
Toward Self-Correcting Search Engines:
Using Underperforming Queries to Improve Search

Yi-Min Wang
Microsoft Research

Redmond, WA 98052 USA
ymwang@microsoft.com

Ryen W. White
Microsoft Research

 Redmond, WA 98052 USA
ryenw@microsoft.com

Ahmed Hassan
Microsoft Research

Redmond, WA 98052 USA
hassanam@microsoft.com

ABSTRACT

Search engines receive queries with a broad range of different
search intents. However, they do not perform equally well for all
queries. Understanding where search engines perform poorly is
critical for improving their performance. In this paper, we present
a method for automatically identifying poorly-performing query
groups where a search engine may not meet searcher needs. This
allows us to create coherent query clusters that help system design-
ers generate actionable insights about necessary changes and helps
learning-to-rank algorithms better learn relevance signals via spe-
cialized rankers. The result is a framework capable of estimating
dissatisfaction from Web search logs and learning to improve per-
formance for dissatisfied queries. Through experimentation, we
show that our method yields good quality groups that align with
established retrieval performance metrics. We also show that we
can significantly improve retrieval effectiveness via specialized
rankers, and that coherent grouping of underperforming queries
generated by our method is important in improving each group.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – selection process, search process.

Keywords

Dissatisfied query groups; Search satisfaction; Specialized rankers.

1. INTRODUCTION
Search engines are emerging as the primary resource through which
people find information. As a result, they are expected to handle a
broad range of different types of requests. However, search engines
may only apply a single ranking function over all queries they re-
ceive [35]. Inevitably in such circumstances, there are queries that
search engines do not handle well, leading to user dissatisfaction
(DSAT). Automatically identifying groups of underperforming
DSAT queries could help search designers decide where to focus
resources to improve performance.

There has been work on studying searcher success and frustration
as well as measuring query performance through human labels or
via automatic methods [13][14][20]. Those methods have focused
on identifying individual instances of user dissatisfaction from log
data. However, from the search engine’s perspective it is not cost
effective to simply identify particular queries where the engine per-
forms poorly. Commercial search engines are trained over very

large sets of queries. When a poorly performing query is identified,
this signal can be difficult to use for improving ranking quality.
First, it is only a single example, among millions of others, so even
if it is added to the training data, it is unlikely that it will have any
effect on the training model. Moreover, machine learned models
are difficult to debug or interpret and hence we will most likely be
unable to determine why a particular query fails. Finally, human
intervention, either for the generation of new interface, for ranking
features, or for manually labeling more examples of queries, is
costly and it is not prudent to make these investments on a per-
query basis. Therefore, we must be able to combine the queries into
coherent groups to take action and improve them.

In this paper we present an approach for identifying groups of que-
ries where search engines perform poorly and develop methods to
automatically improve retrieval quality for groups of failing que-
ries. Dissatisfied query groups are identified automatically from
search engine logs. The resulting groups have a strong correlation
with two established measures of search performance: search-result
clickthrough rate (CTR) and normalized discounted cumulative
gain (NDCG) [26]. The query groups that our method identifies
therefore comprise queries that are likely to result in searcher dis-
satisfaction. The queries in these groups share common attributes
and are coherent in a way that makes them susceptible to ranking
improvements. As such, we also trained a specialized ranker that is
optimized to a particular dissatisfaction group that yielded signifi-
cant relevance gains over our baselines.

This paper makes the following research contributions:

• Proposes the automatic identification of underperforming
(dissatisfaction) query groups as a means for search engines
to better understand and improve their performance.

• Introduces a novel method for automatically identifying such
dissatisfaction groups given interaction log data.

• Validates that the groups that our method identifies are in-
deed correlated with dissatisfaction estimates made via estab-
lished measures of search performance.

• Develops specialized rankers that leverage the coherence of
the queries in the dissatisfaction groups to improve the
search engine’s retrieval quality.

• Demonstrates through experimentation that: (i) our learned
specialized ranker outperforms a general ranker trained on a
diverse set of queries, and (ii) the coherence of the groups
identified by our method leads to larger relevance gains over
a specialized ranker trained only on underperforming queries.

The remainder of this paper is structured as follows. Section 2 de-
scribes relevant related work in the areas of search success and
query performance. Section 3 defines our problem and Section 4
describes how we extract instances of dissatisfaction from log data.
We describe our method for automatically grouping dissatisfaction
instances in Section 5. In Section 6 we describe the training of a

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright © 2013 ACM 978-1-4503-2034-4/13/07…$15.00.

specialized ranker to target a typical DSAT group identified using
our method. Experiments and associated results are presented in
Section 7. We discuss the findings and their implications in Section
8 and conclude in Section 9.

2. RELATED WORK
There are two areas of work related to the research presented in this
paper: (i) search satisfaction, success, and frustration, and (ii) query
performance. We cover each of the two areas in turn.

2.1 Satisfaction, Success, and Frustration
Extensive literature exists on deriving indicators of task success or
failure from online user behavior. In search specifically, several
fruitful approaches have been tried. One approach is to correlate
behavior with either self-reported success [14] or labels of success
provided by expert judges [13][20]. Early investigations correlated
self-reported measures of search satisfaction with implicit signals,
such as search-result clicks and dwell time for clicks [14].

Fox et al. [14] used an instrumented browser to determine whether
there was an association between explicit ratings of satisfaction and
implicit measures of searcher interest and identified the measures
that were most strongly associated with user satisfaction. They
found that there was a link between user activity and satisfaction
ratings, and that clickthrough, dwell time, and session termination
activity combined to make good predictors of satisfaction for Web
pages. Fox et al. found that short dwell times and clicking many
(four or more) search results for a query were both indicators of
dissatisfaction. Behavioral patterns were also used to predict user
satisfaction for search sessions. Feild et al. [13] developed methods
to predict user frustration. They assigned users difficult information
seeking tasks and monitored their degree of frustration via query
logs and physical sensors. One behavior that can be associated with
dissatisfaction is search engine switching – the voluntary transition
between different engines. Guo et al. [16] characterized the reason
that searchers switch between search engines. Using a browser
plugin, they captured switching rationales in-situ. They showed that
one of the primary reasons that searchers changed engine was dis-
satisfaction with the results provided by the pre-switch engine. Us-
ing the labeled switching events gathered from the plugin, they also
showed that there was sufficient consistency in searchers’ interac-
tion behaviors before and after the switching event to accurately
predict switching rationales. This predictor can be used to dynami-
cally adapt the search experience and derive more accurate compet-
itive metrics. Indeed, Feild et al. showed that features capable of
accurately predicting switching events were also highly predictive
of searcher frustration.

