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Abstract

Haskell has a sophisticated mechanism for overloading identifiers with multiple
definitions at distinct types. Object-oriented programming has a similar notion of
overriding and overloading for methods names. Unfortunately, it is not possible to
encode object-oriented overloading directly using Haskell overloading. This defi-
ciency becomes particularly tiresome when Haskell programs wish to call methods
imported from an object-oriented library.

We present two refinements of Haskell’s type class system: Closed classes and
overlapping instances. We demonstrate how we may exploit the refined system
so as to be able to encode object-oriented classes within Haskell. This encoding
allows us to mimic, within Haskell, the overloading resolution rules employed by
object-oriented languages without the need for additional type annotations or name
mangling. As a consequence, object-oriented class libraries are very convenient to
import and use within Haskell.

1 The problem

The purpose of this paper is to make it easy to import libraries from Java[9] or
.NET[18], into a Haskell program. By “easy” we mean that it should be as easy
to use the library from Haskell than from its native language. Indeed, Haskell’s
higher order features and first-class monadic values make it a powerful glue
language, so if we succeed it might even be easier to use the library from
Haskell than from its native language. However, these advantages will not be
persuasive if things that are easy in the native language are clumsy in Haskell.
That is the challenge we address here.
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The idea of mapping an object-oriented library into the Haskell type system
is not new [6] — we review it in Section 2. In this paper, we make three new
contributions:

Subtyping. Object oriented languages make extensive use of implicit coer-
cions between a subtype and its supertypes, while Haskell lacks the entire
notion of subtyping. In our earlier work [6] we described how to use poly-
morphism to encode subtyping using so-called “phantom types”. Alas, this
approach breaks down when we encounter the multiple supertyping of in-
terface types. In Section 3 we discuss the design alternatives, and show an
alternative encoding for subtyping, using type classes, that is adequate for
our purposes.

Ad hoc overloading. While Haskell supports overloading, all the over-
loaded instances must share a common type pattern. In contrast, many
object-oriented languages allow a single method name to be overloaded at
unrelated types. One can evade this difficulty by using name-mangling to
give a distinct name to each distinct overloading of a single method name,
but that is extremely unattractive in practice.
In Section 4 we present an extension to Haskell’s type class mechanism

that smoothly accommodates truely ad hoc overloading. To make it work
effectively in practice, we introduce the idea of a closed class, which in turn
allows the type checker to make improvement to inferred types, and hence
reduce the need for type annotations.

Overlap. Many object-oriented languages also allow a single method name
to be overloaded at overlapping types; that is, several methods would be
well-typed, but one of them is the “best match” for the types at the call site.
The definition of “best match” is the subject of subtle, carefully-worded,
but informal, passages in the language manual.
Hugs and GHC both support the closely-related notion of overlapping

instance declarations, but what exactly these mean is even less well speci-
fied, and polymorphism makes the setting more complicated than the cor-
responding object-oriented problem.
In Section 4.4 we tackle this issue head-on, giving a precise story about

when and how overloading is resolved in the presence of overlap.

These extensions have subtle implications for type inference, as we discuss in
the full paper [24]. The full paper also contains a formal description of type
checking and type inference to complement the informal explanations used
here.

Our extensions generalise Haskell’s existing qualified types [12]. For example,
Haskell’s negation function has type:

negate :: (Num a) => a -> a

This type says that negate can be applied to any type a that satisfies the type
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constraint (Num a). At run-time, negate takes an extra parameter apart from
the value of type a, namely a witness that (Num a) indeed holds. In concrete
terms, the witness for Num a is a tuple, or dictionary, of functions for operating
over numeric values, one of which is the negation function.

This approach turns out to have many useful generalisations, each obtained
by introducing a new form of type constraint, along with a corresponding
new form of witness. Concrete examples include: implicit parameters [15];
extensible records [7] [11]; and type-indexed rows [23]. We take exactly the
same approach in this paper.

There is a danger here. Is our work simply “yet another extension of Haskell
type classes?” How long can we go on adding new extensions before the whole
system becomes unusably complicated? These are good questions. One would
like to find a unifying framework into which all these extensions could fit as
special cases. Sulzmann and Stuckey propose Constraint Handling Rules as
such a framework [8]. In this paper we also also take steps towards a general
framework. However, unifying frameworks are easier to design when there is
a rich zoo of motivating special cases, and our main purpose here is to work
out in detail some extra inhabitants for the zoo.

