
To appear in the 2010 ACM Haskell Symposium (without appendices).

Hoopl: A Modular, Reusable Library for
Dataflow Analysis and Transformation

Norman Ramsey
Tufts University
nr@cs.tufts.edu

Jõao Dias
Tufts University

dias@cs.tufts.edu

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

.

Abstract
Dataflow analysis and transformation of control-flow graphs is per-
vasive in optimizing compilers, but it is typically entangled with
the details of aparticular compiler. We describe Hoopl, a reusable
library that makes it unusually easy to define new analyses and
transformations forany compiler written in Haskell. Hoopl’s in-
terface is modular and polymorphic, and it offers unusually strong
static guarantees. The implementation encapsulates state-of-the-art
algorithms (interleaved analysis and rewriting, dynamic error isola-
tion), and it cleanly separates their tricky elements so that they can
be understood independently.

Readers:Code examples are indexed athttp://bit.ly/cZ7ts1.

Categories and Subject Descriptors D.3.4 [Processors]: Optimi-
zation, Compilers; D.3.2 [Language Classifications]: Applicative
(functional) languages, Haskell

General Terms Algorithms, Design, Languages

1. Introduction
A mature optimizing compiler for an imperative language includes
many analyses, the results of which justify the optimizer’s code-
improving transformations. Many analyses and transformations—
constant propagation, live-variable analysis, inlining, sinking of
loads, and so on—should be regarded as particular cases of a sin-
gle general problem:dataflow analysis and optimization. Dataflow
analysis is over thirty years old, but a recent, seminal paper by
Lerner, Grove, and Chambers (2002) goes further, describing a
powerful but subtle way tointerleaveanalysis and transformation
so that each piggybacks on the other.

Because optimizations based on dataflow analysis share a common
intellectual framework, and because that framework is subtle, it is
tempting to try to build a single, reusable library that embodies
the subtle ideas, while making it easy for clients to instantiate the
library for different situations. Although such libraries exist, as we
discuss in Section 6, they have complex APIs and implementations,
and none interleaves analysis with transformation.

In this paper we present Hoopl (short for “higher-order optimiza-
tion library”), a new Haskell library for dataflow analysis and opti-
mization. It has the following distinctive characteristics:

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

• Hoopl is purely functional. Although pure functional languages
are not obviously suited to writing standard algorithms that
transform control-flow graphs, pure functional code is actually
easier to write, and far easier to write correctly, than code that
is mostly functional but uses a mutable representation of graphs
(Ramsey and Dias 2005). When analysis and transformation are
interleaved, so that graphs must be transformedspeculatively,
without knowing whether a transformed graph will be retained
or discarded, pure functional code offers even more benefits.

• Hoopl is polymorphic. Just as a list library is polymorphic in the
list elements, so is Hoopl polymorphic, both in the nodes that
inhabit graphs and in the dataflow facts that analyses compute
over these graphs (Section 4).

• The paper by Lerner, Grove, and Chambers is inspiring but ab-
stract. We articulate their ideas in a concrete, simple API, which
hides a subtle implementation (Sections 3 and 4). You provide a
representation for facts, a transfer function that transforms facts
across nodes, and a rewrite function that can use a fact to jus-
tify rewriting a node. Hoopl “lifts” these node-level functions to
work over control-flow graphs, solves recursion equations, and
interleaves rewriting with analysis. Designing APIs is surpris-
ingly hard; after a dozen significantly different iterations, we
offer our API as a contribution.

• Because clients can perform very local reasoning (“y is live be-
forex:=y+2”), analyses and transformations built on Hoopl are
small, simple, and easy to get right. Moreover, Hoopl helps you
write correct optimizations: statically, it rules out transforma-
tions that violate invariants of the control-flow graph (Sections
3 and 4.3), and dynamically, it can help find the first transfor-
mation that introduces a fault in a test program (Section 5.5).

• Hoopl implements subtle algorithms, including (a) interleaved
analysis and rewriting, (b) speculative rewriting, (c) computing
fixed points, and (d) dynamic fault isolation. Previous imple-
mentations of these algorithms—including three of our own—
are complicated and hard to understand, because the tricky
pieces are implemented all together, inseparably. In this paper,
each tricky piece is handled in just one place, separate from
the others (Section 5). We emphasize this implementation as an
object of interest in its own right.

Our work bridges the gap between abstract, theoretical presenta-
tions and actual compilers. Hoopl is available fromhttp://ghc.
cs.tufts.edu/hoopl and also from Hackage (version 3.8.6.0).
One of Hoopl’s clients is the Glasgow Haskell Compiler, which
uses Hoopl to optimize imperative code in GHC’s back end.

Hoopl’s API is made possible by sophisticated aspects of Haskell’s
type system, such as higher-rank polymorphism, GADTs, and type
functions. Hoopl may therefore also serve as a case study in the
utility of these features.

1

http://bit.ly/cZ7ts1
http://ghc.cs.tufts.edu/hoopl
http://ghc.cs.tufts.edu/hoopl

2. Dataflow analysis & transformation by example
A control-flow graph, perhaps representing the body of a proce-
dure, is a collection ofbasic blocks—or just “blocks.” Each block
is a sequence of instructions, beginning with a label and ending
with a control-transfer instruction that branches to other blocks.
The goal of dataflow optimization is to compute validdataflow
facts, then use those facts to justify code-improving transforma-
tions (orrewrites) on a control-flow graph.

As a concrete example, we show constant propagation with con-
stant folding. On the left we show a basic block; in the middle we
show facts that hold between statements (ornodes) in the block;
and on the right we show the result of transforming the block based
on the facts:

Before Facts After
------------{}-------------

x := 3+4 x := 7
----------{x=7}------------

z := x>5 z := True
-------{x=7, z=True}-------

if z goto L1
then goto L1
else goto L2

Constant propagation works from top to bottom. In this example,
we start with the empty fact. Given that fact and the nodex:=3+4,
can we make a transformation? Yes: constant folding can replace
the node withx:=7. Now, given this transformed node and the orig-
inal fact, what fact flows out of the bottom of the transformed node?
The fact{x=7}. Given the fact{x=7} and the nodez:=x>5, can
we make a transformation? Yes: constant propagation can replace
the node withz:=7>5. Now, can we make another transformation?
Yes: constant folding can replace the node withz:=True. The pro-
cess continues to the end of the block, where we can replace the
conditional branch with an unconditional one,goto L1.

The example above is simple because it has only straight-line code;
control flow makes dataflow analysis more complicated. For exam-
ple, consider a graph with a conditional statement, starting atL1:

L1: x=3; y=4; if z then goto L2 else goto L3
L2: x=7; goto L3
L3: ...

Because control flows toL3 from two places (L1 andL2), we must
join the facts coming from those two places. All paths toL3 pro-
duce the facty=4, so we can conclude thaty=4 atL3. But depend-
ing on the the path toL3, x may have different values, so we con-
clude “x=⊤”, meaning that there is no single value held byx atL3.
The final result of joining the dataflow facts that flow toL3 is the
factx=⊤∧ y=4 ∧ z=⊤.

Forward and backward. Constant propagation worksforward,
and a fact is often an assertion about the program state, such
as “variablex holds value7.” Some useful analyses workback-
ward. A prime example is live-variable analysis, where a fact takes
the form “variablex is live” and is an assertion about thecontinu-
ation of a program point. For example, the fact “x is live” at a pro-
gram point P is an assertion thatx is used on some program path
starting at P. The accompanying transformation is called dead-code
elimination; if x is not live, this transformation replaces the node
x:=e with a no-op.

Interleaved analysis and transformation. Our first examplein-
terleavesanalysis and transformation. Interleaving makes it easy
to write effective analyses. If instead we had to finish analyzing
the block before transforming it, analyses would have to “predict”
the results of transformations. For example, given the incoming

fact {x=7} and the instructionz:=x>5, a pure analysis could pro-
duce the outgoing fact{x=7, z=True} by simplifyingx>5 to True.
But the subsequent transformation must performexactly the same
simplificationwhen it transforms the instruction toz:=True! If in-
stead wefirst rewrite the node toz:=True, thenapply the transfer
function to the new node, the transfer function becomes wonder-
fully simple: it merely has to see if the right hand side is a constant.
You can see code in Section 4.6.

Another example is the interleaving of liveness analysis and dead-
code elimination. As mentioned in Section 1, it is sufficient for the
analysis to say “y is live beforex:=y+2”. It is not necessary to
have the more complex rule “ifx is live afterx:=y+2 theny is
live before it,” because ifx is not live afterx:=y+2, the assignment
x:=y+2 will be transformed away (eliminated). When several anal-
yses and transformations can interact, interleaving them offers even
more compelling benefits; for more substantial examples, consult
Lerner, Grove, and Chambers (2002).

But the benefits come at a cost. To compute valid facts for a pro-
gram that has loops, an analysis may require multiple iterations.
Before the final iteration, the analysis may compute a fact that is
invalid, and a transformation may use the invalid fact to rewrite the
program (Section 4.7). To avoid unjustified rewrites, any rewrite
based on an invalid fact must be rolled back; transformations must
bespeculative. As described in Section 4.7, Hoopl manages specu-
lation with minimal cooperation from the client.

While it is wonderful that we can create complex optimizations
by interleaving very simple analyses and transformations, it is not
so wonderful that very simple analyses and transformations, when
interleaved, can exhibit complex emergent behavior. Because such
behavior is not easily predicted, it is essential to have good tools for
debugging. Hoopl’s primary debugging tool is an implementation
of Whalley’s (1994) search technique for finding fault-inducing
transformations (Section 5.5).

3. Representing control-flow graphs
Hoopl is a library that makes it easy to define dataflow analyses—
and transformations driven by these analyses—on control-flow
graphs. Graphs are composed from smaller units, which we dis-
cuss from the bottom up:

• A nodeis defined by Hoopl’s client; Hoopl knows nothing about
the representation of nodes (Section 3.2).

• A basicblock is a sequence of nodes (Section 3.3).

• A graph is an arbitrarily complicated control-flow graph: basic
blocks connected by edges (Section 3.4).

3.1 Shapes: Open and closed

In Hoopl, nodes, blocks, and graphs share an important new prop-
erty: ashape. A thing’s shape tells us whether the thing isopen or
closed on entryandopen or closed on exit. At anopenpoint, con-
trol may implicitly “fall through;” at aclosedpoint, control transfer
must be explicit and to a named label. For example,

• A shift-left instruction is open on entry (because control can
fall into it from the preceding instruction), and open on exit
(because control falls through to the next instruction).

• An unconditional branch is open on entry, but closed on exit
(because control cannot fall through to the next instruction).

• A label is closed on entry (because in Hoopl we do not allow
control to fall through into a branch target), but open on exit.

• The shape of a function-call node is up to the client. If a
call always returns to its inline successor, it could be open on

2

data Node e x where
Label :: Label -> Node C O
Assign :: Var -> Expr -> Node O O
Store :: Expr -> Expr -> Node O O
Branch :: Label -> Node O C
Cond :: Expr -> Label -> Label -> Node O C
... more constructors ...

Figure 1. A typical node type as it might be defined by a client

entry and exit. But if a call could return in multiple ways—
for example by returning normally or by raising an exception—
then it has to be closed on exit. GHC uses calls of both shapes.

