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Abstract
Tasks are a fundamental unit of work in the daily lives of people, who are increasingly using digital means to keep track of,
organize, triage, and act on them. These digital tools – such as task management applications – provide a unique opportunity
to study and understand tasks and their connection to the real world, and through intelligent assistance, help people be more
productive. By logging signals such as text, timestamp information, and social connectivity graphs, an increasingly rich
and detailed picture of how tasks are created and organized, what makes them important, and who acts on them, can be
progressively developed. Yet the context around actual task completion remains fuzzy, due to the basic disconnect between
actions taken in the real world and telemetry recorded in the digital world. Thus, in this paper we compile and release a novel,
real-life, large-scale dataset called MS-LaTTE that captures two core aspects of the context surrounding task completion:
location and time. We describe our annotation framework and conduct a number of analyses on the data that were collected,
demonstrating that it captures intuitive contextual properties for common tasks. Finally, we test the dataset on the two problems
of predicting spatial and temporal task co-occurrence, concluding that predictors for co-location and co-time are both learnable,
with a BERT fine-tuned model outperforming several other baselines. The MS-LaTTE dataset provides an opportunity to
tackle many new modeling challenges in contextual task understanding and we hope that its release will spur future research in
task intelligence more broadly.
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1. Introduction
Tasks are the primary unit of personal and professional
productivity. People capture, organize, track and com-
plete tasks as a way to measure and make progress to-
wards their goals. Task management strategies range
from scribbled sticky notes on refrigerators to com-
plex group collaboration platforms such as Microsoft
Planner, and everything in between. Digital tools for
task management support are prevalent in a range of
applications including electronic mail (Bellotti et al.,
2003), to-do applications (Bellotti et al., 2004) and dig-
ital assistants (Graus et al., 2016), and for a range of
user scenarios such as contextual reminders (Kamar
and Horvitz, 2011), task duration estimation (White
and Hassan Awadallah, 2019), and complex task de-
composition (Zhang et al., 2021b). In short, digital
task management provides an important opportunity to
make users more productive, and help them balance
their priorities in a connected world where the bound-
aries between life and work are often blurred.
Many applications record and use several signals such
as the text of a task, the time it was created, its impor-
tance, due-date, and who it is assigned to, in order to
build intelligent solutions for the user. However, they
all notably assume tasks are homogeneous from the
perspective of the completion context. This assump-
tion is flawed because tasks are, in fact, deeply context
dependent; completing or making progress on tasks de-
pends on extraneous factors, such as time in schedule,
proximity to home or businesses, and resource avail-
ability. For example, a user is likely to want a reminder
to buy eggs when they are close to a grocery store, as

opposed to when they are at an airport.
Two types of context that are especially salient are lo-
cation and time. These signals are readily accessible
to systems and have been studied in previous work
on contextual understanding (Graus et al., 2016; Bel-
lotti et al., 2004; Benetka et al., 2019), recommenda-
tion (Zhuang et al., 2011; Yao et al., 2015; Zeng et al.,
2016) and reminders (Kamar and Horvitz, 2011). How-
ever, there continues to remain a disconnect between
logged contextual signals and actions taken in the real
world, since users often record completion of tasks at a
later time and a different location (Zhang et al., 2021a).
Moreover, most prior work leverages proprietary data
and does not make these available to other researchers
for further study. The lack of a sizeable publicly avail-
able task dataset, and especially one that is tagged with
location and time meta-data, has limited research on
task intelligence in general, and particularly on the im-
portant area of contextual task modeling.
Thus, in this paper we are releasing a novel resource
called the Microsoft Locations and Times of Task Ex-
ecution (MS-LaTTE) dataset. This dataset of 10,101
tasks sourced from real-world data is the largest pub-
licly available repository of to-do tasks of any kind, and
an order of magnitude larger than previously collected
datasets (Landes and Eugenio, 2018). Additionally, it
is the only dataset that also contains contextual location
and time labels for where and when the tasks are likely
to be completed. The dataset is available here under
a permissive Community Data Licence Agreement that
does not impose any restrictions on its use, modifica-
tion or sharing.

https://tasks.office.com
https://tasks.office.com
https://github.com/microsoft/MS-LaTTE