2 Mapping OOP into Haskell

Given a Java or .NET library, how can we map it into Haskell’s world? More
precisely, given the definition of a Java or .NET class, we want to specify the
interface of a Haskell module whose implementation is that class. For the sake
of definiteness we will use C ] [17] as the representative language in which the
library is written, but everything we say applies unqualified to other .NET
libraries, and with very minor qualifications to Java libraries.

We do not address the question about how the interface might be implemented.
A possible route for .NET would be to compile Haskell to the .NET interme-
diate language; a possible route for Java would be to use the Java Native
Interface [16]. In this paper, however, we focus on the design of the interface.

We begin by briefly reviewing the approach described in [6] for mapping an
object-oriented library into Haskell. Consider the following C ] class:

class C {

C( int x ) { ... } ; /* Constructor */

static int s( int x ); /* Static method */

int m( bool b, int x ); /* Instance method */

}

This class would be mapped into the following Haskell types and functions:
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newtype C -- An abstract type

newC :: Int -> IO C

s :: Int -> IO Int

m :: (Bool,Int) -> C -> IO Int

The C ] class C is mapped to an abstract Haskell type C. We write it here
newtype without a right hand side, because its representation is (of course)
hidden. The constructor is called newC, takes the appropriate arguments, and
returns a result of type C. More precisely, it returns a result of type IO C,
because creating a new value of type C is a side effect 3 . The static method s

has the expected type, again remembering that it may have a side effect.

The instance method m takes a “self” parameter of type C as its second ar-
gument, with the ordinary arguments, in a tuple, as its first argument. One
might expect the self parameter to be first, but putting it last allows a neat
coding trick [6]. Suppose we have x::C; then we can write the OO-like call

x # m (True,3)

to call x.m, where the infix operator # is defined as reverse application, thus:

x # f = f x

Recalling that, in Haskell, function application binds more tightly than any-
thing else, we have

x # m (True,3) = m (True,3) x

One could equally well choose to have the self parameter as the first argument;
it does not affect anything else in this paper.

Why are the arguments to m tupled? Again, this is a design choice. Our
intuition is that OO methods are not designed with currying in mind, and so
are likely to be called with all their arguments. Given this, we are likely to
get less confusing error messages if the arguments are uncurried, especially by
the time we have added ad-hoc overloading.

Lastly, one might ask whether all methods need be in the IO monad; after
all, some will be purely-functional, and need not be. Indeed so, and perhaps
some kind of pragma or meta-data could express this fact. If so, it is readily
accommodated by omitting the IO monad from the type of the pure method.
We do not consider the question further here.

3 Subtyping

Consider the following C ] class declarations:

3 A value of type IO t is a computation that may perform some side effects before returning
a result of type t. See [21] for a tutorial.
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class C {

int opC( int x ) { ... }

}

class D : C { /* D extends C */

bool opD() { ... }

}

In C ], if d has type D, then one can write d.opC(3), because any value of
type D is also a value of type C. This is called inclusion subtyping because no
coercion is needed to convert a D to a C [19]. (In future, we will often write
“d::D” as short for “d has type D” even when the variables and types are
those of C ].)

How does this look in Haskell? If we simply expose the types and operations
in Haskell as earlier described, we get this:

newtype C

newtype D

opC :: Int -> C -> IO Int

opD :: D -> IO Bool

The trouble is, of course, that opC is not applicable to a value of type D,
because Haskell does not understand the subtype relationship between C and
D.

This problem is not new. One solution is to use “phantom types” [6] to encode
the class heirarchy, but this fails for classes with more than one superclass.
Another approach is to use first-class existentials and class constraints [10], but
Haskell only allows existentials to be introduced by a data constructor, which
defeats the purpose of this encoding. In the full paper [24] we consider these
options more fully, and explain why they are inadequate for our purposes. We
also consider adding full subtyping to Haskell.

