Predicting User Interests from Contextual Information

Ryen W. White, Peter Bailey, Liwei Chen Microsoft Corporation

Motivation

- Information behavior is embedded in external context
 - Context motivates the problem, influences interaction
- IR community theorized about context
 - Context sensitive search, user studies of search context
- User interest models can enhance post-query behavior & general browsing by leveraging contextual info.
 - e.g., personalization, information filtering, etc.
- Little is known about the value of different contextual sources for user interest modeling

Overview

- A systematic, log-based study of five contextual sources for user interest modeling during Web interaction
- Assume user has browsed to URL
- Evaluate the predictive value of five contexts of *URL*:
 - Interaction: recent interactions preceding URL
 - **Collection:** pages that link to URL
 - Task: pages sharing search engine queries with URL
 - Historic: long term interests of current user
 - **Social:** combined long-term interests those who visit *URL*
- Domain is website recommendation not search results

Data Sources

- Anonymized URLs visited by users of a widelydistributed browser toolbar
- 4 months of logs (Aug o8 Nov o8 inclusive):
 - **Past:** Aug-Sep used to create user histories
 - **Present:** Oct-Nov used for current behavior and future interests
- 250K users randomly selected from a larger user pool once most active users (top 1%) were removed
 - Chosen users with at least 100 page visits in *Past*

Trails and Terminal URLs

- From logs we extracted millions of browse trails
 - Temporally-ordered sequence of URLs comprising all pages visited by a user per Web browser instance
 - Terminate with 30-minute inactivity timeout
- A set of 5M terminal URLs (u_t) obtained by randomlysampling all URLs in the trails
 - Terminal URLs demarcate past and future events
- Task = Learn user interest models from contexts for u_t, use those models to predict future user interests

Building User Interest Models

- Classified context URLs in the Open Directory Project human-edited Web directory (ODP, dmoz.org)
- Automatically assigned category labels via URL match
 - URL back-off used if no exact match obtained
- Represent interests as list of ODP category labels
 - Labels ranked in descending order by frequency
 - For example, for a British golf enthusiast, the top of their user interest profile might resemble:

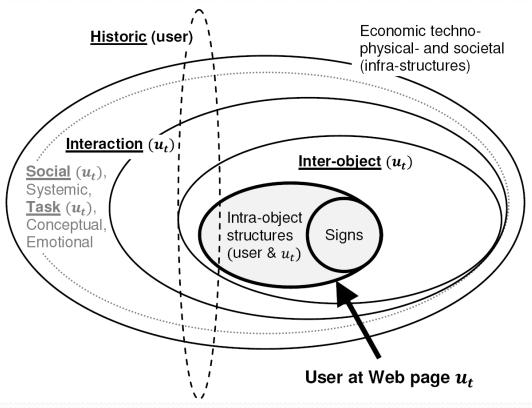
ODP Category Labels	Frequency
Sports/Golf/Courses/Europe/United Kingdom	102
Sports/Golf/Driving Ranges	86
Sports/Golf/Instruction/Golf Schools	63

Selecting Contexts

• Ingwersen and Järvelin (2005) developed nested model of context stratification representing main contextual influences on people engaged in information behavior

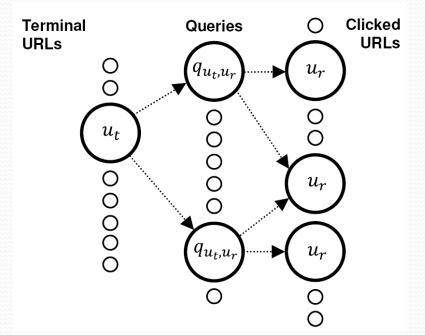
<u>Dimensions used</u>

- Others challenging to model via logs
 - e.g., cognitive and affective state, infra-structures, etc.



Defining Contexts

- None (*u_t* only): Interest model for terminal URL
- Interaction (*u_{t-5}* ... *u_{t-1}*): Interest model for five Web pages immediately preceding *u_t*
- Task: Interest model for pages encountered during the same or similar tasks
 - Walk on search engine click graph from *u*_t to queries and then back out to pages



Defining Contexts

- **Collection:** Interest model pages linking to *u*_t
 - We obtained a set of in-links for each *u*_t from a search engine index, built model from pages linking to *u*_t
- **Historic:** Interest model for each user based on their long-term Web page visit history
- **Social:** Interest model from combination of the historic contexts of users that also visit *u*_t

• What is the effectiveness of different context sources for user interest modeling?

Methodology

- Found instances of *u_t* in *Present* set (Oct-Nov o8 logs)
- Used all actions **after** *u*_{*t*} as source of future behavior
 - Futures specific to each user and each u_t
 - Used to gauge predictive value of each context
- Created three interest models representing future interests (ranked list of ODP labels & frequencies):
 - **Short:** within one hour of u_t
 - **Medium:** within one day of u_t
 - Long: within one week of *u*_t
- Filtered $\{u_t\}$ to help ensure experimental integrity
 - e.g., no more than 10 u_t per user

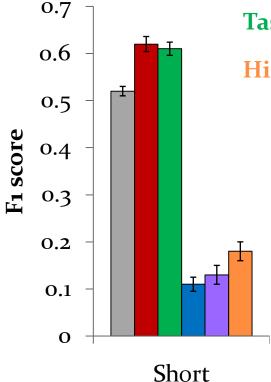
Methodology

- Divided filtered $\{u_t\}$ into 10 equally-sized runs
 - Each run contained at most one u_t from each user
- Experimental procedure:
 - For each *u*_t in each run:
 - Build ground truth for *short-*, *medium-*, and *long-*term future interest models
 - Build interest models for different contexts (and combinations)
 - Determine predictive accuracy of each model
- Used five measures to determine prediction accuracy
 - P@1, P@3, Mean Reciprocal Rank, nDCG, and F1
 - F1 tracked well with others focus on that here

