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A B S T R A C T

Objective: Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-mar-
keting drug safety surveillance. Signal detection is presently unimodal, relying on a single information source.
Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and ex-
panding the work done in prior studies, the aim of the article is to further research on multimodal signal de-
tection, explore its potential benefits, and propose methods for its construction and evaluation.
Material and methods: Four data sources are investigated; FDA’s adverse event reporting system, insurance
claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to
generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-
established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal
detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to
labeling revision dates.
Results: Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging
from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7–22
months relative to labeling revision dates from a time-indexed benchmark.
Conclusions: The results support the notion that utilizing and jointly analyzing multiple data sources may lead to
improved signal detection. Given certain data and benchmark limitations, the early stage of development, and
the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the
concept. Continued development of multimodal signal detection requires a deeper understanding the data
sources used, additional benchmarks, and further research on methods to generate and synthesize signals.

1. Introduction

The increasing harm and monetary burden associated with adverse
drug reactions (ADRs) has made post-marketing drug safety surveil-
lance (DSS) a top priority for health systems worldwide, and led to new
legislative and research initiatives [1–6]. DSS presently relies on ana-
lysis of adverse event reports stored in spontaneous reporting systems
(SRS) [7,8] such as the U.S. Food and Drug Administration (FDA) Ad-
verse Event Reporting System (FAERS) [9,10] and the VigiBase main-
tained by the World Health Organization (WHO) [11] .

The complexity associated with numerous natural phenomena (such

as the mechanisms, occurrence, or identification of ADRs) makes it is
unlikely that a single information source provides complete knowledge
of the phenomenon of interest. In many scientific domains, information
about a given phenomenon can be acquired from multiple sources. Each
such acquisition framework is referred to as a modality and is associated
with one data source [12]. A system that provides access to information
from multiple modalities is known as multimodal. The fusion and joint
analysis of multiple modalities promises a more unified and global view
of the problem at hand, and a solution that is greater than the sum of its
parts.

The benefits that may come from multimodality have recently been
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extended to DSS with the ability to process and analyze new kinds of
observational, experimental, and knowledge-based data sources con-
taining pertinent information about the effects, mechanisms, and safety
of medical products. Among these data sources are: electronic health
records and administrative claims [6,13–17], the biomedical literature
[18–20], social media (e.g., health forums and social networks)
[21–24], behavioral data drawn from the logs of search engines
[25–27], and mechanistic information extracted from chemical and
biological knowledge bases [28]. Together with SRS, each data source
promises to provide a unique vantage point for shaping our under-
standing of a drug’s safety profile, for contributing scientific evidence
needed for causal assessment of adverse reactions, and for improving
the timeliness of ADR identification.

In recent years, a large amount of research has been conducted on
repurposing and analyzing safety information from such data sources,
but relatively less progress has been made on development of multi-
modal approaches to jointly analyze the information provided by each
data source.

A core component of DSS is ADR detection, and use of computa-
tional techniques known as signal detection are among its primary fa-
cilitators. These techniques enable drug safety researchers to analyze
large volumes of data and generate hypotheses (signals) of new post-
approval ADRs. Upon review, strong signals may lead to regulatory
interventions such as drug withdrawals and the issuance of public
warnings. From a technical standpoint, signal detection consists of
applying computational methodologies to large databases in order to
identify unexpected associations between drugs and potential adverse
reactions [10].

Prior studies have demonstrated that pair-wise combinations of
safety signals from several sources with FAERS can improve the accu-
racy of signal detection. Examples of signals that have been combined
with those from FAERS include signals from EHRs [29,30], claims data
[31], biomedical literature [32], chemical data [33], and Internet
search logs [25]. Additional studies with less focus on signaling con-
sidered other forms of joint analysis of safety data [34,35].