Huffman and Hochster [25] found a relatively strong correlation
with session satisfaction using a linear model encompassing the rel-
evance of the first three results returned for the first query in a
search task, whether the information need was navigational, and the
number of events in the session. Hassan et al. [20] developed mod-
els of user behavior to accurately estimate search success on a ses-
sion level, independent of the relevance of documents retrieved by
the search engine. Ageev et al. [1] propose a formalization of dif-
ferent types of success for informational search, and presented a
scalable game-like infrastructure for crowdsourcing search behav-
ior studies, specifically targeted towards capturing and evaluating
successful search strategies on informational tasks with known in-
tent. They show that their model can predict search success effec-
tively on their data and on a separate set of log data comprising
search engine sessions. Going beyond individual search sessions to
study the effects of satisfaction over time, Hu et al. [23] performed
a longitudinal study of the relationship between search satisfaction

and search engine re-use. They showed that satisfaction with a
search engine can contribute to users’ propensity to use and re-use
its service over time.

2.2 Query Performance
Search engine performance for a particular query is typically meas-
ured using relevance metrics such as NDCG [26]. NDCG can be
calculated based on manual judgments on the relevance of docu-
ments in the result list, or estimated using models derived from user
click behavior (e.g., [2]). Session discounted cumulative gain
(SDCG) [27] applies a discount to relevant results found in re-
sponse to queries later in the session. This considers that multiple
queries can be part of a search goal, but still requires manual rele-
vance judgments, which can be costly to obtain and do not scale to
unseen queries. Al-Maskari et al. [4] found a reasonable correlation
between many information retrieval (IR) metrics and user satisfac-
tion with result rankings (although surprisingly not NDCG, given
the small numbers of judgments available per query). They advo-
cated for a combination of different measures in evaluating the ef-
fectiveness of IR systems.

Research on predicting query performance has been conducted to
understand differences in the quality of search results provided by
search systems for different queries. Measures such as Jensen-
Shannon divergence [8], query clarity [10], and weighted infor-
mation gain 0 have been developed to predict the retrieval perfor-
mance on a query (as measured by average precision, for example).
He and Ounis [23], and Hauff et al. [22] also developed automatic
methods for predicting query difficulty (i.e., how good the search
results are for a query). Leskovec et al. [29] used graphical proper-
ties of the link structure of the result set to predict the quality of the
result set and the likelihood of query reformulation. Teevan et al.
[31] developed methods to predict which queries could most bene-
fit from personalization. Research has also been conducted on pre-
dicting query performance using searcher interactions. Carterette
and Jones [9] used clickthrough behavior to evaluate the quality of
search advertising results, but they did not study other interaction
features, and their focus was on search advertising not general Web
search. Guo et al. [14] used interaction features, including switch-
ing features, to predict query performance. However, that was on a
per-query basis rather than on the basis of query groups that lead to
searcher dissatisfaction.

The research presented in this paper extends this previous work in
a number of ways: (i) rather than predicting the performance of in-
dividual queries, we focus on identifying underperforming query
groups that share attributes such as length or domain; (ii) we vali-
date that the groups represent likely searcher dissatisfaction via es-
tablished performance measures such as clickthrough rate and
NDCG, and; (iii) we train a specialized ranker for groups identified
and show that (a) we can obtain relevance gains by targeting spe-
cific DSAT groups, and (b) training a specialized ranker tailored to
the coherent DSAT groups identified by our method is better than
simply targeting the broad set of all underperforming queries (e.g.,
only those queries with low CTR).

3. PROBLEM DEFINITION
We start by defining some terms used throughout the paper:

DEFINITION. A query group is a set of queries sharing a set of
common factors and can be characterized using binary attributes.
For example “Queries about movies with 5 or more words”.

DEFINITION. A DSAT query group is a set of queries for which
the search engine performs poorly in comparison to its average per-
formance over all queries.

DEFINITION. A specialized ranker is a ranking model that is built
to handle a specific query group. The specialized ranker has a local
effect because it only provides the search results for queries belong-
ing to a specific query group.

Given a stream of queries submitted by search engine users, we
seek to: (i) automatically identify poorly-performing groups of que-
ries suggestive of searcher dissatisfaction (DSAT), and (ii) train a
specialized local ranker capable of addressing the DSAT through
relevance gains. To identify the underperforming query groups we
construct attribute sets that cover DSAT instances and correlate
highly with dissatisfaction.

Commercial search engines rely on features of log data. They also
need humans to define these features and to generate relevance la-
bels from which the ranking algorithms can learn [2]. In theory, a
search engine that adopts a framework capable of doing both (i) and
(ii) above could improve with little need for human involvement in
generating additional features which could result in a self-correct-
ing search engine. The development of such a framework motivates
our research. We now describe its implementation in our context.

The input to our method is the search log interaction data gathered
from consenting users of a toolbar deployed by a commercial
search engine. Search logs are usually organized in the form of
search sessions. A search session is a sequence of user activities
that begin with a query, includes subsequent queries and URL vis-
its, and ends with a period of inactivity. A session ends if the user
was idle for more than 30 minutes on a page. The 30-minute cutoff
to determine session boundaries has been commonly used in previ-
ous work, e.g., [12]. In our case, search sessions can span multiple
search engines since we are interested in transitions between en-
gines as evidence of searcher dissatisfaction. More discussion on
this issue is provided in the next section of the paper.

We use the data from search sessions to automatically identify que-
ries that resulted in searcher dissatisfaction. This step is the first
step in our process. This module uses log data (from the search en-
gine or in our case a toolbar from the search provider) to generate
a large number of individual dissatisfaction instances. For each in-
stance, we collect information about the query, time and market
where it was submitted, and the search engine results page (SERP).
Individual dissatisfaction instances were used to identify poorly
performing groups of queries.

Specialized rankers specifically targeting the identified groups are
then trained to improve the search experience. One specialized
ranker is trained for each dissatisfaction group. The specialized
ranker can use the same features used by the original ranker, but
trained using a group-specific dataset. Alternatively, additional in-
vestment may be involved to further improve these groups. For ex-
ample, once the groups have been identified, additional features
may need to be generated to help the ranker learn how to perform
better for this query group. This activity is labor intensive and time
consuming, meaning that an automated alternative such as the
method proposed in this paper can be extremely valuable.

Finally the specialized ranker is combined with the general ranker
and the resultant ranker can be used to replace the original. The
specialized ranker has a local effect because it will be used for que-
ries that belong to the corresponding group only. The general ranker
will be used for the remainder of the query traffic. If gains are
achieved through the specialized ranker and all other queries are
treated in the same way as before, then overall relevance gains will
be observed. The primary challenge is therefore in identifying dis-

satisfaction groups because enumerating all possible ways of com-

bining attributes to form groups is prohibitively expensive. Ad-

dressing this challenge is our focus in this paper.

We begin by describing how we identify the individual DSAT in-
stances that are used to construct the DSAT query groups.

