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Abstract

People rely on digital task management tools,
such as email or to-do apps, to manage their
tasks. Some of these tasks are large and com-
plex, leading to action paralysis and feelings
of being overwhelmed on the part of the user.
The micro-productivity literature has shown
that such tasks could benefit from being de-
composed and organized, in order to reduce
user cognitive load. Thus in this paper, we
propose a novel end-to-end pipeline that con-
sumes a complex task and induces a depen-
dency graph from unstructured text to repre-
sent sub-tasks and their relationships. Our so-
lution first finds nodes for sub-tasks from mul-
tiple ‘how-to’ articles on the web by injecting a
neural text generator with three key desiderata
– relevance, abstraction, and consensus. Then
we resolve and infer edges between these sub-
task nodes by learning task dependency rela-
tions. We collect a new dataset of complex
tasks with their sub-task graph to develop and
evaluate our solutions. Both components of
our graph induction solution are evaluated in
experiments, demonstrating that our models
outperform a state-of-the-art text generator sig-
nificantly. Our generalizable and scalable end-
to-end solution has important implications for
boosting user productivity and assisting with
digital task management.

1 Introduction

People today increasingly rely on digital modalities
and applications to organize, track and complete
tasks from their work and life. They depend on
email to structure their communications as a way
of tracking pending tasks (Bellotti et al., 2003), is-
sue commands to their digital assistants 1 for timely
task reminders (Brewer et al., 2017), and use task
management applications (Bellotti et al., 2004) 2

∗Most of this work was done while the first author was
an intern at Microsoft Research.

1Siri, Cortana, Google Assistant etc.
2Google Keep, Todoist, Microsoft To Do etc.

Figure 1: The subtask graph of “plan a birthday party”,
where nodes are subtasks, and the directed edges repre-
sent the dependencies between subtasks.

to organize grocery runs, thesis writing and every-
thing in between.

In this work, we focus on tasks that are com-
plex (Hassan Awadallah et al., 2014), and – which
research in micro-productivity has shown (Kirsh,
2000; Teevan et al., 2016a) – may benefit from
thoughtful organization. For example, consider
Figure 1, where we show how the complex task

“plan a birthday party”3 can be broken down into
more manageable pieces and structured by mutual
temporal dependencies, in order to create an action-
able plan that is simpler and more effective.

In this paper we propose to help automate gener-
ating such actionable plans in order to reduce cog-
nitive load on users. While prior research (Cheng
et al., 2015; Teevan et al., 2016b) has shown the
benefits of tracking and acting on micro-tasks, lit-
tle effort has been expended on finding automated
solutions for actually breaking down complex tasks
into tractable sub-tasks. Thus we design a novel
end-to-end solution that is capable of decomposing
complex tasks and structuring sub-task dependen-
cies.

We model our end-to-end solution as a graph
induction problem, in which we first find nodes to
represent sub-tasks, then infer the temporal depen-
dency edges between them, yielding a flow diagram
like the one in Figure 1. All of this is done from
unstructured text ubiquitously found on the web,
making our approach general and scalable.

3Contrast this with a simple task such as “send the PPT
deck to Sarah”.



In the first component (that of finding nodes),
we learn to synthesize information from multiple
‘how-to’ articles across the web and generate text
fragments for sub-tasks. In particular, we extend
a state-of-the-art neural text generator by inject-
ing it with three desiderata for these fragments:
relevance (to the complex task), abstraction (by
summarizing content in articles), and consensus
(for appearing across multiple sources). In the sec-
ond component (that of finding edges), we infer
temporal dependencies between sub-tasks.

Existing corpora of ‘how-to’ articles (most no-
tably WikiHow (Koupaee and Wang, 2018)) do
not contain this latent dependency structure. More-
over, articles in these corpora are structured and
formatted consistently and uniformly, making them
ill-suited to our approach, which seeks to synthe-
size the content of multiple heterogeneous web
pages. We therefore devise a simple annotation
framework through which we gather a new dataset
of complex tasks, and their associated subtasks and
mutual dependencies, from multiple ‘how-to’ web
articles using non-expert crowd workers. Finally,
we use this data to fine-tune our augmented neural
text generator, as well as predict dependency edges
between the sub-tasks it generates.