Blocks and graphs have shapes too. For example the block

x:=7; y:=x+2; goto L

is open on entry and closed on exit, which we often abbreviate
“open/closed.” We may also refer to an “open/closed block.”

The shape of a thing determines that thing’s control-flow properties.
In particular, whenever E is a node, block, or graph,

• If E is open on entry, it has a unique predecessor; if it is closed,
it may have arbitrarily many predecessors—or none.

• If E is open on exit, it has a unique successor; if it is closed, it
may have arbitrarily many successors—or none.

3.2 Nodes

The primitive constituents of a control-flow graph arenodes.
For example, in a back end a node might represent a machine
instruction, such as a load, a call, or a conditional branch; in a
higher-level intermediate form, a node might represent a simple
statement. Hoopl’s graph representation ispolymorphic in the node
type, so each client can define nodes as it likes. Because they con-
tain nodes defined by the client, graphs can include arbitrary data
specified by the client, including (say) method calls, C statements,
stack maps, or whatever.

The type of a node specifies its shapeat compile time. Concretely,
the type constructor for a node has kind*->*->*, where the two
type parameters are type-level flags, one for entry and one for exit.
Each type parameter may be instantiated only with typeO (for open)
or typeC (for closed).

As an example, Figure 1 shows a typical node type as it might be
defined by one of Hoopl’s clients. The type parameters are written
e andx, for entry and exit respectively. The type is a generalized
algebraic data type; the syntax gives the type of each construc-
tor. For example, constructorLabel takes aLabel and returns a
node of typeNode C O, where the “C” says “closed on entry” and
the “O” says “open on exit”. The typesLabel, O, andC are defined
by Hoopl (Figure 2). In other examples from Figure 1, constructor
Assign takes a variable and an expression, and it returns aNode
open on both entry and exit; constructorStore is similar. Finally,
control-transfer nodesBranch andCond (conditional branch) are
open on entry and closed on exit. TypesVar andExpr are private
to the client, and Hoopl knows nothing about them.

Nodes closed on entry are the only targets of control transfers;
nodes open on entry and exit never perform control transfers; and
nodes closed on exit always perform control transfers.1 Because of
the position each shape of node occupies in a basic block, we often
call themfirst, middle, andlast nodes respectively.

1 To obey these invariants, a node for a conditional-branch instruction,
which typically either transfers controlor falls through, must be represented
as a two-target conditional branch, with the fall-through path in a separate

data O -- Open
data C -- Closed

data Block n e x where
BFirst :: n C O -> Block n C O
BMiddle :: n O O -> Block n O O
BLast :: n O C -> Block n O C
BCat :: Block n e O -> Block n O x -> Block n e x

data Graph n e x where
GNil :: Graph n O O
GUnit :: Block n O O -> Graph n O O
GMany :: MaybeO e (Block n O C)

-> LabelMap (Block n C C)
-> MaybeO x (Block n C O)
-> Graph n e x

data MaybeO ex t where
JustO :: t -> MaybeO O t
NothingO :: MaybeO C t

newtype Label -- abstract
newtype LabelMap a -- finite map from Label to a
addBlock :: NonLocal n

=> Block n C C
-> LabelMap (Block n C C)
-> LabelMap (Block n C C)

blockUnion :: LabelMap a -> LabelMap a -> LabelMap a

class NonLocal n where
entryLabel :: n C x -> Label
successors :: n e C -> [Label]

Figure 2. The block and graph types defined by Hoopl

3.3 Blocks

Hoopl combines the client’s nodes into blocks and graphs, which,
unlike the nodes, are defined by Hoopl (Figure 2). ABlock is
parameterized over the node typen as well as over the flag types
that make it open or closed at entry and exit.

The BFirst, BMiddle, andBLast constructors create one-node
blocks. Each of these constructors is polymorphic in the node’s
representationbut monomorphic in itsshape. Why not use a single
constructor of typen e x -> Block n e x, which would be poly-
morphic in a node’s representationandshape? Because by making
the shape known statically, we simplify the implementation of anal-
ysis and transformation in Section 5.

The BCat constructor concatenates blocks in sequence. It makes
sense to concatenate blocks only when control can fall through
from the first to the second; therefore, two blocks may be con-
catenated only if each block is open at the point of concatenation.
This restriction is enforced by the type ofBCat, whose first ar-
gument must be open on exit and whose second argument must
be open on entry. It is impossible, for example, to concatenate
a Branch immediately before anAssign. Indeed, theBlock type
guarantees statically that any closed/closedBlock—which com-
piler writers normally call a “basic block”—consists of exactly one
first node (such asLabel in Figure 1), followed by zero or more
middle nodes (Assign or Store), and terminated with exactly one
last node (Branch or Cond). Enforcing these invariants by using
GADTs is one of Hoopl’s innovations.

block. This representation is standard (Appel 1998), and itcosts nothing in
practice: such code is easily sequentialized without superfluous branches.

3

3.4 Graphs

Hoopl composes blocks into graphs, which are also defined in
Figure 2. LikeBlock, the data typeGraph is parameterized over
both nodesn and over its shape at entry and exit (e andx). Graph
has three constructors. The first two deal with the base cases of
open/open graphs: an empty graph is represented byGNil while a
single-block graph is represented byGUnit.

More general graphs are represented byGMany, which has three
fields: an optional entry sequence, a body, and an optional exit
sequence.

• If the graph is open on entry, it contains anentry sequenceof
typeBlock n O C. We could represent this sequence as a value
of type Maybe (Block n O C), but we can do better: a value
of Maybe type requires adynamictest, but we knowstatically,
at compile time, that the sequence is present if and only if the
graph is open on entry. We express our compile-time knowledge
by using the typeMaybeO e (Block n O C), a type-indexed
version ofMaybe which is also defined in Figure 2: the type
MaybeO O a is isomorphic toa, while the typeMaybeO C a is
isomorphic to().

• The bodyof the graph is a collection of closed/closed blocks.
To facilitate traversal of the graph, we represent the body as a
finite map from label to block.

• The exit sequenceis dual to the entry sequence, and like the
entry sequence, its presence or absence is deducible from the
static type of the graph.

Graphs can be spliced together nicely; the cost is logarithmic in the
number of closed/closed blocks. Unlike blocks, two graphs may be
spliced together not only when they are both open at splice point
but also when they are both closed—and not in the other two cases:

gSplice :: Graph n e a -> Graph n a x -> Graph n e x
gSplice GNil g2 = g2
gSplice g1 GNil = g1

gSplice (GUnit b1) (GUnit b2) = GUnit (b1 ‘BCat‘ b2)

gSplice (GUnit b) (GMany (JustO e) bs x)
= GMany (JustO (b ‘BCat‘ e)) bs x

gSplice (GMany e bs (JustO x)) (GUnit b2)
= GMany e bs (JustO (x ‘BCat‘ b2))

gSplice (GMany e1 bs1 (JustO x1)) (GMany (JustO e2) bs2 x2)
= GMany e1 (bs1 ‘blockUnion‘ (b ‘addBlock‘ bs2)) x2
where b = x1 ‘BCat‘ e2

gSplice (GMany e1 bs1 NothingO) (GMany NothingO bs2 x2)
= GMany e1 (bs1 ‘blockUnion‘ bs2) x2

This definition illustrates the power of GADTs: the pattern match-
ing is exhaustive, and all the shape invariants are checked statically.
For example, consider the second-to-last equation forgSplice.
Since the exit sequence of the first argument isJustO x1, we
know that type parametera is O, and hence the entry sequence of
the second argument must beJustO e2. Moreover, blockx1 must
be closed/open, and blocke2 must be open/closed. We can there-
fore concatenatex1 ande2 with BCat to produce a closed/closed
blockb, which is added to the body of the result.

We have carefully crafted the types so that ifBCat is considered
as an associative operator, every graph has a unique representation.
To guarantee uniqueness,GUnit is restricted to open/open blocks.
If GUnit were more polymorphic, there would be more than one
way to represent some graphs, and it wouldn’t be obvious to a client
which representation to choose—or if the choice made a difference.

Specified Implemented
Part of optimizer by by How many

Control-flow graphs US US One
Nodes in a
control-flow graph

YOU YOU One type per
intermediate language

Dataflow factF YOU YOU One type per logic
Lattice operations US YOU One set per logic

Transfer functions US YOU One per analysis
Rewrite functions US YOU One per transformation

Analyze-and-rewrite
functions

US US Two (forward, backward)

Table 3. Parts of an optimizer built with Hoopl

3.5 Edges, labels and successors

Although Hoopl is polymorphic in the type of nodes, it still needs
to know how control may be transferred from one node to another.
Within a block, a control-flow edge is implicit in every application
of theBCat constructor. An implicit edge originates in a first node
or a middle node and flows to a middle node or a last node.

Between blocks, a control-flow edge is represented as chosen by
the client. An explicit edge originates in a last node and flows to a
(labelled) first node. If Hoopl is polymorphic in the node type, how
can it follow such edges? Hoopl requires the client to make the node
type an instance of Hoopl’sNonLocal type class, which is defined
in Figure 2. TheentryLabel method takes a first node (one closed
on entry, as per Section 3.2) and returns itsLabel; thesuccessors
method takes a last node (closed on exit) and returns theLabels to
which it can transfer control.

In Figure 1, the client’s instance declaration forNode would be

instance NonLocal Node where
entryLabel (Label l) = l
successors (Branch b) = [b]
successors (Cond e b1 b2) = [b1, b2]

Again, the pattern matching for both functions is exhaustive, and
the compiler checks this fact statically. Here,entryLabel cannot
be applied to anAssign or Branch node, and any attempt to define
a case forAssign or Branch would result in a type error.

While the client provides this information about nodes, it is con-
venient for Hoopl to get the same information about blocks. Inter-
nally, Hoopl uses this instance declaration for theBlock type:

instance NonLocal n => NonLocal (Block n) where
entryLabel (BFirst n) = entryLabel n
entryLabel (BCat b _) = entryLabel b
successors (BLast n) = successors n
successors (BCat _ b) = successors b

Because the functionsentryLabel andsuccessors are used to
track control flowwithin a graph, Hoopl does not need to ask for the
entry label or successors of aGraph itself. Indeed,Graph cannot
be an instance ofNonLocal, because even if aGraph is closed on
entry, it need not have a unique entry label.

4. Using Hoopl to analyze and transform graphs
Now that we have graphs, how do we optimize them? Hoopl makes
it easy; a client must supply these pieces:

• A node type(Section 3.2). Hoopl supplies theBlock andGraph
types that let the client build control-flow graphs out of nodes.

• A data type of factsand some operations over those facts (Sec-
tion 4.1). Each analysis uses facts that are specific to that par-

4

ticular analysis, which Hoopl accommodates by being polymor-
phic in the fact type.

• A transfer functionthat takes a node and returns afact trans-
former, which takes a fact flowing into the node and returns the
transformed fact that flows out of the node (Section 4.2).

• A rewrite functionthat takes a node and an input fact, performs
a monadic action, and returns eitherNothing or Just g, where
g is a graph that should replace the node (Sections 4.3 and 4.4).
For many code-improving transformations, The ability to re-
place anodeby agraph is crucial.

These requirements are summarized in Table 3. Because facts,
transfer functions, and rewrite functions work together, we combine
them in a single record of typeFwdPass (Figure 4).