In addition to collecting and releasing the data, we also
explore MS-LaTTE in this paper, to understand its util-
ity for contextual task modeling. Specifically, we an-
alyze the annotations to see if they capture interesting
properties or regularities that might be useful for down-
stream modeling. Additionally, we motivate and estab-
lish two new benchmark evaluation tasks derived from
the MS-LaTTE dataset – co-location prediction and
co-time prediction – and evaluate several popular lan-
guage modeling approaches against these benchmarks.
We find that learning is possible on both benchmarks,
and a fine-tuned BERT approach significantly outper-
forms other baselines. However, both co-location pre-
diction and co-time prediction are challenging prob-
lems, and allow for more complex modeling efforts in
future work to outperform the systems that we evaluate.
Beyond its applications to the general area of con-
textual task modeling, the release of this dataset has
the potential to benefit modeling efforts in concrete
application scenarios in task intelligence, including
spatio-temporally relevant reminders and notifications,
context-aware calendaring for individuals as well as
groups, and focus-time scheduling for work and life.
Additionally, we believe that this task-oriented dataset
could be interesting to the broader NLP community
more generally, as a supplemental domain centered on
short texts that often lack explicit context. Other exam-
ples of this include social media posts (e.g. Twitter),
utterances with a language-enabled virtual assistance,
and queries issued to a search engine – all of which
have been central to a broad range of research in NLP.
In summary, we make the following contributions:

1. Highlight the opportunities and challenges in con-
textual task modeling.

2. Compile and publicly release a novel dataset with
over 10k tasks (an order of magnitude larger than
previously available datasets) labeled with loca-
tion and time meta-data (§3).

3. Perform a detailed analysis of the location and
time annotations, demonstrating that they capture
intuitively reasonable task regularities (§4).

4. Conduct experiments to show the viability of the
data for machine learning applications, setting up
the novel benchmark tasks of co-location predic-
tion and co-time prediction in the process (§5).

5. Present future directions, including further appli-
cations and additional contexts (§6).

2. Related Work
Previous related research includes work on task man-
agement, context-aware computing, and tasks data.

2.1. Task Management
Task management systems that assist people in suc-
cessfully managing, prioritizing, structuring, organiz-
ing and completing tasks have been the subject of
a large body of research. There are many applica-
tions and virtual assistants on the market today, includ-

ing Amazon Alexa, Google Assistant, Trello, and Mi-
crosoft To-Do, to name only a few. Since task man-
agement does not take place in isolation, but rather in
the rich context of daily life, research on the topic is
situated within the broader area of context-aware com-
puting. Location and time are two important contextual
factors for both personal task assistance (Benetka et
al., 2019; Wang and Pérez-Quiñones, 2014) and work-
related task management (Anhalt et al., 2001; Rhodes,
1997). Even before the existence of smaller comput-
ing devices such as smartphones that allow location-
aware computing, actions as simple as setting an alarm
or time-based reminder demonstrate a strong need for
temporal context in task management.
Bellotti et al. (2004) point out that co-location of tasks
minimizes the need for multiple excursions for a user
and that certain kinds of tasks show effects of period-
icity, in terms of certain days, weeks and time of year.
Graus et al. (2016) study reminder data from the Cor-
tana personal assistant. They establish that different
task types cluster around different user-selected notifi-
cation times. Communication task reminders, for ex-
ample, tend to have a notification time that falls into
typical work hours (when others are likely to be avail-
able), chore notifications are more commonly set to
early morning hours and tasks that involve moving to
a specific location tend to have reminders set for lunch
time at work. Interestingly, in their data set, knowing
the time at which a reminder was created is a stronger
predictor of notification time than the task title itself.
Ludford Finnerty et al. (2006) show that both loca-
tion and movement patterns are important in reminder
applications. By combining location and time informa-
tion, context-aware task management systems can bet-
ter assist users by recommending the right tasks at the
right times (Kessell and Chan, 2006; Rhodes, 1997).

2.2. Context-Aware Computing
Beyond task management, in context-aware computing
and recommendation systems, time and location sig-
nals are also fundamental. Context-aware recommen-
dation of points of interest (POI) is typically studied
based on check-in data from social network applica-
tions such as Foursquare and uses location as well as
time (Yao et al., 2015; Zhao et al., 2019). POI recom-
mendation also has a strong social component, mak-
ing it amenable to the use of collaborative filtering sig-
nals in addition to spatio-temporal context (Yuan et al.,
2013). Other applications include generating online
recommendations for advertising and news, based on
temporal patterns (Zeng et al., 2016), and recommend-
ing entities based on historic user behavior and spatio-
temporal sensor context (Zhuang et al., 2011).
Other broad research areas where time and location (as
well as social context and travel trajectory) provide im-
portant information are mobile search (Teevan et al.,
2011; Amini et al., 2012), opportunistic routing (ef-
ficient diversions to vehicular driving paths) (Horvitz



and Krumm, 2012), and in information retrieval in gen-
eral (Bennett et al., 2011; Radinsky et al., 2013).

