b where
type SumTy a b
add :: a -> b -> SumTy a b

instance Add Integer Double where
type SumTy Integer Double = Double
add x y = fromIntegral x + y

instance Add Double Integer where
type SumTy Double Integer = Double
add x y = x + fromIntegral y

instance (Num a) => Add a a where
type SumTy a a = a
add x y =x +y

In other words, SumTy is a two-argument type function that maps the
argument types of an addition to type of its result. The three instance
declarations explain how SumTy behaves on arguments of various types.
We can then write add (3::Integer) (4::Double) to get a result of type
SumTy Integer Double, which is the same as Double.

The same technique lets us conveniently build homogeneous lists out
of heterogeneous but compatible components:

class Cons a b where
type ResTy a b
cons :: a => [b] -> [ResTy a b]

instance Cons Integer Double where
type ResTy Integer Double = Double
cons x ys = fromIntegral x : ys

With instances of this class similar to those of the class Add, we can cons
an Integer to a list of Doubles without any explicit conversion.

2.3 Graphs

Garcia et al. [15] compare the support for generic programming offered
by Haskell, ML, C++, C#, and Java. They give a table of qualitative
conclusions, in which Haskell is rated favourably in all respects except
associated types. This observation was one of the motivations for the
work we describe here. Now that GHC supports type functions, we can
express their main example, but we need an additional kind of associated
type, introduced with the data keyword, which is described in Section 2.4
below:

class Graph g where
type Vertex g
data Edge g
src, tgt :: Edge g —-> Vertex g
outEdges :: g -> Vertex g -> [Edge gl

newtype G1 = G1 [Edge G1]

instance Graph G1 where
type Vertex G1 = Int
data Edge G1 = MkEdgel (Vertex G1) (Vertex G1)
-- ...definitions for methods...

newtype G2 = G2 (Map (Vertex G2) [Vertex G2])

instance Graph G2 where
type Vertex G2 = String
data Edge G2 = MkEdge2 Int (Vertex G2) (Vertex G2)
-- ...definitions for methods...

The class Graph has two associated types, Vertex and Edge. We show
two representative instances. In G1, a graph is represented by a list of its
edges, and a vertex is represented by an Int. In G2, a graph is represented
by a mapping from each vertex to a list of its immediate neighbours, a
vertex is represented by a String, and an Edge stores a weight (of type
Int) as well as its end-points. As these instance declarations illustrate,
the declaration of a Graph instance is free to use the type functions Edge
and Vertex.

2.4 Associated data types

The alert reader will notice in the class Graph that the associated type
for Edge is declared using “data” rather than “type”. Correspondingly,
the instance declarations give a data declaration for Edge, complete with
data constructors MkEdgel and MkEdge2. The reason for this use of data
is somewhat subtle.

A type constructor such as [] expresses a functional relation between
types that is injective, mapping different argument types to different re-
sults. For example, if two list types are the same, then their element types
must be the same, too. This injectivity does not generally hold for type
functions. Consider this function to find the list of vertices adjacent to
the given vertex v in the graph g:

neighbours g v = map tgt (outEdges g v)
We expect GHC to infer the following type:
neighbours :: Graph g => g -> Vertex g -> [Vertex gl

Certainly, outEdges returns a [Edge g1] (for some type gi1), and tgt
requires its argument to be of type Edge g2 (for some type g2). So,
GHC’s type checker requires that Edge g1 ~ Edge g2, where “~” means
type equality." Does that mean that g1 ~ g2, as intuition might suggest?
Not necessarily! If Edge were an associated type, rather than data, we

could have written these instances:

instance Graph G3 where
type Edge G3 = (Int,Int)

instance Graph G4 where
type Edge G4 = (Int,Int)

L«=n is used for too many other things.

so that Edge G3 ~ Edge G4 even though G3 and G4 are distinct. In that
case, the inferred type of neighbours would be:
neighbours :: (Graph gl, Graph g2, Edge gl ~ Edge g2)
=> gl -> Vertex gl -> [Vertex g2]

Although correct, this type is more general and complex than we want. By
declaring Edge with data, we specify that Edge is injective, that Edge g1 ~
Edge g2 indeed implies g1 ~ g2.?> GHC then infers the simpler type we
want.

2.5 Type functions are open

Value-level functions are closed in the sense that they must be defined all
in one place. For example, if one defines

length :: [a] -> Int

then one must give the complete definition of length in a single place:
length [] =0
length (x:xs) = 1 + length xs

It is not legal to put the two equations in different modules.

In contrast, a key property of type functions is that, like type classes
themselves, they are open and can be extended with additional instances
at any time. For example, if next week we define a new type Age, we can
extend SumTy and add to work over Age by adding an instance declaration:

newtype Age = MkAge Int
instance Add Age Int where

type SumTy Age Int = Age
add (MkAge a) n = MkAge (a+n)

We thus can add an Int to an Age, but not an Age or Float to an Age
without another instance.

2.6 Type functions may be recursive

Just as the instance for Show [a] is defined in terms of Show a, a type
function is often defined by structural recursion on the input type. Here
is an example, extending our earlier Add class with a new instance:
instance (Add Integer a) => Add Integer [a] where
type SumTy Integer [a] = [SumTy Integer al
add x y = map (add x) y

Thus
SumTy Integer [Double] ~ [SumTy Integer Double] ~ [Double].

In a similar way, we may extend the Mutation example of Section 2.1 to
monad transformers. Recall that a monad transformer t :: (x=>%) -> (x=>%)

2 A possible extension, not currently implemented by GHC, would be to allow an associated
type synonym declaration optionally to specify that it should be injective, and to check that
this property is maintained as each instance is added.

is a higher-order type constructor that takes a monad m into another
monad t m.

class MonadTrans t where
lift :: Monad m => m a -> t m a

At the value level, 1ift turns a monadic computation (of type m a) into
one in the transformed monad (of type t m a). Now, if a monad m is an
instance of Mutation, then we can make the transformed monad t m into
such an instance too:

instance (Monad m, Mutation m, MonadTrans t)
=> Mutation (t m) where
type Ref (t m) = Ref m
newRef = 1lift . newRef
readRef lift . readRef
writeRef (lift .) . writeRef

The equation for Ref says that the type of references in the transformed
monad is the same as that in the base monad.

3 Optimised container representations

A common optimisation technique is to represent data of different types
differently (rather than uniformly as character strings, for example). This
technique is best known when applied to container data. For example, we
can use the same array container to define a Bool array and to define an
Int array, yet a Bool array can be stored more compactly and negated
elementwise faster when its elements are tightly packed as a bit vector.
C++ programmers use template meta-programming to exploit this idea to
great effect, for example in the Boost library [47]. The following examples
show how to express the same idea in Haskell, using type functions to
map among the various concrete types that represent the same abstract
containers.

3.1 Type-directed memoization

To memoise a function is to improve its future performance by recording
and reusing its past behaviour in a memo table [35]. The memo table
augments the concrete representation of the function without affecting
its abstract interface. A typical way to implement memoization is to
add a lookup from the table on entry to the function and an update to
the table on exit from the function. Haskell offers an elegant way to
express memoization, because we can use lazy evaluation to manage the
lookup and update of the memo table. But type functions offer a new
possibility: the type of the memo table can be determined automatically
from the argument type of the memoised function [12, 19].

We begin by defining a type class Memo. The constraint Memo a means
that the behaviour of a function from an argument type a to a result type w
can be represented as a memo table of type Table a w, where Table is a
type function that maps a type to a constructor.

class Memo a where

data Table a :: *x -> *
toTable :: (a -> w) -> Table a w
fromTable :: Table a w -> (a -> w)

For example, we can memoise any function from Bool by storing its two
return values as a lazy pair. This lazy pair is the memo table.

instance Memo Bool where
data Table Bool w = TBool w w
toTable f = TBool (f True) (f False)
fromTable (TBool x y) b = if b then x else y

To memoise a function £ :: Bool -> Int, we simply replace it by g:

g :: Bool -> Int
g = fromTable (toTable f)

The first time g is applied to True, the Haskell implementation computes
the first component of the lazy pair (by applying £ in turn to True) and
remembers it for future reuse. Thus, if f is defined by

f True = factorial 100
f False = fibonacci 100

then evaluating (g True + g True) will take barely half as much time as
evaluating (f True + f True).