Given a node typen and aFwdPass, a client can ask Hoopl to
analyze and rewrite a graph. Hoopl provides a fully polymorphic
interface, but for purposes of exposition, we present a function that
is specialized to a closed/closed graph:

analyzeAndRewriteFwdBody
:: (CkpointMonad m -- Roll back speculative actions

, NonLocal n) -- Extract non-local flow edges
=> FwdPass m n f -- Lattice, transfer, rewrite
-> [Label] -- Entry point(s)
-> Graph n C C -- Input graph
-> FactBase f -- Input fact(s)
-> m (Graph n C C -- Result graph

, FactBase f) -- ... and its facts

Given aFwdPass and a list of entry points, the analyze-and-rewrite
function transforms a graph into an optimized graph. As its type
shows, this function is polymorphic in the types of nodesn and
facts f; these types are chosen by the client. The type of the
monadm is also chosen by the client.

As well as taking and returning a graph, the function also takes in-
put facts (theFactBase) and produces output facts. AFactBase
is a finite mapping fromLabel to facts (Figure 4); if aLabel is
not in the domain of theFactBase, its fact is the bottom element
of the lattice. For example, in our constant-propagation example
from Section 2, if the graph represents the body of a procedure
with parametersx, y, z, we would map the entryLabel to a fact
x = ⊤ ∧ y = ⊤ ∧ z = ⊤, to specify that the procedure’s parame-
ters are not known to be constants.

The client’s model ofanalyzeAndRewriteFwdBody is as follows:
Hoopl walks forward over each block in the graph. At each node,
Hoopl applies the rewrite function to the node and the incom-
ing fact. If the rewrite function returnsNothing, the node is re-
tained as part of the output graph, the transfer function is used to
compute the outgoing fact, and Hoopl moves on to the next node.
But if the rewrite function returnsJust g, indicating that it wants to
rewrite the node to the replacement graphg, Hoopl recursively ana-
lyzes and may further rewriteg before moving on to the next node.
A node following a rewritten node seesup-to-datefacts; that is,
its input fact is computed by analyzing the replacement graph.

A rewrite function may take any action that is justified by the
incoming fact. If further analysis invalidates the fact, Hoopl rolls
back the action. Because graphs cannot be mutated, rolling back
to the original graph is easy. But rolling back a rewrite function’s
monadic action requires cooperation from the client: the client must
providecheckpoint andrestart operations, which makem an
instance of Hoopl’sCkpointMonad class (Section 4.7).

Below we flesh out the interface toanalyzeAndRewriteFwdBody,
leaving the implementation for Section 5.

data FwdPass m n f
= FwdPass fp_lattice :: DataflowLattice f

, fp_transfer :: FwdTransfer n f
, fp_rewrite :: FwdRewrite m n f

------- Lattice ----------
data DataflowLattice f = DataflowLattice
fact_bot :: f
, fact_join :: JoinFun f
type JoinFun f =
OldFact f -> NewFact f -> (ChangeFlag, f)

newtype OldFact f = OldFact f
newtype NewFact f = NewFact f
data ChangeFlag = NoChange | SomeChange

------- Transfers ----------
newtype FwdTransfer n f -- abstract type
mkFTransfer
:: (forall e x . n e x -> f -> Fact x f)
-> FwdTransfer n f

------- Rewrites ----------
newtype FwdRewrite m n f -- abstract type
mkFRewrite :: FuelMonad m
=> (forall e x . n e x -> f -> m (Maybe (Graph n e x)))
-> FwdRewrite m n f
thenFwdRw :: FwdRewrite m n f -> FwdRewrite m n f
-> FwdRewrite m n f
iterFwdRw :: FwdRewrite m n f -> FwdRewrite m n f
noFwdRw :: Monad m => FwdRewrite m n f

------- Fact-like things, aka "fact(s)" -----
type family Fact x f :: *
type instance Fact O f = f
type instance Fact C f = FactBase f

------- FactBase -------
type FactBase f = LabelMap f
-- A finite mapping from Labels to facts f
mkFactBase
:: DataflowLattice f -> [(Label, f)] -> FactBase f

------- Rolling back speculative rewrites ----
class Monad m => CkpointMonad m where
type Checkpoint m
checkpoint :: m (Checkpoint m)
restart :: Checkpoint m -> m ()

------- Optimization fuel ----
type Fuel = Int
class Monad m => FuelMonad m where
getFuel :: m Fuel
setFuel :: Fuel -> m ()

Figure 4. Hoopl API data types

4.1 Dataflow lattices

For each analysis or transformation, the client must define a type
of dataflow facts. A dataflow fact often represents an assertion
about a program point, but in general, dataflow analysis establishes
properties ofpaths:

• An assertion about all pathsto a program point is established
by a forward analysis. For example the assertion “x = 3” at
point P claims that variablex holds value3 at P, regardless of
the path by which P is reached.

5

• An assertion about all pathsfroma program point is established
by abackward analysis. For example, the assertion “x is dead”
at point P claims that no path from P uses variablex.

A set of dataflow facts must form a lattice, and Hoopl must know
(a) the bottom element of the lattice and (b) how to take the least
upper bound (join) of two elements. To ensure that analysis termi-
nates, it is enough if every fact has a finite number of distinct facts
above it, so that repeated joins eventually reach a fixed point.

In practice, joins are computed at labels. Iffold is the fact cur-
rently associated with a labelL, and if a transfer function propa-
gates a new factfnew into labelL, Hoopl replacesfold with the
join fold ⊔ fnew . And Hoopl needs to know iffold ⊔ fnew = fold ,
because if not, the analysis has not reached a fixed point.

The bottom element and join operation of a lattice of facts of typef
are stored in a value of typeDataflowLattice f (Figure 4).
As noted in the previous paragraph, Hoopl needs to know when
the result of a join is equal to the old fact. It is often easiest
to answer this question while the join itself is being computed.
By contrast, apost factoequality test on facts might cost almost as
much as a join. For these reasons, Hoopl does not require a separate
equality test on facts. Instead, Hoopl requires thatfact_join
return aChangeFlag as well as the join. If the join is the same
as the old fact, theChangeFlag should beNoChange; if not, the
ChangeFlag should beSomeChange.

To help clients create lattices and join functions, Hoopl includes
functions and constructors that can extend a fact typef with top
and bottom elements. In this paper, we use only typeWithTop,
which comes with value constructors that have these types:

PElem :: f -> WithTop f
Top :: WithTop f

Hoopl provides combinators which make it easy to create join
functions that useTop. The most useful isextendJoinDomain,
which uses auxiliary types defined in Figure 4:

extendJoinDomain
:: (OldFact f -> NewFact f -> (ChangeFlag, WithTop f))
-> JoinFun (WithTop f)

A client supplies a join function thatconsumesonly facts of typef,
but may produce eitherTop or a fact of typef—as in the example
of Figure 5 below. CallingextendJoinDomain extends the client’s
function to a proper join function on the typeWithTop a, guaran-
teeing that joins involvingTop obey the appropriate algebraic laws.

Hoopl also provides a value constructorBot and type constructors
WithBot andWithTopAndBot, along with similar functions. Con-
structorsTop andBot are polymorphic, so for example,Top also
has typeWithTopAndBot a.

It is also common to use a lattice that takes the form of a finite map.
In such lattices it is typical to join maps pointwise, and Hoopl
provides a function that makes it convenient to do so:

joinMaps :: Ord k => JoinFun f -> JoinFun (Map.Map k f)

4.2 The transfer function

A forward transfer function is presented with the dataflow fact com-
ing into a node, and it computes dataflow fact(s) on the node’s out-
going edge(s). In a forward analysis, Hoopl starts with the fact
at the beginning of a block and applies the transfer function to
successive nodes in that block, until eventually the transfer func-
tion for the last node computes the facts that are propagated to the

block’s successors. For example, consider doing constant propaga-
tion (Section 2) on the following graph, whose entry point isL1:

L1: x=3; goto L2
L2: y=x+4; x=x-1;

if x>0 then goto L2 else return

Forward analysis starts with the bottom fact{} at every label except
the entryL1. The initial fact atL1 is {x=⊤,y=⊤}. AnalyzingL1
propagates this fact forward, applying the transfer function succes-
sively to the nodes ofL1, and propagating the new fact{x=3,y=⊤}
to L2. This new fact is joined with the existing (bottom) fact atL2.
Now the analysis propagatesL2’s fact forward, again applying the
transfer function, and propagating the new fact{x=2, y=7} to L2.
Again the new fact is joined with the existing fact atL2, and the
process repeats until the facts reach a fixed point.

A transfer function has an unusual sort of type: not quite a depen-
dent type, but not a bog-standard polymorphic type either. The re-
sult type of the transfer function isindexedby the shape (i.e., the
type) of the node argument: If the node is open on exit, the transfer
function produces a single fact. But if the node isclosedon exit,
the transfer function produces a collection of (Label,fact) pairs:
one for each outgoing edge. The collection is represented by a
FactBase; auxiliary functionmkFactBase (Figure 4) joins facts
on distinct outgoing edges that target the same label.

The indexing is expressed by Haskell’s (recently added)indexed
type families. A forward transfer function supplied by a client,
which is passed tomkFTransfer, is polymorphic ine andx (Fig-
ure 4). It takes a node of typen e x, and it returns afact trans-
formerof typef -> Fact x f. Type constructorFact is a species
of type-level function: its signature is given in thetype family
declaration, and its definition is given by twotype instance dec-
larations. The first declaration says that aFact O f, which comes
out of a nodeopenon exit, is just a factf. The second declaration
says that aFact C f, which comes out of a nodeclosedon exit, is
a mapping fromLabel to facts.

4.3 The rewrite function and the client’s monad

We compute dataflow facts in order to enable code-improving
transformations. In our constant-propagation example, the dataflow
facts may enable us to simplify an expression by performing con-
stant folding, or to turn a conditional branch into an unconditional
one. Similarly, facts about liveness may allow us to replace a dead
assignment with a no-op.

A FwdPass therefore includes arewrite function, whose type,
FwdRewrite, is abstract (Figure 4). A programmer creating a
rewrite function chooses the type of a noden and a dataflow factf.
A rewrite function might also want to consume fresh names (e.g., to
label new blocks) or take other actions (e.g., logging rewrites).
So that a rewrite function may take actions, Hoopl requires that
a programmer creating a rewrite function also choose a monadm.
So that Hoopl may roll back actions taken by speculative rewrites,
the monad must satisfy the constraintCkpointMonad m, as ex-
plained in Section 4.7 below. The programmer may write code that
works with any such monad, may create a monad just for the client,
or may use a monad supplied by Hoopl.

When these choices are made, the easy way to create a rewrite
function is to call the functionmkFRewrite in Figure 4. The client
supplies a functionr, which is specialized to a particular node,
fact, and monad, but is polymorphic in theshapeof the node
to be rewritten. Functionr takes a node and a fact and returns
a monadic computation, but what result should that computation
return? Returning a new node is not good enough: in general,
it must be possible for rewriting to result in a graph. For example,

6

we might want to remove a node by returning the empty graph, or
more ambitiously, we might want to replace a high-level operation
with a tree of conditional branches or a loop, which would entail
returning a graph containing new blocks with internal control flow.