The encoding we adopt is as follows. For each C ] class C we generate (a) a
Haskell type C, and (b) a Haskell type class SubC. Thus:

newtype C

class SubC c where {}

instance SubC C

opC :: SubC c => Int -> c -> IO Int

We are back to the simple situation in which there is a Haskell type C that
models the C ] class (= type!) C. A type is an instance of SubC if the corre-
sponding C ] type is a subtype of class C. So the Haskell type C is certainly an
instance of SubC. Finally, opC accepts a value of any type that is in SubC –
i.e. is a subtype of C.

Now we can add the encodings of the sub-class D and interface I:
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newtype I

class SubI i where {}

instance SubI I

opI :: SubI i => Bool -> i -> IO (C Void)

newtype D

class (SubI d, SubC d) => SubD d where {}

instance SubC D

instance SubD D

instance SubI D

opD :: SubD d => d -> IO Bool

Each comes with a new type D and I, and a class, SubD and SubI. The new
type D is an instance of SubC as well as SubD and SubI, and hence opC and
opI can be applied to a value of type D.

The superclass relation embodies the expected subtyping properties. For ex-
ample, consider this function:

h :: SubD d => d -> IO Int

h d = do { n <- opC 3 d ;

b <- opD d ;

return n }

The call to opC generates the constraint SubC d, but it is entailed by the
constraint SubD d arising from the call to opD, so the type of h has just the
single constraint we expect.

Notice that the SubX classes have no methods — we use them solely to model
the subtype relationship. Since they have no methods, we need pass no ev-
idence for them, so they have no run-time overhead. (Haskell allows the
“where {}” of a class declaration to be omitted when there are no methods,
and we will do so in future.)

If the class hierarchy becomes deep, one may have to write a large number
of instance declarations, because each new type must be made an instance of
all its superclasses. However, we expect the encoding to be carried out by an
automatic tool that reads .NET meta-data and spits out the encoding, so we
are not too worried. Of course, the soundness of this encoding depends on the
programmer getting the subtype instances right, and not arbitrarily adding
new instance declarations.

4 Ad hoc overloading

We accommodated subtyping without extending Haskell, but we will not be
so fortunate in the case of ad-hoc overloading. Consider the following C ] class
declaration:
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class C {

int m( int x );

bool m( bool b );

}

Following the simple approach of Section 2, we would get two Haskell func-
tions, both called m:

m :: Int -> C -> IO Int

m :: Bool -> C -> IO Bool

But Haskell does not permit two distinct functions to have the same name.
One alternative is to use name-mangling:

m_Int :: Int -> C -> IO Int

m_Bool :: Bool -> C -> IO Bool

From the point of view of Joe Programmer, this is a big step backwards,
especially as OO libraries typically make heavy use of this sort of overloading.
(The overloading of constructors for the class is another example.) Worse, one
must either invent simple rules for name mangling that give very long names,
or else have complicated rules that usually give shorter names. There just
does not seem to be a good point in this design space.

4.1 Degenerate classes

A more promising possibility is to employ Haskell’s type classes in a rather
stylised way 4 :

class Has_m a where

m :: a

instance Has_m (Int -> C -> IO Int) where

m = m_Int

instance Has_m (Bool -> C -> IO Bool) where

m = m_Bool

The name-mangled functions m_Int and m_Bool still exist behind the scenes,
but the programmer never thinks about them. She simply calls m, which has
type

m :: (Has_m a) => a

and with a bit of luck the local type constraints will be enough to figure out
which instance declaration to use. After all, they are enough in a C ] program!
Even if the type constraints don’t specify which instance to use, the type
system can abstract over the constraint, which is more than is possible in C ].

4 Haskell experts will notice that the instances for Has_m go beyond the Haskell 98 standard,
but we do not want to labour the point here since we intend to discard this approach.
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For example, we can write 5 :

mlist :: (Has_m (a->b->IO c)) => a -> [b] -> IO [c]

mlist a cs = mapM (m a) cs

By abstracting over the constraint, we defer its choice to the call site of mlist;
in exchange we pay a modest run-time penalty, by passing the method as a
parameter to mlist.

You might wonder whether we could make the class Has_m a little less degen-
erate thus:

class Has_m self arg res where

m :: arg -> self -> IO res

However, the same method name m may be used for static methods (which
lack a self parameter), and for purely-functional methods (whose result type
is not in the IO monad), so there is virtually no useful common structure.

This class-per-method approach is reminiscent of System O [20]. However,
unlike System O, we cannot require all instances of Has_m be distinguished by
the type of the method’s first argument.