4. MINING DSAT INSTANCES
We mine instances of searcher dissatisfaction based on search en-
gine switching events. Search engine switching is the process de-
scribing a user’s voluntary transition from one Web search engine
to another. A search engine switching event is a pair of consecutive
queries that are issued on different search engines within a single
session. Note that in identifying pre-switch queries, if the user is-
sued a navigational query for a target search engine (e.g., search for
“yahoo” on Google, or “google” on Bing), this query is regarded as
part of the switching action and the preceding query in the pre-
switch engine is used as the “pre-switch” query.

Search logs contain a large and varied set of search behaviors that
could be associated with searcher dissatisfaction (e.g., clickthrough
rate, abandonment, short dwell time or quick back clicks). We use
search engine switching to identify user dissatisfaction instances
for two main reasons: (i) search engine switching is a rare but im-
portant event that has been shown to correlate with dissatisfaction
in prior research [16][32], and we have a reliable classifier that can
distinguish switches caused by dissatisfaction from others; (ii)
other query performance measures such as clickthrough data or ed-
itorial judgments could be used, but we abstained from using them
in this phase in order to be able to use them later to validate our
results. After the validity of our dissatisfied query groups is estab-
lished through our study, these query performance measures could
be used to generate more dissatisfaction instances.

Users switch from one search engine to another for various reasons.
One of the most common reasons is dissatisfaction with the results
they received from the pre-switch engine [33], which accounts for
around 60% of engine switching events. Guo et al. [16] proposed a
method for estimating the cause behind an observed switch given
recent search behavior such as queries and SERP clicks on the
source and destination search engines. They gathered ground truth
data through the deployment of a plugin to around 200 Web search-
ers. The plugin captured switching rationales in-situ when a switch
occurred and also logged search behavior before and after the
switch. The cause of the switch could be one of: (i) dissatisfaction
(the searcher was unhappy with the pre-switch engine), (ii) cover-
age (the searcher wanted to check the information they had found
on the other search engine), (iii) preferences (they usually used the
target engine or the target engine was better for the current task
type), (iv) unintentional (browser defaults or homepage settings),
and (v) other. They found that they could accurately predict when
the reason for an engine switch was dissatisfaction-related.

Inspired by the work of Guo and colleagues, we built a classifier to
distinguish dissatisfaction-related engine switches. The dissatisfac-
tion engine switching classifier learns to predict the switch cause
from training data of switching instances from [16]. The dataset
contained 562 labeled switches from 107 different users.

We merged all switching causes into two classes: dissatisfaction
and everything else, and trained a logistic regression classifier to
identify dissatisfaction instances.

DEFINITION. A dissatisfaction instance in our study is a switch
between search engines where the pre- and post-switch queries are
the same and has been labeled by our classifier as DSAT-related.
We assume that a dissatisfaction instance represents dissatisfaction
with the pre-switch engine.

We represent search behavior by adapting and extending a subset
of the features presented in previous studies that we believed were
particularly likely to be associated with dissatisfaction [16]. We

also added features describing the action transition of users (e.g.,
query-click, query-query, etc.), and the time difference between
every pair of actions. It has been shown in previous work that action
transitions are a very good descriptor of user behavior when mod-
eling satisfaction [20][21]. An action could be a query submission,
a click on a SERP, or a click on any other SERP feature. For exam-
ple, submitting a query followed by reformulating and resubmitting
a related query is a sign of dissatisfaction. The features used in our
classifier are summarized in Table 1. We only considered switching
instances that had the same query before and after the engine switch
since these have been shown to be more strongly associated with
dissatisfaction in previous work [16].

Later in our experiments, we will use only query-related features
and post-switch features to identify switches resulting from DSAT.
Excluding pre-switch features allows us to validate the results of
our DSAT group identification using measures such as SERP click-
through rate without introducing any bias.

We evaluated the performance using the F-score, with β set to 0.5.
This gives twice as much weight to precision than to recall. We are
interested in a highly precise set of dissatisfaction cases that we can
reliably use as input for the following steps. There are a large num-
ber of switching instances in the logs. We need to precisely identify
some of them, rather than finding many of them with lower preci-
sion. We evaluated the performance using 10-fold cross validation
which resulted in an F0.5 score of 81.2 when we use query and post-
switch features. This exceeds the 79.0 reported by Guo et al. [16],
attributable to the extra features we added.

5. IDENTIFYING DSAT GROUPS
Many previous studies have addressed the problem of measuring
query performance [10][26][29]. Individual instances where users
are dissatisfied with search result quality can be identified using a
number of methods. One such method was presented in the previ-
ous section. Given a set of DSAT instances, the more challenging
problem is how to take actions to improve search relevance based

on these observations. This is challenging because it may be diffi-
cult to tweak the search engine ranking algorithm to handle a dis-
satisfaction case in an isolated context. To provide richer context to
dissatisfaction cases, we seek to find frequently-occurring patterns
that define dissatisfaction groups.

In the remainder of this section we describe the methods that we
use to identify dissatisfaction groups. We begin with how we rep-
resent the individual DSAT instances, then describe the frequent
pattern mining approach that we used to identify frequent attribute
sets, and conclude by describing the method used to create the dis-
satisfaction groups from these attribute sets.

5.1.1 Representation
We describe every dissatisfaction instance with a vector of binary
attributes. Each attribute describes a specific characteristic of the

dissatisfaction instance. Let � = ���, ��, … , �	
 be a set of � binary

attributes. Let � = �
�,
�	, … ,
	
 be a set of dissatisfaction in-

stances. Every DSAT instance in � has a subset of attributes in	�.

We use several types of attributes to describe each dissatisfaction
instance. We summarize them below:

Query Attributes: This is a set of attributes that describe the query
itself. Several categories are used to describe the intent behind the
query. It is impractical to use the text in Web pages to draw con-
clusions about the topicality of the query. Conversely, we could
look at URLs or domains but that would be very limited due to data
sparseness. Instead, we used the Open Directory Project (ODP),
also referred to as dmoz.org. ODP is an open Web directory main-
tained by a community of volunteer editors. It uses a hierarchical
scheme for organizing URLs into categories and subcategories. We
use the top two ODP categories and assign labels to URLs automat-
ically using an approach similar to [34]. URLs that exist in the di-
rectory were classified according to the corresponding categories.
Missing URLs were incrementally pruned one path level at a time
until a match was found or a miss declared. A query is assigned the
plurality label of the labels of its top 10 results. In addition to these
categories, we also include the query length, language, query
phrase type (noun phrase, verb phrase or a question) as determined
by the Stanford parser [28].

SERP Attributes: We also added a set of attributes to describe the
SERP that was displayed to the user as a response to submitting the
query. Examples of these attributes include whether a direct answer
was displayed for that query, and if so, then what type of answer
(e.g. Weather, Stocks, etc.), whether a query suggestion was shown,
and whether a spelling correction was shown.