It must also be possible for a rewrite function to decide to do
nothing. The result of the monadic computation returned byr
may therefore beNothing, indicating that the node should not be
rewritten, orJust g, indicating that the node should be replaced
with g: the replacement graph.

The type ofmkFRewrite in Figure 4 guarantees that the replace-
ment graphg has the sameshapeas the node being rewritten.
For example, a branch instruction can be replaced only by a graph
closed on exit.

4.4 Shallow rewriting, deep rewriting, rewriting
combinators, and the meaning of FwdRewrite

When a node is rewritten, the replacement graphg must itself be
analyzed, and its nodes may be further rewritten. Hoopl can make a
recursive call toanalyzeAndRewriteFwdBody—but how should
it rewrite the replacement graphg? There are two common cases:

• Rewrite g using the same rewrite function that producedg.
This procedure is calleddeep rewriting. When deep rewriting
is used, the client’s rewrite function must ensure that the graphs
it produces are not rewritten indefinitely (Section 4.8).

• Analyzeg without rewriting it. This procedure is calledshallow
rewriting.

Deep rewriting is essential to achieve the full benefits of interleaved
analysis and transformation (Lerner, Grove, and Chambers 2002).
But shallow rewriting can be vital as well; for example, a backward
dataflow pass that inserts a spill before a call must not rewrite the
call again, lest it attempt to insert infinitely many spills.

An innovation of Hoopl is to build the choice of shallow or deep
rewriting into each rewrite function, through the use of the four
combinatorsmkFRewrite, thenFwdRw, iterFwdRw, andnoFwdRw
shown in Figure 4. Every rewrite function is made with these com-
binators, and its behavior is characterized by the answers to two
questions: Does the function rewrite a node to a replacement graph?
If so, what rewrite function should be used to analyze the replace-
ment graph recursively? To answer these questions, we present an
algebraic datatype that modelsFwdRewrite with one constructor
for each combinator:

data Rw r = Mk r | Then (Rw r) (Rw r) | Iter (Rw r) | No

Using this model, we specify how a rewrite function works by
giving a reference implementation: the functionrewrite, below,
computes the replacement graph and rewrite function that result
from applying a rewrite functionr to anode and a factf. The code
is in continuation-passing style; when the node is rewritten, the first
continuationj accepts a pair containing the replacement graph and
the new rewrite function to be used to transform it. When the node
is not rewritten, the second continuationn is the (lazily evaluated)
result.

rewrite :: Monad m => FwdRewrite m n f -> n e x -> f
-> m (Maybe (Graph n e x, FwdRewrite m n f))

rewrite r node f = rew r (return . Just) (return Nothing)
where
rew (Mk rw) j n = do { mg <- rw node f

; case mg of Nothing -> n
Just g -> j (g, No) }

rew (r1 ‘Then‘ r2) j n = rew r1 (j . add r2) (rew r2 j n)
rew (Iter r) j n = rew r (j . add (Iter r)) n
rew No j n = n
add nextrw (g, r) = (g, r ‘Then‘ nextrw)

Appealing to this model, we see that

• A functionmkFRewrite rw never rewrites a replacement graph;
this behavior is shallow rewriting.

• When a functionr1 ‘thenFwdRw‘ r2 is applied to a node,
if r1 replaces the node, thenr2 is used to transform the re-
placement graph. And ifr1 does not replace the node, Hoopl
triesr2.

• When a functioniterFwdRw r rewrites a node,iterFwdRw r
is used to transform the replacement graph; this behavior is
deep rewriting. Ifr does not rewrite a node, neither does
iterFwdRw r.

• Finally, noFwdRw never replaces a graph.

For convenience, we also provide the functiondeepFwdRw, which
is the composition ofiterFwdRw andmkFRewrite.

Our combinators satisfy the algebraic laws that you would expect;
for example,noFwdRw is a left and right identity ofthenFwdRw.
A more interesting law is

iterFwdRw r = r ‘thenFwdRw‘ iterFwdRw r

Unfortunately, this law cannot be used todefineiterFwdRw: if we
used this law to defineiterFwdRw, then whenr returnedNothing,
iterFwdRw r would diverge.

4.5 When the type of nodes is not known

We note above (Section 4.2) that the type of a transfer function’s re-
sult depends on the argument’s shape on exit. It is easy for a client
to write a type-indexed transfer function, because the client defines
the constructor and shape for each node. The client’s transfer func-
tions discriminate on the constructor and so can return a result that
is indexed by each node’s shape.

What if you want to write a transfer function that doesnot know
the type of the node? For example, a dominator analysis need not
scrutinize nodes; it needs to know only about labels and edges in
the graph. Ideally, a dominator analysis would work withany type
of noden, provided only thatn is an instance of theNonLocal type
class. But if we don’t know the type ofn, we can’t write a function
of typen e x -> f -> Fact x f, because the only way to get the
result type right is to scrutinize the constructors ofn.

There is another way; in place of a single function that is poly-
morphic in shape, Hoopl also accepts a triple of functions, each of
which is polymorphic in the node’s type but monomorphic in its
shape:

mkFTransfer3 :: (n C O -> f -> Fact O f)
-> (n O O -> f -> Fact O f)
-> (n O C -> f -> Fact C f)
-> FwdTransfer n f

We have used this interface to write a number of functions that are
polymorphic in the node typen:

• A function that takes aFwdTransfer and wraps it in logging
code, so an analysis can be debugged by watching facts flow
through nodes

• A pairing function that runs two passes interleaved, not sequen-
tially, potentially producing better results than any sequence:
pairFwd :: Monad m

=> FwdPass m n f
-> FwdPass m n f’
-> FwdPass m n (f, f’)

• An efficient dominator analysis in the style of Cooper, Harvey,
and Kennedy (2001), whose transfer function is implemented
using only the functions in theNonLocal type class

7

-- Type and definition of the lattice
type ConstFact = Map.Map Var (WithTop Lit)
constLattice :: DataflowLattice ConstFact
constLattice = DataflowLattice
{ fact_bot = Map.empty
, fact_join = joinMaps (extendJoinDomain constFactAdd) }
where

constFactAdd _ (OldFact old) (NewFact new)
= if new == old then (NoChange, PElem new)

else (SomeChange, Top)

--
-- Analysis: variable equals a literal constant
varHasLit :: FwdTransfer Node ConstFact
varHasLit = mkFTransfer ft
where
ft :: Node e x -> ConstFact -> Fact x ConstFact
ft (Label _) f = f
ft (Assign x (Lit k)) f = Map.insert x (PElem k) f
ft (Assign x _) f = Map.insert x Top f
ft (Store _ _) f = f
ft (Branch l) f = mapSingleton l f
ft (Cond (Var x) tl fl) f

= mkFactBase constLattice
[(tl, Map.insert x (PElem (Bool True)) f),
(fl, Map.insert x (PElem (Bool False)) f)]

ft (Cond _ tl fl) f
= mkFactBase constLattice [(tl, f), (fl, f)]

--
-- Rewriting: replace constant variables
constProp :: FuelMonad m => FwdRewrite m Node ConstFact
constProp = mkFRewrite cp
where

cp node f
= return $ liftM nodeToG $ mapVN (lookup f) node

mapVN = mapEN . mapEE . mapVE
lookup f x = case Map.lookup x f of

Just (PElem v) -> Just $ Lit v
_ -> Nothing

--
-- Simplification ("constant folding")
simplify :: FuelMonad m => FwdRewrite m Node f
simplify = deepFwdRw simp
where
simp node _ = return $ liftM nodeToG $ s_node node
s_node :: Node e x -> Maybe (Node e x)
s_node (Cond (Lit (Bool b)) t f)

= Just $ Branch (if b then t else f)
s_node n = (mapEN . mapEE) s_exp n
s_exp (Binop Add (Lit (Int n1)) (Lit (Int n2)))

= Just $ Lit $ Int $ n1 + n2
-- ... more cases for constant folding

--
-- Defining the forward dataflow pass
constPropPass = FwdPass

{ fp_lattice = constLattice
, fp_transfer = varHasLit
, fp_rewrite = constProp ‘thenFwdRw‘ simplify }

Figure 5. The client for constant propagation and constant folding
(extracted automatically from code distributed with Hoopl)

4.6 Example: Constant propagation and constant folding

Figure 5 shows client code for constant propagation and constant
folding. For each variable, at each program point, the analysis
concludes one of three facts: the variable holds a constant value of
typeLit, the variable might hold a non-constant value, or what the

variable holds is unknown. We represent these facts using a finite
map from a variable to a fact of typeWithTop Lit (Section 4.1).
A variable with a constant value maps toJust (PElem k), where
k is the constant value; a variable with a non-constant value maps to
Just Top; and a variable with an unknown value maps toNothing
(it is not in the domain of the finite map).

The definition of the lattice (constLattice) is straightforward.
The bottom element is an empty map (nothing is known about
what any variable holds). The join function is implemented with
the help of combinators provided by Hoopl. The client writes a
simple function,constFactAdd, which compares two values of
typeLit and returns a result of typeWithTop Lit. The client uses
extendJoinDomain to lift constFactAdd into a join function on
WithTop Lit, then usesjoinMaps to lift that join function up to
the map containing facts for all variables.

The forward transfer functionvarHasLit is defined using the
shape-polymorphic auxiliary functionft. For most nodesn, ft n
simply propagates the input fact forward. But for an assignment
node, if a variablex gets a constant valuek, ft extends the input
fact by mappingx to PElem k. And if a variablex is assigned a
non-constant value,ft extends the input fact by mappingx to Top.
There is one other interesting case: a conditional branch where
the condition is a variable. If the conditional branch flows to the
true successor, the variable holdsTrue, and similarly for the false
successor,mutatis mutandis. Functionft updates the fact flowing
to each successor accordingly. Becauseft scrutinizes a GADT, it
cannot use a wildcard to default the uninteresting cases.

The transfer function need not consider complicated cases such as
an assignmentx:=y wherey holds a constant valuek. Instead,
we rely on the interleaving of transformation and analysis to first
transform the assignment tox:=k, which is exactly what our simple
transfer function expects. As we mention in Section 2, interleaving
makes it possible to write very simple transfer functions without
missing opportunities to improve the code.

Figure 5’s rewrite function for constant propagation,constProp,
rewrites each use of a variable to its constant value. The client has
defined auxiliary functions that may change expressions or nodes:

type MaybeChange a = a -> Maybe a
mapVE :: (Var -> Maybe Expr) -> MaybeChange Expr
mapEE :: MaybeChange Expr -> MaybeChange Expr
mapEN :: MaybeChange Expr -> MaybeChange (Node e x)
mapVN :: (Var -> Maybe Expr) -> MaybeChange (Node e x)
nodeToG :: Node e x -> Graph Node e x

The client composesmapXX functions to applylookup to each use
of a variable in each kind of node;lookup substitutes for each
variable that has a constant value. ApplyingliftM nodeToG lifts
the final node, if present, into aGraph.

Figure 5 also gives another, distinct function for constant folding:
simplify. This function rewrites constant expressions to their
values, and it rewrites a conditional branch on a boolean constant
to an unconditional branch. To rewrite constant expressions, it runs
s_exp on every subexpression. Functionsimplify does not check
whether a variable holds a constant value; it relies onconstProp
to have replaced the variable by the constant. Indeed,simplify
does not consult the incoming fact, so it is polymorphic inf.