4.2 Improvement

Unfortunately, this stylised use of Haskell’s existing type classes does not work
in practice. Assuming the same two instance declarations as in Section 4.1,
suppose we see the following function definition:

f c x = m (x::Int) (c::C)

Performing type inference on the right-hand side of f will give rise to a class
constraint Has_m (Int -> C -> r), for some unknown type r, represented by
a fresh type variable. Any C ] programmer would expect that once x is fixed
to have type Int, and c to have type C, there is only one choice for which
instance of m to choose, namely m_Int. But that is not how Haskell works:
one cannot instantiate either of the two instance declarations for Has_m to
get Has_m (Int -> C -> r). So Haskell will generalise over the constraint to
get:

f :: (Has_m (Int->C->r)) => C -> Int -> r

This is wonderfully general, because it allows for the possibility that the call
site might know about other instances of Has_m. But it is really too general,
and will give rise to all sorts of ambiguity errors. For example, suppose we
wrote:

do { r <- m (x::Int) (c::C) ;

print (show r) }

If the knowledge of m’s argument types does not fix its result type, the show

5 The standard function mapM has type (a->IO b) -> [a] -> IO [b].
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does not know what type its argument will be, and the compiler will reject
the program as ambiguous. This is really no good.

Instead, the type inference system must perform what Mark Jones calls “im-
provement” [13]. Given the class constraint Has_m (Int -> C -> r) there is

only one instance for m that matches this constraint, namely:

instance Has_m (Int->C->IO Int) where m = m_Int

Since there is exactly one choice, we should make it now, and that in turn

fixes r to be Int. Hence we get the expected type for f:

f :: C -> Int -> IO Int

It is this additional unification step that constitutes the “improvement”. Now
the class constraint can be discharged (fixing which instance of m to call), and
inference can proceed.

What is the justification for doing this improvement? Answer: it is simply a
design choice, and one based on the idea that the class Has_m is closed. We
might declare it like this:

class closed Has_m a where

m :: a

By “closed”, we mean that we allow the type inference algorithm to commit
to which instance of Has_m to use based on the instances that are currently
in scope. In contrast, for type classes, it seems generally better to defer such
choices, as discussed in [22]. An elaboration of type classes, called functional
dependencies, does support improvement [14]; but the sort of improvement we
need for Has_m constraints cannot be modelled by functional dependencies.

This notion of closedness has appeared elsewhere in the guise of closed kinds
[5]. System CT [3] also makes a similar closed-world assumption (Section 6).

4.3 Method constraints

So far, we have seen how to extend Haskell’s type-class mechanism to support
ad-hoc overloading, by adding the idea of a closed class. From a programming
point of view, though, using it seems rather a heavyweight approach. We have
to invent a new class for each method name, and there may be no obvious
place to declare the class. (The method name may be used in multiple sibling
libraries.) Indeed, having to declare the class at all seems cumbersome. Lastly,
the Has_m class must somehow be declared as “closed”.

Instead, we provide direct syntactic support by introducing a new form of type
constraint, a method constraint. For example, we can write the type of mlist
like this:

mlist :: (m :: a->b->IO c) => a -> [b] -> IO [c]

We have simply identified the degenerate class Has_m with the overloaded
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function m. Corresponding to the new form of constraint is a new form of
instance declaration 6 :

instance m :: Int -> C -> IO Int where

m = m_Int

instance m :: Bool -> C -> IO Bool where

m = m_Bool

There is no need to declare a class. The function m is brought into scope by
any instance declaration for m, and has the type:

m :: (m::a) => a

At first sight this type may look confusing, but it simply says this: the function
m has any type a that satisfies the method constraint m::a. (Recall that in
Haskell all types are universally quantified over their free type variables, so
this type for m means m :: ∀α . (m :: α)=>α).) We are using the same name,
“m”, for both the function m and the method constraint m, but functions and
method contraints live in different name spaces, so there is no confusion —
compare the type of m in Section 4.1.

The function m can be exported and imported by name, just like any other
function.

Overloaded functions can be polymorphic without any difficulty. For example:

instance op :: [a] -> [a] where op = op1

instance op :: Bool -> Bool -> Bool where op = op2

Here, the first overloading of op is polymorphic, while the second is not. As
before, we simply pick the one that matches the method constraint. For
example, the call op [1,2,3] matches the first instance, but not the second,
so we can safely commit to the first.

