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a b s t r a c t

The proliferation of digital devices and connectivity enables people to work anywhere,
anytime, even while they are on the move. While mobile applications have become
pervasive, an excessive amount of mobile applications have been installed on mobile
devices. Nowadays, commuting takes a large proportion of daily human life, but studies
show that searching for the desired apps while commuting can decrease productivity
significantly and sometimes even cause safety issues. Although app usage behaviour has
been studied for general situations, little to no study considers the commuting context as
vital information. Existing models for app usage prediction cannot be easily generalised
across all commuting contexts due to: (1) continuous change in user locations; and
(2) limitation of necessary contextual information (i.e., lack of knowledge to identify
which contextual information is necessary for different commuting situations. We aim
to address these challenges by extracting essential contextual information for on-
commute app usage prediction. Using the extracted features, we propose AppUsageOTM,
a practical statistical machine learning framework to predict both destination amenity
and utilise the inferred destination to contextualise the app usage prediction with
travelling purposes as crucial information. We evaluate our framework in terms of
accuracy, which shows the feasibility of our work. Using a real-world mobile and
app usage behaviour dataset with more than 12,495 trajectory records and more than
1046 mobile applications logged, AppUsageOTM significantly outperformed all baseline
models, achieving Accuracy@k 46.4%@1, 66.4%@5, and 75.9%@10.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing prevalence of smart devices and the increasing number of applications in online markets, users
an take advantage of a wide range of them anywhere at any time [1]. For example, the growing popularity of social
etwork service apps such as Twitter and location-based service apps like Google Maps allows users to connect with
thers and retrieve information about their environment. However, while users can exploit abundant applications, the
verage number of apps installed on mobile devices also increases. For example, as [2] stated, on average, the number of
pps installed on a smartphone can reach 56, and the highest number of apps installed is about 150. Given the number of

∗ Corresponding author.
E-mail address: flora.salim@unsw.edu.au (F.D. Salim).
ttps://doi.org/10.1016/j.pmcj.2022.101704
574-1192/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.pmcj.2022.101704
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2022.101704&domain=pdf
mailto:flora.salim@unsw.edu.au
https://doi.org/10.1016/j.pmcj.2022.101704


Y. Kang, M.S. Rahaman, Y. Ren et al. Pervasive and Mobile Computing 87 (2022) 101704

a
a
t
H

a
o
c
f
m
A
a
i
a

t
T

t
t
m
l

Fig. 1. Example of a user commuting between location A and B.

pps installed on the smartphone and the number of apps that can be contained on a home screen, it is often tedious for
user to find the desired app. To overcome this issue, companies that target smart devices (i.e. Apple and Google) tend
o have several home screens that show a set of shortcuts to enable users to find their desired applications efficiently.
owever, managing and selecting applications are still cumbersome and may require users to browse all screens.
To overcome the issue, various approaches exploiting different algorithms such as Machine Learning, Deep Learning,

nd Reinforcement Learning to predict what apps tend to be used next [3–5]. However, existing methods mainly focus
n predicting the next applications while users are static at a specific location such as Point A or Point B by exploiting
ontextual information such as time and location (see Fig. 1). However, app prediction while commuting, such as travelling
rom Point A to Point B, remained under-explored. When the methods are applied to app prediction while users are
oving, the methods show limitations due to different contextual information, such as continuously changing locations.
dditionally, while increasing number of users tend to use applications when travelling, managing and searching desired
pplications can decrease production and cause distractions. With all the issues in mind, it is becoming increasingly
mportant to predict what applications will be used next, focusing on travelling contexts to make applications more
ccessible for users [6].
To address the challenge, we first analyse contextual information essential for app prediction while commuting. We

hen propose AppUsageOTM that exploits analysed contextual information to predict the next apps during commuting.
hus, our proposed question is unique with the following features provided:

• Contextual Information: Existing studies show that contextual information is important for app prediction [7–9].
While existing studies focus on examining which contextual information is important to improve the accuracy of app
prediction under the context that users are static, the contextual information essential for app prediction while users
are on the move remains uncovered. Additionally, the available contextual information under moving conditions is
different [10,11]. For example, location information is accessible as contextual information while users are static, but
it is unrealistic to keep extracting all locations given the users are travelling. Our study collects different contextual
information when users use mobile applications while travelling. By exploiting the collected contextual information,
we examine what contextual information is essential to predict the next used apps considering users are moving
and analyse the differences compared with app prediction while users are static.

• Travelling Purpose Prediction: By examining available contextual information, we discover the purposes of com-
muting bring a significant impact on app prediction on the move. Thus, our proposed approach predict travelling
purpose and conduct a filtering system accordingly to improve app usage prediction accuracy.

• App Prediction While People On the Move: Most existing papers about app usage prediction only predict the next
app while users are static. As Verkasalo et al. stated that users tend to have different app usage behaviours while
travelling compared to when they are static [12], our approach can enrich studies on the app usage behaviour with
an extensive analysis of app usage behaviour under moving contexts.

Table 1 summarises the differences and uniqueness of our approach. Compared with app usage prediction that predicts
he next application on a static location, we target app usage prediction while people commute. Table 1 also illustrates
he sample outputs for a scenario. For example, assume the user is on his/her way driving back home from a shopping
all and will use Google Map as the next app; the prediction can help to pre-load Google Map so that the user can pay

ess attention and spend less time on searching for the app.
2
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Table 1
Comparison between app usage prediction and our problem.

App usage prediction [13–19] App usage prediction on the move [this paper]

Question What is the next app that will be used at a certain point of
time and/or location?

What is the next app that will be used on the trajectory with
the inferred destination?

Input Time, Location, App Sequences Travelling Start Time, Travelling origin amenity, App Sequences,
Destination Amenity

Output k apps with the highest probability to be used next Destination Amenity (e.g. work, home) (output from
Travelling Purpose Prediction);
k apps with the highest probability to be used next

Sample
inference

The user have the highest probability to use Facebook as the
next mobile application while he/she is at home

The user have the highest probability to use Google Map as
next mobile application while he/she is driving back to home

A framework for App Usage Prediction On the Move requires frequent re-training to adapt to new data since users
can change their app usage or commuting habits. We also need to consider the potential increase in the number of
users. Thus, we propose AppUsageOTM, which is a personalised and lightweight framework. AppUsageOTM is constructed
using Hierarchical Linear Modelling (HLM) and Support Vector Machine (SVM), which have comparably simple structures
and achieve high performance with the limited amount of training data [20]. Through data processing, we found that
app usage patterns are different based on different travelling purposes. Thus, AppUsageOTM first uses HLM to predict
travelling purposes; the proposed model then utilises the predicted travelling purpose to build a filtering system. Finally,
AppUsageOTM uses SVM to predict the next app while users are on the move.

There are three major contributions in this paper as follows:

• We propose a novel app usage prediction on the move problem: Given a user is travelling on a weekday, can we predict
the next mobile application that the user will use.

• We use feature engineering to exploit the collected data and conduct feature selection to examine which contextual
information is essential for app usage prediction while commuting.

• We propose a framework that exploits contextual information for app usage prediction on the move with high
accuracy.

2. Related work

In this section, we first describe the previous work on productivity and attention management to show the significance
of studying app usage prediction while commuting. We then demonstrate previous studies about applying contextual
information to improve the accuracy of app usage prediction. Finally, we show existing methods for app usage prediction.