2.3. Tasks Data
Despite the extensive research in task management and
assistance, there is very little publicly available data.
Typically, the data sources used in the literature are pro-
prietary and subject to strict privacy requirements. To
the best of our knowledge, Landes and Eugenio (2018)
are the only researchers to have publicly released a
dataset of to-do tasks. It consists of approximately 600
tasks provided by users of Trello who volunteered their
data, as well as from public Trello boards. The tasks
are annotated for (a) an intelligent agent that would be
appropriate to assist with the task (the set of 15 agents
serve as a task taxonomy), and (b) the argument(s) of
the action expressed in the task.
In comparison, MS-LaTTE is the first public large-
scale dataset of real-world to-do tasks, consisting of
more than 10k instances. It is also the only dataset
to contain annotated meta-data about the locations and
times at which tasks are likely to be completed.

3. Dataset Collection
In this section, we describe the annotation setup for col-
lecting the MS-LaTTE dataset. Our goal is to source
real-world tasks and capture the locations and times at
which they are usually completed.

3.1. Sourcing Real-world To-do Data
We source tasks for our dataset from a sample of
the logs of the now-defunct Wunderlist application.
These logs were obtained after a thorough legal- and
trust-approved enterprise-grade pipeline has processed
them to anonymize and scrub all personally identifi-
able information. In addition, the pipeline performed k-
anonymization so that tasks that were created by fewer
than five users or fewer than 100 times in total are auto-
matically discarded. Finally, named entities recognized
in text are deterministically replaced with a different
name, in order to maintain privacy and anonymity. The
result is an aggregate view of the logs from English,
French, Italian, German and Spanish locales devoid
of any identifiers, private information, or infrequent
tasks that can be correlated back to an individual user.
What remains is a collection of task titles (such as “buy
milk”, “mow the lawn”, etc.) along with list titles to
which they are commonly assigned by users (such as
“groceries”, “home chores”, etc.).
It is important to note that, due to our rigorous privacy-
preserving anonymization process, list titles are only
nominally lists, since it is impossible to recover an ac-
tual user list consisting of multiple tasks. Hence the
task title is the central unit of the aggregate logs, and
the list title can be considered to be just an associated
piece of meta-data for the task.
Some basic text processing is then applied to the aggre-
gate logs. Titles that have non-ISO-8859-1 characters

are discarded; those that remain are lowercased, their
punctuation is removed, and their accented characters
are replaced with non-accent equivalents.
This aggregate, processed view provides a rich collec-
tion of real-world to-dos from which we sample items
for annotation. Unfortunately, grocery – and to a lesser
extent packing – related tasks are over-represented in
the aggregate data, accounting for over 70% of distinct
items, by our estimates. Therefore,we use heuristics
to under-sample grocery and packing tasks. This is to
avoid an annotated dataset where a large part is trivially
assigned a single location (or time) label. Our heuristic
uses a manually curated set of the most popular list ti-
tles from the data related to groceries and packing (e.g.
“grocery”, “safeway”, “packing list”), and samples task
titles from these lists at a lower rate than from other
lists. Specifically we use an 10%, 10%, 80% sampling
probability for grocery, packing, and other lists respec-
tively. Additionally, we use a filter to only sample tasks
in the aggregate data that are sourced from an English
locale.
In this manner, we sample a total of 12,000 distinct
task-list pairs that are subsequently annotated with lo-
cation and time information.

3.2. Annotation Setup
We used an internal crowd-sourcing platform to dele-
gate work to non-expert workers in India contracted to
perform annotations. These workers were payed a fixed
hourly rate of $11.98 USD rather than an amount per
HIT completed, which in our experience leads to better
annotation quality. We conducted the annotation over
the sampled collection of task-list pairs in two distinct
stages: first for location, then for time. This ordering
was motivated by a couple of initial pilot annotation
rounds where we observed that annotators agreed on lo-
cation to a much higher degree than on time; this makes
sense, since tasks are much more likely to be completed
at the same location by different users than at the same
time (due to individual schedules and preferences).
Annotations were collected between May and August
2020, during the COVID-19 pandemic, when bound-
aries between life and work were especially blurred,
and activities as well as schedules were atypical due
to lockdowns, social distancing and other precaution-
ary behavior. To account for this, annotators were in-
structed to use pre-COVID times as a contextual frame
of reference. Annotators were presented with an in-
terface like the one in Figure 1, where the unit for a
HIT was a single task-list pair. After providing their
consent to have their annotations collected for research
and machine learning, their judgments were collected
across the two different stages.
In the first stage, annotators were asked WHERE they
would normally complete a task and were provided
with four broad location categories from which to se-
lect one or more: (a) Home (b) Work (c) A public loca-
tion (d) Somewhere else (along with a free-form text

https://trello.com
https://en.wikipedia.org/wiki/Wunderlist


Figure 1: The interface used for collecting location and time for task completion. Question 2 differs between stages
of annotation; in this example an annotator is asked to provide time labels