Generalising the Memo instance for Bool above, we can memoise func-
tions from any sum type, such as the standard Haskell type Either:

data Either a b = Left a | Right b

We can memoise a function from Either a b by storing a lazy pair of a
memo table from a and a memo table from b. That is, we take advantage
of the isomorphism between the function type Either a b -> w and the
product type (a -> w, b -> w).

instance (Memo a, Memo b) => Memo (Either a b) where
data Table (Either a b) w = TSum (Table a w) (Table b w)
toTable f = TSum (toTable (f . Left)) (toTable (f . Right))
fromTable (TSum t _) (Left v) = fromTable t v
fromTable (TSum _ t) (Right v) = fromTable t v

Of course, we need to memoise functions from a and functions from b;
hence the “(Memo a, Memo b) =>”" part of the declaration. Dually, we can
memoise functions from the product type (a,b) by storing a memo table
from a whose entries are memo tables from b. That is, we take advantage
of the currying isomorphism between the function types (a,b) -> w and
a->b->w

instance (Memo a, Memo b) => Memo (a,b) where
newtype Table (a,b) w = TProduct (Table a (Table b w))
toTable f = TProduct (toTable (\x -> toTable (\y -> f (x,y))))
fromTable (TProduct t) (x,y) = fromTable (fromTable t x) y

3.2 Memoisation for recursive types

What about functions from recursive types, like lists? No problem! A list
is a combination of a sum, a product, and recursion:

instance (Memo a) => Memo [a] where
data Table [a] w = TList w (Table a (Table [a] w))
toTable f = TList (f [])
(toTable (\x -> toTable (\xs -> f (x:xs))))
fromTable (TList t _) [] =t
fromTable (TList t) (x:xs) = fromTable (fromTable t x) xs

As in Section 3.1, the type function Table is recursive. Since a list is either
empty or not, Table [Bool] w is represented by a pair (built with the
data constructor TList), whose first component is the result of applying
the memoised function f to the empty list, and whose second component
memoises applying f to non-empty lists. A non-empty list (x:xs) belongs
to a product type, so the corresponding table maps each x to a table that
deals with xs. We merely combine the memoization of functions from
sums and from products.

It is remarkable how laziness takes care of the recursion in the type [a].
A memo table for a function f maps every possible argument x of £
to a result (£ x). When the argument type is finite, such as Bool or
(Bool,Bool), the memo table is finite as well, but what if the argument
type is infinite, such as [Bool]? Then, of course, the memo table is in-
finite: in the instance declaration above, we define toTable for [a] not
only using toTable for a but also using toTable for [a] recursively. Just
as each value (f x) in a memo table is evaluated only if the function is
ever applied to that particular x, so each sub-table in this memo table is
expanded only if the function is ever applied to a list with that prefix. So
the laziness works at two distinct levels.

Now that we have dealt with sums, products, and recursion, we can
deal with any data type at all. Even base types like Int or Integer can be
handled by first converting them (say) to a list of digits, say [Booll. Alter-
natively, it is equally easy to give a specialised instance for Table Integer
that uses some custom (but infinite!) tree representation for Integer.

More generally, if we define Memo instances — once and for all — for
sum types, product types, and fixpoint types, then we can define a Memo
instance for some new type just by writing an isomorphism between the
new type and a construction out of sum types, product types, and fixpoint
types. These boilerplate Memo instances can in fact be defined generically,
with the help of functional dependencies [8] or type functions.?

3.3 Generic finite maps

A finite map is a partial function from a domain of keys to a range of
values. Finite maps can be represented using many standard data struc-
tures, such as binary trees and hash tables, that work uniformly across
all key types. However, our memo-table development suggests another
possibility, that of representing a finite map using a memo table:

3http://hackage.haskell.org/cgi-bin/hackage-scripts/package/pointless-haskell

10

type Map key val = Table key (Maybe val)

That is, we represent a partial function from key to val as a total function
from key to Maybe val. But we get two problems. The smaller one is that
whereas Table did not need an insert method — once we construct the
memo table, we never need to update it — Map needs insert and many
other methods including delete and union. These considerations might
lead us to add insert, delete, etc. to the Table interface, where they
appear quite out of place. A nicer alternative would be to define a sub-
class of Table.

The second, more substantial problem is that Table is unnecessarily
inefficient in the way it represents keys that map to Nothing. An extreme
case is an empty map whose key type is Integer. An efficient finite
map would represent an empty map as an empty trie, so that the lookup
operation returns immediately with Nothing. If instead we represent the
empty map as an (infinite) Table mapping every Integer to Nothing, each
lookup will explore a finite path in the potentially infinite tree, taking time
proportional the number of bits in the Integer. Furthermore, looking
up many Integers in such a Table would force many branches of the
Table, producing a large tree in memory, with Nothing in every leaf!
Philosophically, it seems nicer to distinguish the mapping of a key to
Nothing from the absence of the mapping for that key.

For these reasons, it makes sense to implement Map afresh [19, 22].
As with Memo, we define a class Key and an associated data type Map:

class Key k where
data Map k :: * -> *
empty :: Map k v
lookup :: k -> Map k v -> Maybe v
-- ...many other methods could be added...
Now the instances follow in just the same way as before:

instance Key Bool where
data Map Bool elt = MB (Maybe elt) (Maybe elt)
empty = MB Nothing Nothing
lookup False (MB mf _) = mf
lookup True (MB _ mt) mt

instance (Key a, Key b) => Key (Either a b) where
data Map (Either a b) elt = MS (Map a elt) (Map b elt)
empty = MS empty empty
lookup (Left k) (MS m _)
lookup (Right k) (MS _ m)

lookup k m
lookup k m

instance (Key a, Key b) => Key (a,b) where
data Map (a,b) elt = MP (Map a (Map b elt))
empty = MP empty
lookup (a,b) (MP m) = case lookup a m of
Nothing -> Nothing
Just m’ -> lookup b m’

The fact that this is a finite map makes the instance for Int easier than
before, because we can simply invoke an existing data structure (a Patricia
tree, for example) for finite maps keyed by Int:

11

instance Key Int where
newtype Map Int elt = MI (Data.IntMap.IntMap elt)
empty = MI Data.IntMap.empty
lookup k (MI m) = Data.IntMap.lookup k m

Implementations of other methods (such as insert and union) and in-
stances at other types (such as lists) are left as exercises for the reader.
Hutton describes another example with the same flavour [24].

3.4 Session types and their duality

We have seen a recursively defined correspondence between the type of
keys and the type of a finite map over those keys. The key and the
lookup function of a finite map can be regarded as a pair of processes that
communicate in a particular way: the key sends indices to the lookup, then
the lookup responds with the element’s value. In this section, we generalise
this correspondence to the relationship between a pair of processes that
communicate with each other by sending and receiving values in a session.
For example, consider the following definitions:

data Stop = Done
newtype In a b = In (a -> I0 b)
data Out a b = Out a (I0 b)

add_server :: In Int (In Int (Out Int Stop))
add_server = In $ \x -> return $ In $ \y —>
do { putStrLn "Thinking"
; return $ Out (x + y) (return Done) }

The function-like value add_server accepts two Ints in succession, then
prints “Thinking” before responding with an Int, their sum. We call
add_server a process, whose interface protocol is specified by its type —
so called session type. We write session types explicitly in this section,
but they can all be inferred.

We may couple two processes whose protocols are complementary, or
dual:

class Session a where
type Dual a
run :: a -> Dual a -> I0 ()

Of course, to write down the definition of run we must also say what it
means to be dual. Doing so is straightforward:

instance (Session b) => Session (In a b) where
type Dual (In a b) = Out a (Dual b)
run (In f) (OQut ad) =f a>>=\b ->d >= \c ->run b ¢

instance (Session b) => Session (Out a b) where
type Dual (Out a b) = In a (Dual b)
run (Out a d) (In f) = f a >=\b ->d >=\c ->run c b

instance Session Stop where
type Dual Stop = Stop
run Done Done = return ()

12

The type system guarantees that the protocols of the two processes match.
Thus, if we write a suitable client add_client, like

add_client :: Out Int (Out Int (In Int Stop))
add_client = Out 3 $ return $ Out 4 $
do { putStrLn "Waiting"
; return $ In $ \z -> print z >> return Done }

we may couple them (either way around):

> run add_server add_client
Thinking

Waiting

7

> run add_client add_server
Thinking

Waiting

7

However, run will not allow us to couple two processes that do not have
dual protocols. Suppose that we write a negation server:

neg_server :: In Int (Out Int Stop)
neg_server = In $§ \x ->
do { putStrLn "Thinking"
; return $ Out (-x) (return Done) }

Then (run add_client neg_server) will fail with a type error. Just as
the Memo class represents functions of type a -> w by memo tables of the
matching type Table a w, this Session class represents consumers of type
a -> I0 () by producers of the matching type Dual a.