In experiments, we demonstrate that our optimal
solution – which encodes relevance, abstraction
and consensus – yields significant improvements
over a state-of-the-art text generator on both sub-
task generation and dependency prediction.

The focus of this paper is on Complex Tasks;
however, our research has impact beyond intelli-
gent task management. For example, learning to
decompose complex natural language expressions
could have impact on complex question answer-
ing (Chali et al., 2009; Luo et al., 2018), where
question decomposition, multi-hop reasoning, in-
formation synthesis, and implicit knowledge all
play an important role. More generally, the ability
to model mappings between short text fragments
and elements in multiple documents could bene-
fit research in areas such as topic-focused multi-
document summarization (Wan et al., 2007) and
event timeline extraction of evolving news sto-
ries (Do et al., 2012).

In summary, our key contributions are (i) build-
ing an end-to-end pipeline for complex task de-
composition as a graph induction problem from
unstructured text; (ii) constructing a new dataset
for complex tasks that contain sub-tasks as well

as the temporal dependencies between them; and
(iii) extending a neural text generator by injecting
signals for relevance, abstraction and consensus,
thereby making it more capable at tackling task
decomposition.

2 Problem Definition

We begin by defining some key concepts. We re-
fer to a task as a text fragment that represents a
goal people want to track, remind themselves of,
or learn how to do; for example, “buy a Christmas
present”, “eat healthier” or “change a tire”. In
order to disambiguate the intent of tasks (consider
the fragment “Harry Potter”, which could equally
refer to “read [the book]” or “watch [the movie]”),
we scope our investigation to tasks that contain at
least one verb.

A task is considered as a complex task when
two or more individual steps – themselves also
worth tracking, remembering or learning how to do
– need to be performed in its completion. Therefore,
“plan a birthday party”, which involves creating
a guest list and buying food and beverages (see
Figure 1) is a complex task. While “throw out the
trash” is not such a complex task, even though it
may involve opening the front door and walking to
the trash bins. We refer to the individual steps of a
complex task as sub-tasks.

Sub-tasks may sometimes depend on other sub-
tasks being completed before they can be tackled.
Consider the example from Figure 1 again, which
illustrates how one must “set up a time” and “make
a guest list” before “send(ing) out invitations”. We
refer to these relations as temporal dependencies,
and are pair-wise notated as sub-task B depending
on (←) A.

Given these key concepts, we define a complex
task graph as follows. Let the sub-tasks of a
complex task t be denoted by ST (t) = {si}ni=1.
Then define Gs(t) = (V,E) as the complex task
graph of t. Here Gs(t) is a directed graph, where
V = ST (t) is the set of sub-task nodes, and E
represents the set of temporal dependency edges
such that (si, sj) ∈ E, si ← sj .

2.1 Modeling Overview

Given these definitions, the problem of decompos-
ing and organizing a complex task becomes induc-
ing a graph Gs(t) = (V,E) from a complex task



input t4. To construct the graph, the key steps are
(1) generating the sub-task nodes V , and (2) in-
ferring the temporal dependency edges E between
nodes. We propose to do both from unstructured
text.

In particular, the web has made a large number
of instructional texts on a variety of topics and
activities freely available for public consumption;
some of them are in purpose-built websites, such
as WikiHow (Koupaee and Wang, 2018), while
others appear in personal blogs, social fora, educa-
tional portals and a number of other heterogeneous
sources. We leverage these resources to find rele-
vant information for complex tasks. Specifically,
given a task t, we query a search engine with the
term “how to t” (“plan a birthday party” becomes
“how to plan a birthday party”), and store the kmost
relevant results in a collection Dk(t). Our graph in-
duction problem then becomes finding the optimal
graph Gs(t) = (V,E) given the evidence in Dk(t).
We elaborate on solutions for node generation and
edge inference in what follows.

Sub-task Generation Formally, given a com-
plex task t and a collection of relevant articles
Dk(t), we attempt to generate the sub-tasks ST (t).
We argue that the text fragments for sub-task nodes
we generate must satisfy three desiderata:

(1) Relevance, so that generated sub-tasks are
directly related to the complex task t.