box). Note that our guidelines broadly specify that
“Work” can cover a number of locations, depending
on a task creator’s likely primary vocation, including
“school” or “college” for students. Further, if (c) is
selected, annotators were asked to specify at least one
of several public location labels (e.g., “grocery store,”
“dentist,” “library,” etc.). Initially, a list of 36 such pub-
lic locations were manually curated from a taxonomy
of map location categories. Then, over a few initial pi-
lot rounds of annotation, inputs from option (d) were
used to refine this list into a final set of 69 public loca-
tion labels. For annotator convenience, public locations
were manually organized into seven broad categories
such as “retail”, “recreation”, “finance”, etc. – these
were only shown in the annotation interface, and do not
form part of the final dataset. Notably, annotators were
instructed to respond by providing labels for physical
locations of task completion. That is, even if a task
may be completed online, the labels reflect the physi-
cal locations at which it is normally completed. This
was done to reduce confusion and ambiguity, as well
as to make the data more directly grounded in the real
world and usable by future applications that can lever-
age geo-location information. Tasks that are completed
online are nevertheless an interesting area of research
for future work.

The full set of 12,000 HITs were labeled by three anno-
tators in the first round. Those HITs that were marked
as unfamiliar or unknown to two or more annotators
were discarded from the dataset. Furthermore, in in-
stances where all three annotators did not have a single
location label in common, the first author of this paper
acted as a fourth annotator; 365 HITs were thus sup-
plementally annotated. The few remaining instances
where there was four-way disagreement on location la-
bels were also subsequently discarded. In the end, a
total of 1,899 task-list pairs from the original set of

12,000 were removed, leaving 10,101 tasks.
In the second round, only the remaining tasks were an-
notated by asking judges WHEN they would normally
complete these tasks. They were asked to select one
or more time labels from a set of 10 time buckets, (as
shown in Figure 1) each specified by two distinct di-
mensions: (1) the time of the day, and (2) the day of
the week. Times of the day included: (a) Morning
(b) Afternoon (c) Evening (d) Night, and (e) Anytime;
while days of the week could be either: (i) Weekday,
or (ii) Weekend. Annotators were instructed to inter-
pret the different times of day according to their own
frame of reference (for example Morning might mean
5am-8am to an early riser, but 8am-11am for someone
else), thereby allowing for label alignment across an-
notators and tasks at a conceptual level rather than ac-
cording to strictly defined time buckets. Additionally,
they were told to use Anytime when they were no more
likely to complete a task at any one of the other times of
day. Annotators were not instructed to account for ex-
pected task duration, and for the purposes of this study
we did not distinguish between shorter, simpler tasks
or longer, more complex ones.
Since when someone completes a task is altogether
more subjective than where, it is expected that there
will be a great deal more variation in labels for this
second stage of annotation. To account for and cap-
ture some of this variability we asked five annotators
to label each of the 10,101 task-list pairs in the dataset,
and none of the responses were discarded. Of course,
even five annotations is insufficient to fully capture the
breadth of preferences for when tasks are completed;
however, the dataset we have collected allows for easy
extension of time information with more responses in
future work.
In summary, the final MS-LaTTE dataset – collected
over two stages of annotation – consists of 10,101 real-



world task-list pairs, each of which includes a set of
labels for location from three annotators1, and for time
from five annotators. To the best of our knowledge, it is
the largest (by an order of magnitude) dataset of to-do
like tasks sourced from real users, and the only one to
contain explicit contextual information in the form of
locations and times at which tasks are completed.

4. Analysis of the Dataset
In this section, we describe an analysis of MS-LaTTE.
We begin by measuring agreement between annotators.
We then investigate the distributions of labels across
location and time independently, and what annotator
consensus looks like for each. Finally, we examine the
relationship between location and time labels by per-
forming a cross-correlation exploration of the data.

4.1. Annotator Agreement
We use Krippendorff’s Alpha (Krippendorff, 2011) to
measure the degree of annotator agreement. Since an-
notators can provide multiple labels to instances in the
dataset, we apply the MASI (Passonneau, 2006) dis-
tance metric, a measure of agreement over set-valued
objects. This setup yields agreement values of 0.50 and
0.09 for Location and Time respectively, which in turn
are considered moderate and poor degrees of inter-rater
agreement (McHugh, 2012).
As noted in §3.2, we hypothesized that labels on Time
are subjective and therefore the low annotator agree-
ment is expected. The ability for annotators to pro-
vide multiple labels for each instance also negatively
impacts the inter-rater reliability metric. If singleton
labels – that is, those that were provided only by one
annotator for a given instance – are removed, Krippen-
dorff’s Alpha values become 0.87 and 0.26, which are
excellent and fair for location and time respectively. In
other words, while human judges may have individual
preferences for where or when they expect to complete
tasks, they are more likely to agree on a core set of
locations or times at which these tasks should be com-
pleted. This is important, not only to contextualize the
agreement numbers, but because it means that we may
be able to leverage the existence of this core agreement
set for predictive modeling.