These protocols do not allow past communication to affect the type
and direction of future exchanges. For example, it seems impossible to
write a well-typed server that begins by receiving a Bool, then performs
addition if True is received and negation if False is received. However,
we can express a protocol that chooses between addition and negation (or
more generally, a protocol that chooses among a finite number of ways
to continue). We simply treat such a binary choice as a distinct sort of
protocol step. The receiver of the choice has a product type, whereas the
sender has a sum type:

instance (Session a, Session b) => Session (Either a b) where
type Dual (Either a b) = (Dual a, Dual b)
run (Left y) (x,.) =runy x
run (Right y) (_,x) = run y x

instance (Session a, Session b) => Session (a, b) where
type Dual (a,b) = Either (Dual a) (Dual b)
run (x,_) (Left y) =run xy
run (_,x) (Right y) = run x y

These additional instances let us define a combined addition-negation
server, along with a client that chooses to add. The two new processes
sport (inferable) types that reflect their initial choice.

13

server :: (In Int (Out Int Stop),
In Int (In Int (Out Int Stop)))
server = (neg_server, add_server)

client :: Either (Out Int (In Int Stop))
(Out Int (Out Int (In Int Stop)))
client = Right add_client

To connect server and client, we can evaluate either run server client
or run client server. The session type of the client hides which of the
two choices the client eventually selects; the choice may depend on user in-
put at run time, which the type checker has no way of knowing. The type
checker does statically verify that the corresponding server can handle
either choice.

With the instances defined above, each protocol allows only a finite
number of exchanges, so a server cannot keep looping until the client
disconnects. This restriction is not fundamental: recursion in protocols
can be expressed, for example using an explicit fixpoint operator at the
type level [38].

We can also separate the notion of a process from that of a channel,
and associate a protocol with the channel rather than the process. This
and other variants have been explored in other works [26, 27, 36, 38, 41],
from which we draw the ideas of this section in a simplified form.

In principle, we can require that Dual be an involution (that is, Dual be
its own inverse) by adding a equality constraint as a superclass of Session:

class (Dual (Dual a) ~ a) => Session a where ...

We can then invoke run on a pair of processes without worrying about
which process is known to be the dual of which other process. More gen-
erally, this technique lets us express bijections between types. However,
such equality superclasses are not yet implemented in the latest release of
GHC (6.10).

4 Typed sprintf and sscanf

We conclude the first half of the paper, about using type functions to
accommodate more good programs, with a larger example: typed sprintf
and sscanf.

A hoary chestnut for typed languages is the definition of sprintf and
sscanf. Although these handy functions are present in many languages
(such as C and Haskell), they are usually not type-safe: the type checker
does not stop the programmer from passing to sprintf more or fewer
arguments than required by the format descriptor. The typing puzzle is
that we want the following to be true:

sprintf "Name=%s" :: String -> String
sprintf "Age=%d" :: Int -> String
sprintf "Name=Ys, Age=)d" :: String -> Int -> String

That is, the type of (sprintf fs) depends on the value of the format de-
scriptor £s. Supporting such dependency directly requires a full-spectrum

14

dependently typed language, but there is a small literature of neat tech-
niques for getting close without such a language [1, 9, 20]. Here we show
one technique using type families. In fact, we accomplish something more
general: typed sprintf and sscanf sharing the same format descriptor.
Typed sprintf has received a lot more attention than typed sscanf, and
it is especially rare for an implementation of both to use the same format
descriptor.

4.1 Typed sprintf
We begin with two observations:

e Format descriptors in C are just strings, which leaves the door
wide open for malformed descriptors that sprintf does not recog-
nise (e.g., sprintf "%?"). The language of format descriptors is a
small domain-specific language, and the type checker should reject
ill-formed descriptors.

e In Haskell, we cannot make the type of (sprintf f) depend on the
value of the format descriptor £. However, using type functions, we
can make it depend on the type of £.

Putting these two observations together suggests that we use a now-
standard design pattern: a domain-specific language expressed using a
generalised algebraic data type (GADT) indexed by a type argument.
Concretely, we can define the type of format descriptors F as follows:

data F f where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V val)
Cmp :: F f1 -> F £2 -> F (C f1 £2)

data L
data V val
data C f1 f2

type Parser a = String -> [(a,String)]
type Printer a = a -> String

So Fis a GADT with three constructors, Lit, Val, and Cmp.* Our intention
is that (sprintf f) should behave as follows:

e If f =Lit s, then print (that is, return as the output string) s.

e Iff =Cmp f1 £2, then print according to descriptor £1 and continue
according to descriptor £2.

e Iff =Val r p, then use the printer p to convert the first argument to
a string to print. (The r argument is used for parsing in Section 4.2

below.)
If fmt :: F ty, then the type ty encodes the shape of the term fmt. For
example, given int :: F (V Int), we may write the following format
descriptors:

4«Cmp” is short for “compose”.

15

f_1d = Lit "day" :: F L

f_1ds = Cmp (Lit "day") (Lit "s") :: F (CL L)

f_dn = Cmp (Lit "day ") int :: F (CL (V Int))
f_nds = Cmp int (Cmp (Lit " day") (Lit "s")) :: F (C (V Int) (C L L))

In each case, the type encodes an abstraction of the value. (We have
specified the types explicitly, but they can be inferred.) The types L, V,
and C are type-level abstractions of the terms Lit, Val, and Cmp. These
types are uninhabited by any value, but they index values in the GADT F,
and they are associated with other, inhabited types by two type functions.
We turn to these type functions next.

We want an interpreter sprintf for this domain-specific language, so
that:

sprintf :: F f -> SPrintf f

where SPrintf is a type function that transforms the (type-level) format
descriptor £ to the type of (sprintf f). For example, the following should

all work:
sprintf f_1d -- Result: "day"
sprintf f_lds -- Result: "days"
sprintf f_dn 3 -- Result: "day 3"
sprintf f_nds 3 -- Result: "3 days"

It turns out that the most convenient approach is to use continuation-
passing style, at both the type level and the value level. At the type
level, we define SPrintf above using an auxiliary type function TPrinter.
Because TPrinter has no accompanying value-level operations, a type
class is not needed. Instead, GHC allows the type function to be defined
directly, like this:®

type SPrintf f = TPrinter f String

type family TPrinter f x

type instance TPrinter L X =X

type instance TPrinter (V val) x = val -> x

type instance TPrinter (C f1 f2) x = TPrinter f1 (TPrinter £f2 x)

So SPrintf is actually just a vanilla type synonym, which calls the type
function TPrinter with second parameter String. Then TPrinter trans-
forms the type as required. For example:

SPrintf (C L (V Int)) TPrinter (C L (V Int)) String
TPrinter L (TPrinter (V Int) String)
TPrinter (V Int) String
Int -> String

2222

At the value level, we proceed thus:

5GHC requires the alarming flag ~-XAllowUndecidableInstances to accept the (C f£1 £2)
instance for TPrinter, because the nested recursive call to TPrinter does not “obviously
terminate”. Of course, every call to TPrinter does terminate, because the second argument
(where the nested recursive call is made) is not scrutinised by any of the equations, but this is
a non-local property that GHC does not check. The flag promises the compiler that TPrinter
will terminate; the worst that can happen if the programmer makes an erroneous promise is
that the type checker diverges.