(2) Abstraction, because ‘how-to’ articles often
explain and expand on sub-tasks.

(3) Consensus, since sub-tasks that are cited
across multiple sources are more likely to be
important.

Our model for sub-task generation builds on
BART (Lewis et al., 2019), a state-of-the-art
sequence-to-sequence model for text generation,
and injects it with our three desiderata. Concretely,
we make BART capable of handling multi-source
input, design a custom relevance-aware cross at-
tention layer and implement a cluster encoding
technique to guide the generation process. Details
for the model are presented in Section 4.1.

4We assume complex tasks as input, since the focus of our
work is on their understanding and decomposition. We leave
the problem of distinguishing complex tasks from simple ones
to future work.

Dependency Inference Given the generated set
of sub-tasks V = ST (t), the next step in our end-
to-end graph induction solution consists of infer-
ring the temporal dependency edges E. We formu-
late this as a binary classification problem5, where
we attempt to predict the existence of a dependency
edge ∀(si, sj) ∈ V .

Specifically, we use the concatenated intermedi-
ate representations for sub-tasks (si, sj) from our
enhanced BART model and add a final linear layer
to learn a binary classifier. We train this classifier
on a new dataset of complex tasks that contains
pairwise temporal dependency information (see
Section 3). More details are given in Section 4.2.

3 Data Collection

To build and evaluate our solutions, we need
data. The most relevant existing dataset is Wik-
iHow (Koupaee and Wang, 2018), which is derived
from the popular how-to website. However Wiki-
How, while very useful for parts of our modeling
paradigm, is ill-suited to others. Namely, its arti-
cles are manually curated, with consistent structure
and format, making them a mis-match to the het-
erogeneous, noisy and free-form articles we expect
to encounter on the web. Moreover, they contain no
dependency information between sub-tasks beyond
a simple numbered ordering.

Thus, to support our problem, we need a dataset
which (1) contains complex task and their sub–
tasks; (2) encodes dependencies between sub-tasks;
and (3) the sub-tasks come from a variety of web-
pages. Note that our goal is to create a dataset that
enables model generalization, rather than construct-
ing a comprehensive knowledge base. Therefore,
rather than exhaustively annotating sub-tasks and
their dependencies, we seek only to gather labels
for the most important ones. In what follows we
will describe the step-by-step construction of our
dataset, and how these steps encode our three fun-
damental desiderata for task-sub-task relationships
(see Section 2).

The dataset we collect, which we call MSCom-
plexTasks 6 is being released freely to the research
community.

5While edge prediction is technically a structured predic-
tion problem, we demonstrate in this paper that even a simple
approach works well; we leave more complex modelling solu-
tions to future work.

6https://github.com/microsoft/
MSComplexTasks

https://github.com/microsoft/MSComplexTasks
https://github.com/microsoft/MSComplexTasks


Collecting Complex Tasks and How-to Articles
We begin with logs from the popular – now de-
funct – task management application Wunderlist7.
These logs are privately and respectfully handled
by passing them through an enterprise grade, legal-
and trust-approved pipeline, which anonymizes,
aggregates and scrubs all personally identifiable
information. This yields a collection of task strings,
some of which have associated sub-task metadata
(not sub-tasks themselves). We retain those tasks
which have at least one sub-task, and contain at
least one verb 8 (to avoid issues with disambiguat-
ing task intent) as a candidate seed pool of complex
tasks. It may be noted that while the logs are not
publicly available, they play a minimal role in our
end-to-end solution. Their only purpose is to seed
the initial set of complex how-to queries.

In order to find relevant articles for each com-
plex task we trawl through a month’s worth of logs
from a commercial search engine using the ‘how-to’
query expansion described in Section 2.1. Further,
in order to protect user privacy we discard queries
that were issued by fewer than 5 distinct users. To
each remaining complex task query, we associate
the top-10 clicked URLs across all users for the
entire month. Text in these webpages satisfy our
notion of relevance.

