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Abstract

Seeking expertise from others and building teams or coalitions is an important part
of collaborative problem solving. We discuss the challenges and opportunities that
arise in the context of a human computation system in which individual users pos-
sess heterogeneous skills and are embedded in an underlying social network that
serves as the backbone of information exchange among them. How do structures
of acquaintance networks and the limitation of user’s knowledge to local connec-
tions affects her ability to form collaborations? What is the role played by a user
based on her skills and network positioning in terms of her ability to contribute to
the whole system?
In this paper, we seek an answer to these questions, starting with a simple gen-
erative model to capture the social structures among heterogeneous population
seen in reality. Then, we generalize the challenge of team formation and expertise
seeking as that of maximizing a submodular function in a decentralized setting
where we only have access to local network knowledge. We discuss how the de-
gree of locality of the network knowledge, complexity of utility functions, as well
as the properties of the underlying graph affects the hardness of the problem and
the ability to get an approximate solution. Our methodology and findings sheds
light on how collaborations form among sets of individuals, which we believe is
an under-explored problem in human computation and crowdsourcing systems.

1 Introduction

There is much potential in designing human computation (aka. crowdsourcing) systems that can
exploit the social ties and ability of people to collaborate. In real-world, such collaborations among
people emerge naturally for solving complex tasks, for instance, the recent DARPA Red Balloon
challenge 1, the co-authorship networks in academic community, or a user seeking advice from
friends in online social network. The traditional online crowdsourcing markets have often focused
on micro-tasking through general crowds, dealing with simple tasks such as image annotation, rating
of web pages, etc. Recent research has explored the collaborative aspects of human computation,
though it has been limited to that of designing prototypes or building systems [1][2]. Our work
is motivated by such applications, and we study the underlying algorithmic questions that arise in
modeling and exploiting such social and collaborative aspects in human computation.
∗Adish Singla performed this research during an internship at Microsoft Research.
†Authors are ordered alphabetically.
1http://archive.darpa.mil/networkchallenge/rules.html
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Figure 1: Illustration of the approach on a toy example. The task T originates at user u2 and
requires one user possessing skill SA with minimum of 1 proficiency and two users of skill SD with
minimum of 0.8 proficiency. User u5 and u8 have limited task-solving skills, though act as routing
the tasks effectively. u8 acts as bridge to the group of users with skill SD, a closed-knit group of
users. u4 and u10 are experts for skills SA and SC respectively, though have no routing capability.

Network of people and local information. In this work, we are specifically focusing on systems
where an individual is seeking expertise from others or need to form a team or coalition of experts,
though has only local visibility of the network around her. This local visibility and limited network
knowledge leads to challenging algorithmic questions of how should individuals decide whom to
query or add to team. While such problems have been studied from point-of-view of central agent
with full visibility of the network, the scale of the networks in real-world applications can only offer
limited visibility. For instance, such challenges also emerge for information gathering in peer-to-
peer networks, or seeking expertise from friends in online social networks. Another key aspect that
arise from this decentralized team formation with local visibility is the distinctive notion of task-
routing and task-solving skills. While an individual may not possess specific skills required for the
team to be successful, she may still play an important role in team formation by “bridging the gap”
and connecting to other group of experts.

1.1 Overview of our approach
We present a toy example in Figure 1 to demonstrate some of the key points of our approach. We
consider a population of users, each possessing certain features, that could be useful skills for a task
or attributes such as demographics. In this example, there are total of 4 distinctive skills, and 14
total users. For instance, skill A is possessed by users {u1, u2, u3, u4, u5}. Furthermore, instead of
binary skills, the skills could be represented by the level of expertise that a user has for a skill. For
skill A, the u4 has expertise level of 1, whereas user u3 has only an expertise level of 0.1 for this
skill. Each of these features could induce its own network, capturing the fact that social ties in real
world emerge from number of different aspects (e.g., co-author, or friends, or colleagues sharing
same office, etc.). In Figure 1, user u2 has a task T to solve. Task T requires one user possessing
skill A with expertise level of at least 1, and two users possessing skill D with expertise level of at
least 0.8. The example illustrates an interesting aspect of task-routing skills, as possessed by user
u8 for this particular task T when originating at u2. While user u8 doesn’t provide the required
expertise for the task, it still plays an important role in formation of successful team by connecting
the users of skill D needed for task (i.e., u12 and u13).