TheFwdRewrite functionsconstProp andsimplify are useful
independently. In this case, however, we wantbothof them, so we
compose them withthenFwdRw. The composition, along with the
lattice and the transfer function, goes intoconstPropPass (bottom
of Figure 5). GivenconstPropPass, we can improve a graphg by
passingconstPropPass andg to analyzeAndRewriteFwdBody.

8

4.7 Checkpointing the client’s monad

When analyzing a program with loops, a rewrite function could
make a change that later has to be rolled back. For example, con-
sider constant propagation in this loop, which computes factorial:

i = 1; prod = 1;
L1: if (i >= n) goto L3 else goto L2;
L2: i = i + 1; prod = prod * i;

goto L1;
L3: ...

FunctionanalyzeAndRewriteFwdBody iterates through this graph
until the dataflow facts stop changing. On the first iteration, the as-
signmenti = i + 1 is analyzed with an incoming facti=1, and
the assignment is rewritten to the graphi = 2. But on a later it-
eration, the incoming fact increases toi=⊤, and the rewrite is no
longer justified. After each iteration, Hoopl starts the next itera-
tion with newfacts but with theoriginal graph—by virtue of using
purely functional data structures, rewrites from previous iterations
are automatically rolled back.

But a rewrite function doesn’t only produce new graphs; it can also
takemonadic actions, such as acquiring a fresh name. These ac-
tions must also be rolled back, and because the client chooses the
monad in which the actions take place, the client must provide the
means to roll back the actions. Hoopl therefore defines a rollback
interface, which each client must implement; it is the type class
CkpointMonad from Figure 4:

class Monad m => CkpointMonad m where
type Checkpoint m
checkpoint :: m (Checkpoint m)
restart :: Checkpoint m -> m ()

Hoopl calls thecheckpoint method at the beginning of an itera-
tion, then calls therestart method if another iteration is neces-
sary. These operations must obey the following algebraic law:

do { s <- checkpoint; m; restart s } == return ()

wherem represents any combination of monadic actions that might
be taken by rewrite functions. (The safest course is to make sure
the law holds for any action in the monad.) The type of the saved
checkpoints is up to the client; it is specified as an associated type
of theCkpointMonad class.

4.8 Correctness

Facts computed by the transfer function depend on graphs produced
by the rewrite function, which in turn depend on facts computed by
the transfer function. How do we know this algorithm is sound, or if
it terminates? A proof requires a POPL paper (Lerner, Grove, and
Chambers 2002); here we merely state the conditions for correct-
ness as applied to Hoopl:

• The lattice must have noinfinite ascending chains; that is,
every sequence of calls tofact_join must eventually return
NoChange.

• The transfer function must bemonotonic: given a more infor-
mative fact in, it must produce a more informative fact out.

• The rewrite function must besound: if it replaces a noden by a
replacement graphg, theng must be observationally equivalent
to n under the assumptions expressed by the incoming dataflow
factf. Moreover, analysis ofg must produce output fact(s) that
are at least as informative as the fact(s) produced by applying
the transfer function ton. For example, if the transfer function
says thatx=7 after the noden, then after analysis ofg, x had
better still be7.

• A transformation that uses deep rewriting must not return a re-
placement graph which contains a node that could be rewritten
indefinitely.

Under these conditions, the algorithm terminates and is sound.

5. Hoopl’s implementation
Section 4 gives a client’s-eye view of Hoopl, showing how to create
analyses and transformations. Hoopl’s interface is simple, but the
implementationof interleaved analysis and rewriting is not. Lerner,
Grove, and Chambers (2002) do not describe their implementation.
We have written at least three previous implementations, all of
which were long and hard to understand, and only one of which
provided compile-time guarantees about open and closed shapes.
We are not confident that any of these implementations are correct.

In this paper we describe a new implementation. It is elegant and
short (about a third of the size of our last attempt), and it offers
strong compile-time guarantees about shapes. We describe only the
implementation offorward analysis and transformation. The im-
plementations of backward analysis and transformation are exactly
analogous and are included in Hoopl.

We also explain, in Section 5.5, how we isolate errors in faulty
optimizers, and how the fault-isolation machinery is integrated with
the rest of the implementation.

5.1 Overview

Instead of the interface functionanalyzeAndRewriteFwdBody,
we present the more polymorphic, private functionarfGraph,
which is short for “analyze and rewrite forward graph:”

arfGraph
:: forall m n f e x. (CkpointMonad m, NonLocal n)
=> FwdPass m n f -- lattice, transfers, rewrites
-> MaybeC e [Label] -- entry points for a closed graph
-> Graph n e x -- the original graph
-> Fact e f -- fact(s) flowing into entry/entries
-> m (DG f n e x, Fact x f)

Function arfGraph has a more general type than the function
analyzeAndRewriteFwdBody becausearfGraph is used recur-
sively to analyze graphs of all shapes. If a graph is closed on en-
try, a list of entry points must be provided; if the graph is open
on entry, the graph’s entry sequence must be the only entry point.
The graph’s shape on entry also determines the type of fact or facts
flowing in. Finally, the result is a “decorated graph”DG f n e x,
and if the graph is open on exit, an “exit fact” flowing out.

A “decorated graph” is one in which each block is decorated with
the fact that holds at the start of the block.DG actually shares a
representation withGraph, which is possible because the definition
of Graph in Figure 2 contains a white lie:Graph is a type synonym
for an underlying typeGraph’, which takes the type of block as an
additional parameter. (Similarly, functiongSplice in Section 3.4
is actually a higher-order function that takes a block-concatenation
function as a parameter.) The truth aboutGraph and DG is as
follows:

type Graph = Graph’ Block
type DG f = Graph’ (DBlock f)
data DBlock f n e x = DBlock f (Block n e x)

TypeDG is internal to Hoopl; it is not seen by any client. To convert
aDG to theGraph andFactBase that are returned by the API func-
tion analyzeAndRewriteFwdBody, we use a 12-line function:

normalizeGraph
:: NonLocal n => DG f n e x -> (Graph n e x, FactBase f)

9

FunctionarfGraph is implemented as follows:

arfGraph pass entries = graph
where

node :: forall e x . (ShapeLifter e x)
=> n e x -> f -> m (DG f n e x, Fact x f)

block:: forall e x .
Block n e x -> f -> m (DG f n e x, Fact x f)

body :: [Label] -> LabelMap (Block n C C)
-> Fact C f -> m (DG f n C C, Fact C f)

graph:: Graph n e x -> Fact e f -> m (DG f n e x, Fact x f)

... definitions of ’node’, ’block’, ’body’, and ’graph’ ...

The four auxiliary functions help us separate concerns: for ex-
ample, onlynode knows about rewrite functions, and onlybody
knows about fixed points. Each auxiliary function works the same
way: it takes a “thing” and returns anextended fact transformer.
An extended fact transformer takes dataflow fact(s) coming into
the “thing,” and it returns an output fact. It also returns a decorated
graph representing the (possibly rewritten) “thing”—that’s theex-
tendedpart. Finally, because rewrites are monadic, every extended
fact transformer is monadic.

The types of the extended fact transformers are not quite identical:

• Extended fact transformers for nodes and blocks have the same
type; like forward transfer functions, they expect a factf rather
than the more generalFact e f required for a graph. Because a
node or a block has exactly one fact flowing into the entry, it is
easiest simply to pass that fact.

• Extended fact transformers for graphs have the most general
type, as expressed usingFact: if the graph is open on entry,
its fact transformer expects a single fact; if the graph is closed
on entry, its fact transformer expects aFactBase.

• Extended fact transformers for bodies have the same type as
extended fact transformers for closed/closed graphs.

FunctionarfGraph and its four auxiliary functions comprise a
cycle of mutual recursion:arfGraph calls graph; graph calls
body andblock; body callsblock; block callsnode; andnode
calls arfGraph. These five functions do three different kinds of
work: compose extended fact transformers, analyze and rewrite
nodes, and compute fixed points.

5.2 Analyzing blocks and graphs by composing extended fact
transformers

Extended fact transformers compose nicely. For example,block is
implemented thus:

block :: forall e x .
Block n e x -> f -> m (DG f n e x, Fact x f)

block (BFirst n) = node n
block (BMiddle n) = node n
block (BLast n) = node n
block (BCat b1 b2) = block b1 ‘cat‘ block b2

The composition functioncat feeds facts from one extended fact
transformer to another, and it splices decorated graphs.

cat :: forall e a x f1 f2 f3.
(f1 -> m (DG f n e a, f2))

-> (f2 -> m (DG f n a x, f3))
-> (f1 -> m (DG f n e x, f3))

cat ft1 ft2 f = do { (g1,f1) <- ft1 f
; (g2,f2) <- ft2 f1
; return (g1 ‘dgSplice‘ g2, f2) }

(FunctiondgSplice is the same splicing function used for an or-
dinaryGraph, but it uses a one-line block-concatenation function

suitable forDBlocks.) The namecat comes from the concatena-
tion of the decorated graphs, but it is also appropriate because the
style in which it is used is reminiscent ofconcatMap, with the
node andblock functions playing the role ofmap.

Functiongraph is much likeblock, but it has more cases.

5.3 Analyzing and rewriting nodes

Thenode function is where we interleave analysis with rewriting:

node :: forall e x . (ShapeLifter e x)
=> n e x -> f -> m (DG f n e x, Fact x f)

node n f
= do { grw <- frewrite pass n f

; case grw of
Nothing -> return (singletonDG f n

, ftransfer pass n f)
Just (g, rw) ->

let pass’ = pass { fp_rewrite = rw }
f’ = fwdEntryFact n f

in arfGraph pass’ (fwdEntryLabel n) g f’ }

class ShapeLifter e x where
singletonDG :: f -> n e x -> DG f n e x
fwdEntryFact :: NonLocal n => n e x -> f -> Fact e f
fwdEntryLabel :: NonLocal n => n e x -> MaybeC e [Label]
ftransfer :: FwdPass m n f -> n e x -> f -> Fact x f
frewrite :: FwdPass m n f -> n e x

-> f -> m (Maybe (Graph n e x, FwdRewrite m n f))

Functionnode usesfrewrite to extract the rewrite function from
pass, and it applies that rewrite function to noden and incoming
factf. The result,grw, is scrutinized by thecase expression.

In the Nothing case, no rewrite takes place. We return noden
and its incoming factf as the decorated graphsingletonDG f n.
To produce the outgoing fact, we apply the transfer function
ftransfer pass to n andf.

In the Just case, we receive a replacement graphg and a new
rewrite functionrw, as specified by the model in Section 4.4.
We userw to analyze and rewriteg recursively witharfGraph.
The recursive analysis uses a new passpass’, which contains the
original lattice and transfer function frompass, together withrw.
FunctionfwdEntryFact converts factf from the typef, which
node has, to the typeFact e f, whicharfGraph expects.

As shown above, several functions called innode are overloaded
over a (private) classShapeLifter. Their implementations depend
on the open/closed shape of the node. By design, the shape of a
node is known statically everywherenode is called, so this use of
ShapeLifter is specialized away by the compiler.