2.1. Productivity and attention management

People spend a large proportion of time commuting for multiple purposes. Studies have revealed that people often
engage with their mobile phones to carry out different activities during their commutes [21–23]. However, studies show
that engagement with mobile phone activities can cause distraction and compromise safety under certain circumstances
such as driving [24–26]. In 2015, Mark et al. conducted a study that indicates the negative impact of multitasking which
shows that when people engage in a second activity (driving or keep checking train stops) while using mobile applications,
the more total screen switches to search the desired app, the less productive people feel at the end of the day. In 2019,
to eliminate the negative impacts and distractions, Martelaro et al. stated that it is essential to have intelligent assistants
to support practical app usage to increase productivity for app usage while people are on the move [24]. Thus, app usage
prediction on the move as part of intelligent assistants benefits people’s daily commuting time.

2.2. Contextual information for app usage prediction

Modern applications use different contextual dimensions following the 5W1H approach (what, when, why, who, where,
how) [27,28]. Studies suggested that the dependency of spatio-temporal information also plays an important role in app
use prediction. Eagle et al. show understandings of diverse app usage patterns based on locations such as home and office
and timeframes such as morning and lunchtime [29]. Later Verkasalo et al. analysed contextual patterns in app usage
based on different contexts, such as people are static or on the move, [12]. Currently, multiple contextual information
analyses exist for app usage prediction while people are static. In 2012, Shin et al. discovered that the latest used app,
Cell ID, and the hour of the day have a strong impact on app usage prediction. Later, Yan et al. discovered that time of
day and location clustering strongly correlates to app usage prediction [30]. In 2018, Yu et al. further investigate spatial
information as contextual information. In addition to the time of the day and location information, they use Point of
Interest information to improve the app usage prediction accuracy [13].
3
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However, few studies exist on contextual information for app usage prediction on the move. In 2019, Shen et al.
xploited semantic location such as home and on the way as contextual information and predicted app usage while users
re on the move. However, the study only considers whether the user is moving or static in different locations without
urther discovery based on different types of moving [3], which is the focus of our study.

.3. App usage prediction

Studies focused on app usage prediction using different machine learning algorithms. Major studies based on Markov
nd Bayesian framework to predict the next application exploiting a sequence of previously used applications and
ontextual information [14].
Currently, there are several studies for app usage prediction using a single Markov model or a mixture of Markov

odels [8,9,31]. In 2013, Natarajan et al. proposed iConRank, which uses collaborative filtering to cluster users and cluster-
evel Markov models to predict the next app. iConRank is tested using multiple real-world datasets and received around
7% and 12.8% respectively for top-5 predictions. Later, Parate et al. used a dataset consisted 22 users and achieved about
1.9% with top-5 predictions with a mixture of Markov models.
Other than Markov models, Bayesian-based frameworks also are popularly applied for app prediction in different

tudies, such as user-NB (Naive Bayesian model based on different users) [15], 2-NB (2 features based Naive Bayesian
odel) [12], 3-NB (3 features based Naive Bayesian model) [32], and app-NB (Naive Bayesian model based on mobile ap-
lications) [16]. The Bayesian frameworks are based on different users or mobile applications using contextual information
s priors. Among the studies, app-NB proposed by Shin et al. achieved 88.2% accuracy with top-9 predictions [16].
Except machine learning based models, in 2019, Zhao et al. constructed AppUsage2Vec model using Dual DNN and

ttention mechanism. The study shows that AppUsage2Vec outperforms baselines and reaches above 80% using the
riterion of recall with top-4 predictions [4]. Furthermore, Shen et al. developed DeepApp based on Deep Reinforcement
earning which learns a model-free predictive neural network exploiting historical app usage data. DeepApp is tested on
he dataset consists 443 active users for 21 days and achieved the recall of 46.7% for top-1 prediction [3].

In summary, existing studies show different app usage patterns while users are static instead of situations where users
re commuting. As commuting between two places involves continuously changing locations over time, we propose a
ovel challenge: predict the next app while users are on the move.

. Preliminaries and problem definition

In this part, we first present a formal definition of our problem. Then, we explain our collected data, followed by an
llustration of how we pre-process our data. Finally, we discuss our preliminary discovery of the data.

.1. Problem formulation

Given a set of required contextual information Cu of user u, the set of n mobile applications Sn that are previously used
in sequence, the app usage prediction while commuting problem is to predict the app x in the set of apps A with the
highest probability to be used next based on Cu and Sn. Thus, the whole process can be formulated as Eq. (1).

arg max
x

P(x | Cu, Sn) where x ∈ A, (1)

The contextual information Cu of user u includes any spatial–temporal information that is potentially correlated with
the app usage pattern, such as start time of commuting and semantic meaning of the trajectory.

3.2. Dataset

To better understand work-related tasks and activities, we collect a real-world dataset from 53 people with different
occupations who use Android smartphones on weekdays between 7 am and 8 pm over 4 weeks [17]. All mobile apps
used during the timeframe are recorded in the collected dataset. The data collection is ethics approved. The data
collection is conducted by letting the participants install the data collection app and annotate their tasks regularly
through the two-hourly Experience Sampling Method (ESM) [33] survey prompts and Daily Reconstruction Methods
(DRM) [34]. Additionally, a weekly interview is performed to review and validate the annotation of their tasks and ensure
completeness. The procedure includes 5 phases (recruit participants, prepare accounts, intake, weekly meetings, and end
of the survey) [35].

Among the 53 users, there are 3 users without sufficient trajectory or app usage information for this study. Hence, this
study uses information from 50 users, including 12,495 trajectory records in the timeframe and more than 1046 mobile
applications used while travelling, such as Facebook, Chrome, and WhatsApp. The dataset is collected from 30 males and

20 females with different professions, including Managers, Editor Professional, ICT Professionals, Consultant Professionals,

4
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Table 2
Description of raw features of the collected data.
Trajectory-related features Description

Timestamp Start and end timestamp for trajectories

Duration Derived from Timestamp, which records the time length of
trajectories in seconds

GPS location A sequence of latitude and longitude that indicate physical
locations of trajectories.

Travelling mode Transportation modes for trajectories such as train and bus.

Origin, destination place mode Modes (such as home and work) of origin and destination
places for trajectories to indicate whether a user goes to the
place on a regular-basis or not

App-related features Description

Timestamp Start timestamp for mobile applications

App package name Package name of apps on Android phones

Foreground time Duration in seconds that mobile applications run in the
foreground

Fig. 2. Number of users with different genders and different professions in the dataset.

lerical and Administrative Workers, Sales Workers, Machinery Operators and Drivers, Technicians and Trades Worker,
abourers, and Other professionals.1 Fig. 2 shows demographic details of the dataset.
The dataset contains different information associated with work-related activities, as shown in Table 2. The data

capture human movements in daily life on weekdays via modelling and inference from multivariate time series data
streamed from the mobile sensors embedded in Android smartphones [18]. In order to utilise the sensors, a variety of
apps are installed on smartphones to collect cyber, physical, and social signals associated with different tasks [35]. By
using the same dataset, in 2018, Liono et al. conducted a study to infer transportation modes based on the structured
hierarchical contexts associated with human activities by proposing CBAR (context-based Activity Recognition) [18].

To conduct experiments, we split the collected dataset into the training set, the first 80% of data in the temporal
domain, and the testing set, the rest of the collected dataset.

1 Job categories are extracted from ANZSCO.
5
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Fig. 3. Top 10 travelling purposes and frequency.