The aim of this article is to strengthen empirical support for mul-
timodal signal detection and provide additional insights on its perfor-
mance characteristics. Building on, and extending the work performed
in prior studies, we consider the joint analysis of more than just two
data sources, and investigate a larger number of methods to synthesize
signal statistics. Rather than relying on a single benchmark of well-
known ADRs, we extend the evaluation with an additional benchmark
of relatively new ADRs, and importantly, we incorporate the time as-
pect of signal detection into our performance evaluation. In doing so we
propose new performance indices that blend both the accuracy of de-
tection and the lead-time-to-detection.

We envision a multimodal signal detection system as one which
pools and aggregates signal statistics from multiple data sources to
produce a composite signal statistic (Fig. 1). In characterizing such a
system, we examine four data sources, including three representative
sources that would likely play a significant role in future systems, and a
fourth novel, yet non-standard source that demonstrates promise. We
use FDA’s FAERS as a representative of SRS. As healthcare data we use a
large database of administrative claims from millions of U.S. patients.
The U.S. National Library of Medicine® (NLM) MEDLINE® citation da-
tabase [36] serves as a source of biomedical literature, and health-re-
lated queries captured in the logs of major Web search engines are used
as a source of consumer behavioral data.

Published methods are used to process and generate safety signals
from each data source individually, and a range of recognized statistical
approaches is investigated to transform signal statistics from each data
source into a composite signal score. Performance is assessed through
the use of both the retrospective and backdated prospective evaluation
strategies, which are based on reference benchmarks made of well-es-
tablished ADRs and recently labeled ADRs respectively.

2. Material and methods

2.1. Data sources

The FAERS data consists of approximately six million reports col-
lected by the FDA since the inception of the system (1968) to 2014Q2
[37]. The reports were preprocessed to correct reporting artifacts and
were made available by Oracle Health Sciences.

Analysis of healthcare data was made possible through the
Innovation in Medical Evidence Development and Surveillance
Research Laboratory [38], which provides a secure computing en-
vironment, research tools, and five de-identified healthcare datasets for
analysis. Of these datasets, we used the largest dataset called ‘Market-
Scan Commercial Claims and Encounters’, containing administrative
claims from a privately insured U.S. population of approximately
142million patients spanning the years 2003–2013 (inclusive).

Analysis of NLM’s Medical Subject Headings (MeSH®) [39] de-
scriptors was used to generate signals from MEDLINE bibliographic
citations spanning the period from 1968 to May 2014. The algorithms
for computationally identifying and extracting MEDLINE MeSH terms
associated with ADRs are described by Winnenburg et al. [20]. The
process resulted in approximately 360,000 ADR-related article citations
and approximately 500,000 unique drug-event pairs potentially asso-
ciated as ADRs, which were supplied along with other article metadata
by the NLM.

De-identified search queries submitted to the Google, Bing, and
Yahoo search engines by 80 million users during the period 2011–2013
were analyzed to generate signals based on behavioral data. This data
source was accessed in collaboration with Microsoft Research, and
described by White et al. [25]

2.2. Benchmarks

Our retrospective performance evaluation uses the Observational
Medical Outcomes Partnership (OMOP) benchmark [40]. The OMOP
benchmark consists of 399 unique drug-event pairs (test cases) of which
165 represent established true ADRs and 234 represent negative con-
trols—pairs that are highly unlikely to be associated. Each pair is made
of one of 181 drugs, and one of four serious adverse events (acute
myocardial infarction, acute renal failure, acute liver injury, and upper

Fig. 1. Architecture of a multimodal signal detection system. Signal statistics are pooled
and aggregated from different data sources to produce a composite signal statistic.
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gastrointestinal bleeding). 40 potentially misclassified negative controls
were omitted from the benchmark as recommended by Hauben et al.
[41] The OMOP benchmark was designed for retrospective evaluations,
in which all data available from a given data source is typically used to
evaluate historical associations.