16

sprintf :: F £ -> SPrintf f
sprintf p = printer p id

printer :: F £ -> (String -> a) -> TPrinter f a
printer (Lit str) k = k str
printer (Val _ show) k = \x -> k (show x)
printer (Cmp f1 f2) k = printer f1 (\s1 ->
printer £2 (\s2 ->
k (s1++s2)))

It is interesting to see how printer type-checks. Inside the Lit branch,
for example, we know that f is L, and hence that the desired result type
TPrinter f a is TPrinter L a, or just a. Since k str :: a, the actual
result type matches the desired one. Similar reasoning applies to the Val
and Cmp branches.

4.2 Typed sscanf

We can use the same domain-specific language of format descriptors for
parsing as well as printing. That is, we can write
sscanf :: F f -> SScanf f

where SScanf is a suitable type function. For example, reusing the format
descriptors defined above, we may write:

sscanf f_1d "days long" -- Result: Just ((), "s long")
sscanf f_1d "das long" -- Result: Nothing

sscanf f_1lds "days long" -- Result: Just ((), " long")
sscanf f_dn ‘"day 4." -- Result: Just (((),4), ".")

In general, sscanf f sreturns Nothing if the parse fails, and Just (v,s’)
if it succeeds, where s’ is the unmatched remainder of the input string,
and v is a (left-nested) tuple containing the parsed values. The details
are now fairly routine:

type SScanf f = String -> Maybe (TParser f (), String)

type family TParser f x

type instance TParser L X =X

type instance TParser (V val) x = (x,val)

type instance TParser (C f1 f2) x = TParser f2 (TParser f1 x)

sscanf :: F f -> SScanf £
sscanf fmt inp = parser fmt () inp

parser :: F f -> a -> String -> Maybe (TParser f a, String)
parser (Lit str) v s = parselit str v s
parser (Val reads _) v s = parseVal reads v s
parser (Cmp f1 £2) v s = case parser fl v s of
Nothing -> Nothing
Just (vi,sl1) -> parser f2 vl si

parselit :: String -> a -> String -> Maybe (a, String)
parselLit str v s = case prefix str s of

Nothing -> Nothing

Just s’ -> Just (v, s’)

17

parseVal :: Parser b -> a -> String -> Maybe ((a,b), String)
parseVal reads v s = case reads s of

[(v’,s°)] -> Just ((v,v’),s’)
-> Nothing

4.3 Reflections

We conclude with a few reflections on the design.

e Our Val constructor makes it easy to add printers for new types.
For example:

newtype Dollars = MkD Int

dollars :: F (V Dollars)
dollars = Val read_dol show_dol

where
read_dol (’°$’:s) = [(MkD d, s) | (d,s) <- reads s]
read_dol _ =[]

show_dol (MkD d) = °$’ : show d

e Our approach is precisely that of Hinze [20], except that we use type
functions and GADTSs (unavailable when Hinze wrote) to produce a
much more elegant result.

e It is (just) possible to take the domain-specific-language approach
without using type functions, albeit with less clarity and greater
fragility [31].

e Defining F as a GADT makes it easy to define new interpreters be-
yond sprintf and sscanf, but hard to add new format-descriptor
combinators. A dual approach [33], which makes it easy to add new
descriptors but hard to define new interpreters, is to define F as a
record of operations:

data F £ = F {
printer :: forall a. (String -> a) -> TPrinter f a,
parser :: forall a. a -> String
-> Maybe (TParser f a, String) }

Instead of being a GADT, F becomes a higher-rank data construc-
tor — that is, its arguments are polymorphic functions. The type
functions TPrinter and TParser are unchanged. The format-descriptor
combinators are no longer data constructors but ordinary functions
instead:
lit :: String -> F I
lit str = F { printer = \k -> k str,

parser = parselit str }

int :: F (V Int)
int = F { printer = \k i -> k (show i),
parser = parseVal reads }

e If we consider only sprintf or only sscanf, then the type-level for-
mat descriptor is the result of defunctionalizing a type-level function,
and TPrinter or TParser is the apply function [10, 39]. Considering

18

sprintf and sscanf together takes format descriptors out of the
image of defunctionalization.

In general, type functions let us easily express a parser that operates on
types (and produces corresponding values). In this way, we can overlay our
own domain-specific, variable-arity syntax onto Haskell’s type system.®
For example, we can concisely express XML documents,” linear algebra,®
and even keyword arguments.’

5 Fun with phantom types

Each type function above returns types that are actually used in the
value-level computations. In other words, type functions are necessary to
type-check the overloaded functions above. For example, it is thanks to
the type function Ref that the value functions newIORef and newSTRef can
be overloaded under the name newRef. In contrast, this section considers
type functions that operate on so-called phantom types.

Phantom types enforce distinctions among values with the same run-
time representation, such as numbers with different units [30] and strings
for different XML elements. Functions on phantom types propagate these
distinctions through a static approximation of the computation. Phantom
types and functions on them thus let us reason more precisely about a
program’s behaviour before running it, essentially by defining additional
type-checking rules that refine Haskell’s built-in ones. The reader may find
many applications of phantom types elsewhere [13, 14, 21]; our focus here
is on the additional expressiveness offered by type families — to exclude
more bad programs.

5.1 Pointer arithmetic and alignment

The refined distinctions afforded by phantom types are especially useful in
embedded and systems programming, where a Haskell program (or code it
generates) performs low-level operations such as direct memory access and
interacts with hardware device drivers [11, 32]. It is easy to use phantom
types to enforce access permissions (read versus write), but we take the
example of pointer arithmetic and alignment to illustrate the power of
type functions.

Many hardware operations require pointers that are properly aligned
(that is, divisible) by a statically known small integer, even though every
pointer, no matter how aligned, is represented by a machine word at run
time. Our goal is to distinguish the types of differently aligned pointers
and thus prevent the use of misaligned pointers.

Before we can track pointer alignment, we first need to define natural
numbers at the type level. The type Zero represents 0, and if the type n
represents n then the type Succ n represents n + 1.

Shttp://okmij.org/ftp/Haskell/types.html#polyvar-fn
"http://okmij.org/ftp/Haskell/typecast.html#solving-read-show
8http://okmij.org/ftp/Haskell/typecast.html#is—function-type
9mttp://okmij.org/ftp/Haskell/keyword-arguments.1lhs

19

data Zero
data Succ n

For convenience, we also define synonyms for small type-level numbers.

type One = Succ Zero
type Two = Succ One
type Four = Succ (Succ Two)
type Six = Succ (Succ Four)

type Eight = Succ (Succ Six)

These type-level numbers belong to a class Nat, whose value member
toInt lets us read off each number as an Int:

class Nat n where
toInt :: n -> Int
instance Nat Zero where

toInt _ =0
instance (Nat n) => Nat (Succ n) where
toInt _ = 1 + toInt (undefined :: n)

In this code, toInt uses a standard Haskell idiom called prozy arguments.
As the underscores in its instances show, toInt never examines its argu-
ment. Nevertheless, it must take an argument, as a proxy that specifies
which instance to use. Here is how one might call toInt:

Prelude> toInt (undefined :: Two)
2

We use Haskell’s built-in undefined value, and specify that it has type
Two, thereby telling the compiler which instance of Nat to use. There is
exactly such a call in the (Succ n) instance of Nat, only in that case the
proxy argument is given the type n, a lexically scoped type variable.

As promised above, we represent a pointer or offset as a machine word
at run time, but use a phantom type at compile time to track how aligned
we know the pointer or offset to be.

newtype Pointer n = MkPointer Int
newtype Offset n = MkOffset Int

Thus a value of type Pointer n is an n-byte-aligned pointer; and a value
of type Offset n is a multiple of n. For example, a Pointer Four is a
4-byte-aligned pointer. Pointer n is defined as a newtype and so the data
constructor MkPointer has no run-time representation. In other words,
the phantom-type alignment annotation imposes no run-time overhead.

To keep this alignment knowledge sound, the data constructors MkPointer
and MkOffset above must not be exported for direct use by clients. In-
stead, clients must construct Pointer and Offset values using “smart
constructors”. One such constructor is multiple:

multiple :: forall n. (Nat n) => Int -> Offset n
multiple i = MkOffset (i * toInt (undefined :: n))

So (multiple i) is the i-th multiple of the alignment specified by the
return type. For example, evaluating multiple 3 :: Offset Four yields
MkOffset 12, the 3rd multiple of a Four-byte alignment.