3.3. Pre-processing

We clean and extract features from the collected data to determine what contextual information helps understand
travel patterns and the corresponding app usage patterns.

3.3.1. Travelling purpose construction
Different methods exist to detect travelling paths for different users [36,37]. To analyse the purposes of different people

travelling during weekdays, we extracted origin and destination amenities from GPS locations to construct the travelling
purposes. Fig. 3 shows the travelling purposes constructed across all users with the highest frequency (i.e. Home−→Work
epresents the purpose of the trajectory is go to work from home).

.3.2. App location extraction
As the locations for mobile apps used on the move are constantly changing, we use the location when a mobile

pplication is opened as the app location. Hence, according to Table 2, we use the timestamp in App-Related Features
nd match it with GPS location in Trajectory-Related Features to find app locations.

.3.3. App categorisation
In order to get a further understanding of the data, we extracted categories of apps from Google Play. The apps are

ategorised into 45 categories shown in Fig. 4.
By pre-processing the collected data, the extracted features are listed in Table 3.

.4. Preliminary analysis

A brief insight into the data is essential for further analysis and app usage prediction while commuting. For example,
ig. 5(a) shows the distribution of time spent for users on different transportation modes. In general, people tend to use
ore apps when travelling on public transportation than other travelling methods.
Fig. 6 shows a general analysis using the collected data. Fig. 6(a) shows the number of apps used during different

ransportation modes. According to the figure, people tend to use more apps on a train than on other transportation
odes, and people use at least 3 apps in about 60% of train travellings. Fig. 6(b) shows an analysis of the percentage of
sers versus the number of mobile applications used through the data collection period. The number of apps used ranges
rom 0 to 130, and most people use at least 40 different apps in 4 weeks. When the number of apps used increases from
0 to 120, the percentage of users decreases rapidly. Additionally, Fig. 6(c) shows that the app usage duration distribution
s similar to long tail distributions, representing that users tend to stay in an app for a small amount of time.

There are different app usage patterns based on different contextual information. To eliminate the apps that are opened
nd closed immediately by the users, we only record the apps that are running at the front for more than 5 s. According
o the app categorisation, Fig. 7 shows an analysis of app usage patterns of a user based on different times of the day
hile commuting — morning (from 6 am to 2 pm) and afternoon (from 2 pm to 7 pm). It shows the user prefers to
se Personalisation and Tools throughout the whole day during travelling while he/she prefers to use Education in the

morning and Browsers and Utilities in the afternoon. The preliminary analysis shows the correlation between types of
trajectories and app usage patterns.
6
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Fig. 4. Categories of all mobile applications users used and the number of apps in each category.

Table 3
Features available after pre-processing the data.
Trajectory-related features Description

Day of week (day_of _week) The day of week of the trajectory started
Start hour (start_hour) The start time (in hour) of the trajectory started
Duration (duration) Duration (in seconds) of the trajectory
Travelling mode (mode) Transportation modes (train, tram, bus and etc.) for the

trajectory
Travelling purpose (purpose) The purpose for travelling
Origin amenity (depart_mode) The amenity of the origin location of the trajectory
Destination amenity The amenity of the destination of the trajectory
(destination_mode)

App-related features Description

App start day of week Start time (day of week) of the app
(day_of _week_app)
App start hour (start_hour_app) Start time (in hour) of the app
App name (app_name) Name of the app
Foreground time (foregrnd_time) Foreground running time of the app
App location (app_location) The location where the app started
App category (app_category) The category of the app

4. Methodology

As shown in Fig. 8, the framework(AppUsageOTM) requires contextual information analysis to determine the correlated
eatures. We discuss the method for contextual information analysis and the overall construction of AppUsageOTM in the
irst and second subsections. Then we discuss each part of the framework in detail.
7
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Fig. 5. Preliminary analysis on transportation information across all users.

Fig. 6. App usage analysis across all users.

Fig. 7. App usage patterns during commuting. Frequency represents weekly average app usage calculated by the number of times an app is launched
in the morning/afternoon divided by the number of weeks.
8
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Fig. 8. AppUsageOTM. We extract features for Destination Amenity Prediction and App Prediction accordingly, used in AppUsageOTM. In Destination
Amenity Prediction, we use Day of Week, Start Hour, Origin Amenity as input features for prediction of Destination Amenity. Then, in App Prediction,
y using Origin Amenity and Destination Amenity along with Transportation Mode, we can extract historical records of a certain portion of trajectories.
ith the contextual information of trajectories and the corresponding sequence of apps as SVM input, we predict the top-k apps that will be used
ext.

.1. Contextual information analysis

To analyse and extract contextual information essential for app usage prediction while commuting, we applied
nformation Gain Ratio(IGR) to measure: (1) the relationship between contextual features and destination amenities, (2)
he relationship between contextual features and app usage prediction while commuting. The study by Kullback et al.
tated that IGR for each feature is calculated by dividing target classes with their discrete values [38]:

IGR(X, a) =
H(X)−

∑
v ∈ values(a)

(
|{x ∈ X | value(x, a) = v}|

|X |
×H({x∈X | value(x,a)=v})

)
−

∑
v ∈ values(a)

|{x ∈ X | value(x,a) = v}|

|X |
×log ( |{x ∈ X | value(x,a) = v}|

|X |

(2)

here X represents the training set, value(x, a) with x ∈ X defines the value of a certain training sample x for attribute
∈ Attr . values(a) indicates all possible values of attribute a ∈ Attr , and H specifies the entropy.

.2. AppUsageOTM: Framework construction

Through the whole structure, we first used HLM to predict the Destination Amenity for a trajectory given the
nformation of Day of Week, Start Hour and Origin Amenity, which are information that can be inferred from different
ensors on smartphones [35]. After getting the Destination Amenity and Transportation Mode, we build a filtering system
o eliminate unnecessary app usage patterns to make the patterns consistent as inputs for SVM.

HLM for predicting the Destination Amenity can adapt to the hierarchical character of the data. HLM is a statistical
ethod with low complexity and interpretable structure. The simplicity of the model can help to reduce the training time
f our proposed model.
According to the study from Xing et al., different studies have proved that Support Vector Machine (SVM) is an effective

ethod for sequence classification [39]. Furthermore, SVM is a popular pattern recognition method, requiring less training
ata compared to other Machine Learning algorithms [40].
To explain step 1, each destination amenity was predicted separately using one stochastic process. Assume we use di

to represent the ith day in a week, Suend represents the set of destination amenities for user u, then mi is the ith element
in Suend. h represents the start hour of the trajectory, and nj is the origin amenity of the trajectory, which is an element in
Sustart , the set of origin amenities. To simplify the equation, we dropped the superscript u. We aim to predict the destination
amenity for the trajectory by calculating the max probability as shown in Eq. (3).

arg max
mi

(Pr(mi | h, nj, di)), ∀mi ∈ Send (3)

As for step 2, by using HLM as a filtering system, we can get corresponding trajectories as contextual information. The
sequences of applications used under the context construct our training data, and the output is the prediction of the next
app.
9
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Table 4
Factors at each hierarchical level that affects destination amenities.
Hierarchical level Example of hierarchical level Example variables

Level-3 Day level day_of _week
Level-2 Time level start_hour
Level-1 Trajectory level depart_mode, destination_mode

4.3. Step 1: Hierarchical Logistic Regression

4.3.1. HLM: Background
HLM is a complex form of regression used when the variables are at varying hierarchical levels. It has been found that

y using HLM, the classification model is simple with lower execution time and fewer computation units required [41].
Hierarchical Linear Modeling (HLM) is an ordinary least square (OLS) regression-based analysis that considers the

ierarchical structure of the data. For example, in our data, trajectories occur on different days of the week through all
eekdays. In this case, the structure of the data conflicts with the independence assumption of OLS regression because the
lusters of observations are not independent of each other. HLM is a statistical method, and as its development occurred
cross different fields, it is now frequently used in the education, social work, business sectors, and health sectors [19].
HLM considers the shared variance in hierarchically structured data: it can accurately estimate lower-level slopes and

heir influences on estimating higher-level outcomes [19]. Table 4 shows an example using our collected data.