Impression Attributes: An impression is a single instance of a par-
ticular query. We used another set of attributes to describe each dis-
satisfaction impression. We use the market from which the query
was issued (e.g., US, UK, etc.), the vertical used to issue the query
(e.g., Web, News, Images, etc.) and the search engine used to issue
the query (Bing, Google or Yahoo). This allows us to identify
DSAT groups for specific markets, verticals, and engines as well as
DSAT groups that span multiple markets, verticals, or engines. We
also added some temporal attributes such as day of the week, time
of day (morning, afternoon, evening, night), and month of the year.

This yields a set � with 140 attributes. Every dissatisfaction in-

stance
 is represented with a subset of attributes in	�.

5.1.2 Frequent Patterns
Identifying frequent patterns in transactional or relational data sets
is a well-studied problem in the data mining literature [18]. The
problem was motivated by the massive amounts of data continu-
ously collected and stored by many businesses. The discovery of

Table 2. Features to identify dissatisfied engine switches.

Feature Description

Query features

�ℎ��_��� Num. characters in query

���
_��� Num. words in query

����_
���
Time in seconds between pre-switch
and post switch queries

Pre- and Post-switch features

���_������� Num. queries in session

����_������� Num. unique queries in session

���_������ Num. query reformulations

���_������ Num. clicks

���_���_������ Num. clicks with dwell time > 30s

���_�����_����� Num. clicks with dwell time < 15s

���_����_������
Num. clicks on URLs containing a
query term in their title

�����_���

Length of the trail from search engine
result page, defined as the number of
clicks made after leaving SERP

� !_�����

Num. transitions between every action

pair � →	�! for every � ∈ � where

� = {Query, SERPClick, AdClick,
Answer, etc.}

� !_����
Avg. dwell time for every action pair

� →	�!

frequent patterns in this huge amount of data was found useful for
many decision making processes. A typical example of this sce-
nario is the market basket analysis problem. The objective of this
analysis is to find associations between the different items that cus-
tomers purchase. This information is valuable for designing mar-
keting plans and product catalogs.

The problem of mining dissatisfaction groups can be approached
from a similar perspective. To find dissatisfaction groups, we look
for frequent patterns of attributes that correlate with user dissatis-
faction. The representation we described in the previous subsection
aligns well with this approach. In the proposed representation,
every dissatisfaction instance is represented by a row, and every
attribute is presented by a column. All values are binary; indicating
whether the corresponding attribute is present in a particular row or
not. Multi-valued attributes are replaced with multiple variables
corresponding to the different values. An attribute in our case is
analogous to an item in the market basket analysis case. Note that
we use the terms “attribute” and “item” interchangeably throughout
the remainder of the paper.

There are several algorithms for discovering frequent patterns from
relational databases. For example, Apriori [5] is a seminal algo-
rithm for finding frequent itemsets. It employs a level-wise search
process where frequent itemsets of size � are used to discover fre-

quent itemsets of size � + 1. It starts by finding the counts of single
items, then itemsets with size 2 and so on. Finding each set of item-
sets with a certain size requires a full scan of the dataset. To reduce
the search space, it discards all itemsets that are supersets of previ-
ously found infrequent itemsets.

The main disadvantage of Apriori is that it employs a generate-and-
test method which may result in the generation of a huge number
of candidate sets. Additionally, it may need to repeatedly scan the
database for every itemset size. The FP-Growth algorithm [19]
overcomes these problems via a divide-and-conquer strategy. FP-
Growth only needs to scan the dataset twice, and unlike Apriori, it
does not involve any candidate itemset generation. We use the
Weka [17] implementation of FP-Growth [19]. There are also var-
iants of FP-Growth that were designed to be run in parallel on a
distributed cluster of machines, allowing large volumes of log data
to be processed using this algorithm [11][30].

The FP-Growth algorithm consists of two main steps. In the first
step, a compact data structure, the FP-tree, is built to represent the
data. In the second step, frequent patterns are extracted from the
FP-tree. To build the FP-tree, the data are scanned twice. In the first

scan, it counts the frequencies of every attribute and discards infre-
quent attributes. The attributes are then sorted in decreasing order
based on their frequencies. This fixed order is used so paths can
overlap when records share items. So, paths overlap when they
share the same prefix.

In the second scan, the FP-tree is constructed. The FP-tree is a com-
pact way to retain information about itemset association [19].
Nodes in the tree represent attributes and each node has a counter.
The algorithm reads one row at a time and maps it to a path. Paths
overlap when rows share attributes and node counters are incre-
mented. Special pointers are used to link nodes representing the
same attribute. An example illustrating the FP-tree construction is
shown in Figure 1. The algorithm starts by creating the root of the
tree and labeling it “null”. For each row in the dataset, the items in
that row are sorted according to their frequency and a branch is cre-
ated to represent the row. Every node in the branch corresponds to
an item and is labeled with the item identifier and its count; which
is initialized to 1 at creation. This process is repeated for every row.
A pointer is created to connect any two nodes with the same iden-
tifier and the node count is updated accordingly. Figure 1 shows the
tree after reading the one row, two rows and all rows. After reading
the first row, where only a and b are set to 1, two nodes are added
to the tree corresponding to a and b and the counter is set to 1 in
both cases. The second row has b, c, and d set to 1. The second row
does not share the same prefix with the first one, hence a new path
is created and the counters of all nodes are set to 1. When the algo-
rithm reads the third row, it finds out that the prefix {a} overlaps
with the prefix for the first row. Hence, the counter of node a is
increased and new nodes are created to represent c, d, and e. This
process continues until all rows are scanned. Pointers are main-
tained between nodes representing the same item (dotted lines in
the figure). As explained earlier, the algorithm needs to scan the
dataset only twice. In the first scan, the number of occurrences of
every attribute is computed and infrequent attributes are discarded.
The FP-tree is created in the second scan.

After constructing the FP-tree, we proceed to the second step. To
extract frequent patterns, FP-Growth applies a bottom-up algorithm

Figure 1. An example illustrating how the FP-tree is

constructed in the FP-Growth algorithm.

Table 2. Examples of frequent attribute sets.

Frequent Attribute Sets

{English Query, Local, Navigational, NumWords >10}

{English Query, Locations, Questions, NumWords >10}

{English Query, US Market}

{NumWords >10}

Table 3. Dataset contains satisfaction and dissatisfaction.

Attribute_1 Attribute_2 … Attribute_n (D)SAT

True False … True DSAT

True False … False DSAT

False True … True DSAT

……. ……. … ……. …….

False … True SAT

True True … False SAT

True False … True SAT

……. ……. … ……. …….

using a divide-and-conquer strategy starting at the leaves and mov-
ing toward the root, building frequent patterns as it ascends the tree.
For example, it starts with frequent attribute sets ending in e and
then ending in de and so on so forth.

We apply the FP-Growth algorithm to the dataset described in the
previous section. Table 2 presents a few examples of some of the
identified frequent attribute sets. Some sets consist of a single at-
tribute, while others have many attributes. In the next subsection,
we describe how dissatisfaction groups can be identified using
these frequent attribute sets.