20

When a pointer is incremented by an offset, the resulting pointer is
aligned by the greatest common divisor (GCD) of the alignments of the
original pointer and the offset. To express this fact, we define a type
function GCD to compute the GCD of two type-level numbers. Actually,
GCD takes three arguments: GCD d m n computes the GCD of d+m and d+n.
We will define GCD in a moment, but assuming we have it we can define
add:

add :: Pointer m -> Offset n -> Pointer (GCD Zero m n)
add (MkPointer x) (MkOffset y) = MkPointer (x + y)

Thus, if p has the type Pointer Eight and o has the type 0ffset Six,
then add p o has the type Pointer Two.

The type checker does not check that x + y is indeed aligned by the
GCD. Like multiple, the function add is trusted code, and its type
expresses claims that its programmer must guarantee. Once she does
so, however, the clients of add have complete security. If fetch32 is an
operation that works on 4-aligned pointers only, then we can give it the
type

(GCD Zero n Four ~ Four) => Pointer n -> I0 ()

In words, fetch32 works on any pointer whose alignment’s GCD with 4
is 4. It is then a type error to apply fetch32 to add p o, but it is accept-
able to apply fetch32 to p.

Because the type function GCD has no accompanying value-level oper-
ations, we can define it without a type class:

type family GCD d m n

type instance GCD d Zero Zero = d

type instance GCD d (Succ m) (Succ n) = GCD (Succ d) m n

type instance GCD Zero (Succ m) Zero = Succ m

type instance GCD (Succ d) (Succ m) Zero = GCD (Succ Zero) d m
type instance GCD Zero Zero (Succ n) = Succ n

type instance GCD (Succ d) Zero (Succ n) = GCD (Succ Zero) d n

5.2 Tracking state and control in a parameterised
monad

Because actions in Haskell are values as well, phantom types can be used to
enforce properties on actions and control flow as well as on values and data
flow. In particular, we can express the preconditions and postconditions
of monadic actions by generalising monads to parameterised monads [2].
A parameterised monad is a type constructor that takes three arguments,
reminiscent of a Hoare triple: an initial state, a final state, and the type of
values produced by the action. As shown in the following class definition
(generalising the Monad class), a pure action does not change the state,
and concatenating two actions identifies the final state of the first action
with the initial state of the second action.

class PMonad m where
unit :: a->mppa
bind :: mpga->(a->mqgrb) >mprb

21

The precise meaning of states depends on the particular parameterised
monad: they could describe files open, time spent, or the shape of a
managed heap [32]. In this example, we use a parameterised monad to
track the locks held among a given (finite) set.

A lock can be acquired only if it is not currently held, and released
only if it is currently held. Furthermore, no lock is held at the beginning
of the program, and no lock should be held at the end. We encode a
set of locks and whether each is held by a type-level list of booleans.
The spine of the list is made of Cons cells and Nil; each element of the
list is either Locked or Unlocked. For example, suppose we are tracking
three locks. If only the first and last are held, then the state is the type
Cons Locked (Cons Unlocked (Cons Locked Nil)).

data Nil
data Cons 1 s

data Locked
data Unlocked

The run-time representation of our parameterised monad is simply that
of Haskell’s I0 monad, so it is easy to implement a PMonad instance.

newtype LockM p q a = LockM { unLockM :: I0 a }

instance PMonad LockM where
unit x = LockM (return x)
bind m k = LockM (unLockM m >>= unLockM . k)

It is also easy to lift an I0 action that does not affect locks to become a
LockM action whose initial and final states are the same and arbitrary.

lput :: String -> LockM p p ()
lput = LockM . putStrLn

To manipulate boolean lists at the type level, we define type functions
Get and Set. Given a type-level natural number n and a list p, the type
Get n p is the n-th element of that list, and the type Set n e p is the
result of replacing the n-th element of p by e. The first element of a list is
indexed by Zero. It is a type error if the element does not exist because
the list is too short.

type family Get n p
type instance Get Zero (Cons e p) = e
type instance Get (Succ n) (Cons e p) = Get n p

type family Set n e’ p
type instance Set Zero e’ (Cons e p) = Cons e’ p
type instance Set (Succ n) e’ (Cons e p) = Cons e (Set n e’ p)

We represent a lock as a mutex handle (here caricatured by an Int),
with a phantom type n attached to identify the lock at compile time. The
phantom type n is an index into a type-level list.

newtype Lock n = Lock Int deriving Show

22

mkLock :: forall n. Nat n => Lock n
mkLock = Lock (toInt (undefined::n))

The data constructor introduced by the newtype declaration has no run-
time representation and so this wrapping imposes no run-time overhead.
We make one lock, lockl, for the sake of further examples.

lockl = mkLock :: Lock One

We can now define actions to acquire and release locks. The types of
the actions reflect their constraints on the state.

acquire :: (Get n p ~ Unlocked) =>
Lock n -> LockM p (Set n Locked p) ()
acquire 1 = LockM (putStrLn ("acquire " ++ show 1))

release :: (Get n p ~ Locked) =>
Lock n -> LockM p (Set n Unlocked p) (O
release 1 = LockM (putStrLn ("release " ++ show 1))

In the type of acquire, the constraint Get n p ~ Unlocked is the pre-
condition on the state before acquiring the lock: the lock to be acquired
must not be already held. The final state of the LockM action returned
by acquire specifies the postcondition: the lock just acquired is Locked.
For the release action, the pre- and postconditions are the converse. To
keep the example simple, we do not manipulate any real locks; rather, we
print our intentions.

At the top level, a LockM action is executed by applying the function
run to turn it into an I0 action. The type of run below requires that the
action begin and end with no lock held among three available.

type ThreeLocks = Cons Unlocked (Cons Unlocked (Cons Unlocked Nil))
run :: LockM ThreeLocks ThreelLocks a -> I0 a
run = unLockM

For example, given any action a, the action withl a defined below acquires
lock 1, performs a, then releases lock 1 and returns the result of a.

withl a = acquire lockl ‘bind‘ _ ->
a ‘bind‘¢ \x —>
release lockl ‘bind‘¢ _ ->
unit x

Therefore, we can execute run (withl (lput "hello")) by itself.

> run (withl (1put "hello"))
acquire Lock 1

hello

release Lock 1

Multiple locks can be held at the same time and need not be released in the

opposite order as they were acquired. However, the type system prevents

us from nesting withl inside withl, because such an action would try to

acquire lock 1 twice. Indeed, the expression run (withl (withl (1put "hello")))
does not type-check. We also cannot acquire a lock without releasing it
subsequently. For example, the expression run (acquire lockl) is re-

jected.

23

We can also introduce actions that do not change the state of locks
yet require that a certain lock be held:

criticall :: (Get One p ~ Locked) => LockM p p ()
criticall = LockM (putStrLn "Critical section 1")

An attempt to run such an action without holding the required lock, as
in run criticall, is rejected by the type checker. On the other hand,
the program run (withl criticall) type checks and can be successfully
executed. Likewise, we can define potentially blocking actions, to be ex-
ecuted only when a lock is not held; the type checker will then prevent
such actions within a critical section protected by the lock.

5.3 Keeping the kinds straight

It will not have escaped the reader’s notice that we are doing untyped
functional programming at the type level. For example, the kind of GCD
is

GCD :: * => * => * —> x

so the compiler would accept the nonsensical type (GCD Int Zero Bool).
The same problem occurs with Pointer n and other types defined in this
section. We can alleviate the problem using the Nat n constraint. For
example, we could define Pointer n as

newtype Nat n => Pointer n = MkPointer Int

so that, for example, Pointer Bool becomes invalid and will raise a
compile-time error. The constraint Nat n is a kind predicate, specify-
ing the set of types that constitute natural numbers — just as the type Int
specifies a set of values.