.3.2. HLR for destination amenity prediction
Hierarchical Logistic Regression (HLR) is a model that is a part of HLM. It is proposed for studying data with a

ierarchical structure and a binary response variable [42]. It can be applied to hierarchical levels of grouped data [19].
Consider if we only used logistic regression, the probability for each destination amenity can be predicted by Eq. (4).

value = α × h + β × nj + γ

Pr(mi = 1 | h, nj ) =
1

1 + e−value , ∀mi ∈ Send
(4)

where value is the intermediate output of logistic regression, α and β are the parameters for feature h and nj, and γ is
he bias.

However, different days of the week have different patterns, hence, the set of weights for each feature should be
ifferent for a different day of the week. At the same time, as we only considering weekday data, while a different day of
he week has different patterns, they still share characteristics. In this case, we have the hierarchical logistic regression
o predict destination amenity as shown in Fig. 8 (Destination Amenity Prediction).

We distribute the set of weights for a different day of the week using a shared group distribution as the hyperparam-
ters sampled by Normal distributions (N):

αday ∼ N
(

µα, σ 2
α

)
, βday ∼ N

(
µβ , σ 2

β

)
, γday ∼ N

(
µγ , σ 2

γ

)
, (5)

where µα, µβ , µγ represent the means for the three Normal distributions accordingly, and σ 2
α , σ 2

β , σ 2
γ represent variance

of the three Normal distributions accordingly.
To model the uncertainty of the shared group distribution, we define with a HalfCauchy (HC) with its parameter is 4:

σαday ∼ HC(4), σβday ∼ HC(4), σγday ∼ HC(4) (6)

Accordingly, we can define parameters α, β, γ with Normal distribution (N) as follow.

α ∼ N
(
αday, σ 2

αday

)
, β ∼ N

(
βday, σ 2

βday

)
, γ ∼ N

(
γday, σ 2

γday

)
(7)

Finally, by using the parameters, according to logistic regression, we use Sigmoid function to reveal the likelihood of
different destination amenities:

Pr(mi | h, nj ) ∼ Ber(p), (8)

where p = Pr(mi = 1 | h, nj ) =
1

1 + e−value .

.4. Step 2: SVM for app usage prediction

According to Fig. 8 (App Prediction), we aim to use a sequence of apps along with contextual information to predict
he next app.

The basic idea is to map a sequence into a feature space, find the maximum-margin hyperplane to separate classes,
nd find the probability of classifying the record into the class. By using SVM, we aim to find the probability for each app
s the next app for Send:

Pr (x = 1 | C , S ), ∀x ∈ A (9)
u k

10
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Fig. 9. Average IGR of different parts in AppUsageOTM across all users.

where Cu represents a certain set of required contextual information for user u, and Sn represents the nmobile applications
hat are previously used in sequence.

. Experiments

To evaluate AppUsageOTM, we first examine which contextual information is essential for app usage prediction while
ommuting, then we construct baselines using existing methods for app usage prediction using the first 80% of the
ollected data in the temporal domain as training data. To make the experiments sufficient for the study, we conduct an
blation study to show the necessity of different features as contextual information. Finally, we conduct further discussion
ased on travelling modes and app categorisations.

.1. Contextual information for App Usage Prediction On the Move

In order to get an understanding of what contextual information is strongly correlated to App Usage Prediction On the
ove, we use IGR to evaluate different parts in AppUsageOTM (as shown in Fig. 8), and the results are shown in Fig. 9.
According to previous studies on App Usage Prediction, we use day_of _week_app, start_hour_app, and app_location as

spatial–temporal contextual information to calculate the IGR, and we also use n apps in sequence that are previously
used [13,30]. Fig. 9(a) shows the result where we use n = 2 (in later experiments, n = 2 achieves the highest
performance. see Fig. 10(c)). Based on the result, apps in sequence have high IGR for App Prediction in AppUsageOTM,
in which app_1, the most recent used app, have the highest IGR followed with app_0, the second most recent used app.
However, app-related spatial–temporal information show weaker correlation to App Prediction. According to Fig. 9(a),
though day_of _week_app and start_hour_app show comparably higher calculated IGR, app_location show that there is
little correlation between locations and the next app used.

We conduct an experiment to calculate IGR of trajectory-related features for App Prediction in AppUsageOTM.
According to Fig. 9(b), purpose shows the highest IGR followed by duration, start_hour , day_of _week, depart_mode,
destination_mode, and mode. Additionally, the values of start_hour_app is similar to the values of start_hour , which shows
users tend to start using apps at the same hour they start travelling. As start_hour shows higher correlation compare to
start_hour_app, we keep start_hour as the feature in AppUsageOTM. Based on Fig. 9(a) and 9(b), the features ranked by
IGR are in the sequence of purpose, duration, start_hour , day_of _week, day_of _week_app, mode, and start_hour_app.

As purpose is highly correlated to App Usage Prediction On the Move, and it is unrealistic to acquire destination_mode
before the travelling is completed, AppUsageOTM require to predict destination_mode (Destination Amenity Prediction).
Fig. 9(c) show IGR of trajectory-related features for prediction of destination_mode. We use depart_mode, start_hour , and
day_of _week to predict destination_mode.

In summary, Experiments show that the contextual information for App Usage Prediction On the Move is different
from App Usage Prediction. Compare to app-related features, trajectory-related features have a higher correlation to
predict the next app while commuting. As purpose have the highest IGR for App Prediction in AppUsageOTM, and it
is the output of Destination Amenity Prediction in AppUsageOTM, we use purpose to construct the filter (see Fig. 8) to
eliminate unnecessary data so that the records for App Prediction in AppUsageOTM have similar patterns. Table 5 shows
the features for AppUsageOTM.
11



Y. Kang, M.S. Rahaman, Y. Ren et al. Pervasive and Mobile Computing 87 (2022) 101704

t
a
1

w

5

A
f
d
A
c

A
o

5

P
m

Table 5
Selected features for AppUsageOTM.

Features

Features for destination amenity depart_mode, start_hour , day_of _week
prediction
Features for filter purpose (constructed using depart_mode and destination_mode)
Features for app prediction sequence of apps (e.g. app_1, app_0), duration, start_hour ,

day_of _week, mode, start_hour_app

5.2. AppUsageOTM prediction performance and evaluation

5.2.1. Evaluation metrics
We used the criterion of accuracy to measure the performance of AppUsageOTM. The accuracy was computed when

op k apps with the highest probability were selected, named as Accuracy@k. Accuracy@k is a typical metric for evaluating
pp usage prediction, such as used in [43], which is calculated as shown in Eq. (10). We tested with k ranges from 1 to
0 in the following experiments.