Finding Candidate Sentences for Sub-tasks
Next, we create a pool of candidate sentences that
we hypothesize might contain sub-tasks. Specif-
ically, we use an in-house webpage parser to ex-
tract section headings and list items from the set
of URLs previously collected. These types of text
fragments often represent very short summaries
that are then elaborated on in ‘how-to’ articles; we
thus attempt to restrict our candidate pool to sub-
tasks that capture the notion of abstraction.

Finally, we also care about consensus across
articles, since this allows us to retain only those
sub-task which are cited in different sources and
are therefore more reliably important. Because
the same sub-task can be expressed differently in
text we perform clustering on the BERT (Devlin
et al., 2018) embeddings of candidate sentences
and discard those clusters that only contain a single
source URL. The remaining set of sentences form
our pool of candidate sub-tasks.

7https://en.wikipedia.org/wiki/
Wunderlist

8Detected using https://spacy.io/.

Labeling Sub-tasks and Dependencies Given
the set of candidate complex task queries and
their associated sub-task sentences, we ask crowd-
workers to label them. Specifically, we guide an-
notators through a series of questions: (1) Is the
candidate query about a task? A complex task?
(2) If it is a complex task, which candidate sen-
tences represent sub-tasks? (3) Does the ordering
of sub-tasks matter? If so, assign pairwise tempo-
ral dependency labels to sub-tasks. We ask three
workers to label each HIT, aggregating annotations
by majority vote. Table 1 shows some examples of
aggregate judgments from our annotation study.

4 Models

Recall from Section 2 that we model complex task
decomposition as a graph induction problem over
unstructured text. In what follows we will first
describe our approach for sub-task node construc-
tion, followed by our method for sub-task temporal
dependency inference.

4.1 Sub-task Construction
As described in Section 2, we treat sub-task find-
ing as a text generation problem. While we could
ostensibly frame it as a span prediction problem,
this is unsuitable for our modeling paradigm. First,
our multi-source setting means that we might po-
tentially (and in fact want to) extract more than
one text span referring to the same sub-task. Thus
resolving identical sub-tasks and picking the best
among them would require additional logic, as well
as a sub-task coreference module. Moreover, while
we could use a webpage parser to build a candidate
pool of sub-task text spans (see Section 3), such a
parser might be brittle and error prone – or even
non-existent. While we have human annotators to
refine this pool during dataset construction, no such
remedy exists at automatic inference time.

Model Architecture Our model is based on the
pre-trained text generation model BART (Lewis
et al., 2019). This is a sequence-to-sequence neu-
ral summarizer, which consists of a bidirectional
encoder over corrupted text and a left-to-right au-
toregressive decoder. To extend it to a multi-source
setting, we encode each source article indepen-
dently with BART’s encoder (a bi-directional Trans-
former (Vaswani et al., 2017)), and then concate-
nate the output embeddings of the encoders. These
are then fed to the decoder which generates the
output sentences autoregressively. We treat all of

https://en.wikipedia.org/wiki/Wunderlist
https://en.wikipedia.org/wiki/Wunderlist
https://spacy.io/


Task? Complex Sub-tasks Ordering DependenciesTask? Matters?

apply for a green card Yes Yes
find out if you re eligible

Yes
prepare for your interview

prepare for your interview ← find out if you re eligible
...

start a grocery store Yes Yes
form your LLC

Yes
marketing your grocery store

finding the best location ← finding the best location
marketing your grocery store

...

Table 1: Examples of results from the annotation

Figure 2: The model architecture of our solution. We
extend BART to handle multiple documents (d1, d2, d3)
as input, design the relevance-aware cross attention
layer and cluster encoding techniques to guide the gen-
eration process.

the subtasks of a given complex task as a single
target document, and subtasks are thus generated
as a sequence of text fragments. A diagram of our
architecture is shown in Figure 2. We initialize
our model using the parameters of the pre-trained
BART-large model released with the HuggingFace
Transformer library (Wolf et al., 2019). These pa-
rameters are then fine-tuned to our task, using the
proposed architecture. In our work, the inputs are
the textual content from URLs returned by a ‘how-
to’ complex task query, and the outputs are the set
of generated sub-tasks. Because we are learning
mappings between ‘how-to’ articles and short text
fragments that summarize their contents, we are
implicitly learning the notion of abstraction.