We wish for the convenience and discipline of algebraic data kinds
when writing type-level functions, just as we are accustomed to algebraic
data types in conventional, term-level programs. We could find a way to
‘lift” the ordinary data type declaration

data N = Zero | Succ N

to the kind level. Alternatively, we may want to declare algebraic data
kinds like this:

data kind N = Zero | Succ N

Here N is a kind constant and Zero and Succ are type constructors. Now
GCD could have the kind

GCD :: N->N->N ->N

Similarly, Pointer and Offset should both have kind N -> *. Much the
same applies in the discussion of state and control, where we would rather
write:

data kind ListLS = Nil | Cons LockState ListLS
data kind LockState = Locked | Unlocked

then give a decent kind to Get:
Get :: N -> ListS -> LockState

24

Furthermore, unlike the earlier examples in which it was crucial that our
type functions were open (Section 2.5), type functions such as GCD and
Get are closed, in that all their equations are given in one place.

These are shortcomings of GHC’s current implementation, but there
is no technical difficulty with algebraic data kinds, and indeed they are
fully supported by the Omega language [43].

5.4 Type-preserving compilers

A popular, if incestuous, application of Haskell is for writing compilers.
If the object language is statically typed, then one can index a GADT by
a phantom type to ensure that only well-typed object programs can be
represented in the compiler [37]:

data Exp a where
Enum :: Int -> Exp Int
Eadd :: Exp Int -> Exp Int -> Exp Int
Eapp :: Exp (a->b) -> Exp a -> Exp b

Now an optimiser and an evaluator might have types

optimise :: Exp a -> Exp a

evaluate :: Exp a -> a
which compactly express the facts that (a) the optimiser need only deal
with well-typed object terms, (b) optimising a term does not change its
type, and (c) evaluating a term yields a value of the correct type.

But what about transforming programs into continuation-passing style?
In that case, the type of the result term is a function of the type of the
argument term:

cpsConvert :: Exp a -> Exp (CpsT a)

Here CpsT maps a type a to its CPS-converted version [34]. Guillemette
and Monnier express CpsT as a type-level function [18], whereas Carette
et al. show how to do without type-level functions [4].

6 Related work and reflections

The goal of type families is to build on the success of static type sys-
tems, by extending their power and expressiveness without losing their
brevity and comprehensibility to programmers. (Of course, there is an
implicit tension between these goals, and the reader will have to judge
how successful we have been.) There are other designs with similar goals:

e Functional dependencies took the Haskell community by storm when
Mark Jones introduced them [29], because they met a real need.
Many, perhaps all, of the examples in this tutorial can also be pro-
grammed using functional dependencies, but the programming style
at the type level feels like logic programming rather than functional
programming. The reader may find a programmer’s-eye comparison
of the two approaches in [6]. Jones showed recently how the stylistic
question can be at least partly addressed by a notational device [28]

25

but, more fundamentally, the interaction of functional dependencies
with other type-level features such as existentials and GADTs is not
well understood and possibly problematic. In fact, one may see type
families as a way to understand functional dependencies in these
more general settings.

e Omega [43] is a prototype programing language that specifically aims
to provide the programmer with type-level computation. It goes
quite a bit further than GHC’s type families (for example, Omega
has an infinite tower of kinds and supports closed type functions),
but lacks type classes and much of the other Haskell parapherna-
lia. Omega comes with a number of excellent papers giving many a
motivating example [44-46].

These designs, along with GHC’s type families, can be thought of as
helping programmers prove more interesting theorems that characterise
their programs. Meanwhile, the theorem-proving and type-theory com-
munity has been drawing from its long history of type-level computation
to help mathematicians write more interesting programs that witness their
theorems [3].

The motivation for type-level computations comes from the Curry-
Howard correspondence [17, 23] that underlies Martin-L6f’s intuitionistic
type theory: propositions are types, and proofs are terms. The more
expressive a type system, the more propositions we can state and prove
in it, such as properties involving numbers and arithmetic. Hence expres-
sive languages such as those of NuPRL, Coq, Epigram, and Agda permit
types involving numbers and arithmetic. For example, the following type
in Agda states that addition is commutative:

(nm:Nat) ->n+m==m+n

To prove this proposition is to write a term of this type, and to check
the proof is the job of the type checker. To do its job, the type checker
may need to simplify a type like (Zero + m) to m, so type checking in-
volves type-level computations. Because a proof checker should always
terminate, it is natural to insist that type-level computations also always
terminate.

Since proof assistants based on type theory implement a (richly typed)
A-calculus, they can be used to program — that is, to write terms that
compute interesting values, not just inhabit interesting types. To this
end, an expressive type system lets us state and prove more interesting
properties about programs — of the sort we have shown in this paper.
Tools such as Coq, Epigram, and Agda thus cater increasingly to the
use of theorem proving for practical programming. This convergence of
theory and practice renews our commitment to Tony Hoare’s ideal of
simple, reliable software.

Acknowledgements

We would like to thank people who responded to our invitation to suggest
interesting examples of programming with type families, or commented

26

on a draft of the paper: Lennart Augustsson, Neil Brown, Toby Hut-

ton,

Ryan Ingram, Chris Kuklewicz, Dave Menendez, Benjamin Moseley,

Hugh Pacheco, Conrad Parker, Bernie Pope, Tom Schrijvers, Josef Sven-
ningsson, Paulo Tanimoto, Magnus Therning, Ashley Yakeley, and Brent
Yorgey.

References

1]

2]

3]

[10]

Asai, Kenichi. 2008. On typing delimited continuations: three new
solutions to the printf problem. Tech. Rep. OCHA-IS 08-2. http:
//pllab.is.ocha.ac.jp/~asai/papers/tr07-1.ps.gz.

Atkey, Robert. 2009. Parameterised notions of computation. Journal
of Functional Programming 19:355-376.

Bove, Anna, and Peter Dybjer. 2009. Dependent types at work. In
International summer school on language engineering and Tigorous
software development. Lecture Notes in Computer Science 5520.

Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan. 2008. Fi-
nally tagless, partially evaluated: Tagless staged interpreters for sim-
pler typed languages. Journal of Functional Programming. In press.

Chakravarty, Manuel. 2008. Type families. http://haskell.org/
haskellwiki/GHC/Indexed_types.

Chakravarty, Manuel M. T., Gabriele Keller, and Simon L. Pey-
ton Jones. 2005. Associated type synonyms. In ICFP ’05: Proc.
ACM international conference on functional programming, 241-253.
New York: ACM Press.

Chakravarty, Manuel M. T., Gabriele Keller, Simon L. Peyton Jones,
and Simon Marlow. 2005. Associated types with class. In POPL ’05:
Conference record of the annual ACM symposium on principles of
programming languages, ed. Jens Palsberg and Martin Abadi, 1-13.
New York: ACM Press.

Cunha, Alcino, Jorge Sousa Pinto, and José Proenca. 2006. A frame-
work for point-free program transformation. In Revised selected pa-
pers from IFL 2005: Implementation and application of functional
languages, ed. Andrew Butterfield, Clemens Grelck, and Frank Huch,
1-18. Lecture Notes in Computer Science 4015, Berlin: Springer.

Danvy, Olivier. 1998. Functional unparsing. Journal of Functional
Programming 8(6):621-625.

Danvy, Olivier, and Lasse R. Nielsen. 2001. Defunctionalization at
work. In Proceedings of the 3rd international conference on principles
and practice of declarative programming, 162—-174. New York: ACM
Press.

27

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Diatchki, Tavor S., and Mark P. Jones. 2006. Strongly typed memory
areas: Programming systems-level data structures in a functional
language. In Proceedings of the 2006 Haskell Workshop. New York:
ACM Press.

Elliott, Conal. 2008. Elegant memoization with functional memo
tries. http://conal.net/blog/posts/elegant-memoization-with-
functional-memo-tries.

Fluet, Matthew, and Riccardo Pucella. 2005. Practical datatype spe-
cializations with phantom types and recursion schemes. In Proceed-
ings of the 2005 workshop on ML. Electronic Notes in Theoretical
Computer Science.

. 2006. Phantom types and subtyping. Journal of Functional
Programming 16(6):751-791.

Garcia, Ronald, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and
Jeremiah Willcock. 2007. An extended comparative study of lan-
guage support for generic programming. Journal of Functional Pro-
gramming 17(2):145-205.

Gill, Andrew, ed. 2008. Proceedings of the 1st ACM SIGPLAN sym-
posium on Haskell. New York: ACM Press.

Girard, Jean-Yves, Paul Taylor, and Yves Lafont. 1989. Proofs and
types. Cambridge: Cambridge University Press.