Accuracy@k =

∑
|DTest

|

i = 1 1 (yreal ∈ Ypredict )
|DTest |

, (10)

here |Ypredict | = k and DTest represents testing dataset.

.2.2. Experiment setup
We execute all the experiments 10 times and show the average result from the executions as experimental results for

ppUsageOTM and baselines. For the train-test split, we use the first 80% of the collected data in the temporal domain
or training and the rest for testing. For AppUsageOTM, the labels for Destination Amenity prediction are amenities of
ifferent travelling destinations such as Home and Work (Top 10 travelling purposes are shown in Fig. 3; the labels for
pp Prediction are different apps such as Facebook or Google (more than 1,046 mobile applications are recorded in the
ollected dataset).
All experiments are conducted using Ubuntu 16.04 with Intel 5820k and 32 GB memory, and we use 1 CPU to train

ppUsageOTM. The memory required to train AppUsageOTM is highly based on the data size, with an insignificant amount
f memory (790.4 MB) required to load the proposed model.

.2.3. Baseline approaches
The following algorithms were selected as baselines. Each algorithm is implemented using features for App Usage

rediction On the Move and App Usage Prediction to test the necessity of feature selection. We further investigated the
ethods of LR+SVM (Logistic Regression and SVM) and SVM to examine the performance of our proposed framework.

• MRU: We use a fixed length of sequences of apps where the length is window size (n) [16]. In this case, the output
for MRU is the last app in the app sequence.

• MFU: Similar to MRU, we used a sequence of n apps as input for MFU [16]. However, in this study, if every app in
the sequence has the same frequency (e.g. frequency is 1), the output of MFU is the same as MRU.

• App-NB (App Usage Prediction): We implement App-NB by Shin et al. using n apps in sequence, app_location,
start_hour_app (see Table 3) as input [16].

• App-NB (App Usage Prediction On the Move): We implement App-NB using the features for AppUsageOTM as input
to examine its performance on the data [16].

• Markov Chain (App Usage Prediction): We constructed Markov Chain for app usage prediction using joint
probability of the sequence of n apps, app-related features, and the target app [44] to examine its performance
on the collected data.

• Markov Chain (App Usage Prediction On the Move): We constructed Markov Chain for app usage prediction using
joint probability of the sequence of n apps, the selected features for AppUsageOTM, and the target app based on
Markov chain rule [44] to examine its performance on the collected data.

• LSTM (App Usage Prediction): According to the structure of LSTM [45], we aim to use n apps in sequence (app_name,
foregrnd_time for each app), day_of _week_app, start_hour_app, app_location, and user id (unique id assigned to each
user) to examine its performance using the collected data.

• LSTM (App Usage Prediction On the Move): According to the structure of LSTM [45], we aim to use n apps in
sequence (app_name, foregrnd_time for each app), the selected features for AppUsageOTM, and user id (unique id
assigned to each user) to examine its performance using the collected data.

• AppUsage2Vec (App Usage Prediction): According to the study by Zhao et al., we constructed AppUsage2Vec using
n apps in sequence (app_name, foregrnd_time for each app), day_of _week, start_hour_app (see Table 3), and user id
(unique id assigned to each user) to examine its performance using the collected data [4].
12
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Fig. 10. Training time illustration based on window size and number of records.

• AppUsage2Vec (App Usage Prediction On the Move): According to the study by Zhao et al., the model consider
temporal features as contextual information [4]. Thus, to maintain the structure of AppUsage2Vec, we consider
the temporal features designed for App Usage Prediction On the Move. We use n app in sequence (app_name,
foregrnd_time), day_of _week, start_hour (see Table 5), and user id (unique id assigned to each user) to examine
its performance using the collected data.

.2.4. Performance and results
We first investigated the performance of AppUsageOTM based on different window size n shown in Fig. 10(c). Window

ize n refers to the number of apps in a sequence used as input for predicting the next app. Hence, when we use a certain
indow size n for experiments, we use in total n + 1 apps (the n apps in sequence for training and the last 1 app be
he prediction result). We further investigated with execution time of AppUsageOTM with varying window sizes, and the
esult is shown in Fig. 10. Training time refers to the data training time using the first 80% of data in the temporal domain
ith certain window size.
As shown in Fig. 10(c), we tested Accuracy@k where k ranged from 1 to 10, by varying window size from 1 to 5

ccording to the number of apps used in different trajectories. It can be seen that accuracy increases when window
ize n increases from 1 to 2. It shows that adding more recently used apps leads to more information for app usage
atterns which helped for improving the accuracy of app usage prediction. However, when window size increasing to 5,
he accuracy slightly decreases. It can be because of the limited amount of training data. Another reason can be that when
he window size n increases, it increases the difficulty in fitting the model due to increased computation complexity.

The model achieves the highest accuracy when n is 2 for all different Accuracy@k, and there is a significant increase
rom Accuracy@1 to Accuracy@5. Apart from that, accuracy starts to decrease when n = 3, which shows longer sequences
of apps does not always lead to higher accuracy, which further examined the conclusion from a study by Parate et al. [46].

Fig. 10 shows the training time of AppUsageOTM with different n. According to the figure, the execution time for
k = 1, 5, 10 is almost the same for different value of n. Through the figure, we can see that training time is not necessarily
increases based on the increase of window size n. However, it is correlated to the number of records as shown in Fig. 10(a).
In general, when the number of records decreases, the training time decreases accordingly.

Based on Fig. 10(c) and 10(b), when n is 2, the accuracy for our model is the highest while the training time is
acceptable. Hence, about 1,250 sampled app sequences were used for the following experiments; each of the sequences
has 3 apps, and we use the first 2 apps in sequence to predict the last one.

5.2.5. Comparison with baselines
Fig. 11 shows AppUsageOTM compare with the baselines. We aim to have the highest accuracy with the smallest

number of predictions.
Fig. 11 shows that for any existing models, our selected features outperform app-related features, which means

the collected data for app usage prediction on the move has unique characteristics compared to app usage prediction.
Additionally, AppUsageOTM outperforms other models for any number of predictions. As shown in the figure, when k
increases, the accuracy improvement becomes less significant. When k = 8, the accuracy of app usage prediction reaches
bove 0.7, and there are minor improvements when k is larger than 8, which shows the performance is stable.
Among all the baselines, AppUsage2Vec (App Usage Prediction On the Move) achieves the highest accuracy. For further

nalysis, we have done Paired T-Test to compare AppUsageOTM and AppUsage2Vec over the range of k. The p-value is
about 2.441e−11, the effect size is about 1.61, the t-statistics is about 3.60, and the degree of freedom is about 18, which
shows a significant improvement using our proposed framework in comparison to AppUsage2Vec. The lower accuracy for
AppUsage2Vec can be resulted by 1) AppUsage2Vec is constructed using Deep Neural Network (DNN), and it requires a
13
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Fig. 11. The performance of the proposed method (AppUsageOTM) in comparison to the baselines.

Fig. 12. Training time (s) for AppUsageOTM and AppUsage2Vec based on various top k predictions.

omparably larger amount of data for training, and (2) the features for App Usage Prediction On the Move is consist of app
eatures and trajectory features, but we can only use parts of the features in AppUsage2Vec due to its model structures.
ccording to [4], AppUsage2Vec exploits temporal features as contextual information. Hence, by substituting the features
rom App Usage On the Move from App Usage Prediction, we still cannot exploit essential features such as purpose (see
able 3) as it is a spatial feature.
In reality, an app usage prediction model must be re-trained regularly because users may change their app usage

atterns and more incoming users who are willing to try the proposed model. Thus, we further test the training time
ompare AppUsageOTM to AppUsage2Vec shown in Fig. 12 using the first 80% of the data for training based on a temporal
plit with window size n = 2. The average training time is calculated using the total training time divided by the total
ime for training. According to Fig. 12, training time is almost the same for different values of k, which coincident with
ig. 10(b). It also shows that the training time for AppUsageOTM is about half of the training time for AppUsage2Vec.