Nor is there any difficulty if the overloaded function has a context in its type.
For example, we can add a third instance for op:

instance op :: Num a => Maybe a -> a where op = op3

Now, if we encounter the call op (Just 3) we again know exactly which in-
stance to pick, in this case driven by the type of the first argument.

4.4 Overlapping instances

Consider the following C ] class declarations:

6 Others have suggested that a better keyword might be “overloaded” rather than
“instance”.
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class B : A { ... }

class C {

int m( A x ) { ... } ;

int m( B x ) { ... } ;

}

Now consider a call c.m( b ) where b::B and c::C. Both m methods are ap-
plicable to b, but the second is a better “fit” to the argument type. On the
other hand, given the call c.m( a ), where a :: A, the second method is not
applicable, so the first is used. The sections of the C ] language specification
that describe exactly what “best fit” means are carefully written, but still
informal.

What is the corresponding problem in Haskell? The above declarations will
be rendered thus:

class SubA b => SubB b

instance m :: (SubA a, SubC c) => a -> c -> IO Int

instance m :: (SubB b, SubC c) => b -> c -> IO Int

The overlap problem is that anything that matches the second instance dec-
laration will also match the first. Overlapping instance declarations are not
permitted in standard Haskell 98, but are present in various experimental ex-
tensions. However, we are not aware of any precise description of the type
system of Haskell together with overlapping instance declarations. Indeed the
combination of overlap with multiple arguments, and polymorphism, is rather
subtle. A key contribution of the full paper is to give a precise account of
how they interact. In particular, we establish a partial ordering on instance
declarations which resembles the instantiation ordering on type schemes, and
specify that a method constraint may be resolved to a particular instance only
when it is the least amongst all candidate instances.

There is one difference beteen our approach and that taken by existing Haskell
implementations that support overlapping instances. Both GHC and Hugs
prohibit instance declarations that unify without overlapping. For example:

instance Eq a => Wuggle (Int, a) where ...

instance Eq a => Wuggle (a, Int) where ...

These two instance declarations would be rejected, because the constraint

Wuggle (Int,Int)

matches both of them, yet neither is more specific than the other. In this
paper, we advocate allowing the instance declarations, raising an error only
if the constraint Wuggle (Int,Int) acutally comes up in practice. (If it
does, there will be two candidate instances, and we will report an ambi-
guity error.) But it may not come up! Instead we may encounter the
constraint Wuggle (Int,Char), which matches only one of the intances, or
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Wuggle (Bool,Int), which matches only the other instance. In short, the in-
stance declarations are innocent, and potentially useful. Our framework allows
them, and yet only makes a commitment when there is a unique choice.

Nothing in the above discussion is specific to imported .NET or Java libraries.
Ad-hoc, overlapping overloading can usefully be deployed in native Haskell
programs.

5 Encoding class hierarchies

In Figure 1 we show a larger C ] class hierarchy. (As before, we use C ] as our
prototypical foreign language.) The corresponding Haskell interfaces are given
in Figure 2, while Figure 3 shows some well-typed Haskell programs that use
these interfaces.

Notice that there is one instance declaration for each call pattern of a method.
By call pattern, we mean the actual bytecode sequence to invoke the appropri-
ate method. This can be a little confusing. For example, the virtual method
o in class E is overridden in class F. Even though method o has two imple-
mentations, there is only one calling pattern for x.o, since virtual method
dispatch is through the vtable associated with x. Hence, there is only one
instance declaration for o. Similarly, method m (on integers) in interface I has
no implementation per se, but any class which implements interface I must
supply such an implementation. Again, the same calling pattern applies to
each implementation, and thus there is a single instance declaration for m (on
integers). By contrast, when method n is overridden in class F, the calling
pattern changes, and so we supply a new instance declaration.

5.1 Sub-classing and call-backs

This paper discusses how to import classes from C ], but it does not discuss
how to export classes to C ]. We provide no way to define a completely new
C ] class in Haskell, or even to create a sub-class of an existing C ] class. If we
wanted to allow this, we would have to make much more substantial changes
to the language; the MLj compiler exemplifies this approach [1].