Relevance-Aware Cross-Attention As dis-
cussed in Section 2, sub-tasks need to also be
relevant to complex tasks. In order to encode rele-
vance we design a cross-attention mechanism that
explicitly captures textual relevance. Specifically,
we score each sentence in a set of articles based on
its relevance to the complex task, then propose a
general mechanism to inject this information into
the text generation model.

Given a complex task t, we denote the query
expansion “how to do t” as q, and the collection of
related articles as Dk(q). To score the relevance of
each sentence s ∈ Dk(t), we consider two factors.
The first is how relevant the sentence s is to the
query q, and the other is how relevant the article
d (with s ∈ d) is to q. We denote the relevance
of s as P (s|q), and the relevance of d as P (d|q).
To compute P (d|q), we first represent q and d as
n-dimensional embedding vectors respectively us-
ing BART, denoted respectively as ~q and ~d. Then
article-query relevance is computed as the softmax:

P (d|q) = exp f(d, q)∑
d′∈Dk(q)

exp f(d′, q)
(1)

where f(d, q) = ~qT · ~d.
The sentence-query relevance P (s|q) is simi-

larly computed using the softmax over embeddings
~q and ~s. Notably, these embeddings are generated
from a BART model fine-tuned on an auxiliary se-
quence classification task, where positive samples
are sub-tasks of complex task ti and negative sam-
ples are randomly samples sub-tasks from other
complex tasks tj(j 6=i).

Given P (s|q) and P (d|q), we need a way of
injecting them into our generation model. The
BART decoder performs cross-attention over the
final hidden layer of the encoder to determine how
much focus to place on other parts of the input
sentence, as words in specific positions are encoded.
Our model should not only pay attention to the
inputs, but should additionally pay more attention
to those are more relevant. We therefore define our
relevance-aware cross-attention as follows:

σ

(
Q(x)K(w)T + αp(s|q) ∗ p(d|q)√

dk

)
V (2)

where σ(·) represents the softmax function, x is a
token in the output sub-task, w ∈ s ∈ d is a token



in the input article, Q,K and V are query, key and
value representations, dk is the dimension of the
key vector, and α is a learnable parameter which
controls the importance of our relevance injection.

Cluster Encoding The final desiderata for our
model is consensus, or the ability to be able to
recognize and reward sub-tasks that are mentioned
across multiple articles. To encode this signal we
create a cluster embedding, which identically rep-
resents sentences that refer to the same sub-task
across sources.

To generate the new cluster embeddings, we first
embed the query q as well as the set of sentences
s ∈ Dk(t) into n-dimension vectors using BART.
Then we cluster the embeddings of all sentences s
with KMeans, ranking the clusters by the proxim-
ity of their centroid to the embedding of q. Finally,
using a formulation similar to the positional encod-
ings from Vaswani et al. (2017) we define cluster
encoding as:

PEc
(s,2j) = sin

( ri

100002j/dmodel

)
PEc

(s,2j+1) = cos
( ri

100002j/dmodel

) (3)

where ri is the rank of the cluster that s belongs
to, and the symbols j s.t. 1 ≤ j ≤ n are di-
mensional indices; specifically 2j, and 2j + 1
represent indices into the clusters’ embeddings.
For instance, if the cluster embedding were de-
fined as a vector of length 512, then 2j (resp.
2j + 1) represent the 0th, 2nd, 4th, ..., 510th (resp.
1st, 3rd, 5th, ..., 511th) index positions of the vec-
tor. These notations are identical to the ones used
in the original by Vaswani et al. (2017) in their
definition of positional encoding.

This formulation allows our model to identify
tokens that belong to similar sentences, and are
injected into the extended BART model as an addi-
tional input.

4.2 Dependency Inference

In our work, we treat inferring dependencies be-
tween sub-tasks as a binary classification problem.
Specifically, we learn a classifier capable of predict-
ing the existence (or not) of a temporal dependence
si ← sj between all possible ordered pairs of gen-
erated sub-tasks (si, sj) ∈ E.