.3. Contributions of the different features

To evaluate the contribution of different parts in AppUsageOTM, we accomplished a large set of experiments based on
ubsets of the selected features shown in Table 5. Therefore, we first use subsets of the selected features to test Destination
menity Prediction.
Destination Amenity Prediction: we conduct experiments for Destination Amenity Prediction use all the features

isted in Table 5 to compare with the results of using subsets of the features. LR (start_hour): according to Table 4,
ay_of _week is the hyper-parameter for HLR (we use HLR for Destination Amenity Prediction as shown in Fig. 8). Thus,
y only use start_hour for Destination Amenity Prediction, we can only use LR (Logistic Regression) instead of HLR. LR
depart_mode): according to LR (start_hour), we use LR to test the feature. LR (start_hour + depart_mode): according to
R (start_hour), we use LR (start_hour + depart_mode) to test the effect of the two features, and it tests the effect of
LR structure for Destination Amenity Prediction. HLR (day_of _week + start_hour): we eliminate depart_mode to test its
mportance. HLR (day_of _week + depart_mode): we eliminate start_hour to test its importance.

Table 6 lists sample results of training Destination Amenity Prediction in AppUsageOTM based on subsets of the
vailable features compare with using all the features. In general, the accuracy of Destination Amenity Prediction is higher
ith HLR than LR, which shows the importance of building the model according to the hierarchical structure of the data.
urthermore, start_hour shows a more significant impact on Destination Amenity Prediction than depart_mode, and by
14
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Table 6
Ablation study on destination amenity prediction in AppUsageOTM.

Accuracy

Destination amenity prediction 0.8645
LR (start_hour) 0.7273
LR (depart_mode) 0.6441
LR (start_hour+depart_mode) 0.7337
HLR (day_of _week+start_hour) 0.8182
HLR (day_of _week+depart_mode) 0.7606

Table 7
Ablation study on app prediction in AppUsageOTM.

Accuracy@1

App prediction 0.4644
SVM (without filter) 0.3691
SVM (without sequence of apps) 0.3629
SVM (without duration) 0.3927
SVM (without start_hour) 0.4563
SVM (without day_of _week) 0.4116
SVM (without mode) 0.4078
SVM (without start_hour_app) 0.4644

adding depart_mode into the model, the performance shows moderate improvement. We then use subsets of the selected
features to test App Prediction.

App Prediction: we conduct experiment for App Prediction use all the features listed in Table 5 to compare with the
results of using subsets of the features. SVM (without Filter): we eliminate Filter (see Fig. 8). SVM (without sequence
of apps): we eliminate sequence of apps. SVM (without duration): we eliminate duration. SVM (without start_hour): we
eliminate start_hour . SVM (without day_of _week): we eliminate day_of _week. SVM (without mode): we eliminate mode.
SVM (without start_hour_app): we eliminate start_hour_app.

Table 7 lists sample results using Accuracy@1 for training App Prediction in AppUsageOTM based on subsets of the
available features compare with using all features. The result shows that both Filter and the sequence of apps have
the most significant impact on the result. Additionally, the accuracy does not significantly decrease when eliminating
start_hour_app.

For further analysis, the significant improvement of Destination Amenity Prediction compare to LR (start_hour +
epart_mode) and App Prediction compare to SVM (without Filter) shows: (1) it is necessary to build a framework
ccording to the hierarchical structure of the data, and (2) eliminating unnecessary app usage pattern using Filter leads
o more consistent patterns that help to improve app prediction accuracy.

.4. Discussion

.4.1. Performance study based on different transportation modes
In this section, we investigated the prediction performance for different transportation modes. Specifically, for every

ransportation mode shows in Fig. 5, we extracted data accordingly. However, we cannot train the framework for cycling
ode due to the data limitation and the pattern variation (10 records from 4 users).
In Fig. 13, walking remains stable based on Accuracy@k, where ∀k ∈ [1, 10], k ∈ N . From the observation, the walking

rail usually remains the same every day for every user. Thus, the walking patterns are also similar. As shown in Fig. 5(a),
oth walking and tram tend to be done as short trips. Trams are often performed as inner-city trips for wider purposes,
part from the regular morning or afternoon commute. With a wider variety of trip purposes on short trips, a broader
ange of apps could be used, which increases the difficulties of accurately predicting the next app.

.4.2. Performance based on app-categories prediction
We further investigated the performance of our model on the granular level. Instead of a prediction of the next app,

e focused on predicting what category the next app falls in according to Fig. 4. We compared category prediction and
pp prediction using our framework shown in Fig. 14. The prediction results on a granular level are better, as shown
n Fig. 14. It shows that our predicted apps are in the same categories as the actual apps used. Specifically, there is a
ubstantial improvement for our top-1 result for category prediction, around 10% higher than app prediction (57% for
ategory prediction and 46% for app prediction). The apps that fall in the same category have similar functionality, which
eans if we use our predicted app as a recommendation for the user, the user may use our prediction instead of what
e/she tends to use (such as both our predicted app and the actual app fall in Game category). It means our proposed
ramework is applicable in the real world. For example, Fig. 15 shows that Messaging is the next app after the first four
pps, but our prediction is WhatsApp. The reason for our prediction is that WhatsApp was used previously in the sequence,
hich gives us more weight to predict. As WhatsApp and Messaging are in the same category, it shows the intention to

se communication applications.
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Fig. 13. Accuracy@k across different transportation modes.

Fig. 14. Accuracy@k comparison between category and app prediction.

Fig. 15. A case study where the first four apps are used as features and the last app suppose to be our app prediction. The categorisation of the
five apps are illustrated at the lower part of the figure.

5.4.3. Usability analysis
We conduct a user study with a different group of participants from the users we collect the dataset to validate the

motivation and usability of AppUsageOTM. The number of participants for the user study is 24, and all participants are
provided with the link to a Qualtrics survey they filled anonymously. The form contains several questions with multiple
choices on a Likert scale [47]. The feedback from the participants is presented in Fig. 16. When asked the participants
to scale on ‘‘you have experienced difficulties finding the desired mobile application in daily life’’, 79.1% participants
select Strongly Agree, Agree or Neutral. For further details, 79.17% participants state they have more than or equal to
3 home screens on their phones. In response to ‘‘you have a regular app usage pattern while commuting’’, 91.6% either
Strongly Agree or Agree, and 83.33% participants state they have more than 1 specific mobile app that they will use during
16
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Fig. 16. User study responses for motivation and usability of AppUsageOTM.

commuting regularly. 79.17% participants find AppUsageOTM ‘‘Useful’’ and will be able to help them in their daily life with
mobile applications management. To scale the statement ‘‘AppUsageOTM is convenient for you to use in daily life while
commuting’’, 87.5% either Strongly Agree or Agree. As for ‘‘It is appropriate that AppUsageOTM output a list of mobile
applications that you may use next as recommendations’’, 79.17% participants strongly agree or agree with the statement.