4.2. Label Distribution
We now turn to a snapshot view of the label distribu-
tions over location and time portions of the data, in
the form of histograms. They are shown in Figures 2a
and 2b respectively. Note that log counts (base 2) are
used instead of raw counts to show differences between
labels more clearly. We plot the histogram over labels
on which there was majority agreement between anno-
tators; this is to mitigate any impact that singleton la-
bels (as noted in §4.1) may have on observable trends.

1222 instances in the dataset contain judgments from four
rather than three annotators, for the reasons noted above.

Figure 2a demonstrates that home and work are by far
the most popular locations for tasks in the dataset, and
are an order of magnitude more frequent than any of
the other labels. Grocery stores are the third most fre-
quent label, despite the heuristics that we used to under-
sample grocery related tasks (§3.1). The rest of the la-
bels, corresponding to purchase or errand related loca-
tions (and including the remaining 60 not shown on the
figure), follow a long-tailed distribution. These general
trends align with our observations about the larger ag-
gregate Wunderlist logs, which forms the basis for the
MS-LaTTE dataset; namely that grocery, home, and
work-related tasks formed the overwhelming majority
of tasks that users tracked in Wunderlist (and perhaps
also in task management applications in general).
Meanwhile, Figure 2b also has some interesting trends
over time label distribution. Weekday evenings appear
to be the most active time for completing tasks, per-
haps due to the likelihood of users possibly being at
home, work, or running errands (like at a grocery store),
where many tasks are frequently completed. The pop-
ularity of home or work related tasks is also potentially
a contributing factor to why mornings and afternoons
are additional common times for completing tasks. A
more in-depth analysis on cross-correlations between
location and time labels is presented in §4.4.
The difference between weekdays (WD) and weekends
(WE) shows some interesting properties too. While
people are generally less active completing tasks on
weekends (sometimes starkly, such as in the evenings),
they are actually slightly more active on weekend
mornings – perhaps due to home chores or other er-
rands that are set aside for non-working days. Addi-
tionally, tasks that are categorized as being done any-
time (often very short, simple tasks that require little
planning, as we show in §4.3) are more likely to be
completed on weekends than on weekdays. This is per-
haps due to weekends providing more leisure time for
unplanned tasks.

4.3. Label Consensus
Our computation of annotator agreement by discarding
singleton labels (§4.1), seemed to indicate that anno-
tators tend to agree on core sets of labels for specific
tasks, especially in the case of location. Thus, we now
provide examples of high-agreement labels for both lo-
cation and time, to show that the information provided
by annotators captures reasonable location and tempo-
ral expectations for task completion. Tables 1 and 2
provide some examples of tasks that were assigned the
same label by a majority of annotators; not all labels
are included in either table due to space constraints.
Table 1 demonstrates that location labels are often in-
controvertible and that annotators are able to correctly
agree on the most likely location for tasks, despite the
more than 70 possible labels to choose from. Mean-
while, Table 2 also shows that when the majority of
annotators agree on a time bucket for a task, they select



(a) A histogram (counts in log base 2) of the 10 most
popular location labels, where the majority of annotators
agreed on the location label.

(b) A histogram (counts in log base 2) of time bucket la-
bels, where the majority of annotators agreed on the time
bucket label. WD=weekday and WE=weekend.

Figure 2: Histograms of majority agreement labels over the Location and Time annotations in the dataset. The
y-axes are presented in log (base 2) of the raw counts to accentuate differences between labels.

home work office supply pharmacy electronics store clothing store hardware store
rearrange closet meeting tasks buy envelopes dr refill bring in headphone office attire get a tape measure

fix tv remote sociology paper buy sharpies zzzquil liquid dad speakers astronaut costume pressure washer part
put on license sticker finish udemy course get packing tape pick up relpax more usb cables scouts uniform make house key copy

Table 1: Examples of tasks that annotators commonly agreed should be assigned to specific location categories.

WD morning WD afternoon WD evening WD anytime WE morning WE afternoon WE evening
antibiotic morning meeting tasks bring book in call sumo antibiotic morning platinum caulk return items

live class sort out direct debits pickup drycleaner phone to mummy finish gym paint toilet target vitamins for week
get breakfast and coffee work on newsletter upload instagram email to pronob water poinsettias lunch with parents change tank filter

Table 2: Examples of tasks that annotators commonly agreed should be completed during a specific time bucket.

