Task Completion Detection

A Study in the Context of Intelligent Systems

Ryen W. White, Ahmed Hassan Awadallah, Robert Sim Microsoft Research

Challenges in Task Management

- Intelligent systems (digital assistants, etc.) store / remind users about tasks
- Tasks can be explicitly specified or inferred (e.g., from email)
- Users face least two challenges:
 - 1. Task lists grow over time making it difficult to focus attention on pending tasks
 - 2. By ignoring task status, systems can remind users about completed tasks
- Methods to more intelligently flag completed tasks are required

Example Scenario: Task Auto-Deprecation

- Show pending tasks (e.g., commitments)
- Flag or deprecate completion candidates
- Provide recourse links to undo
- Other applications possible, incl. task ranking, task prioritization, etc.
- Focus on reminder/notification suppression

Pending Tasks					
"I'll work on that later."					
Sentto	: Gregg Newto	on — 8/21/2018	8, 12:43pm		
\bigcirc	Ľ				
Snooze	View	v email	Completed		
"I will find out what else they have." Sent to: Clayton Jones — 8/25/2018, 09:01am					
Ð		\leq			
Snooze	View	v email	Completed		
It looks like this task is already complete					
<u>"I will send you the file by end of day."</u>					
Sent to: Norma Saunders — 8/16/2018, 10:54a m					
Ð			$\langle \times$		
Snooze	View email	Completed	Not completed		

This Study

- Introduce task completion detection as an important new ML challenge
- Analyze data from popular digital assistant (Microsoft Cortana)
 - Reveal trends in temporal dynamics of completion per task attributes
- Train ML classifiers to detect task completion
 - Use many signals, including time elapsed, context, task characteristics
- Present design implications for intelligent systems from being able to automatically detect task completion

Commitments Data

- 1.2M consenting users of Microsoft Cortana in en-US
- Cortana tracks commitments made by users in outgoing email, e.g.,
 - "I will send you the report"
 - "I'll get back to you by EOD"

= Tasks in our study

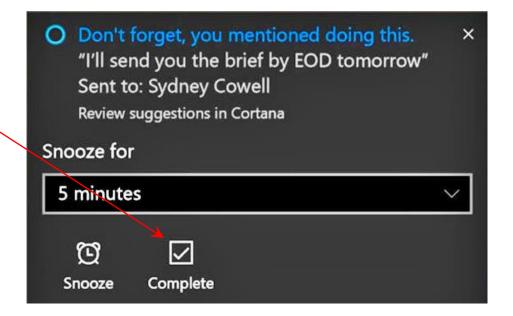
- "I'll work on it this evening"
- "Will get back to you next week"
- 3M commitments collected during 2017-18 (avg. ~2.3 per user)
- Commitments persist in system for max 14 days (our focus here)

Commitment Meta-Data

- E.g., due dates ("I'll get this to you by <u>next Friday</u>")
- Extracted from commitment text using proprietary methods
- Statistics:
 - 24% of commitments have a due date
 - Due dates fall within avg 1.78 days of commitment (stddev 3.62, med 0.71)
 - Most commitments (86.3%) are made on weekdays
 - Presence of intervening weekend days increases time until due date

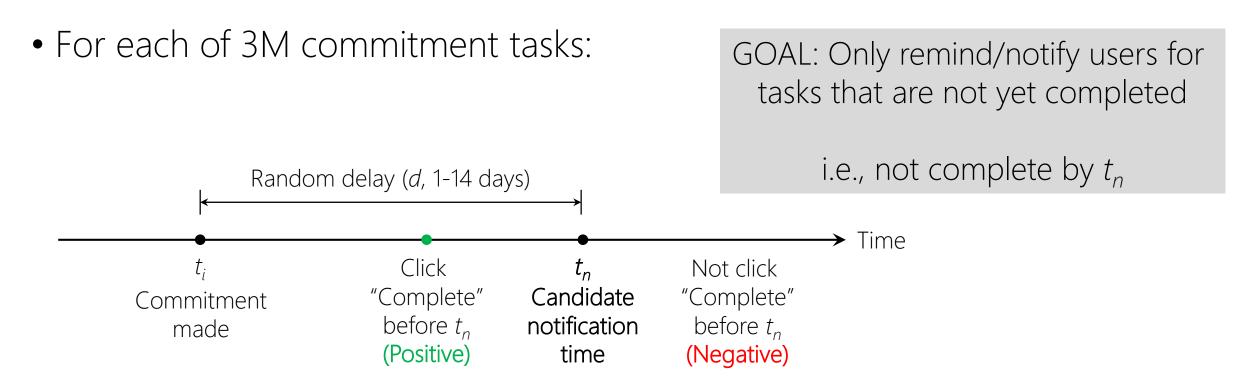
Labeling Methodology (1 of 2)

