
Task Completion Detection
A Study in the Context of Intelligent Systems

Ryen W. White, Ahmed Hassan Awadallah, Robert Sim

Microsoft Research

Challenges in Task Management

• Intelligent systems (digital assistants, etc.) store / remind users about tasks

• Tasks can be explicitly specified or inferred (e.g., from email)

• Users face least two challenges:

1. Task lists grow over time making it difficult to focus attention on pending tasks

2. By ignoring task status, systems can remind users about completed tasks

• Methods to more intelligently flag completed tasks are required

Example Scenario: Task Auto-Deprecation

• Show pending tasks (e.g., commitments)

• Flag or deprecate completion candidates

• Provide recourse links to undo

• Other applications possible, incl. task
ranking, task prioritization, etc.

• Focus on reminder/notification suppression

This Study

• Introduce task completion detection as an important new ML challenge

• Analyze data from popular digital assistant (Microsoft Cortana)
• Reveal trends in temporal dynamics of completion per task attributes

• Train ML classifiers to detect task completion
• Use many signals, including time elapsed, context, task characteristics

• Present design implications for intelligent systems from being able to
automatically detect task completion

Commitments Data
• 1.2M consenting users of Microsoft Cortana in en-US

• Cortana tracks commitments made by users in outgoing email, e.g.,
• “I will send you the report”

• “I’ll get back to you by EOD”

• “I’ll work on it this evening”

• “Will get back to you next week”

• 3M commitments collected during 2017-18 (avg. ~2.3 per user)

• Commitments persist in system for max 14 days (our focus here)

= Tasks in our study

Commitment Meta-Data
• E.g., due dates (“I’ll get this to you by next Friday”)

• Extracted from commitment text using proprietary methods

• Statistics:

• 24% of commitments have a due date

• Due dates fall within avg 1.78 days of commitment (stddev 3.62, med 0.71)

• Most commitments (86.3%) are made on weekdays

• Presence of intervening weekend days increases time until due date

Labeling Methodology (1 of 2)

• Use Cortana commitments usage data to compute completion labels

• Cortana has a feedback affordance for
users to indicate task completion

• “Complete” clicks help form ground truth
• Only says task was completed BY some time,

not WHEN the task completion occurred

• OUR GOAL: Only remind/notify users for tasks that are not yet completed

Labeling Methodology (2 of 2)

• For each of 3M commitment tasks:

• Label distribution: 1.53M positive (51%) and 1.47M negative (49%)

• Task completion is time dependent (i.e., more tasks get done over time)

ti tnClick

“Complete”

before tn

(Positive)

Not click

“Complete”

before tn

(Negative)

Random delay (d, 1-14 days)

Commitment

made

Candidate

notification

time

GOAL: Only remind/notify users for

tasks that are not yet completed

i.e., not complete by tn

Time

Temporal Dynamics

Task Completion Over Time

• Compute fraction of tasks completed at tn, all tasks and per task type
• Task type by priority (high-pri language) and by activity (call, email, investigate)

High priority tasks are completed faster Relative completion timing: Call < Email < Investigate

Connected to avg relative complexity

Some email tasks can

be handled as quickly

as a phone call

Weekend vs. Weekday

• Studied differences in number of weekend days and weekdays between
commitment made (ti) and notification time (tn)

• Focus on d=2 to control for confounds

• Three groups:
1. More weekend (2 weekend, 0 weekday)

2. Same (1 weekend, 1 weekday)

3. More weekday (0 weekend, 2 weekday)

• Task completion % higher when there are more weekdays

Detecting Task Completion

Methods

• Train binary classifiers to detect completion of pending task by notification
time (tn) using many signals

• Use completion labels from “Complete” clicks as ground truth

• Five feature classes:
• Time: time elapsed since task created, #weekend days, #weekdays

• Commitment: n-grams, verbs, priority, due date, is conditional, intent, etc.

• Email: subject n-grams (no email body), is reply, number of recipients, etc.

• Notifications: logged Cortana notifications (16% of tasks), num notifications, etc.

• User: >1 commitments (38% of users), historic tasks, completion time/rates, etc.

Learning Algorithms

• Logistic Regression
+ Compact, interpretable models

+ Used previously for task modeling on email*

• Gradient Boosting Decision Trees
+ Efficiency, accuracy, robustness to missing/noisy data, interpretability

+ LightGBM (used here) optimized for speed and low memory consumption

• Neural Networks – bi-directional RNN with GRU and attention
+ State-of-the-art NLU performance

* Corston-Oliver, S., Ringger, E., Gamon, M., & Campbell, R. (2004). Task-focused

summarization of email. In Text Summarization Branches Out (pp. 43-50).

Evaluation

• Split 3M commitments into training (2.9M), validation (50k), testing (50k)

• Stratified commitments by user (user only in one of train/valid/test)

• Tuned model hyperparameters on validation set

• Computed accuracy, F1, precision-recall

• Sig: Two-tailed t-tests with bootstrap sampling (n=10)

Findings

• Overall
• LR model performs worst

• LightGBM and NN perform similarly

• LightGBM simpler, more interpretable, faster to train

• NN can better encode text (not needed)

• Effect of data volume
• Vary training set from 25K to 3M

• LR model performs worst at all data points

• LightGBM and NN outperform LR

• LightGBM better for less data (≤100K)

• NN better for more data (≥200K)

Overall model performance

All paired differences in F1 significant at p <.01

Findings

• Effect of features used
• Used LightGBM (faster, etc.)

• Two complementary strategies
• Dropped feature classes, one-by-one

• Trained on one feature class at a time

• Ablation Findings
• Removing Time/Email/Notification has little effect

• Substitutable with other features (notifications)

• Removing Commitment Text has little effect

• Features captured elsewhere (verbs, etc.)

• One-Class Findings:
• Commitment features most important

• User features are also strong

• Personalization or user segmentation (?)

Removing one feature class at a time

Note: Differences in F1 vs. All Features

significant at * p <.05 and ** p < .01

Training on one class at a time

Note: Differences in F1 vs. All Features

significant at * p <.05 and ** p < .01

Discussion

• Accurately detect completion, although
focused on one (notifications) scenario

• Need to understand how users respond
• Incl. UX designed to help not hinder users

• Measured independently, on all users
• Likely used in a pipeline, on user segments

• Task progression is important
• More general problem than task completion

“Auto-deprecation” experience from Slide 3

Summary and Takeaways

• Detecting task completion important challenge in intelligent systems
• Help users focus on what needs their attention (vs. what has been done)

• Showed strong performance (~83%) for one scenario (notifications)

• Need to explore more sophisticated ML, richer signal collection,
expand to other scenarios and task types, etc.

• Need to work with users to understand the impact of completion detection
• Esp. when the experience is visibly altered by the task completion inference