However, some C ] library methods (especially those involved with graphical
user interfaces) rely on sub-classing to define “callback objects”. For example
the library method might be

class Button {

void OnClick( Click h )

...other methods...

}

where the Click interface is defined thus:
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/* NB: parameter names and method bodies

omitted for the sake of brevity */

class A { ... }

class B : A { ... }

class C { ... }

/* A,B,C have nullary constructors */

class D : C { D(char); ... }

/* D has an explicit constructor */

interface I {

int m(int);

}

interface J {

int m(int, int);

int m(int, bool);

}

class E : I, J {

E(); /* Overloaded constructor */

E(bool);

int m(int);

int m(int, int);

int m(int, bool);

int n(A, D);

int n(B, C);

virtual int o(int);

}

class F : E {

F();

new int n(A, C);

override int o(int);

}

class G {

G();

int m(int);

}

Figure 1: An example class heirarchy
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newtype A; class SubA a; instance SubA A

newtype B; class SubB b; instance SubB B

instance SubA B

newA :: IO A; newB :: IO B

newtype C; class SubC c; instance SubC C

newtype D; class SubD d; instance SubD D

instance SubC D

newC :: IO C; newD :: Char -> IO D

-- interface I

newtype I; class SubI i

instance m :: SubI i => Int -> i -> IO Int

-- interface J

newtype J; class SubJ j

instance m :: SubJ j => (Int,Int) -> j -> IO Int

instance m :: SubJ j => (Int,Bool) -> j -> IO Int

-- class E

newtype E; class SubE e; instance SubE E

instance SubI E; instance SubJ E

instance newE :: IO E;

instance newE :: Bool -> IO E;

instance n :: (SubA a, SubD d, SubE e)

=> (a, d) -> e -> IO Int

instance n :: (SubB b, SubC c, SubE e)

=> (b, c) -> e -> IO Int

instance o :: SubE e => Int -> e -> IO Int

-- class F

newtype F; class SubF f; instance SubF F

instance SubE F; instance SubI F; instance SubJ F

newF :: IO F

-- n is new, so new instance for n

instance n :: (SubA a, SubC c, SubF f)

=> (a, c) -> f -> IO Int

-- o is overridden, so no new instance for o

-- class G

newtype G; class SubG g; instance SubG G

newG :: IO G

instance m :: SubG g => Int -> g -> IO Int

Figure 2: Representation of Figure 1 in Haskell
14
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f :: J -> Int -> IO Int

f j y = do p <- j # m (y, 1)

q <- j # m (y, True)

return p + q

g :: E -> IO Int

g e = do a <- newA

b <- newB

c <- newC

d <- newD

i <- e # n (a, d)

j <- e # n (b, c)

return i + j

Figure 3: Example well-typed terms using declarations of Figure 2

interface Click {

void ClickMe()

}

The OnClick method installs the callback object h as a handler to service
button clicks. A functional programmer would think of such a callback object
as simply a closure, but a C ] programmer must define a sub-class of the Click
interface, thus:

class MyClick : Click {

OnClick() { ...service a click... }

}

(C ] also has a notion of delegates which is slightly more convenient in this
situation, but nevertheless the problem remains.) Since we cannot sub-class in
Haskell, does that render the Button class useless to the Haskell programmer?

We can solve the problem, albeit slightly clumsily. What we want to do is
to give behaviour to the Click interface; we do not want to add methods or
otherwise extend it. We can write a generic MyClick class like this:

class HClick : Click {

private HaskellClosure h;

new( HaskellClosure h’ ) { h = h’; }

OnClick() { h.run() }

}

Defining this class requires knowledge of the representation of Haskell closures
in the .NET world. In particular, the run method of a HaskellClosure will
perform its I/O actions. The code for HClick could be generated from the
interface specification for Click, though we have not yet implemented this.

If we now import this class into Haskell, using the mechanisms already defined,
we can now create a callback object using newHClick:
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onClick :: Button -> IO () -> IO ()

onClick but click_handler

= do { cb <- newHClick( click_handler ) ;

but # onClick( cb ) }

The bottom line is this: we can create callback objects without too much
difficulty, but we cannot create genuinely new classes and export them back
to the C ] world.