5.1.3 From Frequent Patterns to DSAT Groups
Frequent attribute sets discovered from a set of dissatisfaction in-
stances do not necessarily define a dissatisfaction group. It could
be the case that a set of attributes defines a large query group, and
even though the percentage of dissatisfaction cases resulting from
this group is very small, it could still be overrepresented in the dis-
satisfaction dataset. For example, FP-Growth reported that the
group �&�'���ℎ	(���), *+	,�����
 is frequent. This occurred
because most of the queries in the dataset are English queries com-
ing from the US market, not because this is a dissatisfaction group.

To address this problem, we built a new data set, the satisfaction

dataset, and define a measure to identify groups correlated with
dissatisfaction. We build this dataset by randomly sampling a num-
ber of queries from - where: (i) the query received many clicks and
the last one had dwell time greater than 30 seconds, or (ii) the query
received a single click with dwell time greater than 30 seconds.
Dwell time greater than 30 seconds has been widely used to denote
satisfaction as in previous work [14].

Table 3 shows an example illustrating the appearance of the com-
bined dataset. The dataset contains both satisfaction (SAT) and
DSAT instances. Every instance is represented by a row in the da-
taset. The same set of attributes is used to describe both types of
instances. An additional attribute is added to show whether the in-
stance is associated with satisfaction or dissatisfaction.

We apply the FP-Growth algorithm to the data to generate sets of
attributes that co-occur frequently with one another. Unlike the
market basket analysis, we are not concerned with the correlation
between all kinds of attributes. We are mainly interested in attribute
sets that correlate highly with dissatisfaction. As a result, we restrict
the generated sets to those that include the attribute “DSAT” and
ignore all other patterns.

To distinguish attribute sets that are highly correlated with dissat-
isfaction and attribute sets that are highly represented in both satis-
faction and dissatisfaction instances, we define “DSAT correla-

tion”. DSAT correlation is a simple measure that estimates the cor-
relation/dependence between an attribute set and dissatisfaction. It

is defined as follows for any attribute set	� = ��, … , �	
:

�+�.	����������� = /0�, �+�.1
/0�1/0�+�.1

where /021 is the probability of observing the set of attributes

/021. /0�, �+�.1	 is estimated by dividing the number of in-

stances that belong to both the group defined by � and the dissatis-

faction set by the total number of SAT and DSAT instances.	/0�1
is estimated by dividing the number of instances that belong to the
group defined by � by the total number instances. Finally /0�+�.1
is the proportion of dissatisfaction instances in the dataset. The
number of occurrences of � and � ⋂�+�. are computed using the
FP-Growth algorithm as explained earlier.

If the resulting value of the DSAT correlation is less than 1, then
the occurrence of � is negatively correlated with dissatisfaction. If

the resulting value is greater than 1, then � is positively correlated

with dissatisfaction. If the value is exactly 1, then � and dissatis-
faction are independent. This value is sometimes referred to as the
lift in the data mining literature [18]. In our case, it implies that the

occurrence of the set of attributes in � “lifts” the occurrence of dis-
satisfaction.

Now let us revisit the group that was defined by the attribute
set	�&�'���ℎ	(���), *+	,�����
. Even though this set frequently
co-occurs with dissatisfaction, its DSAT correlation is 0.98 show-
ing that it is nearly independent of SAT or DSAT. This allows us
to identify more interesting groups and gives us a metric to evaluate
how every group correlates with dissatisfaction.

Other measures of correlation could be used as well for the same

purpose (e.g.,	4�). Correlation measures are better than confidence
(i.e., the number of occurrences of � ⋂�+�. divided by the num-

ber of occurrences of �). Confidence could be misleading if the da-
taset is unbalanced with respect to the proportion of satisfaction and
dissatisfaction instances. This imbalance is typical in any random
sample of query impressions because most users achieve their
search goals and dissatisfaction is usually the exception. For exam-
ple, Ageev et al. [1] performed a study where users were asked to
find answers to specific questions using Web search. In 87% of the
tasks, users reported success, and in 75% of these cases, the answer
was correct. Hassan et al. [21] collected firsthand success labels
from users using several search engines and reported a 80% satis-
faction rate. Notice that the DSAT correlation is also insensitive to
the distribution of SAT vs. DSAT cases in the dataset. Hence, it
will find attribute sets statistically correlated with dissatisfaction
regardless of whether the sample follows the original underlying
distribution of satisfaction or not.

6. A SPECIALIZED RANKER
A specialized ranker can be trained for each dissatisfaction group.
DSAT groups are easier to learn than individual DSAT instances
because they provide more context for the learning algorithm than
single instances. Additionally, and importantly, the coherence of
the DSAT groups we identify makes them more susceptible to rank-
ing improvements than a potentially broad and heterogeneous set
of underperforming queries. We show later in this section that the
coherence is important for training specialized rankers.

Attributes of the group can be used to determine for each query
whether to apply the method. In practice, the specialized ranker is
used for all queries where the group’s membership criteria applies
and the general ranker is used for all other traffic. If we observe
gains through applying the specialized ranker and do not change
the general ranker used for all other queries, we will see the overall
search effectiveness of the search engine improve. In the remainder
of this section we describe how we train a specialized ranker for
one such DSAT group identified through the analysis in the previ-
ous section and show that we can obtain significant relevance gains
over strong baselines by targeting that group.

In a learning-to-rank framework, each query document pair is rep-
resented by a feature vector. The performance of any ranking func-
tion depends on feature selection and training data. We fix the set
of features used for both the general and the specialized rankers.
Our feature set contains several hundred features including query,
document, and query-document features. It includes many content-
based features, click-based features, static rank-based features, and
many others. Note that the features that were used to characterize

the DSAT groups (i.e., the attributes used by the DSAT group iden-
tification step) were also available to the general ranker, giving it
an opportunity to learn to use DSAT information on its own and
potentially removing the need to identify DSAT groups. The gen-
eral ranker therefore represents a strong baseline against which to
compare our specialized ranking approach.

We employ a re-ranking framework to create a specialized ranker
optimized to perform well on the DSAT group. We use a cascade
approach where the output of the General Ranker is used as a fea-
ture for training a Specialized Ranker. The specialized ranker is
trained on the DSAT group data only using the same features as the
general ranker. The output of the general ranker is added to the
training and testing data of the specialized ranker as an additional
feature. This allows the specialized ranker to benefit from the sig-
nals in the general data, and at the mean time optimize the perfor-
mance over the specialized data.

Notice that we cannot simply combine the general dataset with the
specialized dataset and train a single ranker. By doing this, we are
altering the true underlying distribution of queries and the general
traffic will be under-represented compared to the natural query dis-
tribution. Even though, this ranker may have a better performance
on the DSAT group, it will alter the performance of the rest of the
traffic. This is an undesirable effect because our objective is to im-
prove the performance on the DSAT group without affecting the
general traffic.