5.4 Fixed points

The fourth and final auxiliary function ofarfGraph isbody, which
iterates to a fixed point. This part of the implementation is the only
really tricky part, and it is cleanly separated from everything else:

body :: [Label] -> LabelMap (Block n C C)
-> Fact C f -> m (DG f n C C, Fact C f)

body entries blockmap init_fbase
= fixpoint Fwd lattice do_block blocks init_fbase
where

blocks = forwardBlockList entries blockmap
lattice = fp_lattice pass
do_block b fb = block b entryFact

where entryFact = getFact lattice (entryLabel b) fb

FunctiongetFact looks up a fact by its label. If the label is not
found,getFact returns the bottom element of the lattice:

getFact :: DataflowLattice f -> Label -> FactBase f -> f

10

FunctionforwardBlockList takes a list of possible entry points
and a finite map from labels to blocks. It returns a list of blocks,
sorted into an order that makes forward dataflow efficient.2

forwardBlockList
:: NonLocal n
=> [Label] -> LabelMap (Block n C C) -> [Block n C C]

For example, if the entry point is atL2, and the block atL2 branches
to L1, but not vice versa, then Hoopl will reach a fixed point more
quickly if we processL2 before L1. To find an efficient order,
forwardBlockList uses the methods of theNonLocal class—
entryLabel and successors—to perform a reverse postorder
depth-first traversal of the control-flow graph.

The rest of the work is done byfixpoint, which is shared by both
forward and backward analyses:

data Direction = Fwd | Bwd
fixpoint :: forall m n f. (CkpointMonad m, NonLocal n)
=> Direction
-> DataflowLattice f
-> (Block n C C -> Fact C f -> m (DG f n C C, Fact C f))
-> [Block n C C]
-> (Fact C f -> m (DG f n C C, Fact C f))

Except for theDirection passed as the first argument, the type
signature tells the story. The third argument can produce an ex-
tended fact transformer for any single block;fixpoint applies it
successively to each block in the list passed as the fourth argu-
ment. Functionfixpoint returns an extended fact transformer for
the list.

The extended fact transformer returned byfixpoint maintains a
“currentFactBase” which grows monotonically: as each block is
analyzed, the block’s input fact is taken from the currentFactBase,
and the currentFactBase is augmented with the facts that flow
out of the block. The initial value of the currentFactBase is the
inputFactBase, and the extended fact transformer iterates over the
blocks until the currentFactBase stops changing.

Implementingfixpoint requires about 90 lines, formatted for
narrow display. The code, which is appended to the Web version of
this paper (http://bit.ly/cZ7ts1), is mostly straightforward—
although we try to be clever about deciding when a new fact means
that another iteration is required. There is one more subtle point
worth mentioning, which we highlight by considering a forward
analysis of this graph, where execution starts atL1:

L1: x:=3; goto L4
L2: x:=4; goto L4
L4: if x>3 goto L2 else goto L5

Block L2 is unreachable. But if we naı̈vely process all the blocks
(say in orderL1, L4, L2), then we will start with the bottom fact for
L2, propagate{x=4} to L4, where it will join with {x=3} to yield
{x=⊤}. Givenx=⊤, the conditional inL4 cannot be rewritten, and
L2 seems reachable. We have lost a good optimization.

Functionfixpoint solves this problem by analyzing a block only
if the block is reachable from an entry point. This trick is safe only
for a forward analysis, which is whyfixpoint takes aDirection
as its first argument.

5.5 Throttling rewriting using “optimization fuel”

When optimization produces a faulty program, we use Whalley’s
(1994) technique to find the fault: given a program that fails when
compiled with optimization, a binary search on the number of

2 The order of the blocks does not affect the fixed point or any other result;
it affects only the number of iterations needed to reach the fixed point.

rewrites finds ann such that the program works aftern−1 rewrites
but fails aftern rewrites. Thenth rewrite is faulty. As alluded to at
the end of Section 2, this technique enables us to debug complex
optimizations by identifying one single rewrite that is faulty.

To use this debugging technique, we must be able to control the
number of rewrites. We limit rewrites usingoptimization fuel.
Each rewrite consumes one unit of fuel, and when fuel is ex-
hausted, all rewrite functions returnNothing. To debug, we do
binary search on the amount of fuel.

The supply of fuel is encapsulated in theFuelMonad type class
(Figure 4), which must be implemented by the client’s monadm.
To ensure that each rewrite consumes one unit of fuel,mkFRewrite
wraps the client’s rewrite function, which must be oblivious to fuel,
in another function that satisfies the following contract:

• If the fuel supply is empty, the wrapped function always returns
Nothing.

• If the wrapped function returnsJust g, it has the monadic
effect of reducing the fuel supply by one unit.

6. Related work
While there is a vast body of literature on dataflow analysis and op-
timization, relatively little can be found on thedesignof optimizers,
which is the topic of this paper. We therefore focus on the foun-
dations of dataflow analysis and on the implementations of some
comparable dataflow frameworks.

Foundations. When transfer functions are monotone and lattices
are finite in height, iterative dataflow analysis converges to a fixed
point (Kam and Ullman 1976). If the lattice’s join operation dis-
tributes over transfer functions, this fixed point is equivalent to
a join-over-all-paths solution to the recursive dataflow equations
(Kildall 1973).3 Kam and Ullman (1977) generalize to some mono-
tone functions. Each client of Hoopl must guarantee monotonicity.

Cousot and Cousot (1977, 1979) introduce abstract interpretation
as a technique for developing lattices for program analysis. Steffen
(1991) shows that a dataflow analysis can be implemented using
model checking; Schmidt (1998) expands on this result by showing
that an all-paths dataflow problem can be viewed as model check-
ing an abstract interpretation.

Marlowe and Ryder (1990) present a survey of different methods
for performing dataflow analyses, with emphasis on theoretical re-
sults. Muchnick (1997) presents many examples of both particular
analyses and related algorithms.

Lerner, Grove, and Chambers (2002) show that interleaving analy-
sis and transformation is sound, even when not all speculative trans-
formations are performed on later iterations.

Frameworks. Most dataflow frameworks support only analysis,
not transformation. The framework computes a fixed point of trans-
fer functions, and it is up to the client of the framework to use that
fixed point for transformation. Omitting transformation makes it
much easier to build frameworks, and one can find a spectrum of
designs. We describe two representative designs, then move on to
frameworks that do interleave analysis and transformation.

The Soot framework is designed for analysis of Java programs
(Vallée-Rai et al. 2000). While Soot’s dataflow library supports
only analysis, not transformation, we found much to admire in its

3 Kildall uses meets, not joins. Lattice orientation is a matterof convention,
and conventions have changed. We use Dana Scott’s orientation, in which
higher elements carry more information.

11

http://bit.ly/cZ7ts1

design. Soot’s library is abstracted over the representation of the
control-flow graph and the representation of instructions. Soot’s in-
terface for defining lattice and analysis functions is like our own,
although because Soot is implemented in an imperative style, addi-
tional functions are needed to copy lattice elements.

The CIL toolkit (Necula et al. 2002) supports both analysis and
rewriting of C programs, but rewriting is clearly distinct from
analysis: one runs an analysis to completion and then rewrites based
on the results. The framework is limited to one representation of
control-flow graphs and one representation of instructions, both of
which are mandated by the framework. The API is complicated;
much of the complexity is needed to enable the client to affect
which instructions the analysis iterates over.

The Whirlwind compiler contains the dataflow framework imple-
mented by Lerner, Grove, and Chambers (2002), who were the first
to interleave analysis and transformation. Their implementation is
much like our early efforts: it is a complicated mix of code that si-
multaneously manages interleaving, deep rewriting, and fixed-point
computation. By separating these tasks, our implementation sim-
plifies the problem dramatically. Whirlwind’s implementation also
suffers from the difficulty of maintaining pointer invariants in a mu-
table representation of control-flow graphs, a problem we have dis-
cussed elsewhere (Ramsey and Dias 2005).

Because speculative transformation is difficult in an imperative set-
ting, Whirlwind’s implementation is split into two phases. The first
phase runs the interleaved analyses and transformations to compute
the final dataflow facts and a representation of the transformations
that should be applied to the input graph. The second phase exe-
cutes the transformations. In Hoopl, because control-flow graphs
are immutable, speculative transformations can be applied imme-
diately, and there is no need for a phase distinction.

7. Performance considerations
Our work on Hoopl is too new for us to be able to say much about
performance. It is important to know how well Hoopl performs,
but the question is comparative, and there isn’t another library
we can compare Hoopl with. For example, Hoopl is not a drop-
in replacement for an existing component of GHC; we introduced
Hoopl to GHC as part of a major refactoring of GHC’s back end.
With Hoopl, GHC seems about 15% slower than the previous GHC,
but we don’t know what part of the slowdown, if any, should be
attributed to the optimizer. We can say that the costs of using
Hoopl seem reasonable; there is no “big performance hit.” And a
somewhat similar library, written in animpurefunctional language,
actually improved performance in an apples-to-apples comparison
with a library using a mutable control-flow graph (Ramsey and Dias
2005).

Although thorough evaluation of Hoopl’s performance must await
future work, we can identify some design decisions that might
affect performance.

• In Figure 2, we show a single concatenation operator for blocks.
Using this representation, a block ofN nodes is represented
using2N − 1 heap objects. We have also implemented a rep-
resentation of blocks that include “cons-like” and “snoc-like”
constructors; this representation requires onlyN + 1 heap ob-
jects. We don’t know how this choice affects performance.

• In Section 5, thebody function analyzes and (speculatively)
rewrites the body of a control-flow graph, andfixpoint iter-
ates this analysis until it reaches a fixed point. Decorated graphs
computed on earlier iterations are thrown away. For each deco-
rated graph ofN nodes, at least2N − 1 thunks are allocated;

they correspond to applications ofsingletonDG in node and
of dgSplice in cat. In an earlier version of Hoopl, this over-
head was eliminated by splittingarfGraph into two phases, as
in Whirlwind. The singlearfGraph is simpler and easier to
maintain; we don’t know if the extra thunks matter.

• The representation of a forward-transfer function is private to
Hoopl. Two representations are possible: we may store a triple
of functions, one for each shape a node may have; or we may
store a single, polymorphic function. Hoopl uses triples, be-
cause although working with triples makes some code slightly
more complex, the costs are straightforward. If we used a sin-
gle, polymorphic function, we would have to use ashape classi-
fier (supplied by the client) when composing transfer functions.
Using a shape classifier would introduce extracase discrimina-
tions every time we applied a transfer function or rewrite func-
tion to a node. We don’t know how these extra discriminations
might affect performance.

In summary, Hoopl performs well enough for use in GHC, but
there is much we don’t know. We have no evidence thatany of
the decisions above measurably affects performance—systematic
investigation is indicated.

8. Discussion
We built Hoopl in order to combine three good ideas (interleaved
analysis and transformation, an applicative control-flow graph, and
optimization fuel) in a way that could easily be reused by many
compiler writers. To evaluate how well we succeeded, we examine
how Hoopl has been used, we examine the API, and we examine
the implementation. We also sketch one of the many alternatives
we have implemented.

Using Hoopl. As suggested by the constant-propagation example
in Figure 5, Hoopl makes it easy to implement many standard
dataflow analyses. Students using Hoopl in a class at Tufts were
able to implement such optimizations as lazy code motion (Knoop,
Ruething, and Steffen 1992) and induction-variable elimination
(Cocke and Kennedy 1977) in just a few weeks. Graduate students
at Yale and at Portland State have also implemented a variety of
optimizations.