We formalize the problem as that of function maximization in a decentralized manner with local
knowledge of the network. We would like to point out that, while the team formation is decentral-
ized as per limited network visibility, however, in our model, the team members can all coordinate
centrally with the task originator in deciding which user to add next to the team. The key challenges
and new algorithmic questions that arise here are because of the limited and local visibility of the
network. We discuss the algorithmic aspects of this problem, inherent hardness and then design a
general-purpose procedure ε-LOKALGREEDY. We analyze and provide theoretical bounds on the
performance of our proposed procedure by varying the degree of locality of the network knowledge,
complexity of utility functions, as well as the properties of the underlying graph.

2 Problem Statement
We now formally introduce the model.

Users and features. We consider a population of |U | users or people denoted by set U =
{u1, u2, . . . , u|U |}. Users are associated with features denoting skills (expertise required for the
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tasks) and attributes (such as geo-location). Let |S| be the total number of unique skills denoted by
set S, |A| be the number of attributes denoted by set A, and |X|(= |S| + |A|) be the total features
given by set X = S ∪ A.

We consider the skills being associated with bounded level of expertise with support (0, 1], here 1
denoting the full expertise of that skill. Note that, having an expertise level 0 simply means that a
user doesn’t posses a skill. This expertise level can alternatively be interpreted as success probability
of being able to “deliver” the skill. The range of attributes vary, and could be categorical (e.g., geo
location), or a number (e.g., age). For a user u ∈ U , we denote the value of her feature x ∈ X as xu
(and corresponding values for the skills or attributes as su and au, respectively).

The features X associated with the population are drawn from a joint distribution over the space
of X , denoted by DX . We shall not make any assumptions on the distribution of these features
among population, and will discuss this further during the performance analysis of our procedures.
Specifically, the performance analysis and the bounds of our procedure would depend on the specific
distributions we consider.

Network graph. There is an underlying network over these users U , denoted by G(U , E) and we
consider a simple generative model for this network. We consider each feature x ∈ X as a “social
dimension” that can induce a social graph among users given by Gx. For instance, x associated
with geo-location or job position in an organizational hierarchy attributes could denote social ties
arising from proximity. Similarly, feature x associated with skill (lets say “machine learning”) could
lead to social ties arising from collaborations and co-authorship. The final graph that we observe
is obtained by an overlay of these networks, given by G = ∪x∈XGx. This essentially captures the
fact that two users ui and uj will have an edge in G, if they have tie arising from at least one of
the feature. This simple model, allows us to capture other factors as trust, and instead of union, one
could think of modeling an intersection of the networks with a trust graph. We let each such graph
generated by an independent process, and could simply be a random graph, or through preferential
attachment process with scale free properties. We will analyze the performance of the algorithms
based on the specific assumptions we make.

Tasks and Teams. A task that is posted by some user during the execution of the system is denoted
by T . Let us denote the user from where the task originates as uoT (or simply uo when task T is clear
from context). Let us begin by considering a simple scenario. Let the skills s ∈ S be binary-valued
and and tasks are simply represented by a set of required skills ST ⊆ S. The goal in this case
is to form a team of set of users CT (or simply C) of size |C| to cover all the required skills, i.e.,
∪u∈CSu ⊇ ST .

However, this simple representation has limits in terms of the applications. It is often desirable to
consider probabilistic notion of the user skills, for instance, in information gathering. Even more
complex applications such as viral marketing may also require a more generic framework. Keeping
this in account, we model the tasks as generic utility function, defined next.