- Use Cortana commitments usage data to compute completion labels
- Cortana has a feedback affordance for users to indicate task completion
- "Complete" clicks help form ground truth
 - Only says task was <u>completed BY some time</u>, <u>not WHEN the task completion occurred</u>



• OUR GOAL: Only remind/notify users for tasks that are not yet completed

Labeling Methodology (2 of 2)



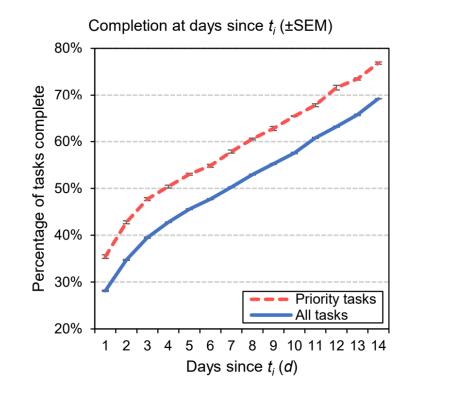
- Label distribution: 1.53M positive (51%) and 1.47M negative (49%)
- Task completion is time dependent (i.e., more tasks get done over time)

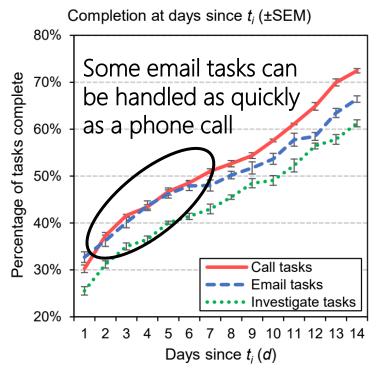
Temporal Dynamics

Task Completion Over Time

• Compute fraction of tasks completed at t_n , all tasks and per task type

• Task type by priority (high-pri language) and by activity (call, email, investigate)



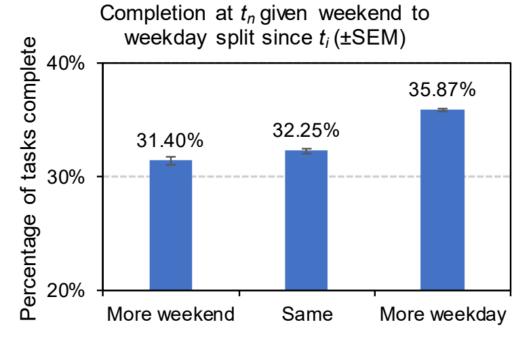


High priority tasks are completed faster

Relative completion timing: Call < Email < Investigate Connected to avg relative complexity

Weekend vs. Weekday

- Studied differences in number of weekend days and weekdays between commitment made (t_i) and notification time (t_n)
- Focus on d=2 to control for confounds
- Three groups:
 - 1. More weekend (2 weekend, 0 weekday)
 - 2. Same (1 weekend, 1 weekday)
 - 3. More weekday (0 weekend, 2 weekday)



Relative weekend to weekday split

• Task completion % higher when there are more weekdays

Detecting Task Completion

Methods

- Train binary classifiers to detect completion of pending task by notification time (t_n) using many signals
- Use completion labels from "Complete" clicks as ground truth

• Five feature classes:

- Time: time elapsed since task created, #weekend days, #weekdays
- Commitment: n-grams, verbs, priority, due date, is conditional, intent, etc.
- Email: subject n-grams (no email body), is reply, number of recipients, etc.
- Notifications: logged Cortana notifications (16% of tasks), num notifications, etc.
- User: >1 commitments (38% of users), historic tasks, completion time/rates, etc.