Our backdated prospective performance evaluation uses the time-
indexed benchmark [42], which is derived from drug labeling revisions
issued by the FDA throughout the year 2013. The benchmark includes
62 positive test cases that represent recently labeled ADRs, and 75
negative controls. It covers 44 drugs and 38 adverse events ranging
from mild to rare and serious. Each positive test case is time-stamped
with the date on which the underlying ADR was added to the label.

The drugs in each of the benchmarks are specified by RxNorm [43]
main ingredients, whereas each event in the benchmarks is defined by a
set of MedDRA [44] preferred terms (PTs). To identify drug and event
occurrences in each data source, the drugs and events from our
benchmarks were mapped to the underlying vocabulary used by each
data source, e.g., ATC [45] and MedDRA (FAERS), RxNorm and
SNOMED CT® [46] (claims), and MeSH descriptors or supplementary
concept records (MEDLINE). For our claims and MEDLINE data the
mapping included an expansion to children terms. A data source record
was tagged with a given event if it contained a mapped term that
corresponds to any of event’s defining MedDRA PTs. The process for
identifying drug and event occurrences in our search logs was similar,
with the inclusion event symptoms and a mapping to consumer level
terminology [25].

2.3. Signal statistics

As our core signal statistic we use a Bayesian smoothed observed-to-
expected ratio. This signal statistic is computed for each combination of
test case, analysis period, and data source being evaluated, and is de-
fined as

= +
+

s N α
c E α· (1)

where N denotes the observed co-occurrence rate of a particular drug-
event pair (test case), E its expected rate (under certain conditions), c a
normalizing factor, and α a smoothing parameter. This ratio corre-
sponds to the posterior expectation of a Gamma-Poisson model of
counts, and forms the basis of several routinely applied Bayesian signal
detection algorithms for SRS including those of both the WHO [47,48]
and the FDA [9,10,49]. For example, the commonly cited IC statistic
[48] originally proposed by the WHO is equivalent to the log2 of this
ratio with c=1, α =0.5. The Bayesian nature of this ratio provides the

benefits of smoothing (shrinkage) and imputation.
Signal statistics for FAERS and MEDLINE were generated based on

Eq. (1) directly. For our claims and search logs data signals were gen-
erated by the self-controlled cohort (SCC) method developed by the
OMOP [50], and the method described by White et al. [25] respec-
tively. The signals produced by these two methods were then cast to the
ratio of Eq. (1), thus enabling the use of a uniform signal statistic across
all data sources. The suggested value α =0.5 was used throughout our
study. Table 1 provides additional details about the calculation of signal
statistics from each data source.

When no data is observed for the particular test case (N=0), it can
be seen from Eq. (1) that a signal statistic is imputed for the test case.
This allowed the large majority of test cases to be included in our
evaluation rather than being unused or misused with trivial values. Test
cases whose underlying mapped drug or event were not captured in any
of the data sources (E=0) at a given analysis period (e.g., drug ap-
proved after the analysis period) were omitted from the analysis period.

For each evaluation category we used the better performing of ei-
ther the ratio above or the lower 5% limit of its credible interval often
used a ‘safer’ alternative [10]. The lower 5% limit of the credible in-
terval is computed using the quantile function of the Gamma distribu-
tion (posterior distribution of the Gamma-Poisson model underlying the
signal statistics) with shape and rate parameters +N α and +cE α
respectively.

2.4. Combining signal statistics

To generate composite signal statistics, we examined two classes of
methodologies: those based on predictive algorithms, and those based on
different weighted averaging schemes.

The predictive algorithms we investigated included: random forests,
logistic regression, support vectors machines, and a methodology we
call naive Bayes smoothing developed for this study. The predictors/
features used by these methods are the signal statistics s (Eq. (1))
generated from each data source at the analysis period. The composite
signal score produced by these methods represents the probability that
a given association is true given the predictors’ values.