The usability analysis demonstrated that 79.17% of participants strongly agree or agree that the output of the proposed
model should be displayed as a list of recommended mobile applications. Furthermore, displaying the output of the
proposed model as a list of recommended mobile applications prevents users from encountering more difficulties when
the accuracy of the outputs cannot reach 100%. In the real world, as requiring the users to install an additional mobile
application potentially leads to more effort on mobile management, in the future, AppUsageOTM is better to be included
as part of mobile operating systems similar to Siri Suggestion on iOS and App Suggestions on Android.

Given the state-of-the-art situation, app usage prediction is still a challenging question as all existing studies cannot
guarantee high accuracy on a real-world dataset due to the complexity of real-world data and hidden noises (e.g., users
accidentally opened wrong mobile applications but stayed there for more than 5 s). Though our proposed method
outperforms state-of-the-art methods (accuracy achieves above 70% when k is 10), the research question requires to
be further studied. Therefore, the proposed method in this study can encourage more research.

6. Conclusion

We propose AppUsageOTM, a framework that consists of a statistical model: Hierarchical Logistic Regression(HLR), and
Support Vector Machine (SVM), to predict the next app while commuting. We introduced a filtering system using HLR
to eliminate unnecessary app usage patterns to improve app usage prediction accuracy. Additionally, by using HLR, we
made our framework fit for hierarchically structured data.

Extensive experiments are conducted on a real-world dataset that consists of weekday-travels and app usage be-
haviours from 50 users over 4 weeks. We found that users spend much time on mobile devices while commuting,
even by riding a bike, making our study necessary to improve productivity and help with attention management during
their travelling time. On weekdays, users tend to go to the same place regularly, and app usage patterns are consistent
throughout the week if the purposes of the trajectories are the same. We identified that several contexts such as start
time and start location of trajectories and the most recently used apps have a significant influence on subsequent app
usage. Finally, we conduct a baseline comparison to show that our framework outperforms the baselines.

AppUsageOTM can predict the next app and capture the app usage patterns based on different travel modes. With
further evaluation, our proposed framework can predict the categories of the next app with higher accuracy in comparison
to app usage prediction. Additionally, as apps that fall in the same category share similar functionalities, it shows that
our proposed framework can accurately predict app usage intention.

For future works, the accuracy of app usage prediction while commuting needs to be further improved, such as by
exploring more contextual information or utilising another prediction model to replace the Support Vector Machine. With
further accuracy improvement, the model can then be applied in the real world, which requires a usability study to be
conducted to prove the usability. Furthermore, app prediction in other scenarios needs to be explored.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
17



Y. Kang, M.S. Rahaman, Y. Ren et al. Pervasive and Mobile Computing 87 (2022) 101704

A

p

R

Data availability

The data that has been used is confidential.

cknowledgements

We want to acknowledge the support of Microsoft Research through Microsoft-RMIT Cortana Intelligence Institute
roject and Australian Research Council (ARC) Discovery Project DP19010148.

eferences

[1] M. Satyanarayanan, Swiss army knife or wallet? IEEE Pervasive Comput. 4 (2) (2005) 2–3.
[2] Z.-X. Liao, S.-C. Li, W.-C. Peng, S.Y. Philip, T.-C. Liu, On the feature discovery for app usage prediction in smartphones, in: 2013 IEEE 13th

International Conference on Data Mining, IEEE, 2013, pp. 1127–1132.
[3] Z. Shen, K. Yang, W. Du, X. Zhao, J. Zou, DeepAPP: a deep reinforcement learning framework for mobile application usage prediction, in:

Proceedings of the 17th Conference on Embedded Networked Sensor Systems, 2019, pp. 153–165.
[4] S. Zhao, Z. Luo, Z. Jiang, H. Wang, F. Xu, S. Li, J. Yin, G. Pan, Appusage2vec: Modeling smartphone app usage for prediction, in: 2019 IEEE 35th

International Conference on Data Engineering, ICDE, IEEE, 2019, pp. 1322–1333.
[5] F. Colace, M. De Santo, M. Lombardi, F. Pascale, D. Santaniello, A. Tucker, A multilevel graph approach for predicting bicycle usage in London

area, in: Fourth International Congress on Information and Communication Technology, Springer, 2020, pp. 353–362.
[6] S. Amini, A. Brush, J. Krumm, J. Teevan, A. Karlson, Trajectory-aware mobile search, in: Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 2012, pp. 2561–2564.
[7] K. Huang, X. Ma, C. Zhang, G. Chen, Predicting mobile application usage using contextual information, in: UbiComp’12 - Proceedings of the

2012 ACM Conference on Ubiquitous Computing, 2012, pp. 1059–1065.
[8] N. Natarajan, D. Shin, I.S. Dhillon, Which app will you use next? Collaborative filtering with interactional context, in: RecSys 2013 - Proceedings

of the 7th ACM Conference on Recommender Systems, 2013, pp. 201–208.
[9] A. Parate, M. Böhmer, D. Chu, D. Ganesan, B.M. Marlin, Practical prediction and prefetch for faster access to applications on mobile phones, in:

UbiComp 2013 - Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2013, pp. 275–284.
[10] W. Shao, F.D. Salim, A. Song, A. Bouguettaya, Clustering big spatiotemporal-interval data, IEEE Trans. Big Data 2 (3) (2016) 190–203.
[11] W. Shao, A. Prabowo, S. Zhao, S. Tan, P. Koniusz, J. Chan, X. Hei, B. Feest, F.D. Salim, Flight delay prediction using airport situational awareness

map, in: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2019, pp. 432–435.
[12] H. Verkasalo, Contextual patterns in mobile service usage, Pers. Ubiquitous Comput. 13 (5) (2009) 331–342.
[13] D. Yu, Y. Li, F. Xu, P. Zhang, V. Kostakos, Smartphone app usage prediction using points of interest, in: Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, Vol. 1, (4) ACM, New York, NY, USA, 2018, pp. 1–21.
[14] H. Cao, M. Lin, Mining smartphone data for app usage prediction and recommendations: A survey, Pervasive Mob. Comput. 37 (2017) 1–22.
[15] M. Matsumoto, R. Kiyohara, H. Fukui, M. Numao, S. Kurihara, Proposition of the context-aware interface for cellular phone operations, in:

Proceedings of INSS 2008 - 5th International Conference on Networked Sensing Systems, (Kdd 96) IEEE, 2008, p. 233.
[16] C. Shin, J.H. Hong, A.K. Dey, Understanding and prediction of mobile application usage for smart phones, in: UbiComp’12 - Proceedings of the

2012 ACM Conference on Ubiquitous Computing, 2012, pp. 173–182.
[17] J.R. Trippas, D. Spina, F. Scholer, A.H. Awadallah, P. Bailey, P.N. Bennett, R.W. White, J. Liono, Y. Ren, F.D. Salim, et al., Learning about work

tasks to inform intelligent assistant design, in: Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, 2019,
pp. 5–14.

[18] J. Liono, Z.S. Abdallah, A.K. Qin, F.D. Salim, Inferring transportation mode and human activity from mobile sensing in daily life, in: Proceedings
of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2018, pp. 342–351.