Learning Algorithms

- Logistic Regression
 - + Compact, interpretable models
 - + Used previously for task modeling on email*
- Gradient Boosting Decision Trees
 - + Efficiency, accuracy, robustness to missing/noisy data, interpretability
 - + LightGBM (used here) optimized for speed and low memory consumption
- Neural Networks bi-directional RNN with GRU and attention
 - + State-of-the-art NLU performance

Evaluation

- Split 3M commitments into training (2.9M), validation (50k), testing (50k)
- Stratified commitments by user (user only in one of train/valid/test)
- Tuned model hyperparameters on validation set
- Computed accuracy, F1, precision-recall
- Sig: Two-tailed t-tests with bootstrap sampling (n=10)

Findings

• Overall

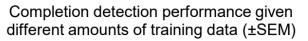
- LR model performs worst
- LightGBM and NN perform similarly
- LightGBM simpler, more interpretable, faster to train
- NN can better encode text (not needed)

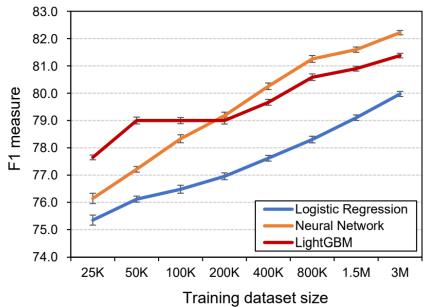
• Effect of data volume

- Vary training set from 25K to 3M
- LR model performs worst at all data points
- LightGBM and NN outperform LR
- LightGBM better for less data (≤100K)
- NN better for more data (≥200K)

Overall model performance All paired differences in F1 significant at p < .01

I		5		1
Model	Precision	Recall	F1	Accuracy
Logistic Regression	87.17	73.87	79.97	81.11
LightGBM	78.92	83.90	81.37	80.48
Neural Network	87.67	77.40	82.21	83.00





Findings

- Effect of features used
 - Used LightGBM (faster, etc.)
 - Two complementary strategies
 - Dropped feature classes, one-by-one
 - Trained on one feature class at a time
 - Ablation Findings
 - Removing Time/Email/Notification has little effect
 - Substitutable with other features (notifications)
 - Removing Commitment Text has little effect
 - Features captured elsewhere (verbs, etc.)
 - One-Class Findings:
 - Commitment features most important
 - User features are also strong
 - Personalization or user segmentation (?)

<u>Removing one feature class at a time</u>
Note: Differences in F1 vs. All Features
significant at * p <.05 and ** p < .01

Model	F1	%Δ	Acc	%Δ
All feature classes	81.37	—	80.48	_
 Commitment^{**} 	69.38	-14.75%	69.60	-13.52%
- User**	75.03	-7.80%	74.96	-6.86%
- Time ^{**}	80.66	-0.86%	79.62	-1.07%
— Email*	80.95	-0.52%	80.02	-0.58%
 Commitment Text 	81.13	-0.29%	80.19	-0.37%
 Notifications 	81.44	+0.08%	80.53	+0.06%

Training on one class at a time

Note: Differences in F1 vs. All Features significant at * p < .05 and ** p < .01

Model	F1	%Δ	Acc	%Δ
All feature classes	81.37	—	80.48	—
Commitment Only**	71.01	-12.72%	71.06	-11.70%
User Only**	66.74	-17.98%	71.61	-11.02%
Email Only**	64.37	-20.89%	62.67	-22.13%
Commitment Text Only**	60.20	-26.02%	61.18	-23.98%
Time Only**	59.26	-27.17%	59.84	-25.64%
Notifications Only**	28.45	-65.04%	54.55	-32.22%

Discussion

- Accurately detect completion, although focused on one (notifications) scenario
- Need to understand how users respond
 - Incl. UX designed to help not hinder users
- Measured independently, on all users
 - Likely used in a pipeline, on user segments
- Task **progression** is important
 - More general problem than task completion

"Auto-deprecation" experience from Slide 3

"I'll work on that later."

Sent to: Gregg Newton - 8/21/2018, 12:43pm

View email

"I will find out what else they have." Sent to: Clayton Jones — 8/25/2018, 09:01am

View email

"I will send you the file by end of day." Sent to: Norma Saunders — 8/16/2018, 10:54am

View email

It looks like this task is already complete ...

 \checkmark

Completed

 \bigvee

Completed

Completed

X

Not completed

Pending Tasks

 \bigcirc

Snooze

 (\Box)

Snooze

 (\Box)

Snooze

Summary and Takeaways

- Detecting task completion important challenge in intelligent systems
 - Help users focus on what needs their attention (vs. what has been done)
- Showed strong performance (~83%) for one scenario (notifications)
- Need to explore more sophisticated ML, richer signal collection, expand to other scenarios and task types, etc.
- Need to work with users to understand the impact of completion detection
 - Esp. when the experience is visibly altered by the task completion inference