labels that are very reasonable. In other words, while
individuals may choose to complete some of these ex-
ample tasks at different times, due to personal prefer-
ences or schedules, when several judges agree on a time
bucket for a task, it appears to be a label that is easily
interpretable – e.g., work tasks on weekday afternoons,
or errands and hobbies in the evenings. Additionally, as
previously noted, the anytime label is often associated
with very short tasks that do not require prior planning.
While Tables 1 and 2 provide agreement on single la-
bels, a reasonable follow-up question is to ask whether
multi-label annotations also capture useful signal. We
attempt to answer this question by calculating the
point-wise mutual information (PMI) between location
and time labels independently, when these labels are
applied to the same task by annotators. Intuitively,
the PMI captures the degree to which labels are co-
assigned, thereby providing a way to assess the inter-
pretability of multi-label annotations.
Table 3 provides examples of such co-assignments.
Each column gives the top three labels (by PMI) that
co-occur with the label in the column header. Note
that items within a column are unrelated, and their only
shared connection is co-occurrence with the column
header. Only a subset of location and time labels are
provided, for brevity. As can be seen from the table, co-
assignment by annotators often makes intuitive sense.
For example, laundry can be done both at home or at

a laundromat, home & garden stores sell similar goods
to hardware stores, grocery stores and pharmacies are
co-located in the same building, and short unplanned
tasks can be done anytime on weekdays or weekends.

4.4. Location and Time Cross-Correlation
Up to this point, our analyses have considered the loca-
tion and time parts of the dataset separately, but since
each of the 10,101 tasks in the dataset are annotated
with both types of labels, we can also conduct an anal-
ysis that looks at them jointly. Specifically, we can
investigate whether location labels assigned to tasks
make intuitive sense with respect to time, and vice-
versa. Stack plots attempting to answer the question
of cross-correlation between label sets are presented in
Figures 3a and 3b.
For each pair of location category and time bucket, we
count the number of tasks that were assigned both la-
bels (each by majority agreement). Then we marginal-
ize over time and location to get the stacked bars in
Figures 3a and 3b, respectively. Note that we only use
the 10 most popular location labels in this analysis.
These plots reveal some interesting and intuitively sen-
sible findings. For example, in Figure 3a, home and
work are the only two locations where tasks are com-
pleted in every time bucket2; this seems reasonable

2It may be surprising that a number of work tasks are com-



Location Time
home home+garden store grocery store doctor’s office WD morning WE afternoon WD anytime

laundromat hardware store pharmacy hospital WD afternoon WE evening WE anytime
beauty salon sporting goods store home+garden store pharmacy WD evening WD evening WD afternoon

work grocery store home home WE morning WE morning WD morning

Table 3: Examples of location and time labels that were commonly co-assigned by annotators, as measured by
point-wise mutual information.

(a) The distribution of time bucket labels over the 10 most
popular location categories.

(b) The distribution of the 10 most popular location labels
over time buckets.

Figure 3: Stack plots showing the distribution over Location and Time label pairs.

since people spend the most time at these two loca-
tions. Another interesting observation is the relative
proportion of tasks done on weekends at different pub-
lic locations. For example, far more grocery, home &
garden or hardware tasks are completed on weekends
than bank tasks, since it is the expectation that the for-
mer are open for business while the latter are not (or
may only be open with limited hours).
Figure 3b also contains some noteworthy details. One
example is that tasks assigned anytime labels are only
done at home or at work; this makes a lot of sense, con-
sidering that they are typically short, unplanned ones
(§4.3), and that tasks completed at any other public lo-
cation typically requires some form of forethought or
planning. Another example, is the relative proportion
of work related tasks completed on different days of
the week (especially in the mornings and afternoons),
which conforms to the expectation that most people
work on weekdays, rather than on weekends.
Figures 3a and 3b present a broad picture of cross-
correlation between location and time labels, but it may
be useful to also explore a more focused view of cross-
correlation. Table 4 presents some examples of the
most highly correlated pairs of labels, as measured by
PMI. This value is computed from probabilities of in-
dependent and joint label occurrences, which are ob-
tained from counts over the location and time labels
that received majority agreement. Because PMI is sen-
sitive to very infrequent events, we discarded location
labels that have fewer than five tasks associated with

pleted on weekends, but recall this label is vocation depen-
dent, and includes locations such as college (§3.2).

Location Time
restaurant WD+WE night

dmv WD afternoon
movie theater WE evening

library WD+WE night
car wash WE morning

gym WE morning

Table 4: Examples of some location and time labels
that were highly correlated, as measured by point-wise
mutual information.

them. As can be seen from the table, these highly cor-
related label pairs make intuitive sense: for example,
the fact that restaurant and library are associated with
the night time bucket on both weekdays and weekends
(i.e., date nights or study sessions), that gym is associ-
ated with WE morning (i.e., early workout on week-
ends), or that dmv is associated with WD afternoon
(i.e., less busy times when people are often at work3)

In summary, our main takeaway from the dataset analy-
sis is the fact that while the data does contain some ex-
pected variance – in the form of individual latitude for
times at which tasks are completed – interesting and of-
ten intuitively reasonable properties of task completion
are captured by annotations with majority agreement.
This motivates the use of MS-LaTTE for the learning
effort we tackle in §5, as well as for future work that
we hope will leverage the dataset for modeling task in-
telligence.