Modeling complex tasks through utility functions. We model each task T through a set function
over the users (or nodes of the graph), given as fT : 2U → R. Given a team of users C created for
task T , the utility achieved from this team is then given by fT (C).

We require the set function f to be non-negative, monotone (i.e., whenever V ⊆ V ′ ⊆ U , it holds
that f(V ) ≤ f(V ′)) and submodular. Submodularity is an intuitive notion of diminishing returns,
stating that, for any sets V ⊆ V ′ ⊆ U , and any given user v /∈ V ′, it holds that f(V ∪{v})−f(V ) ≥
f(V ′ ∪ {v}) − f(V ′). These conditions are general, and are satisfied by many realistic, as well as
complex utility functions [3]. In fact, the above simple example of binary skills and task being
represented as a set of required skills, is equivalent to set-cover utility which is submodular.

Local visibility. We are interested in designing procedures where the graph is revealed only incre-
mentally as the team is built. Let us denote l≥1 hop neighborhood of a user u as N (u, l) ⊆ U , to
be the set of all nodes that are connected to user u either directly or with at most l − 1 intermediate
nodes. For simplicity, we shall assume that u is also included in N (u, l). For a set of nodes V ,
we define its l hop neighborhood as N (V ) = ∪v∈VN (v). For l = 1, this neighborhood would
correspond to the directly connected users. We define the local visibility in terms of two parameters
ldeg , and lval. Consider any given user u:
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• ldeg: Consider any v ∈ N (u, ldeg). Then, u has visibility of immediate connections of the user
v. Essentially, this means that user u has sufficient information to be able to find how much
additional “visibility” of the network v can provide when added to the current team.

• lval: Consider any v ∈ N (u, lval). Then, u has visibility of the features of v given by xv ∀ x ∈ X .
Essentially, this means that user u has sufficient information to be able to compute the expected
marginal gain of utility of adding v to the current team.

Note that, while user u has visibility of these values, we consider setting that team still need to grow
in a connected manner, i.e., user u cannot directly add v to team if they are not directly connected.
This makes the analysis of the procedures easier, in terms of some of the key properties of the
underlying graph. Also, we shall specifically focus on the realistic setting of ldeg = 1 and lval = 1,
where this technicality doesn’t matter.

Optimization Problem. Consider a task T originating at a any user uoT . Let fT encapsulate the
utility function associated with this task. The goal is to find a connected team CT , starting from user
uoT , that achieves a quota value Q of the utility function fT within a tolerance level of β. Our goal
is to design a procedure M that has only ldeg and lval visibility, and solves the above problem with
minimal cost (or size) of the team, under the additional constraints that C∗T is connected and contains
uTo . Formally, we can state the minimization problem as follows:

C∗T = arg min
CT⊆U

|CT | (1)

subject to fT (CT ) ≥ (1− β) ·Q (2)
CT is connected and uoT ∈ CT (3)
Procedure M has ldeg, lval visibility (4)

We shall compare the performance of this procedure against an optimal solution OPT, without com-
putational constraints, that achieves value of Q and doesn’t have constraints given by Steps 3,4, i.e.,
it has global visibility (both ldeg and lval are more than the diameter of the graph G, and C∗T doesn’t
need to be connected or pass through uTo ). We also consider an alternate optimal solution OPT,
without computational constraints, though obeying all the constraints in Steps 3,4.

3 Our Procedures

3.1 Methodolody

We now give a high level overview of the methodology upon which our main procedure is built.

Exploration of the world. One of the natural choice of adding new user to the team is to add one
who can provide maximal visibility of the unseen network. For a given team C, adding a new user
v would provide an additional visibility given by

(
Ñ (C ∪ {v}, 1) − Ñ (C)

)
. This user v may not

provide immediate value or required expertise for the task, though the additional visibility would
be useful as it gives us more knowledge of the network, potentially helping to discover and connect
with the required experts. We call this choice as “exploration”.