Guillemette, Louis-Julien, and Stefan Monnier. 2008. A type-
preserving compiler in Haskell. In [25], 75-90.

Hinze, Ralf. 2000. Generalizing generalized tries. Journal of Func-
tional Programming 10(4):327-351.

. 2003. Formatting: A class act. Journal of Functional Pro-
gramming 13(5):935-944.

. 2003. Fun with phantom types. In The fun of programming,
ed. Jeremy Gibbons and Oege de Moor, 245-262. Palgrave.

Hinze, Ralf, Johan Jeuring, and Andres Loh. 2002. Type-indexed
data types. In Proceedings of the Sixth International Conference on
Mathematics of Program Construction (MPC 2002), 148-174. Lec-
ture Notes in Computer Science 2386, Springer Verlag.

Howard, William A. 1980. The formulae-as-types notion of construc-
tion. In To H. B. Curry: Essays on combinatory logic, lambda cal-
culus and formalism, ed. Jonathan P. Seldin and J. Roger Hindley,
479-490. San Diego, CA: Academic Press.

Hutton, Toby. 2008. Fun with type functions. http://www.haskell.
org/pipermail/haskell-cafe/2008-November/051105.html.

28

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

ICFPO08. 2008. ICFP ’08: Proc. ACM international conference on
functional programming. New York: ACM Press.

Imai, Keigo, Shoji Yuen, and Kiyoshi Agusa. 2009. A full implemen-
tation of session types in haskell. In PPL2009: 11th programming and
programming languages workshop. http://wuw.agusa.i.is.nagoya-
u.ac.jp/person/sydney/fullsession-ppl2009/20090224/imai-
ppl12009-submittedl.pdf.

Ingram, Ryan. 2008. Fun with type functions. http://www.haskell.
org/pipermail/haskell-cafe/2008-November/051108.html.

Jones, Mark. 2008. Languages and program design for functional
dependencies. In [16], 87-98.

Jones, Mark P. 2000. Type classes with functional dependencies. In
Programming Languages and Systems: Proceedings of ESOP 2000,
9th European Symposium on Programming, ed. Gert Smolka, 230—
244. Lecture Notes in Computer Science 1782, Berlin: Springer.

Kennedy, Andrew. 1995. Programming languages and dimensions.
Ph.D. thesis, University of Cambridge.

Kiselyov, Oleg. 2008. Formatted IO as an embedded DSL: the initial
view. http://okmij.org/ftp/typed-formatting/#DSL-1In.

Kiselyov, Oleg, and Chung-chieh Shan. 2007. Lightweight static re-
sources: Sexy types for embedded and systems programming. In
Draft Proceedings of TFP 2007: 6th Symposium on Trends in Func-
tional Programming, ed. Marco T. Morazan and Henrik Nilsson. Tech.
Rep. TR-SHU-CS-2007-04-1, Department of Mathematics and Com-
puter Science, Seton Hall University.

Krishnamurthi, Shriram, Matthias Felleisen, and Daniel P. Friedman.
1998. Synthesizing object-oriented and functional design to promote
re-use. In Proceedings of ECCOP’98: 12th European conference on
object-oriented programming, ed. Eric Jul, 91-113. Lecture Notes in
Computer Science 1445, Berlin: Springer.

Meyer, Albert R., and Mitchell Wand. 1985. Continuation semantics
in typed lambda-calculi (summary). In Logics of programs, ed. Rohit
Parikh, 219-224. Lecture Notes in Computer Science 193, Berlin:
Springer.

Michie, Donald. 1968. “Memo” functions and machine learning. Na-
ture 218:19-22.

Neubauer, Matthias, and Peter Thiemann. 2004. An implementation
of session types. In Practical Aspects of Declarative Languages: 6th
International Symposium, PADL 2004, ed. Bharat Jayaraman, 56—
70. Lecture Notes in Computer Science 3057, Berlin: Springer.

29

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Peyton Jones, Simon L., Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Alan Washburn. 2006. Simple unification-based type infer-
ence for GADTs. In ICFP °06: Proc. ACM international conference
on functional programming, 50—61. New York: ACM Press.

Pucella, Riccardo, and Jesse Tov. 2008. Haskell session types with
(almost) no class. In [16], 25-36.

Reynolds, John C. 1972. Definitional interpreters for higher-order
programming languages. In Proceedings of the ACM National Con-
ference, vol. 2, 717-740. New York: ACM Press. Reprinted as [40].

. 1998. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation 11(4):363-397.

Sackman, Matthew. 2008. A tutorial for session types. http://www.
wellquite.org/sessions/tutorial_1.html.

Schrijvers, Tom, Simon Peyton Jones, Manuel Chakravarty, and Mar-
tin Sulzmann. 2008. Type checking with open type functions. In [25],
51-62.

Sheard, Tim. 2004. Languages of the future. Onward Track, OOP-
SLA’04. Reprinted in: ACM SIGPLAN Notices, Dec. 2004. 39:116—
119. OOPSLA Companion Volume.

. 2006. Generic programming programming in Omega. In
Datatype-generic programming, ed. Roland Backhouse, Jeremy Gib-
bons, Ralf Hinze, and Johan Jeuring, vol. 4719 of Lecture Notes in
Computer Science, 258—284. Springer.

Sheard, Tim, and Nathan Linger. 2007. Programming in Omega.
In 2nd Central European Functional Programming School, ed. Zoltan
Horvath, Rinus Plasmeijer, Anna Sods, and Viktéria Zsék, vol. 5161
of Lecture Notes in Computer Science, 158—-227. Springer.

Sheard, Tim, and Emir Pasalic. 2004. Meta-programming with built-
in type equality. In Proceedings of the fourth international workshop
on logical frameworks and meta-languages (LFM’04).

Siek, Jeremy, Lie-Quan Lee, and Andrew Lumsdaine. 2001. The
Boost Graph Library User Guide and Reference Manual. Addison-
Wesley.

Appendices

These appendices will not appear in the published paper, only in the
online version.

30

A The Rules

Here we summarise some rules governing type families. The reader may
find more details elsewhere [5-7, 42].

The indices of a type family are the arguments that appear to the left
of the “::” in its kind signature.

1. Like ordinary Haskell type synonyms, a type family must always
be saturated; that is, it must be applied to all its type indices. For

example:

data D m = MkD (m Int) -- So D :: (¥=>%) -> %
type family T a :: * -— So T :: * => %

f1 :: DT -- ILLEGAL (unsaturated)
type family S a :: * => * -- 80 8 :: * => *x —> *
f2 :: D (S a) -- 0K (saturated)

type family R a b :: * -— So R :: *x => % -> %
£f3 :: D (R a) -- ILLEGAL (unsaturated)

This constraint does not apply to data families.

2. In a type instance or data instance declaration, any arguments
that are not type indices must be type variables. For example:

type family T a :: * -> *

type instance T Int b = Int -- 0K
type instance T Int Bool = Int -- Not allowed
type instance T a Bool = Int -- Not allowed

3. In an associated type or data declaration (i.e. one appearing nested
in a class declaration), the type indices must be a permutation of
one or more of the class variables. For example:

class C a b where

type Tl a * -- 0K
type T2 b HE -- 0K
type T3 b a :: * -- 0K
type T4 a ¢ :: * -- Not OK; mentions ’c’
type T5 a * => x -- 0K

4. There is no difference between a type family declared as an associ-
ated type of a class declaration, and a type family declared at top
level. For example, the following are equivalent:

class C1 a b where | type family T2 a :: *
type T1 a :: * | class C2 a b where
op :: a =>b -> Int | op :: a ->b -> Int
instance C1 Int Int where | type instance T2 Int = Bool
[
[

type T1 Int = Bool instance C2 Int Int where
op = ... op = ...

B Pitfalls

Type functions are powerful, but they can give rise to unexpected errors.
In this appendix we review some of the more common cases.