[19] J. Osborne, J.W. Osborne, A brief introduction to hierarchical linear modeling, Best Pract. Quant. Methods 8 (1) (2011) 444–450.
[20] A. Abdiansah, R. Wardoyo, Time complexity analysis of support vector machines (SVM) in LibSVM, Int. J. Comput. Appl. 128 (3) (2015) 28–34.
[21] H. Alm, L. Nilsson, The effects of a mobile telephone task on driver behaviour in a car following situation, Accid. Anal. Prev. 27 (5) (1995)

707–715.
[22] V. Briem, L.R. Hedman, Behavioural effects of mobile telephone use during simulated driving, Ergonomics 38 (12) (1995) 2536–2562.
[23] F. Amato, F. Moscato, V. Moscato, F. Pascale, A. Picariello, An agent-based approach for recommending cultural tours, Pattern Recognit. Lett.

131 (2020) 341–347.
[24] N. Martelaro, J. Teevan, S.T. Iqbal, An exploration of speech-based productivity support in the car, in: Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems, 2019, pp. 1–12.
[25] S.T. Iqbal, Y.-C. Ju, E. Horvitz, Cars, calls, and cognition: Investigating driving and divided attention, in: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, 2010, pp. 1281–1290.
[26] F. Colace, M. De Santo, M. Lombardi, F. Mercorio, M. Mezzanzanica, F. Pascale, Towards labour market intelligence through topic modelling, in:

Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019.
[27] G. Annunziata, F. Colace, M. De Santo, S. Lemma, M. Lombardi, ApPoggiomarino: A context aware app for e-citizenship, in: ICEIS, (2) 2016,

pp. 273–281.
[28] F. Clarizia, S. Lemma, M. Lombardi, F. Pascale, A mobile context-aware information system to support tourism events, in: International Conference

on Green, Pervasive, and Cloud Computing, Springer, 2017, pp. 553–566.
[29] N. Eagle, A. Pentland, Reality mining: Sensing complex social systems, Pers. Ubiquitous Comput. 10 (4) (2006) 255–268.
[30] T. Yan, D. Chu, D. Ganesan, A. Kansal, J. Liu, Fast app launching for mobile devices using predictive user context, in: Proceedings of the 10th

International Conference on Mobile Systems, Applications, and Services, 2012, pp. 113–126.
[31] V. Kostakos, D. Ferreira, J. Goncalves, S. Hosio, Modelling smartphone usage: a markov state transition model, in: Proceedings of the 2016 ACM

International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 486–497.
[32] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, G. Bauer, Falling asleep with angry birds, facebook and kindle: A large scale study on mobile

application usage, in: Mobile HCI 2011 - 13th International Conference on Human-Computer Interaction with Mobile Devices and Services,
2011, pp. 47–56.

[33] J.M. Hektner, J.A. Schmidt, M. Csikszentmihalyi, Experience Sampling Method: Measuring the Quality of Everyday Life, Sage, 2007.
[34] D. Kahneman, A.B. Krueger, D.A. Schkade, N. Schwarz, A.A. Stone, A survey method for characterizing daily life experience: The day reconstruction

method, Science 306 (5702) (2004) 1776–1780.
18

http://refhub.elsevier.com/S1574-1192(22)00117-1/sb1
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb2
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb2
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb2
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb3
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb3
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb3
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb4
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb4
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb4
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb5
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb5
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb5
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb6
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb6
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb6
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb7
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb8
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb9
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb10
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb11
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb11
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb11
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb12
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb13
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb13
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb13
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb14
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb15
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb15
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb15
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb16
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb16
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb16
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb17
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb17
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb17
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb17
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb17
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb18
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb18
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb18
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb19
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb20
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb21
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb21
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb21
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb22
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb23
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb23
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb23
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb24
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb24
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb24
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb25
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb26
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb27
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb27
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb27
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb28
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb28
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb28
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb29
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb30
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb30
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb30
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb31
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb31
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb31
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb32
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb32
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb32
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb32
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb32
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb33
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb34
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb34
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb34


Y. Kang, M.S. Rahaman, Y. Ren et al. Pervasive and Mobile Computing 87 (2022) 101704
[35] J. Liono, J.R. Trippas, D. Spina, M.S. Rahaman, Y. Ren, F.D. Salim, M. Sanderson, F. Scholer, R.W. White, Building a benchmark for task progress
in digital assistants, in: Proceedings of WSDM, 2019.

[36] F. Colace, M. De Santo, M. Lombardi, R. Mosca, D. Santaniello, A multilayer approach for recommending contextual learning paths, J. Internet
Serv. Inf. Secur. 10 (2) (2020) 91–102.

[37] E. Horvitz, J. Krumm, Some help on the way: Opportunistic routing under uncertainty, in: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, 2012, pp. 371–380.

[38] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1) (1951) 79–86.
[39] Z. Xing, J. Pei, E. Keogh, A brief survey on sequence classification, ACM SIGKDD Explor. Newsl. 12 (1) (2010) 40–48.
[40] J. Wang, P. Neskovic, L.N. Cooper, Training data selection for support vector machines, in: International Conference on Natural Computation,

Springer, 2005, pp. 554–564.
[41] M. Antunes, V. Andreozzi, M. Amaral Turkman, A Note on the Use of Bayesian Hierarchical Models for Supervised Classification, CEAUL Research

Report 13/2006, 2006.
[42] G.Y. Wong, W.M. Mason, The hierarchical logistic regression model for multilevel analysis, J. Amer. Statist. Assoc. 80 (391) (1985) 513–524.
[43] X. Chen, Y. Wang, J. He, S. Pan, Y. Li, P. Zhang, Cap: Context-aware app usage prediction with heterogeneous graph embedding, in: Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 3, (1) ACM, New York, NY, USA, 2019, pp. 1–25.
[44] T.M.T. Do, D. Gatica-Perez, Where and what: Using smartphones to predict next locations and applications in daily life, Pervasive Mob. Comput.

12 (2014) 79–91.
[45] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780.
[46] A. Parate, M. Böhmer, D. Chu, D. Ganesan, B.M. Marlin, Practical prediction and prefetch for faster access to applications on mobile phones, in:

Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2013, pp. 275–284.
[47] A. Joshi, S. Kale, S. Chandel, D.K. Pal, Likert scale: Explored and explained, Br. J. Appl. Sci. Technol. 7 (4) (2015) 396.
19

http://refhub.elsevier.com/S1574-1192(22)00117-1/sb35
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb35
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb35
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb36
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb36
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb36
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb37
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb37
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb37
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb38
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb39
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb40
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb40
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb40
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb41
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb41
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb41
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb42
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb43
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb43
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb43
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb44
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb44
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb44
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb45
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb46
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb46
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb46
http://refhub.elsevier.com/S1574-1192(22)00117-1/sb47

	App usage on-the-move: Context- and commute-aware next app prediction
	Introduction
	Related Work
	Productivity and Attention Management
	Contextual Information for App Usage Prediction
	App Usage Prediction

	Preliminaries and Problem Definition
	Problem Formulation
	Dataset
	Pre-processing
	Travelling Purpose Construction
	App Location Extraction
	App Categorisation

	Preliminary Analysis

	Methodology
	Contextual Information Analysis
	AppUsageOTM: Framework Construction
	Step 1: Hierarchical Logistic Regression
	HLM: Background
	HLR for destination amenity prediction

	Step 2: SVM for app usage prediction

	Experiments
	Contextual Information for App Usage Prediction On the Move
	AppUsageOTM Prediction Performance and Evaluation
	Evaluation Metrics
	Experiment Setup
	Baseline Approaches
	Performance and Results
	Comparison with baselines

	Contributions of the different features
	Discussion
	Performance study based on different transportation modes
	Performance based on app-categories prediction
	Usability Analysis


	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