Exploitation of value. The other natural choice of adding new user to the team is to add the one who
provides immediate value to the team in terms of required expertise. For a given team C, adding a
new user v would provide a marginal gain in value as

(
fT (C ∪{v})− fT (C)

)
. This can be thought

as “exploitation” step, as it is a greedy choice, given the current knowledge of the network.

We now describe our main procedure ε-LOKALGREEDY.

3.2 Explore-Exploit based ε-LOKALGREEDY

Our main procedure ε-LOKALGREEDY is based on simple idea of interleaving these two choices
and is illustrated in Procedure 1. It turns out, that this simple approach allows us to derive tight
theoretical bounds on our procedure, which also runs quite efficient for various problem instances.
We now specify the main steps based on which the procedure is built.
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Procedure 1: Procedure ε-LOKALGREEDY

1 Input:
2 Social graph: G(U , E);
2 Task: T ; user posting the task: uo; Utility function: f ;
2 Exploration parameter: ε;
2 Local visibility: {ldeg, lval};
2 Solution parameters: (β,Q);

2 Output: team C;
3 Initialize:

2 C = {uo}; i = 1; εi = ε;
4 while f(C) < (1− β) ·Q do
5 if N (C, 1) = U then
6 εi = 0; . Update εi

end
7 With prob. εi, ai ← EXPLORE; else, ai ← EXPLOIT;
8 if ai = EXPLORE then
9 Π∗ = arg maxΠC

l :l∈[1...ldeg ]
Ñ (C∪ΠC

l ,1)−Ñ (C,1)
l ;

10 CT = CT ∪Π∗;
11 if ldeg = 1 then
12 Randomly pick v∗ ∈ Ñ (C ∪Π∗, 1)− Ñ (C, 1) ;
13 CT = CT ∪ {v∗} ;

end
else

14 Π∗ = arg maxΠC
l :l∈[1...lval]

f(C∪ΠC
l )−f(C)
l ;

15 CT = CT ∪Π∗ ;
end

16 i = i+ 1; εi = εi−1;
end

17 Output: CT

Interleaving network exploration with expertise exploitation. The procedure interleaves explo-
ration and exploitation with ε probability, as illustrated in Step 7 of Procedure 1. The ε is constant
for the procedure and is provided as input. If further prior information about the network properties
or the optimal solution are available, this parameter can be tuned (for instance, whether to do more
exploration or more exploitation based on such properties). Furthermore, this can be adjusted or
learnt during execution of the procedure (for instance, intuitively, the extent of exploration can be
reduced over execution of the procedure) . In Procedure 1, we just use a simple constant ε, and when
the dominating set for the network is already built, we set ε = 0 (see Step 6).

Adding multiple users. As the procedure has visibility of ldeg and lval, multiple users can be added
in one round. Our idea is based on the intuition used in [4] on how to effectively add upto two
(ldeg = 2) users in a way to be able to built efficient connected dominating sets. Negative results
from [4] show that this “look ahead” is indeed necessarily to do, as ldeg = 1 greedy approach may
need up to |U | users to build a connected dominating set. We generalize this idea of one-step look
ahead (for ldeg = 2) to that of following a gradient up to l-hops if average gain in that direction is
high.

To formalize this, we introduce the concept of chain of length l. Consider a set of users V who
are currently in team. The “exposed” neighborhood of V is the 1-hop neighborhood given by
Ñ (V, 1) = N (V, 1) \ V . We define a l-chain from V , denoted by ΠV

l as an ordered set denoted
defined recursively as follows:

ΠV
1 ∈ Ñ (V, 1);

ΠV
2 ∈ Ñ (V ∪ΠV

1 , 1) \ Ñ (V, 1);

ΠV
i≥3
∈ Ñ (V ∪ΠV

i−1, 1) \ Ñ (V ∪ΠV
i−2, 1);
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Step 9,14 illustrates of how all the possible chains of length 1 to l are enumerated to find the set of
users to add at each round.