31

B.1 Ambiguity

One pitfall of type functions commonly mentioned on Haskell mailing
lists is a false expectation that they are injective. As we discussed in
Section 2.4, type functions are, in general, not injective: if F is a type
family, then the fact F t1 is the same as F t2 does not imply that t1 and
t2 are the same (that fact is easy to see for the type function mapping
any type to Int). Therefore, the type checker cannot use the equality of
F t1 and F t2 to equate t1 and t2. The pitfall of the false expectation of
injectivity of type functions can be quite subtle. Consider the following
example (abstracted from a recent message on the Haskell-Cafe mailing
list):
class C a where

type F a :: *

inj :: a ->F a

prj :: Fa->a

-—bar :: (Ca) =>F a ->F a

bar x = inj (prj x)
That code type-checks; the inferred type signature is given in the com-
ments. The signature agrees with our expectation. If we uncomment the
signature, the type-checking fails:

foo.hs:8:17:
Couldn’t match expected type ‘F a’ against inferred type ‘F al’
In the first argument of ‘prj’, namely ‘x’

It seems GHC does not like the signature it itself inferred! In fact, the
bug here is that GHC should not have accepted the signature-less bar in
the first place, because bar embodies an unresolvable ambiguity. To see
the problem clearly, let us assume the following instances of the class C:

instance C Int where
type F Int = Int
inj = id
prj = id
instance C Char where
type F Char = Int
inj _ =0
prj _ = ’a’
Given the application bar (1::Int), which instance of prj should the
compiler choose: prj:: Int -> Int or prj:: Int -> Char? The choice
determines the result of bar 1: 1 or 0, respectively. The application
bar (1::Int) provides no information to help make this choice; in fact, no
context of bar usage can resolve the ambiguity. The function bar is an in-
stance of the infamous read-show problem, the composition show . read,
which is just as ambiguous.

B.2 Lack of inversion

Even if a type function (defined as a type family rather than a data family)
turns out to be injective, GHC will not notice that fact; in particular, GHC

32

will not try to invert such a type function. For example, we may easily
define addition of type-level naturals (§5.1) as a type family

type family Plus m n
type instance Plus Zero n = n
type instance Plus (Succ m) n = Succ (Plus m n)

plus :: m ->n -> Plus mn
plus = undefined

tplus = plus (undefined::Two) (undefined::Three)

The expression tplus has the monomorphic inferred type Plus Two Three
(with no constraints attached), and toInt tplus evaluates to 5. One may
expect that a related tplus’

tplus’ x = if True then plus x (undefined::One) else tplus

will have a monomorphic type, too. However, GHC infers a polymorphic
type with a type equality constraint:

tplus’ :: (Succ (Succ (Succ Two)) ~ Plus m One) => m -> Plus m One

There is only a single type m (viz. Four) that satisfies the constraint; one
might hope that GHC would figure it out and resolve the constraint. One
should keep in mind that GHC is not a general-purpose solver for arith-
metic and other constraints. The type families like GCD and Plus along
with the type equality let us write types with arbitrary arithmetic con-
straints over unbounded domain of type-level natural numbers. Solving
these constraints is an undecidable problem.

C Sprintf revisited

In this appendix we explore yet another variant on sprintf, this one
including higher order type-level functions. Recall that sprintf should
take as an argument a format descriptor and zero or more additional ar-
guments. The number and the type of the additional arguments — the
values to format — depend on the type of the format descriptor. The func-
tion sprintf should return the formatted string. A format descriptor is
an expression built by connecting primitive descriptors such as 1it "str"
and int with a descriptor composition operator (°). For example,

sprintf (1it "day") -- Result: "day",

sprintf (lit "day" "~ 1lit "s") -- Result: "days",
sprintf (1lit "day " " int) 3 -- Result: "day 3",
sprintf (int ~ lit " day" ~ 1lit "s") 3 -- Result: "3 days"

The specification immediately suggests the following naive implemen-
tation. Since the format descriptor 1it "str" denotes outputting (as the
result of sprintf) of the string str, 1it "str" may just as well be str
itself. Thus 1it "str" has the type String. The function sprintf is
the identity then. The descriptor int denotes receiving an integer and
outputting it as a string, hence int could be implemented as a function
show of the type Int->String. The composition of the format descrip-
tors should therefore concatenate the outputs of the descriptors. That

33

is easy to do if the two descriptors are 1it "stri" and lit "str2", in
which case we just concatenate strl and str2. When we compose int
and 1it "strl", we would like the composite format descriptor to be
\x -> show x ++ "str". Thus, the left-associative composition of two
descriptors is type-directed:

fmtl ° fmt2 = fmtl ++ fmt2

when fmtl :: String and fmt2 :: String
fmtl ~ fmt2 = \x -> fmtl x ++ fmt2

when fmtl :: Int -> String and fmt2 :: String
fmtl ~ fmt2 = \x -> fmtl ++ fmt2 x

when fmtl :: String and fmt2 :: Int -> String

We have to analyse and induct on the types of both arguments of (7).

We can change the representation of descriptors so that we need case
analysis on the type of only one argument of (7). In the naive implementa-
tion, format descriptors have the general type t1 -> t2 -> ... -> String.
The composition of the two descriptors have to ‘dive’ under the layers of
tl -> t2 -> ... in order to concatenate the underlying Strings — for
both descriptors. Let us change the implementation: let 1it "str" be
a function that takes the current output as the string and appends to it
str:

lit :: String -> (String -> String)

lit str = \s -> s ++ str
Likewise, int should receive the output so far, obtain an integer and
return the new output, with the formatted integer appended to the current
output:

int :: String -> Int -> String

int = \s -> \x -> s ++ show x
Thus the formatters have the general type String -> t1 -> t2 -> ... -> String.
With this implementation of the formatter, the composition of formatters
can be informally defined as

fmtl ~ fmt2 = \s -> fmt2 (fmtl s)
when fmtl :: String -> String and fmt2 :: String -> t
fmtl ~ fmt2 = \s -> \x -> fmt2 (fmtl s x)
when fmtl :: String -> Int -> String and fmt2 :: String > t

The formatter composition operation (~) needs case analysis on the type
of only one argument, which is straightforward with the help of an ordi-
nary, one-parameter type class. Here is the first attempt:

class FCompose a where

() :: (String -> a) -> (String -> b) -> (String -> ?777)
What is the return type of (°) should be however? It is obvious that
777 must depend on both a and b. The informal definition shows that
if a is String, 7?77 is just b. If a is Int->String however, then 777 is
Int -> b. In general, if a is t1 -> t2 -> ... String, then 77?7 must
be t1 -> t2 -> ... b. We can try to use associated type synonyms to
express such a result type:

34

class FCompose a where
type Result a :: * -> %
(") :: (String -> a) -> (String -> b) -> (String -> Result a b)

instance FCompose String where
type Result String b = b
(") f1 £2 = ...

instance FCompose c¢ => FCompose (a -> c¢) where
type Result (a -> ¢c) b = a -> Result ¢ b
(7) f1 f2 = ...

Alas, for technical reasons this attempt doesn’t work: Result a is defined
as having one type parameter and yielding an existing type (constructor
or a function) of the kind * -> *. After all, Result is the type syn-
onym. Therefore, the definition of Result associated with the instance
FCompose String is invalid as Result String is not defined to be a syn-
onym of an existing type constructor or a function of the kind * -> *.
To get around that, we resort to type families, which are free from such
restrictions. Here is the final, working implementation:

data I
class FCompose a where
type Result a
(") :: (String -> a) -> (String -> b) —->
(String -> TApply (Result a) b)

instance FCompose String where
type Result String = I
(") f1 £2 = \s -> £2 (f1 s)

instance FCompose c => FCompose (a -> c) where
type Result (a -> c) = a->Result c
(") f1 f2 =\s > \x > ((\s -> f1 s x) ~ £f2) s

The associated type synonym Result a ‘computes’ a type function (more
precisely, a functor) mapping a type b to a type containing b. To be
precise, Result a is a type that represents a functor. The language of
representations is trivial: the type I represents the identity functor, and
the type T1 -> I represents the functor that takes a type b to a type
T1 -> b. In other words, T1 -> F represents the functional composition
of the functors (T1 ->) and F. The type family TApply F x interprets the
mini-language of functor representations and performs the application of
the corresponding functor to a type x:

type family TApply functor x
type instance TApply I x = x
type instance TApply (a -> c¢) x = a -> TApply c x

Essentially, TApply is a higher-order type function.

The function sprintf is then a simple wrapper over the format de-
scriptor:

sprintf:: (String -> t) -> t

sprintf fmt = fmt ""

35