5.2 A dark corner: The new modifier

In fact, Figure 2 is not completely accurate in its representation of C ]’s over-
load resolution. Consider the Haskell call

n (b::B, d::D) (f::F)

All three instances for n in Figure 2 are candidates, but there is no best fit.
So the type inference engine will complain that it cannot choose, and (what
is worse) we can’t fix the problem by supplying more type information.

What happens in C ], given the call f.n( b, d )? The semantics of the “new”
qualifier for method n in class F is that this definition of n “hides” all definitions
of n in F’s sub-classes. So now there is only one candidate to choose.

We can accommodate this in Haskell, but only in a rather brutal way. In
Figure 2, interface I defines m thus:

instance m :: SubI i => Int -> i -> IO Int

The subtyping constraint on i means that m works on values of type E, as it
should. But we could instead say:

instance m :: Int -> I -> IO Int

and in addition, when E is declared, add

instance m :: Int -> E -> IO Int

However, these two instance declarations would share a common witness. In
effect, we simply copy all inherited methods into each sub-class, with fresh
instance declarations but common witnesses.

What does this buy us? It allows us to refrain from copying the instances of
n into F’s class, so that there just a single instance for n with self-parameter
F:

instance n :: (SubA a, SubC b)

=> (a, b) -> F -> IO Int

The C ] design treats the self parameter specially, whereas our system does
not.

16



Shields and Peyton Jones

6 Related work

6.1 System CT

System CT [3] is a Haskell-like type system that supports ad-hoc polymor-
phism in a similar manner to that described in Section 4. For example, CT
will infer the following type for insert:

insert :: {(==) :: a->a->Bool}. a -> [a] -> [a]

insert a [] = [a]

insert a (b:xs) | a==b = b : xs

| otherwise = b : insert a xs

Our syntax differs slightly from CT’s, but the method constraint
(==)::a->a->Bool plays the same role in both systems. However, System CT
takes a more radical approach than we do. CT has no class or instance dec-
larations; instead every let-definition introduces a new potentially-overloaded
identifier. (To mimic this in our system, one would have an instance decla-
ration for every let-definition.)

Since every let-definition is effectively an instance declaration, System CT
must confront and solve the issue of local instance declarations. That is not
something we have tackled in the main body of our paper. It is present in our
formal treatment, and while it does not much complicate the typing rules, we
believe that it would add signficant complexity to proofs about the system.

On the other hand, we are forced (by our desire to import .NET classes) to
confront and solve overlap, whereas CT is not.

6.2 Multi methods

Recall that our encoding of C ] classes lifts all methods out into a single names-
pace, and relies on ad-hoc overloading to distinguish methods of the same
name belonging to distinct classes. Indeed, we don’t treat overloading across
classes (class C and D both implement a method called m) any differently
from overloading within classes (class C implements two methods called m).

In this respect, our approach is very similar to that of “multi-method” based
object-oriented languages such as CLOS [4]. In these languages, methods are
regarded simply as overloaded functions, and method dispatch is based on the
dynamic types of all method arguments instead of just the (implicit) “this”
argument.

Bourdoncle and Metz [2] have proposed an ML-like language built upon this
notion of multi-methods which has many similarities with the work of this
paper. In particular, they use constrained polymorphism and subtype con-
straints to assign each method a principal type.

However, the language of Bourdoncle and Metz differs from our proposal in the
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treatment of dynamic dispatch. In their language, every object is wrapped by
a tag encoding its type, and every method name has a single entry point which
dispatches according to these tags. By contrast, our approach relies on the
underlying machinery of .NET to perform dynamic dispatch, and we resolve
at compile-time which calling sequence is to be used to invoke a particular
method.

None the less, it would be interesting to push this connection further. In par-
ticular, we have already seen examples where method constraints escaped into
type schemes when insufficient type information was available at compile-time
to resolve a call. This suggest the witness passing of our implementation could
be used to simulate the dynamic dispatch of multi-method based implemen-
tations.

6.3 Constraint handling rules

It is clear that the type-class design space is complicated. Stuckey, Sulzmann
and Glynn have proposed Constraint Handling Rules as a formal framework
for specifying and reasoning about type-class systems [8]. The advantage is
that properties like ambiguity and coherence may be expressed in a single
uniform way, rather than having to be re-expressed for each extension.

We have not yet worked out whether our types system can be expressed in
their framwork.
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