The case of ldeg = 1. As shown in the seminal work of [4], a simple deterministic procedure
for ldeg = 1 that add users greedily based on maximizing the “exposure” may have worst case
cost of |U |. This worst case is resovled for ldeg = 2 by using the idea of look ahead, that we
have generalized above by the notion of l-hop chains above. Recently, this barrier of ldeg = 1 has
been resolved by [5] using a simple randomization technique. Specifically, after a user v is added,
another random user from her neighborhoodN (v, 1) that is newly exposed is added as well. This is
illustrated in the Step 12 of Procedure 1, which is execution when ldeg = 1.

4 Performance Analysis

We now analyze the performance of the procedure ε-LOKALGREEDY.

4.1 General Analysis

We first analyze the results for general settings, where we do not make any assumptions on the graph
or skill distribution.

Characteristic properties of the graphs. Let us first introduce some of the characteristic properties
of the graph G that we shall use to express the performance.

• Maximum vertex degree ∆G. This denotes the degree of graph G, defined as the maximum
degree of any vertex in the graph given by maxu∈U ∆G(u), where ∆G(u) is the degree of vertex
u in the graph.

• Smallest size of connected dominating set γc. This denotes the size of smallest dominating set
of the graph, that is also connected. The dominating set of a graph is denoted by set of nodes
D ⊆ U , such that if we consider any vertex v ∈ U , either v ∈ D, or v is adjacent to some vertex
v′ where v′ ∈ D. Note that finding smallest connected dominating set D is NP-Hard [4].

Theorem 1. For ldeg = 2, lval = 1, the procedure ε-LOKALGREEDY terminates with team C that
satisfies the constraints of Equation 1 with following upper bound on the size of C in expectation
(over the coin flips):

E[|C|] ≤
(1

ε
·
(
2 + 2 ln(∆G)

)
· γcG

)
+
( 1

1− ε
· |OPT| · ln(

1

β
)
)

Theorem 2. For ldeg = 1, lval = 1, the algorithm ε-LOKALGREEDY terminates with team C that
satisfies the Equation 1 with following upper bound on the size of C in expectation (over the coin
flips) that holds with probability at least 1− e−γc

G :

E[|C|] ≤
(1

ε
·
(
4 + 2 · ln(∆G)

)
· γcG

)
+
( 1

1− ε
· |OPT| · ln(

1

β
)
)

For the general settings, we can state the following lower bound, showing that the dependency on
γcG is indeed unavoidable.
Theorem 3. For any bounded ldeg and lval, there exists an underlying distrbution of skills and
graph structure for which any procedure will have expected size of team at size least:

E[|C|] ≥ max
(
γcG, |OPT|

)
4.2 Preferential Attachment with independently distribtued skills

We now analyze the results when the graphs are scale-free, along with specific properties over the
skill distribution and utility function associated with the task.

Skill distribution. The skills and features are independently distributed. For each feature x ∈ X ,
let the population possessing that feature is given by size |Ux| and associated probability θx = |Ux|

|U | .
Under independence assumption, we can state that if we take any user u and consider itsM outgoing
links, then the probability that at least one of them poses feature x is at least (1− (1− θx)M ).
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Characteristic properties of the graphs. Each network Gx is formed by preferential attachment
process [6], where nodes u ∈ Ux arrive over time, and each node on arrival forms mx links to exist-
ing nodes with probability proportional to the degree. This network leads to power law distribution,
often seen in the collaborative networks such as co-authorship graphs, online social network or the
Web graph. We assume that the skill level is proportional to the outgoing degree, scaled to have
bounded support of (0, 1].

Characteristics properties of function. We now characterize the utility function properties. We
consider a separable function given by:

fT (C) =
∑
s∈S

wsT · fsT (C)

where wsT denotes the weight of function fsT . Here, the function fsT depends only the skill s of
the users. There are set of “irrelevant” skills for which task T carries no utility, i.e wsT = 0. For
other “useful” skills for which wsT > 0, function fsT carries positive, non-zero utility for every user
possessing that skill.