We use the same extended BART architecture
previously proposed in Section 4.1, and concate-
nate the intermediate representations for si and sj

to yield an output representation for a pair of sub-
tasks. Then we add a linear layer on top of this
output to predict a binary label for the existence of
a temporal dependency edge.

Similar to sub-task generation, we hypothesize
that finding consensus across articles may also be
helpful in determining the dependencies between
sub-tasks. Therefore, we also use cluster encodings
in infering edge dependencies.

5 Experimental Evaluations

In this section we aim to answer the following re-
search questions:
RQ1 Can we accurately and automatically gener-

ate sub-tasks given an input complex task?
RQ2 Can we correctly identify the temporal de-

pendencies between sub-tasks?
We begin by describing datasets, baselines and met-
rics used in our evaluation. 9

5.1 Evaluation Methodology
In Section 3, we introduced a new Complex Task
Dataset (CTD). In addition to this data, we also
develop a new variant of WikiHow (Koupaee and
Wang, 2018) dataset better suited to our modeling
paradigm (which we call WKH-R), for larger scale
development and evaluation. We describe both in
what follows.

5.1.1 WKH-R
Recall that WikiHow (Koupaee and Wang, 2018)
can be interpreted as an abstractive summariza-
tion dataset, where the source are the textual con-
tent webpage bodies, and section headings are the
summaries. In our problem, webpage titles for
articles can be treated as complex tasks, and the
section headings as subtasks. Even though Wiki-
How does not encode dependencies between sub-
tasks (other than strict numerical ordering of sec-
tions), we could ostensibly exploit the relationship
between page titles and section headings to learn to
generate sub-tasks from complex tasks. However,
as we have previously argued (see Section 2.1), di-
rectly using WikiHow articles as the only source
for training our model would make it brittle, and
prone to fail on free-form content found in other
heterogeneous sources on the web. Therefore, we
propose an extension to WikiHow, which notably
does not require human annotation and is created
from information already present in WikiHow.

9Resources are organized in http://cogcomp.org/
page/publication_view/939.

 http://cogcomp.org/page/publication_view/939
 http://cogcomp.org/page/publication_view/939


ROUGE-1 ROUGE-2 ROUGE-L
WKH-R CTD WKH-R CTD WKH-R CTD

T5 14.22 18.08 2.326 3.978 12.97 17.19
BART 27.61 24.69 6.190 7.223 17.27 18.33

MSBART 31.52 26.11 7.397 9.167 18.46 19.00
MSBART-R 32.74 26.29 7.795 9.458 19.13 19.16
MSBART-C 33.62 26.36 7.880 9.816 18.77 19.95
MSBART-F 33.03 27.29 7.947 10.30 19.27 20.85

Table 2: The performance of generating sub-tasks under the Rouge score metrics

In the extended WKH-R dataset, we do not treat
the original WikiHow article as the solitary source.
Instead, we conjecture that the WikiHow article is
itself written by compiling information from mul-
tiple resources, and gather those sources directly
instead. Concretely, many WikiHow articles con-
tain a set of references that are cited by authors as
sources, and we use these webpages as a collection
of multiple sources instead of the content of Wiki-
How article itself. As references link to a diverse
range of URLs on the web, our model learns to be
more robust to structural and stylistic variety.

The new extension of WikiHow in this form is
fully capable of supporting learning and evaluation
of sub-task generation from complex task queries,
as modeled with the architecture outlined in Sec-
tion 4.1. Specifically we use WikiHow page titles
as complex tasks, section headings as sub-tasks,
and reference webpages in WKH-R as multi-source
articles.

In the construction of WKH-R, we only retain
articles that have more than one valid reference
URL. Overall, we compile a dataset consisting of
7832 webpages, each corresponding to a distinct
complex tasks, its own sub-tasks and reference ar-
ticles. On average, each complex task has 12.9
individual sub-tasks, while citing 2.9 different ref-
erences. In our experiments, we use 3916 instances
for training, 1566 for validation, and set aside the
remaining 2350 for testing.