3See: helpful hints at www.ncdot.gov

https://www.ncdot.gov/dmv/offices-services/locate-dmv-office/Pages/helpful-hints.aspx


5. Modeling Co-Location and Co-Time
Given the annotations in the dataset, there are many in-
teresting predictive problems that can be tackled such
as predicting the location or time bucket most likely to
support some task activity, or predicting when (resp.
where) a task should happen given a user’s set location
(resp. time bucket) and description, or even scheduling
a user’s day using their time commitments and likely
locations. However, in this paper we seek only to de-
scribe and validate the MS-LaTTE dataset and there-
fore tackle the two foundational modeling problems of
predicting whether two tasks are likely to be completed
together (by location or time); other modeling efforts
are left to the community and to future work.
Note that while these tasks of co-location and co-time
prediction may be simpler than some of the more am-
bitious modeling challenges described above, a model
that successfully tackles the former may indicate ap-
proaches that might succeed on the latter. More-
over, co-location prediction and co-time prediction are
meaningful modeling efforts by themselves, leading to
potential user-facing scenarios such as alerting users
working on a given task, to other tasks they can com-
plete, based on their current location or time (or both).
Formally given two tasks T1 = (t1, l1) and T2 =
(t2, l2), where t and l are task and list descriptions re-
spectively, the problems of co-location and co-time are
to find binary predictive functions f(T1, T2) → 0, 1.
We generate benchmark datasets for evaluating these
two predictive tasks from the annotated MS-LaTTE
dataset. We sample 25,000 task pairs from the cross
product of the 10,101 unique tasks in MS-LaTTE, us-
ing 20,000, 1,000, and 4,000 respectively for training,
validation, and test splits. Pairs are assigned a positive
label if they contain at least one common label that was
assigned by a majority of annotators; otherwise they
are assigned a negative label.
While pairs are unique, tasks themselves may repeat.
To ensure fair evaluation we stratify the dataset so that
tasks that appear in any split do not appear in any other
split. It may be noted that the resulting benchmark
datasets are imbalanced containing roughly 71/29 and
38/62 positive/negative splits for location and time re-
spectively. The train, validation, and test splits for co-
location and co-time benchmarks are released with the
dataset. In this paper, we report accuracy and Macro
F1 (due to the imbalance in the datasets) as evaluation
metrics for the two evaluation tasks.
We evaluate several popular language modeling ap-
proaches in this paper. They include: (a) Random – a
baseline that randomly assigns a positive or negative la-
bel to an instance, using the ratios in the training data as
bases for sampling a label. (b) Lexical – a model that
featurizes both sets of tasks and list strings and uses
uni-, bi- and tri-gram features in a logistic regression
classifier trained and tuned on the train and validation
splits respectively. (c) GloVe – a model that uses the
popular GloVe vectors (Pennington et al., 2014) as fea-

tures for lexical items in the task and list strings. An av-
erage of the GloVe vectors is passed through a logistic
classifier that is trained and tuned on the train and val-
idation splits respectively. (d) BERT – a model that is
similar to the GloVe model above, but uses pre-trained
BERT embeddings (Vaswani et al., 2017) instead. Be-
cause these representations capture full strings as op-
posed to individual tokens, the embeddings for T1 and
T2 are concatenated rather than averaged.
Finally, we compare these models, against a more so-
phisticated fine-tuned BERT model. Like the pre-
trained BERT model, this one also featurizes both task
inputs T1 and T2. But it uses a composition variant that
has been successfully applied in past work to problems
that involve dual string comparison (Mou et al., 2015),
such as textual entailment:

c = [T1; T2; T1 − T2; T1 ◦ T2] (1)

where the semi-colon represents concatenation, and the
◦ signifies the element-wise dot product. In our model
(BERT TE-FT) the representation c is then passed
through a non-linear layer, before a final linear layer
with a sigmoidal output produces a binary prediction
value. The model uses an intermediate dimension of
256 as an output to a ReLU non-linearity; it also ap-
plies a dropout factor of 0.5 to the model during train-
ing to avoid overfitting. We use binary cross-entropy
as the loss function, and we train the model using an
Adam optimizer with a fixed weight decay (Loshchilov
and Hutter, 2017), and initial hyperparameters of lr =
1e−5, eps = 1e−8.
We note that none of the models above are especially
sophisticated or complex; this is by design. Our evalua-
tion (and the models’ purpose) is designed to establish
a benchmark for the two novel tasks, by showcasing
their tractability, while leaving room for future work to
improve upon our results.