By changing the training data for the specialized ranker to only use
in-group queries, we show that identifying an underperforming
group is a fundamental step toward improving the performance of
search engines on queries belonging to this group. We will also
show that we can achieve relevance gains (perhaps attributable to
group coherence) by simply targeting that group even when the fea-
ture set is held constant. Note that the training and testing data does
not overlap with the data used to learn the underperforming query
groups.

7. EXPERIMENTS AND RESULTS

7.1 Validating DSAT Groups

7.1.1 Data and Experimental Setup
In this subsection, we describe the data we used to identify individ-
ual DSAT instances and DSAT groups. We obtained millions of
records of interaction logs (from July to September 2011) for hun-
dreds of thousands of consenting users through a widely-distributed
Web browser toolbar. Log entries include a unique identifier for the
user, a timestamp for each page view, and the URL of the Web page
visited. Intranet and secure (https) URL and any personally identi-
fiable information were removed from the logs prior to analysis.
From these logs, we identified switching instances where the same
query has been issued on different search engines. This set of logs

is referred to as -.

We applied the DSAT classifier described earlier to a random set
of switches observed in -, setting recall low to boost precision. The
classifier predicted that approximately 100,000 of the instances
were caused by dissatisfaction with the pre-switch engine results.
We randomly sampled a set of another 100,000 satisfaction in-
stances as described in Section 5 to construct the satisfaction da-
taset and applied the method in Section 5 to generate DSAT groups.
We generated around 200 groups; 50% of them were either nega-
tively correlated or uncorrelated with DSAT and were discarded.

The average number of attributes describing every group was 3.4.
The average fraction of dissatisfaction instances in a group was
5.5% of the total number of DSAT instances. We divided the

(a)

(b)

(c)

Figure 2. (a) Relation between average clickthrough rate

and DSAT correlation for every DSAT group. (b) Relation

between average NDCG@1 and DSAT correlation for

every DSAT group. (c) Relation between average

NDCG@3 and DSAT correlation for every DSAT group.

Note that in all figures the size of the circle denotes the

number of DSATs that belong to every group.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

A
v
g

.
C

T
R

DSAT Correlation

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5

A
v
g

.
N

D
C

G
@

1

DSAT Correlation

20

25

30

35

40

45

50

55

60

65

70

0 0.5 1 1.5 2 2.5

A
v
g

.
N

D
C

G
@

3

DSAT Correlation

groups into three bins according to DSAT correlation: less than 0.8,
0.8 to 1.2, and greater than 1.2. These correspond to groups with
negative correlation, no correlation, and positive correlation to dis-
satisfaction. We noticed that groups with no correlation to dissatis-
faction have lower average number of attributes (3.2), and higher
average number of instances (7.6%) compared to the other two
groups that had a number of attributes of 3.4 and 3.6 and a percent-
age of instances of 3.8% and 3.7% for the negative correlation and
the positive correlation groups respectively.

Once we had the groups generated, we wanted to establish whether
they were in fact related to searcher dissatisfaction. To validate that
the groups that we identify do actually represent likely searcher dis-
satisfaction, we used established measures of search engine perfor-
mance, namely result clickthrough rate (CTR) and NDCG.

For every identified group, we compute the average clickthrough
rate for queries belonging to this group. Average clickthrough rate
is computed using a separate set of queries that does not overlap
with the datasets described in the previous section. Every group is
defined using a set of attributes. To compute the average click-
through rate, we identify all queries that have all those attributes,
compute the clickthrough rate for every query and then compute
the average over all such queries. We abstained from using any pre-
switch features (i.e., only used query and post-switch features; see
Section 4) while generating dissatisfaction switches to avoid any
bias in the clickthrough rate experiment.

7.1.2 Results
Figure 3a shows the relation between average clickthrough rate and
DSAT correlation for every group. We included all frequent groups
even those who were found to be uncorrelated or negatively corre-
lated with dissatisfaction. Every group is represented by a bubble.
The size of the bubble represents the number of dissatisfaction in-
stances that belong to this group. Groups are not orthogonal and
hence the same dissatisfaction instance may belong to more than
one group. The size of the attribute set defining every group can
range from 1 to arbitrary large numbers. In practice, the largest at-
tribute set had no more than six attributes. Groups with size less
than 0.5% of the size of the entire dissatisfaction set are ignored.
We have to set a lower limit on the size of a group; otherwise every
dissatisfaction instance will result in a group.

We can observe from Figure 3a that groups with high DSAT corre-

lation have low clickthrough rate, while groups with low DSAT cor-

relation have higher clickthrough rate resulting in a high correla-
tion between the two measures. We also notice that most of the
large groups are either negatively correlated or uncorrelated with
dissatisfaction. Many of those groups are defined by a single attrib-
ute such as long queries or informational queries.

Similarly, we compared DSAT correlation to NDCG@1 and
NDCG@3 in Figures 3b and 3c, respectively. NDCG at a particular

rank position � is defined as:

5�67@� = �67@�
9�67@� = 1

9�67@� : 2<=>0 1

log01 + �1
B

 C�

where ���0�1 is the relevance of the �DE document in the ranked list.
NDCG is computed by normalized DCG using the DCG of the ideal
ranking (IDCG). We used a large query set with editorial relevance
judgments labeled as part of a separate search engine assessment
effort to identify a set of queries that belong to each group. Every
query-document pair was judged on a five-point grade scale: Bad,
Fair, Good, Excellent, or Perfect, giving us a value for ���0�1 for
each result. The dataset was constructed using pooled relevance
judgments and query-document pairs were judged by trained hu-
man assessors. Comparison against NDCG yields very similar re-
sults to comparison against CTR.

To quantify the correlation with established query level metrics, we
computed the Pearson correlation coefficient between DSAT corre-

lation and: (i) average clickthrough rate, (ii) average NDCG@1,
and (iii) average NDCG@3. Correlations were measured using the
Pearson’s correlation coefficient. The results are shown in Table 4.
The table shows a strong negative correlation between DSAT Cor-

relation and the three other metrics validating that the groups do
seem to represent likely searcher dissatisfaction.

In summary, we defined a process and a metric for identifying
query groups associated with dissatisfaction. The process uses
search interaction logs and does not involve any human interven-
tion. The identified groups show high correlation with established
query-level performance metrics such as CTR or NDCG. One im-
portant advantage of these groups is that they are coherent in a way
that provides a rich context for isolated queries. This coherence al-
lows us to use these groups to improve Web search performance,
as we will demonstrate in the next section.

7.2 Specialized Ranker Performance

7.2.1 Data and Experimental Setup
We used the learning-to-rank algorithm presented in [35] and com-
pared different ranking functions using NDCG (defined earlier). In
this subsection we present the results of two comparisons: (i) a spe-
cialized ranker trained on one of our groups versus general ranker
trained over all queries, and (ii) specialized ranker trained on one
of our groups versus a ranker trained on a potentially-diverse set of
underperforming queries.