5.1.2 Complex Task Dataset (CTD)
In Section 3, we already described how we created
the MSComplexTasks dataset, containing among
other signals, the temporal dependency relation
between sub-tasks. Here, we briefly summarize
some of the characteristics of this dataset. Overall,
we collected sub-tasks and their dependencies for
430 complex tasks from an initial candidate pool
of 2000 tasks. Many tasks were discarded, either
because they were deemed not complex, or no sub-
tasks candidates were confirmed by a majority of

annotators. While this set may appear small, it may
be noted that each instance in the data is a rich,
structured object. On average, each complex task
has 7.3 sub-tasks, references 2.4 webpages, and en-
codes 11 pairs of temporal dependencies between
tasks. We use 215 instances for training, 86 for
validation and 129 for testing in our experimental
evaluation.

5.2 Baselines and Metrics

We compare our full modeling approach (see Sec-
tion 4) against several strong baselines. These in-
clude the base BART model, – itself a state-of-the-
art text generator – which we use as a black-box
single-document summarizer since all our variants
are build on top of it. We also include a different
state-of-the-art text-to-text model, T5 (Raffel et al.,
2019) in our comparison, in order to demonstrate
our that our modeling technique not only improves
over the base BART variant, but other approaches
to text generation in the literature. In terms of our
modeling variants we compare against an exten-
sion of BART that additionally capture multiple
sources (MSBART). We also include two variants
that inject the MSBART model with our custom
relevance and consensus encodings respectively,
which yield the MSBART-R and MSBART-C base-
lines. Finally, we denote our full model, consisting
of multiple sources, relevance and consensus as
MSBART-F.

In our evaluation of sub-task generation we re-
port Rouge-1, Rouge-2, Rouge-L (Lin, 2004) and
pairwise BERTScore (Zhang et al., 2019) metrics to
compare performance across models. When report-
ing Rouge scores, we treat the sub-tasks as a gen-
erated summaries, and the reference sub-tasks as
the target summaries. In addition to the document
level Rouge summarization metric, we also lever-
age BERTScore to compute a sentence level eval-
uation number. Specifically, we first compute the
best mapping between generated sub-tasks (GS)
and the target subtasks (TS) via BERTScore (BS),



then report their corresponding precision and re-
call. The BERTScore based precision and recall
are computed as follows:

Pr(TS,GS) =
∑
s∈GS

maxs′∈TS

(
BS(s, s′)

)
|GS|

Rc(TS,GS) =
∑
s∈TS

maxs′∈GS

(
BS(s, s′)

)
|TS|

(4)

Meanwhile, in our evaluation of dependency in-
ference we compare our full modeling solution
MSBART-F against the single-source BART base-
line and the multi-source MSBART variant. In this
experiment we report accuracy as the sole evalua-
tion metric.

BSPr BSRc

WKH-R CTD WKH-R CTD

T5 87.30 87.64 86.89 84.83
BART 87.40 88.33 87.99 84.74

MSBART 88.41 88.37 88.30 84.82
MSBART-R 88.87 88.56 88.47 84.96
MSBART-C 88.84 88.59 88.37 84.81
MSBART-F 89.03 88.74 89.23 85.20

Table 3: The performance of generating sub-tasks un-
der the BERTScore metrics.

5.3 Results
To answer RQ1, we demonstrate the performance
of our full modeling solution, MSBART-F, when
compared against the set of variant baselines on the
problem of generating sub-tasks from a given com-
plex task. In particular we present results on Rouge
and pairwise BERTScore metrics for both WKH-
R and CTD datasets. The results for Rouge and
pairwise BERTScores are summarized in Table 2
and Table 3 respectively. We can observe from the
tables that extending the problem setting from sin-
gle source to multi-source considerably improves
performance. Meanwhile injecting signals for rel-
evance and consensus can each further improve
upon MSBART, and the full solution achieves the
best performance on almost every combination of
dataset and evaluation metric (the only exception
being Rouge-1 on WKH-R).

Thus in answering RQ1, we conclude that the
proposed MSBART-F model automatically gener-
ates the highest quality sub-tasks when compared
against several state-of-the-art variant baselines.

In order to answer RQ2, we report the results of
inferring temporal dependencies among sub-tasks,

using accuracy as a measure of performance. These
results are shown in Figure 3. We observe that
MSBART, which leverages information from mul-
tiple sources, improves upon the accuracy of the
single-source BART model. Meanwhile, our full
MSBART-F model achieves the best performance
overall.