Co-location Co-time
Accuracy (%) Macro F1 Accuracy (%) Macro F1

Random 59.00 0.501 51.85 0.492
Lexical 77.38 0.696 57.47 0.518
GloVe 74.48 0.613 60.40 0.498
BERT 75.40 0.625 59.28 0.511

BERT TE-FT 81.98 0.773 59.10 0.569

Table 5: Results of several models on the binary pre-
diction tasks of co-location and co-time detection.

The results of our evaluation are given in Table 5. They
show that while all models outperform the random
baseline, they do so with varying degrees of success.
The best model is the BERT TE-FT model, which out-
performs the other approaches by a significant margin4

on both benchmark tasks.5 The lexical model proves
surprisingly capable, outperforming both GloVe and

4Statistically significant at a p-value=0.01 based on a
paired student’s t-test.

5It does not achieve the highest accuracy on co-time pre-
diction due to the imbalanced nature of the dataset.



BERT models; this is possibly because the training data
size is fairly large and contains a decent coverage of
lexical terms. Notably, both tasks are challenging (co-
time prediction being significantly more so), and there
is room for improvement over the simple approaches
described in this paper.

Co-location Co-time
Accuracy (%) Macro F1 Accuracy (%) Macro F1

BERT TE-FT 81.98 0.773 59.10 0.569
(-) Fine-tuning 71.58 0.426 61.45 0.381

(-) TE Composition 80.90 0.757 56.70 0.541

Table 6: An ablation study demonstrating the effects of
removing components of the full BERT TE-FT model.

While BERT TE-FT is clearly the best model on both
benchmark tasks, we can also evaluate how much con-
tribution its features add by conducting an ablation
study. Specifically, we ablate the model by: (a) freez-
ing the parameters of the BERT model (effectively
negating the effects of fine-tuning); or (b) using a sim-
ple concatenation of T1 and T2 instead of the more
complex vector composition variant in Equation 1. The
results of our ablation study are given in Table 6. They
show that while both components influence the full
model positively, fine-tuning is clearly a far more im-
portant positive factor. This seems to indicate that the
language used in to-do tasks is different from general
purpose text on which BERT is trained, and thus bene-
fits from fine-tuning to the domain.
In conclusion, we presented the two new benchmark
tasks of co-location and co-time prediction, derived
from the MS-LaTTE dataset. We compared several
popular language modeling approaches on these bench-
marks and showed that they can indeed be modeled
successfully. Notably, a model containing fine-tuned
BERT seemed to perform best. However, both bench-
marks are challenging and present future work with in-
teresting possibilities to outperform the simple models
in this paper with more sophisticated approaches.

6. Conclusions and Future Work
We have publicly released a new dataset of to-do tasks
called MS-LaTTE. This dataset contains location and
time labels from multiple annotators for every one of
its 10,101 tasks, and is the first to contain such con-
textual information surrounding task completion. It is
also the largest publicly available dataset of real-world
to-do tasks of any kind, by an order of magnitude. In
this paper, we have described the setup used to collect
and annotate the dataset, conducted a detailed analy-
sis of its labels and properties, and performed exper-
imental evaluations on two novel benchmark tasks –
co-location prediction and co-time prediction – derived
from the dataset. We found that the data captures sev-
eral intuitive regularities, and that these regularities can
be modeled by popular language modeling techniques
– including, most successfully, by a BERT fine-tuned
approach. We anticipate that the release of MS-LaTTE

will spur the research community to work on contextual
task modeling, and more generally on task intelligence.
Despite the utility we hope the community will derive
from this dataset, it does have some limitations. We
rely on third-party judges’ interpretations of tasks that
they did not create themselves, and for which they have
very little information besides the raw textual represen-
tation. Moreover, annotators are all from a single locale
(India) and thus may miss broader cultural or country-
specific subtleties that are outside their field of experi-
ence. These issues may have potentially led to labels
that are erroneous or noisy due to misconstrued intent.
To resolve these and other issues, there are several
interesting and challenging future research directions.
These include: (a) alternative mechanisms to gather
context information for tasks directly from individu-
als, such as in-situ data collection and experience sam-
pling methods; (b) leveraging contexts beyond time
and place, such as people, activity, busyness, and re-
sources required (digital as well as physical); (c) using
MS-LaTTE to model novel contextual prediction and
recommendation scenarios, such as predicting when or
where a task is likely to be completed, ranking tasks
according to their likelihood of being completed given
location, time or both, or recommending other tasks
based on what a user is currently doing, where and/or
when; (d) manually auditing model predictions to bet-
ter understand error patterns, and devise better strate-
gies to address them; (e) personalization of models to
individuals or cohorts; (f) and integration of models in
real-world task management systems and digital assis-
tants, with user studies and online experimentation to
determine the impact on users’ productivity.
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