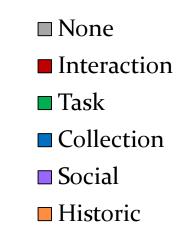
Findings – Context comparison

Predictive performance of contextual sources for different futures

Interaction context & Task context most predictive of short-term interests



Task context most predictive of *medium*-term interests Historic context most predictive of *long*-term interests

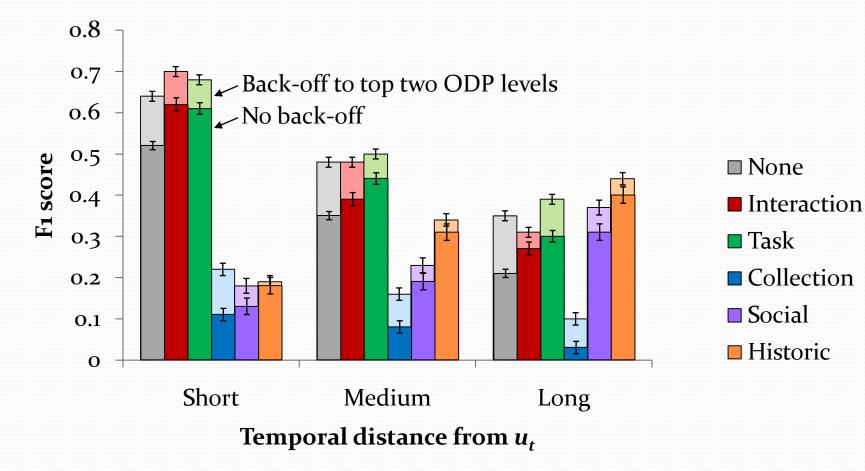


Temporal distance from u_t

Findings – Handling near misses

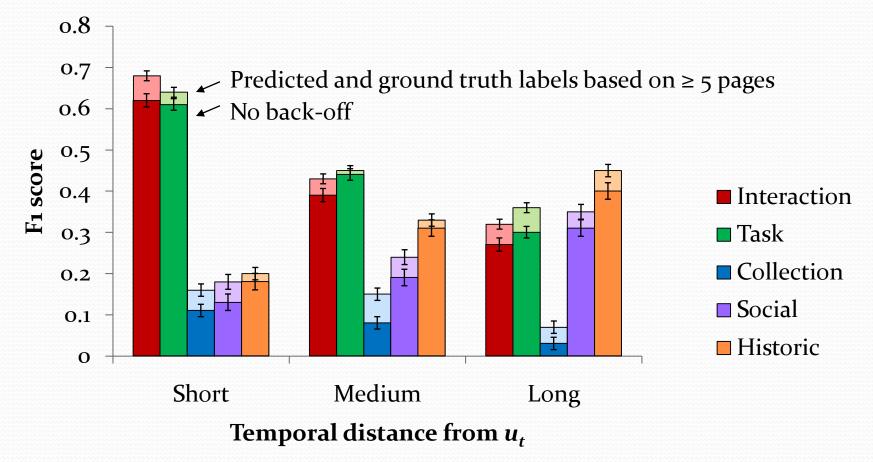
• Near miss between prediction and ground truth regarded as total miss

• Use one/two/three-level back-off on both ground truth and prediction



Findings – Improved confidence

- Basing predictions & ground truth on small # page visits may skew results
 - Repeat experiment & ignore labels based on < 5 page visits



Findings – Combining contexts

Rank	Short		Medium		Long	
	Sources	F1 score	Sources	F1 score	Sources	F1 score
1	n, i , t , h, s, c	0.72**	n, i, t , h, s, c	0.53**	n, i, t, s, <mark>h</mark> , c	0.45**
2	n, i , s, h, c	0.71**	n, i, t , h, c	0.52**	n, i, s, <mark>h</mark> , c	0.43**
3	n, i , t , h, c	0.71**	n, i, t	0.49**	n, i, t, <mark>h</mark> , c	0.43*
4	n, i , h, c	0.71**	n, i, s, h, c	0.48*	s, h	0.43*
5	n, i , s, t , c	0.69**	n, i, h, t	0.48*	n, i, s, <mark>h</mark> , t	0.42*

- Overlap beats single contextual sources
- Key contexts still important
 - Short = Interaction (i) and Task (t)
 - Medium = Task (t)
 - Long = Historic (h)

• Supports polyrepresentation theory (Ingwersen, 1994)

Overlap between sources boosts predictive accuracy

Summary of Findings

- Performance of context dependent on distance between *u_t* and end of prediction window
 - **Short**-term interests predicted by task/interaction contexts
 - Topical interest may not be highly dynamic, even if queries and information needs are
 - Medium-term interests best predicted by task context
 - More likely to include task variants appearing in next day
 - Long-term interests predicted by historic/social contexts
 - Interest may be invariant over time, users visiting same pages may have similar interests

• Overlap effective - many contexts reinforce key interests

Conclusions and Take-away

- Systematic study of context for user interest modeling
- Studied predictive value of five context sources
 - Value varied with duration of prediction
 - Short: interaction/task, Medium: task, Long: historic/social
- Overlap was more effective than any individual source
- Source must be tailored to modeling task
- Search/recommendation systems should not treat all contextual sources equally
 - Weights should be assigned to each source based on the nature of the prediction task