Thus in response to RQ2, we conclude that our
proposed MSBART-F model infers dependencies
between sub-tasks with an accuracy higher than
comparative variants. Notably, the prediction accu-
racy of 0.779, we believe represents a reasonably
strong first attempt at the edge inference compo-
nent of our graph induction solution.

In answering both RQs 1 and 2, we note particu-
larly that our key insights for injecting our models
with the capability for encoding relevance, abstrac-
tion and consensus lead to consistently improved
results in complex task decomposition and organi-
zation.

Figure 3: The performance of inferring dependencies
between sub-tasks

6 Related Work

Task management applications aim to improve peo-
ple’s productivity by helping capture, organize,
and execute their daily tasks (Bellotti et al., 2004).
Recent advances in natural language understand-
ing techniques (Devlin et al., 2018; Lewis et al.,
2019) have sparked rapid progress in facilitating
intelligent task organization, beginning with early
work on contextual reminders (Kamar and Horvitz,
2011; Graus et al., 2016) to more advanced ap-
plications on estimating task duration (White and
Hassan Awadallah, 2019), detecting already com-
pleted tasks (White et al., 2019), highlighting ac-
tionable micro-tasks (White et al., in press), and
automatic task extractions from emails (Mukher-
jee et al., 2020). Meanwhile, task planning re-
mains one of the most challenging and cognitively-
demanding activities in task management (Kirsh,



2000). Prior studies have shown that breaking
down complex tasks positively influences produc-
tivity (Cheng et al., 2015; Teevan et al., 2016a,b).
However, to the best of our knowledge, few meth-
ods have been proposed to tackle this problem au-
tomatically and at scale.

The one exception is Hassan Awadallah et al.
(2014) who explore complex search task under-
standing. Notably, however, their work reasons
only over search logs rather than over the unstruc-
tured content of webpages. Furthermore, the pur-
pose of their effort is subsequent query recommen-
dation rather than the full complex task decomposi-
tion and structuring we propose in this paper.

Thus our work is distinguished from prior re-
search by being the first to attempt automatically
decompose and organize complex task from un-
structured text, in an end-to-end and scalable man-
ner. One of the primary hurdles for research on
complex tasks was the lack of suitable data, par-
ticularly with respect to temporal dependency be-
tween subtasks. We remedy this by collecting a
novel dataset in this paper, which we hope will
spur future research in the area.

7 Conclusion and Future Work

In this paper we have tackled the novel problem
of decomposing and organizing a complex task
from unstructured text. We devised an end-to-end
solution that formulated this problem as graph in-
duction in two stages. The first consisted of finding
nodes to represent sub-tasks by parsing multiple
‘how-to’ articles on the web and extracting key text
fragments from them. Notably, we framed three
desiderata for finding these fragments – relevance,
abstraction and consensus – and built a custom
neural architecture to encode these properties by
extending a state-of-the-art text generation system.
In the second stage we designed a crowd-sourcing
study to collect a new dataset of complex tasks,
– consisting of their sub-tasks and the temporal
dependency relations between them – then used
this dataset to generate sub-task nodes as well as
infer the edges between them. In evaluations of
both stages we demonstrated the efficacy of our
approach by significantly outperforming the state-
of-the-art text generator that we extended.

This work opens several avenues for future re-
search. In this paper, we have assumed a complex
task as given input; we plan to extend our pipeline
with the ability to distinguish complex from sim-

ple tasks. This extension in turn will allow us to
expand the scope of our current system by allow-
ing for recursive task decomposition and organi-
zation. Meanwhile, although our novel Complex
Task Dataset proved a useful resource for modeling
sub-task dependency inference, it remains quite
small; we hope to increase its size considerably
in future work, in order to make it more useful to
the broader research community. We also hope to
conduct human evaluations of generated sub-tasks
in order to gauge their coherence and utility to com-
plex tasks. Finally, we hope to test our system in
practical, downstream usage by studying the pro-
ductivity impact of automated task decomposition
and organization on real users in their daily lives.
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