Hoopl’s graphs can support optimizations beyond classic dataflow.
For example, in GHC, Hoopl’s graphs are used to implement opti-
mizations based on control flow, such as eliminating branch chains.

Hoopl is SSA-neutral: although we know of no attempt to use
Hoopl to establish or enforce SSA invariants, Hoopl makes it easy
to includeφ-functions in the representation of first nodes, and if a
transformation preserves SSA invariants, it will continue to do so
when implemented in Hoopl.

Examining the API. We hope that our presentation of the API in
Section 4 speaks for itself, but there are a couple of properties worth
highlighting. First, it’s a good sign that the API provides many
higher-order combinators that make it easier to write client code.
We have had space to mention only a few:extendJoinDomain,
joinMaps, thenFwdRw, iterFwdRw, deepFwdRw, andpairFwd.

Second, the static encoding of open and closed shapes at compile
time worked out well. Shapes may seem like a small refinement,
but they helped eliminate a number of bugs from GHC, and we
expect them to help other clients too. GADTs are a convenient
way to express shapes, and for clients written in Haskell, they
are clearly appropriate. If one wished to port Hoopl to a language
without GADTs, many of the benefits could be realized by making
the shapes phantom types, but without GADTs, pattern matching
would be significantly more tedious and error-prone.

12

Examining the implementation. If you are thinking of adopting
Hoopl, you should consider not only whether you like the API,
but whether if you had to, you could maintain the implementation.
We believe that Section 5 sketches enough to show that Hoopl’s
implementation is a clear improvement over previous implementa-
tions of similar ideas. By decomposing our implementation into
node, block, body, graph, cat, fixpoint, and mkFRewrite,
we have cleanly separated multiple concerns: interleaving anal-
ysis with rewriting, throttling rewriting using optimization fuel,
and computing a fixed point using speculative rewriting. Because
of this separation of concerns, we believe our implementation will
be easier to maintain than anything that preceded it.

Design alternatives. We have explored many alternatives to the
API presented above. While these alternatives are interesting, de-
scribing and discussing an interesting alternative seems to take us
a half-column or a column of text. Accordingly, we discuss only
the single most interesting alternative: keeping the rewrite monadm
private instead of allowing the client to define it.

We have implemented an alternative API in which every rewrite
function must use a monad mandated by Hoopl. This alternative has
advantages: Hoopl implementscheckpoint, restart, setFuel,
and getFuel, so we can ensure that they are right and that the
client cannot misuse them. The downside is that the only actions a
rewrite function can take are the actions in the monad(s) mandated
by Hoopl. These monads must therefore provide extra actions that
a client might need, such as supplying fresh labels for new blocks.
Worse, Hoopl can’t possibly anticipate every action a client might
want to take. What if a client wanted one set of unique names for
labels and a different set for registers? What if, in order to judge the
effectiveness of an optimization, a client wanted to log how many
rewrites take place, or in what functions they take place? Or what if
a client wanted to implement Primitive Redex Speculation (Runci-
man 2010), a code-improving transformation that can create new
function definitions? Hoopl’s predefined monads don’t accommo-
date any of these actions. By permitting the client to define the
monadm, we risk the possibility that the client may implement key
operations incorrectly, but we also ensure that Hoopl can support
these examples, as well as other examples not yet thought of.

Final remarks. Dataflow optimization is usually described as
a way to improve imperative programs by mutating control-flow
graphs. Such transformations appear very different from the tree
rewriting that functional languages are so well known for and
which makes Haskell so attractive for writing other parts of com-
pilers. But even though dataflow optimization looks very different
from what we are used to, writing a dataflow optimizer in Haskell
was a win: we had to make every input and output explicit, and we
had a strong incentive to implement things compositionally. Using
Haskell helped us make real improvements in the implementation
of some very sophisticated ideas.

Acknowledgments
Brian Huffman and Graham Hutton helped with algebraic laws.
Sukyoung Ryu told us about Primitive Redex Speculation. Several
anonymous reviewers helped improve the presentation.

The first and second authors were funded by a grant from Intel
Corporation and by NSF awards CCF-0838899 and CCF-0311482.
These authors also thank Microsoft Research Ltd, UK, for funding
extended visits to the third author.

References
Andrew W. Appel. 1998.Modern Compiler Implementation. Cambridge

University Press, Cambridge, UK. Available in three editions: C, Java,
and ML.

John Cocke and Ken Kennedy. 1977. An algorithm for reductionof operator
strength.Communications of the ACM, 20(11):850–856.

Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. 2001. A sim-
ple, fast dominance algorithm. Technical report, Rice University. Un-
published report available fromhttp://www.hipersoft.rice.edu/
grads/publications/dom14.pdf.

Patrick Cousot and Radhia Cousot. 1977 (January). Abstractinterpretation:
A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. InConference Record of the 4th ACM
Symposium on Principles of Programming Languages, pages 238–252.

Patrick Cousot and Radhia Cousot. 1979 (January). Systematic design of
program analysis frameworks. InConference Record of the 6th Annual
ACM Symposium on Principles of Programming Languages, pages 269–
282.

John B. Kam and Jeffrey D. Ullman. 1976. Global data flow analysis and
iterative algorithms.Journal of the ACM, 23(1):158–171.

John B. Kam and Jeffrey D. Ullman. 1977. Monotone data flow analysis
frameworks.Acta Informatica, 7:305–317.

Gary A. Kildall. 1973 (October). A unified approach to globalprogram op-
timization. InConference Record of the ACM Symposium on Principles
of Programming Languages, pages 194–206.

Jens Knoop, Oliver Ruething, and Bernhard Steffen. 1992. Lazy code mo-
tion. Proceedings of the ACM SIGPLAN ’92 Conference on Program-
ming Language Design and Implementation,in SIGPLAN Notices, 27
(7):224–234.

Sorin Lerner, David Grove, and Craig Chambers. 2002 (January). Com-
posing dataflow analyses and transformations.Conference Record of
the 29th Annual ACM Symposium on Principles of Programming Lan-
guages,in SIGPLAN Notices, 31(1):270–282.

Thomas J. Marlowe and Barbara G. Ryder. 1990. Properties of data flow
frameworks: a unified model.Acta Informatica, 28(2):121–163.

Steven S. Muchnick. 1997.Advanced compiler design and implementation.
Morgan Kaufmann, San Mateo, CA.

George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. 2002. CIL: Intermediate language and tools for analysis and
transformation of C programs. InCC ’02: Proceedings of the 11th In-
ternational Conference on Compiler Construction, pages 213–228.

Norman Ramsey and João Dias. 2005 (September). An applicative control-
flow graph based on Huet’s zipper. InACM SIGPLAN Workshop on ML,
pages 101–122.

Colin Runciman. 2010 (June). Finding and increasing PRS candidates.
Reduceron Memo 50,www.cs.york.ac.uk/fp/reduceron.

David A. Schmidt. 1998. Data flow analysis is model checking of ab-
stract interpretations. In ACM, editor,Conference Record of the 25th
Annual ACM Symposium on Principles of Programming Languages,
pages 38–48.

Bernhard Steffen. 1991. Data flow analysis as model checking.In TACS
’91: Proceedings of the International Conference on Theoretical Aspects
of Computer Software, pages 346–365.

Raja Valĺee-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. 2000. Optimizing Java bytecode
using the Soot framework: Is it feasible? InCC ’00: Proceedings of the
9th International Conference on Compiler Construction, pages 18–34.

David B. Whalley. 1994 (September). Automatic isolation of compiler
errors.ACM Transactions on Programming Languages and Systems, 16
(5):1648–1659.

13

http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
www.cs.york.ac.uk/fp/reduceron

A. Index of defined identifiers
This appendix lists every nontrivial identifier used in the body
of the paper. For each identifier, we list the page on which that
identifier is defined or discussed—or when appropriate, the figure
(with line number where possible). For those few identifiers not
defined or discussed in text, we give the type signature and the page
on which the identifier is first referred to.

Some identifiers used in the text are defined in the Haskell Prelude;
for those readers less familiar with Haskell (possible even at the
Haskell Symposium!), these identifiers are listed in Appendix B.

Add :: Operator not shown (but see page 8).
add defined on page 7.
addBlock defined in Figure 2 on page 3.
analyzeAndRewriteFwdBody defined on page 5.
arfGraph defined on page 9.
Assign defined in Figure 1 on page 3.
b1 let- orλ-bound on page 4.
b2 let- orλ-bound on page 4.
BCat defined in Figure 2 on page 3.
BFirst defined in Figure 2 on page 3.
Binop :: Operator -> Expr -> Expr -> Expr not shown
(but see page 8).
BLast defined in Figure 2 on page 3.
blk let- orλ-bound on page 16.
blks let- orλ-bound on page 16.
Block defined in Figure 2 on page 3.
block defined on page 10.
blockmap let- orλ-bound on page 10.
blocks let- orλ-bound on page 10.
blockUnion defined in Figure 2 on page 3.
BMiddle defined in Figure 2 on page 3.
body defined on page 10.
Bot defined on page 6.
Branch defined in Figure 1 on page 3.
bs let- orλ-bound on page 4.
bs1 let- orλ-bound on page 4.
bs2 let- orλ-bound on page 4.
Bwd defined on page 11.
C defined in Figure 2 on page 3.
cat defined on page 10.
cha let- orλ-bound on page 15.
cha’ let- orλ-bound on page 16.
cha2 let- orλ-bound on page 15.
ChangeFlag defined in Figure 4 on page 5.
Checkpoint defined on page 9.
checkpoint defined on page 9.
CkpointMonad defined on page 9.
Cond defined in Figure 1 on page 3.
ConstFact defined in Figure 5 on page 8.
constFactAdd defined in Figure 5 on page 8.
constLattice defined in Figure 5 on page 8.
constProp defined in Figure 5 on page 8.
constPropPass defined in Figure 5 on page 8.
cp let- orλ-bound in Figure 5 on page 8.
DataflowLattice defined in Figure 4 on page 5.
DBlock defined on page 9.
deepFwdRw defined on page 7.
DG defined on page 9.
dgnilC :: DG f n C C not shown (but see page 16).
dgSplice defined on page 10.
Direction defined on page 11.
direction let- orλ-bound on page 16.
do block let- orλ-bound on page 10.
entries let- orλ-bound on page 10.