The class of methods based on weighted averaging included the
arithmetic and geometric averages, the weighted averaging implied by
fixed and random effects meta-analysis, and the averaging implied by
an earlier method we developed [31]. The averaging was composed of
the signal statistics s (Eq. (1)) generated from each data sources to-
gether with their standard errors. Table 2 provides additional details
about the methodologies we evaluated.

Table 1
Description of signal statistics (observed to expected ratios) generated from each data source.

Modality Parameters Method description

FAERS c=1, α=0.5 N corresponds to number of spontaneous reports containing both the drug and event investigated. E corresponds to a stratified expected count
under the assumption of independence (providing some level of confounding control). The stratification is done by age (9 categories), gender,
and year of report. The method produces a disproportionality statistic equivalent to exponential (2x) of the IC statistic developed by the WHO
[48], and thus is fundamentally the same method. The widely applied MGPS [49] method provided essentially equivalent performance (for this
study), but its calculation diverges from the consistent formulation chosen for this study

Claims c= tN/tE, α=0.5 SCC [50] represents a 'self-controlled' study design, wherein subjects serve as their own controls by comparing outcome rates for periods when a
subject is exposed to a drug to periods when the subject is unexposed to the drug, thus providing a mechanism to account for time-invariant
confounding factors. In SCC N represents the total number of outcomes (events) recorded for patients in a database, which occur within pre-
defined exposure windows (time at risk), and tN is the sum of the number of days in these exposure windows. E and tE are the equivalent
quantities for the comparator group (same patients for unexposed periods). Averaged across the four OMOP events, SCC was found to be the best
performing method [51]

MEDLINE c=1, α=0.5 N represents the number of articles including MeSH terms for the drug and event investigated, and E its standard expected value under the
independence assumption. No confounding control was applied

Web Logs c= tN/tE, α=0.5 Method based on the SRR statistic described by white et al. [25], which is produced by a method similar to SCC. N represents the number of
unique users that queried for the drug and event of interest within a pre-defined time period tN after the first query for the drug of interest, and E
and tE are the equivalent quantities prior to the first query for the drug of interest. tN and tE were both set to 60 days

The descriptions refer to the observed to expected ratio s=(N+ α)/(cE+ α) defined in Eq. (1).
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2.5. Retrospective performance evaluation

Retrospective performance evaluations were performed by using all
data from a given data source up to the end of 2013 to generate signal
statistics for each OMOP test case. The area under the receiver oper-
ating characteristic curve (AUC), was then used to measure the accu-
racy of signal detection.

Given that a large proportion of OMOP test cases were directly
compiled from the scientific literature via literature review, using the
OMOP benchmark to evaluate signals generated from literature deri-
vatives is circular and would lead to fallacious results. Consequently,
the MEDLINE modality was not used our retrospective evaluation of
multimodal signal detection. The data sources whose signal statistics
were combined in our retrospective evaluation include FAERS, our
Claims data, and the Web search logs.

2.6. Backdated prospective performance evaluation

In our backdated evaluations we use all data available from a given
data source up to a pre-specified time point that is prior to an ADR’s
index date (Fig.2). We define lead time as the time interval between
signal detection and a ADR’s index date, and use the date on which the
underlying ADR was added to the label as its index date.

We propose two performance indices called longitudinal-AUC
(LAUC) and mean lead time to detection (MLT2D) that blend both ac-
curacy and lead time to detection.

LAUC enables the assessment of signal detection accuracy as a
function of the ‘earliness’ of detection, permitting statements of the
form: ‘with a lead time of 36months method A detects signals more
accurately than method B’. Calculating LAUC requires backdating the
analysis of each positive test case to a different time period (depending
on its index date), comparing its signal score to those of each negative
test case, and computing a test statistic that longitudinally generalizes
to the standard AUC statistic. This is not the same as repeated AUC
calculations at different time periods, unless all test cases have the same
index date. Formally, for a given lead time (lt) LAUC is defined as

∑ ∑= − −
= =

+ −LAUC lt
IJ

ψ s t lt s t lt( ) 1 ( ( ), ( ))
i

I

j

J

i i j i
1 1

0 0

where

=
⎧
⎨
⎩

>
=
<

ψ x y
x y
x y
x y

( , )
1

0.5
0 (2)

and +s t( )i , −s t( )j denote the signal score of the ith positive test case and

Table 2
Methods used to combine signal statistics.