Also, the marginal utilities of individual users are monotonic w.r.t the their skill level. For instance,
consider adding a user u1 or u2 to team C, where su1 ≤ su2 . Then,

(
fsT (C ∪ {u1}) − fsT (C)

)
≤(

fsT (C ∪ {u2})− fsT (C)
)
.

Characteristics properties of OPT. For a given task, consider the function associated with any
specific useful skill s for which wsT > 0. Then, maximum value of function fsT (C) = 1 will be
achieved after including some constant number κ of highly skilled users for skill s. Highly skilled
users are the ones for which su ≥ O

(
1

ln(|Us|)
)
. This is equivalent to ∆Gs

(u) ≥ O
(

1
ln(|Us|)

)
∆Gs

.
This is motivated by real-world settings where the goal is essentially to find few experts for all
the required skills. As per the power law distribution from the preferential attachment process, the
number of such highly skilled users are relatively few.
Theorem 4. Consider ldeg = 1, lval = 1 and a task T originating from user uoT possessing skill
so. Let the goal is to find a small number of κ highly skilled value users of certain skills, where the
highly skilled users are the ones for which su ≥ O

(
1

ln(|Us|)
)

for any skill s. With probability of at
least 1− o(1), size of C is bounded as:

E[|C|] ≤
(1

ε
·O
(

ln4(|Us0 |)
))

+
( 1

1− ε
·O
(∑
s∈S

ln4(|Us|) + κ
))

+ |OPT |

The main key ideas behind the above theorem are as follows.

Reaching high degree nodes of skill s0. The first term in the summation
(

1
ε · O

(
ln4(|Us0 |)

))
is

attributed from the process of reaching high degree users among the users of skill so, let us denote
one such high degree user as rs0 . The exploration step of the procedure will add users to the team
towards reaching rs0 .

Based on the results of [5], consider starting from any node and navigating graph Gx, if we follow
the maximum degree node in the ldeg = 1 local visibility, we reach a node rx within O

(
ln4(|Ux|)

)
steps such that ∆Gx

(rx) ≥ 1
ln2(|Ux|) ·∆Gx

, this holds with probability at least 1− o(1) (where the o
notation is w.r.t to size of the graph). Furthermore, with probability at least 1− o(1), the maximum
degree of of any node in Gx, denoted ∆Gx

is bounded by ∆Gx
≤ mx ·

√
|Ux| · ln(|Ux|), based on

results of [7]. Hence, the degree ∆G(r0
s) ≥

m0
s·
√
|U0

s |
ln(|U0

s |
.

Jumping to users with useful skills. Then, the exploitation step would ensure that we can make a
high probabilistic jump from r0

s to the users with useful skills. Given the independence assumption
of the skills distribution, the procedure can jump to users with useful skills, with probability at least:
1−

∑
s∈S(1− θs)∆G(r0s)

Reaching high degree nodes of useful skills. Both the exploration and exploitation step would
help with this process. However, the exploration step may still continue adding higher degree nodes
in the graph Gs0 or other skills that do not provide any utility, hence the second term in bound of
Theorem 4 has the factor of 1

1−ε .
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Based on the results of [5], consider starting from any node and navigating graph Gx, if we follow
the maximum degree node in the ldeg = 1 local visibility, we reach a small constant number of high
degree κ nodes, denoted byRκx, withinO

(
ln4(|Ux|)+κ

)
steps such that ∆Gx(rx) ≥ 1

ln3(|Ux|) ·∆Gx ,
this holds with probability at least 1 − o(1). By definition, finding such κ highly-skilled users are
enough for any given useful skill.

Next, we state the lower bound for any procedure under this model.
Theorem 5. For ldeg = 1, lval = 1, under the specific model considered in Theorem 4, there exists
a problem instance for which any procedure will have expected size of team at least:

E[|C|] ≥ O
( ln(|U |)

ln ln(|U |)

)
This lower bound follows from the expected diameter for the graph obtained from the preferential
attachment process [8].
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