The group that we selected represented approximately 2% of the
dissatisfaction instances, and had a DSAT correlation of 1.3. We
selected this group because we were able to use existing query-doc-
ument relevance judgments to quickly build a dataset with queries
with document relevance judgments that belong to this group. Col-
lecting query-document relevance judgments for thousands of que-
ries and hundreds of documents per query is a costly and time con-
suming process. Crowdsourcing could be used to create more la-
beled datasets to target other DSAT groups.

Table 4. Correlation between DSAT correlation and

different query performance measures averaged over

queries belonging to the corresponding group.

Avg.

CTR

Avg.

NDCG@1

Avg.

NDCG@3

DSAT Correlation −0.87 −0.72 −0.80

Table 5. NDCG improvements for a DSAT query group

using a specialized ranker.

NDCG@

1 Gain

NDCG@

2 Gain

NDCG@

3 Gain

NDCG@

4 Gain

NDCG@

5 Gain

1.52% 0.58% 0.86% 0.94% 0.77%

Table 6. NDCG improvements for low CTR group using a

ranker trained on low CTR data.

NDCG@

1 Gain
NDCG@

2 Gain
NDCG@

3 Gain
NDCG@

4 Gain
NDCG@

5 Gain

0.51% 0.39% 0.12% 0.05% 0.03%

We compare the results of three experiments. First, we use a gen-
eral queryset to train a learning-to-rank algorithm. The general
queryset contains queries that belong to the specific group among
many other queries. Second, we train a specialized ranker using a
queryset with queries that only belong to the selected group. If tar-
geting specific underperforming groups is a good strategy, then the
ranking function trained using a specialized query set will be better
than the one using a general query set. Finally, to measure the value
of coherence in our groups, we compare the performance of our
specialized ranker with a ranker trained specifically for a set of
poorly-performing queries, with low CTR.

The general ranker baseline is trained using a general queryset with
10,000 queries; some of them belong to the selected group. As
noted above, the general ranker had access to attributes used in
identifying DSAT groups, allowing it to learn to use DSAT infor-
mation. Note that the general ranker is a state-of-the-art heavily op-
timized ranker using hundreds of features including clickthrough
rate, link based features and content based features.

The specialized ranker is trained using a specialized dataset. The
dataset contains queries that belong to the selected group only. The
size of the specialized dataset is 2,000 queries. The size of the spe-
cialized dataset is much less than the size of the general dataset.
This is not intentional and we believe that increasing the size of the
specialized dataset could even lead to larger gains. The data used
to train both rankers does not overlap with the data used to identify
the underperforming query groups.

7.2.2 Effect of Specialized Ranker
We evaluated both the general and the specialized rankers using
the specialized data using 10-fold cross validation. We evaluate the
performance of both rankers using specialized data only because
we are only altering the ranking on queries belonging to the selected
group. The performance on all other queries will remain un-
changed. The rationale behind this is that the all queries will go to
the general ranker except for queries belonging to the selected
group which will go to the specialized ranker. Note that these are
not the same underperforming queries we identified earlier. Rather,
they are new queries that belong to the underperforming group (i.e.
all the attributes defining the group fire for them).

In Table 5, we report NDCG@1 through NDCG@5 improvements
over the general ranker. Improvements are statistically significant
at the 0.05 level according to the Wilcoxon p-value. The table
shows that we observe a 1.52% NDCG@1 improvement and
NDCG@5 improvement of 0.77%.

7.2.3 Effect of Group Coherence
We performed another experiment to measure the effect that the

coherence of the identified dissatisfaction groups has in improving
relevance when a specialized ranker is trained. We wanted to un-
derstand whether the relevance gains we achieved were specific to
dissatisfaction groups, or if they can be obtained if we train a ranker
on any set of poorly-performing queries. We construct a new data
set with poorly performing queries (clickthrough rate less than 0.2),
and with the same number of queries as the specialized dataset de-
scribed earlier. We train a ranker using the same set of features on
the low CTR dataset. We measure the performance using NDCG
gain compared to the general ranker. The results are shown in Table
6. The results show that the gain is much smaller than the special-
ized ranker case and often not significant. The NDCG@1 gain is
the only gain that is significant at the 0.05 level. This shows the
value of the dissatisfaction groups and supports our hypothesis that
group coherence is important for ranking.

8. DISCUSSION AND IMPLICATIONS
Identifying groups of queries where search engines underperform
is an important research challenge. We have described a novel
method to automatically identify dissatisfaction groups comprising
queries where a search engine appears to be failing. For one such
group identified by our method, we trained a specialized ranking
algorithm and showed significant relevance gains over a state-of-
the-art general ranker.

We validated our DSAT group identification approach by showing
that groups identified were correlated with established measures of
search engine performance, namely clickthrough rate and NDCG.
However, unlike subsets of the queries identified by those metrics,
queries were grouped so that they shared common attributes. As we
showed through an experiment, such coherence is important for
ranking. In particular, we showed that the specialized ranker per-
formed better for our coherent groups than groups containing a
broad range of queries that were just filtered based on a measure of
retrieval effectiveness (low CTR in our case).

The methods presented combine to form an end-to-end framework
capable of automatically identifying dissatisfied query groups and
the adapting the ranking algorithm to them. However, the frame-
work does not have to be used in its entirety. It may be desirable to
first identify the groups of queries on which the search engine is
underperforming and then triage those groups to make a determi-
nation regarding how to proceed. Deploying a specialized ranker
may not always be appropriate depending on the nature of the group
identified. For example, in DSAT groups where the searcher may
benefit from interactive support rather than ranking improvements
(e.g., a specialized direct answer on the SERP), interface modifica-
tions may be more appropriate.

We should also acknowledge some limitations of our study. The
framework is limited by the need to gather dissatisfaction data be-
fore specialized rankers can be trained. New rankers that are re-
leased based on this data then need to wait some time (days or
weeks) for new data to arrive. The method can only work on groups
of sufficient size to provide a sufficient number of queries to train
the ranker. This approach does not work for the smaller groups. One
solution is to create group hierarchies to combine multiple smaller
groups into a single large group based on shared attributes.

There are a number of important areas of future work. For the train-
ing and evaluation of our specialized ranking algorithms we used
human relevance judgments. However, obtaining these judgments
may be costly and we may not have such judgments readily availa-
ble for the query groups identified by our algorithm. Prior work has
shown that judgments may be obtained implicitly from search in-
teraction [3][7] and we will explore the use of such judgments to
further lessen the any remaining dependencies on human involve-
ment in our framework (reducing additional costs where possible).
We will also investigate the cost-benefit tradeoffs of adding more
features tailored to the group of interest, rather than simply re-train-
ing the ranker for the current set of features. To handle smaller
query groups for which we may lack sufficient training data to train
a dedicated ranker, we will investigate how to combine multiple
groups in a way that still maintains the group coherence that con-
tributes to the success of our approach.