entryFact let- orλ-bound on page 10.
entryLabel defined in Figure 2 on page 3.
ex let- orλ-bound in Figure 2 on page 3.
Expr defined on page 3.
extendJoinDomain defined on page 6.
Fact defined in Figure 4 on page 5.
FactBase defined in Figure 4 on page 5.
fact bot defined in Figure 4 on page 5.
fact join defined in Figure 4 on page 5.
fb let- orλ-bound on page 10.
fbase let- orλ-bound on page 15.
fbase’ let- orλ-bound on page 16.
fixpoint defined on page 11.
fl let- orλ-bound in Figure 5 on page 8.
forwardBlockList defined on page 11.
fp lattice defined in Figure 4 on page 5.
fp rewrite defined in Figure 4 on page 5.
fp transfer defined in Figure 4 on page 5.
frewrite defined on page 10.
ft let- orλ-bound in Figure 5 on page 8.
ft1 let- orλ-bound on page 10.
ft2 let- orλ-bound on page 10.
ftransfer defined on page 10.
Fuel defined in Figure 4 on page 5.
FuelMonad defined in Figure 4 on page 5.
Fwd defined on page 11.
fwdEntryFact defined on page 10.
fwdEntryLabel defined on page 10.
FwdPass defined in Figure 4 on page 5.
FwdRewrite defined in Figure 4 on page 5.
FwdTransfer defined in Figure 4 on page 5.
getFact defined on page 11.
getFuel defined in Figure 4 on page 5.
GMany defined in Figure 2 on page 3.
GNil defined in Figure 2 on page 3.
Graph defined in Figure 2 on page 3.
graph defined on page 10.
Graph’ defined on page 9.
grw let- orλ-bound on page 10.
gSplice defined on page 4.
GUnit defined in Figure 2 on page 3.
init fbase let- orλ-bound on page 10.
init tx let- orλ-bound on page 16.
in lbls let- orλ-bound on page 16.
is fwd let- orλ-bound on page 16.
Iter defined on page 7.
iterFwdRw defined in Figure 4 on page 5.
join let- orλ-bound on page 15.
JoinFun defined in Figure 4 on page 5.
joinMaps defined on page 6.
JustO defined in Figure 2 on page 3.
Label defined in Figure 2 on page 3.
LabelMap defined in Figure 2 on page 3.
LabelSet (a type) not shown (but see page 16).
lat let- orλ-bound on page 15.
lattice let- orλ-bound on page 10.
lbl let- orλ-bound on page 15.
lbls let- orλ-bound on page 15.
lbls’ let- orλ-bound on page 16.
Lit defined on page 8.
lookup let- orλ-bound in Figure 5 on page 8.
lookupFact :: FactBase f -> Label -> Maybe f not
shown (but see page 16).
loop let- orλ-bound on page 16.

14

mapDeleteList :: [Label] -> LabelMap a -> LabelMap
a not shown (but see page 16).
mapEE defined on page 8.
mapEN defined on page 8.
mapFoldWithKey :: (Label -> a -> b -> b) -> b ->
LabelMap a -> b not shown (but see page 16).
mapInsert :: Label -> a -> LabelMap a -> LabelMap
a not shown (but see page 16).
mapMember :: Label -> LabelMap a -> Bool not shown
(but see page 16).
mapVE defined on page 8.
mapVN defined on page 8.
MaybeC (a type of kind* -> * -> *) not shown (but see page 3).
MaybeChange defined on page 8.
MaybeO defined in Figure 2 on page 3.
mg let- orλ-bound on page 7.
Mk defined on page 7.
mkFactBase defined on page 6.
mkFRewrite defined in Figure 4 on page 5.
mkFTransfer defined in Figure 4 on page 5.
mkFTransfer3 defined on page 7.
new let- orλ-bound in Figure 5 on page 8.
NewFact defined in Figure 4 on page 5.
new fact let- orλ-bound on page 15.
new fact debug let- orλ-bound on page 15.
new fbase let- orλ-bound on page 15.
nextrw let- orλ-bound on page 7.
No defined on page 7.
NoChange defined in Figure 4 on page 5.
Node defined in Figure 1 on page 3.
node let- orλ-bound in Figure 5 on page 8.
nodeToG defined on page 8.
noFwdRw defined in Figure 4 on page 5.
NonLocal defined in Figure 2 on page 3.
normalizeGraph defined on page 10.
NothingO defined in Figure 2 on page 3.
O defined in Figure 2 on page 3.
old let- orλ-bound in Figure 5 on page 8.
OldFact defined in Figure 4 on page 5.
old fact let- orλ-bound on page 15.
out facts let- orλ-bound on page 16.
pairFwd defined on page 7.
pass let- orλ-bound on page 10.
pass’ let- orλ-bound on page 10.
PElem defined on page 6.
prod defined on page 9.
r let- orλ-bound on page 7.
res fact let- orλ-bound on page 15.
restart defined on page 9.
rew defined on page 7.
rewrite defined on page 7.
rg let- orλ-bound on page 16.
Rw defined on page 7.
rw let- orλ-bound on page 7.
setEmpty :: LabelSet not shown (but see page 16).
setFromList :: [Label] -> LabelSet not shown (but see
page 16).
setFuel defined in Figure 4 on page 5.
setMember :: Label -> LabelSet -> Bool not shown (but
see page 16).
setUnion :: LabelSet -> LabelSet -> LabelSet not
shown (but see page 16).
s exp let- orλ-bound in Figure 5 on page 8.
ShapeLifter defined on page 10.
simp let- orλ-bound in Figure 5 on page 8.

simplify defined in Figure 5 on page 8.
singletonDG defined on page 10.
s node let- orλ-bound in Figure 5 on page 8.
SomeChange defined in Figure 4 on page 5.
Store defined in Figure 1 on page 3.
successors defined in Figure 2 on page 3.
tag let- orλ-bound on page 16.
tagged blocks let- orλ-bound on page 16.
tfb cha defined on page 16.
tfb fbase defined on page 16.
tfb lbls defined on page 16.
tfb rg defined on page 16.
Then defined on page 7.
thenFwdRw defined in Figure 4 on page 5.
tl let- orλ-bound in Figure 5 on page 8.
Top defined on page 6.
tx block let- orλ-bound on page 16.
tx blocks let- orλ-bound on page 16.
TxFactBase defined on page 16.
TxFB defined on page 16.
tx fb let- orλ-bound on page 16.
updateFact defined on page 15.
Var defined on page 3.
varHasLit defined in Figure 5 on page 8.
WithBot defined on page 6.
WithTop defined on page 6.
WithTopAndBot defined on page 6.

B. Identifiers defined in Haskell Prelude or a
standard library

!, $, &, &&, *, +, ++, -, ., /, =<<, ==, >, >=, >>, >>=, Bool,
concatMap, const, curry, cycle, Data.Map, drop, False,
flip, fmap, foldl, foldr, fst, head, id, Int, Integer, Just,
last, liftM, map, Map.empty, Map.insert, Map.lookup,
Map.Map, mapM , Maybe, Monad, not, Nothing, Ord, otherwise,
return, snd, String, tail, take, True, uncurry, undefined .

C. Computation of fixed points
FunctionupdateFact updates the currentFactBase and sets the
ChangeFlag.

updateFact :: DataflowLattice f -> LabelSet
-> Label -> f -> (ChangeFlag, FactBase f)
-> (ChangeFlag, FactBase f)

updateFact lat lbls lbl new_fact (cha, fbase)
| NoChange <- cha2 = (cha, fbase)
| lbl ‘setMember‘ lbls = (SomeChange, new_fbase)
| otherwise = (cha, new_fbase)
where

(cha2, res_fact)
= case lookupFact lbl fbase of

Nothing -> (SomeChange, new_fact_debug)
Just old_fact -> join old_fact

where join old_fact =
fact_join lat lbl

(OldFact old_fact) (NewFact new_fact)
(_, new_fact_debug) = join (fact_bot lat)

new_fbase = mapInsert lbl res_fact fbase

15

DatatypeTxFactBase accumulates facts (and the transformed
code) during the fixpoint iteration.

data TxFactBase n f
= TxFB { tfb_fbase :: FactBase f

, tfb_rg :: DG f n C C -- Transformed blocks
, tfb_cha :: ChangeFlag
, tfb_lbls :: LabelSet }

fixpoint direction lat do_block blocks init_fbase
= do { tx_fb <- loop init_fbase

; return (tfb_rg tx_fb,
map (fst . fst) tagged_blocks

‘mapDeleteList‘ tfb_fbase tx_fb) }
-- The successors of the Graph are the the Labels
-- for which we have facts and which are *not* in
-- the blocks of the graph

where
tagged_blocks = map tag blocks
is_fwd = case direction of { Fwd -> True;

Bwd -> False }
tag b = ((entryLabel b, b),

if is_fwd then [entryLabel b]
else successors b)

-- ’tag’ adds the in-labels of the block;
-- see Note [TxFactBase invairants]

tx_blocks :: [((Label, Block n C C), [Label])]
-> TxFactBase n f -> m (TxFactBase n f)

tx_blocks [] tx_fb = return tx_fb
tx_blocks (((lbl,blk), in_lbls):bs) tx_fb

= tx_block lbl blk in_lbls tx_fb >>= tx_blocks bs
-- "in_lbls" == Labels the block may
-- _depend_ upon for facts

tx_block :: Label -> Block n C C -> [Label]
-> TxFactBase n f -> m (TxFactBase n f)

tx_block lbl blk in_lbls
tx_fb@(TxFB { tfb_fbase = fbase, tfb_lbls = lbls

, tfb_rg = blks, tfb_cha = cha })
| is_fwd && not (lbl ‘mapMember‘ fbase)
= return (tx_fb {tfb_lbls = lbls’})
| otherwise
= do { (rg, out_facts) <- do_block blk fbase

; let (cha’, fbase’) = mapFoldWithKey
(updateFact lat lbls)
(cha,fbase) out_facts

; return $
TxFB { tfb_lbls = lbls’

, tfb_rg = rg ‘dgSplice‘ blks
, tfb_fbase = fbase’
, tfb_cha = cha’ } }

where
lbls’ = lbls ‘setUnion‘ setFromList in_lbls

loop :: FactBase f -> m (TxFactBase n f)
loop fbase

= do { s <- checkpoint
; let init_tx = TxFB { tfb_fbase = fbase

, tfb_cha = NoChange
, tfb_rg = dgnilC
, tfb_lbls = setEmpty }

; tx_fb <- tx_blocks tagged_blocks init_tx
; case tfb_cha tx_fb of

NoChange -> return tx_fb
SomeChange

-> do { restart s
; loop (tfb_fbase tx_fb) } }

Here are some of the invariants of theTxFactBase used by algo-
rithm:

• The currentFactBase, tfb_fbase, increases monotonically.

• During an iteration,tfb_lbls is the set of in-labels of all
blocks that have been processed so far this sweep, including
the block that is currently being processed. It is a subset of the
Labels of theoriginal (not transformed) blocks.

• During an iteration,tfb_cha is set toSomeChange if and only
if we decide another iteration will be needed. It is set if the fact
in tfb_fbase for a block @L@ changesandL is intfb_lbls.
(Until a label enterstfb_lbls, its fact intfb_fbase has not
been read, hence it cannot affect the outcome.)

16

	Introduction
	Dataflow analysis & transformation by example
	Representing control-flow graphs
	Shapes: Open and closed
	Nodes
	Blocks
	Graphs
	Edges, labels and successors

	Using Hoopl to analyze and transform graphs
	Dataflow lattices
	The transfer function
	The rewrite function and the client's monad
	Shallow rewriting, deep rewriting, rewriting combinators, and the meaning of FwdRewrite
	When the type of nodes is not known
	Example: Constant propagation and constant folding
	Checkpointing the client's monad
	Correctness

	Hoopl's implementation
	Overview
	Analyzing blocks and graphs by composing extended fact transformers
	Analyzing and rewriting nodes
	Fixed points
	Throttling rewriting using ``optimization fuel''

	Related work
	Performance considerations
	Discussion
	Index of defined identifiers
	Identifiers defined in Haskell Prelude or a standard library
	Computation of fixed points