9. CONCLUSIONS AND FUTURE WORK
Search engines try to satisfy all users’ needs and inevitably do not
perform well for all queries. In this paper, we described and vali-
dated a method for automatic identification of dissatisfaction
groups comprising queries where an engine is underperforming.
Knowledge of these DSAT groups can help search engines since it

can offer insights that inform engine design decisions and resource
allocation. Importantly, rather than only identifying underperform-
ing groups, we closed the loop and investigated automatically
learning a specialized ranking algorithm that outperforms a general
ranker with access to the same features. Our findings also show the
benefit of group coherence in training specialized rankers. The
method we describe in this paper can help search engines learn from
evidence of searcher dissatisfaction and directly improve their
search performance for troublesome queries. Future work will ex-
pand this research to target learning new ranking algorithms for
multiple DSAT groups simultaneously and develop new methods
to combine many smaller query groups to improve coverage.

REFERENCES
[1] Ageev, M., Guo, Q., Lagun, D., and Agichtein, E. (2011).

Find it if you can: a game for modeling different types of
web search success using interaction data. Proc. SIGIR, 345–
354.

[2] Agichtein, E., Brill, E., and Dumais, S.T. (2006). Improving
web search ranking by incorporating user behavior infor-
mation. Proc. SIGIR, 19–26.

[3] Agichtein, E., Brill, E., Dumais, S.T., and Ragno, R. (2006).
Learning user interaction models for predicting web search
result preferences. Proc. SIGIR, 3–10.

[4] Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining
association rules between sets of items in large databases.
Proc. SIGMOD, 207–216.

[5] Agrawal, R., and Srikant, R. (1994). Fast algorithms for min-
ing association rules. Proc. VLDB, 487–499.

[6] Al-Maskari, A., Sanderson, M., and Clough, P. (2007). The
relationship between IR effectiveness measures and user sat-
isfaction. Proc. SIGIR, 773–774.

[7] Bennett, P.N., Radlinski, F., Yilmaz, E. and White, R.W.
(2011). Inferring and using location metadata to personalize
web search. Proc. SIGIR, 135–144.

[8] Carmel, D., Yom-Tov, E., Darlow, A., and Pelleg, D. (2006).
What makes a query difficult? Proc. SIGIR, 390−397.

[9] Carterette, B. and Jones, R. (2007). Evaluating search en-
gines by modeling the relationship between relevance and
clicks. Proc. NIPS, 217–224.

[10] Cronen-Townsend, S., Zhou, Y., and Croft, W. B. (2002).
Predicting query performance. Proc. SIGIR, 299−306.

[11] Dan, O., Dmitriev, P., and White, R.W. (2012). Mining for
insights in the search engine query stream. Proc. WWW, 489-
490.

[12] Downey, D., Dumais, S., and Horvitz, E. (2007). Model of
searching and browsing: Languages, studies and applications.
Proc. IJCAI, 2740–2747.

[13] Feild, H., Allan, J., and Jones, R. (2010). Predicting searcher
frustration. Proc. SIGIR, 34−41.

[14] Fox, S., Karnawat, K., Mydland, M., Dumais, S.T., and
White, T. (2005). Evaluating implicit measures to improve
the search experience. ACM TOIS, 23(2): 147−168.

[15] Guo, Q., White, R.W., Dumais, S.T., Wang, J., and Ander-
son, B. (2010). Predicting query performance using query,
result, and user interaction features. Proc. RIAO.

[16] Guo, Q., White, R.W., Zhang, Y., Anderson, B., and Dumais,
S.T. (2011). Why searchers switch: understanding and pre-
dicting engine switching rationales. Proc. SIGIR. 335–344.

[17] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. (2009). The WEKA data mining software:
an update, SIGKDD Explorations, 11(1).

[18] Han, J. and Kamber, M. (2006). Data Mining: Concepts and
Techniques, Second Edition. Morgan Kaufmann.

[19] Han, J., Pei, J., Yin, Y., and Mao, R. (2004). Mining Fre-
quent Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach. Data Mining and Knowledge Discov-

ery, 8(1), 53–87.

[20] Hassan, A., Jones, R., and Klinkner, K.L. (2010). Beyond
DCG: user behavior as a predictor of a successful search.
Proc. WSDM, 221–230

[21] Hassan, A., Song, Y., and He, L. (2011). A task level user
satisfaction model and its application on improving relevance
estimation. Proc. CIKM, 125–134.

[22] Hauff, C., Murdock, V., and Baeza-Yates, R. (2008). Im-
proved query difficulty prediction for the web. Proc. CIKM,
439–448.

[23] He, B. and Ounis, I. (2004). Inferring query performance us-
ing pre-retrieval predictors. Proc. SPIRE, 43–54.

[24] Hu, V., Stone, M., Pedersen, J., and White, R.W. (2011). Ef-
fects of search success on search engine re-use. Proc. CIKM,
1841−1846.

[25] Huffman, S. and Hochster, M. (2007). How well does result
relevance predict session satisfaction? Proc. SIGIR,
567−574.

[26] K. Järvelin and Kekalainen. J. (2002). Cumulated gain-based
evaluation of IR techniques. ACM TOIS, 20(4), 422–446.

[27] K. Järvelin, S.L. Price, L.M.L. Delcambre, and M.L. Nielsen.
(2008). Discounted cumulated gain based evaluation of mul-
tiple-query IR sessions. Proc. ECIR, 4–15.

[28] Dan Klein and Christopher D. Manning. (2003). Accurate
unlexicalized parsing. Proc. ACL, 423–430

[29] Leskovec, J., Dumais, S., and Horvitz, E. (2007). Web pro-
jections: Learning from contextual subgraphs of the Web.
Proc. WWW, 471–480.

[30] Li, H., Wang, Y., Zhang, D., Zhang, M., and Chang, E.
(2008). PFP: parallel FP-growth for query recommendation.
Proc. RecSys, 107−114.

[31] Teevan, J., Dumais, S., and Liebling, D. (2008). To personal-
ize or not to personalize: Modeling queries with variation in
user intent. Proc. SIGIR, 620−627.

[32] White, R.W. and Drucker, S.M. (2007). Investigating behav-
ioral variability in Web search. Proc. WWW, 21−30.

[33] White, R.W. and Dumais, S. (2009). Characterizing and pre-
dicting search engine switching behavior. Proc. CIKM,
87−96.

[34] White, R.W. and Huang, J. (2010). Assessing the scenic
route: measuring the value of search trails in web logs. Proc.

SIGIR, 587–594.

[35] Xu, J., and Li, H. (2007). AdaRank: A boosting algorithm for
information retrieval. Proc. SIGIR, 391−398.

[36] Zhou, Y. and Croft, W.B. (2007). Query performance predic-
tion in Web search environments. Proc. SIGIR, 543−550.