Method Description

Random forests Uses the R package ‘randomForest’. Predictors: …s s s, , , K1 2
Parameters: ntree=100, mtry=2 (ntree: number of trees in the forest, mtry: number of variables randomly sampled as candidates at each tree split).
Uses out-of-sample predictions

Logistic regression Uses the R package ‘glm’. Predictors: …s s s, , , K1 2
Support vector machines Uses the R package ‘e1071’. Predictors: …s s s, , , K1 2

Parameters: kernel= “radial”, method= “C-classification” (for classification vs regression). The remaining parameters were set to their default values
Naive Bayes smoothing Model: … = ∏ −P GT s s s η P GT s P GT( | , , , ) ( | )/ ( )K k k K1 2 1

η is a normalizing constant st the class conditional probabilities on the LHS sum to 1. P GT s( | )k is obtained by fitting a logistic regression to the set of
test case signal statistics generated from data source k. The modal combines these probabilities by assuming that … = ∏P s s s GT P s GT( , , , | ) ( | )K k k1 2 , hence

Naive Bayes. P GT( ) was set to the value 0.5
Arithmetic average Model: = + + ⋯+s s s s K( )/K1 2
Geometric average Model: = ⋯s s s s· · · KK 1 2
Fixed effects Model: = ∑ ∑s w s wlog( )/k k k k k

=w VAR s1/ (log( ))k k
Random effects Model: = ∑ ∑s w s wlog( )/k k k k k

=wk 1/( +VAR s τ(log( )) )k 2

τ2 is estimated using the DerSimonian and Laird method [52]
Empirical Bayes Model: = ∑ ∑ + −s α w s w α θlog( )/ (1 )k k k k k

=w VAR s1/ (log( ))k k , = +α τ τ v/( ),2 2 2 = ∏ ∑v VAR s VAR s(log( )/ (log( )k k k k2

τ2 and θ are estimated via the EM algorithm

sk : signal statistic (ratio of Eq. (1)) produced from data source k for a given association (test case). …s s s, , , K1 2 : set signal statistics produced from data sources 1 to K for a given association.
GT: ground truth assigned to a test case (true/false).

Fig. 2. Retrospective versus prospective performance eva-
luation. In the retrospective evaluation all data up to the
end of 2013 is used to generate signals for historical, known
associations (and negative controls) from the OMOP
benchmark. A prospective evaluation is simulated by
backdating the analysis to a time period preceding the re-
cognition of a given labeled ADR by an amount specified as
lead time (e.g., 36 months). At this time point signal sta-
tistics for labeled ADRs and negative controls are generated
from each data source.
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jth negative test case at time t respectively, and ti
0 the index date (e.g.,

labeling date) of ith positive test case.
MLT2D is used quantify how early can ADRs be identified given a

pre-specified tolerance for false alert rates. For a given ADR (positive
test case), lead time to detection for the ADR is the earliest time point for
which the proportion of negative test cases having a signal score larger
than the investigated ADR is equal to or less than the pre-specified false
alert rate. Mean lead time to detection is the average lead time to detection
across all positive test cases. Building on the notation above, for a given
false alert rate ∊, and a time series of lead times lt1,… , ltk, MLT2D is
formally defined as

∑∊ = ∊
=

MLT D
I

lt2 ( ) 1 ( )
i

I

k i
1

( )

where ∊lt ( )k i( ) is the largest ltk that satisfies

∑ − − ⩾ −∊
=

+ −

J
ψ s t lt s t lt1 ( ( ), ( )) 1

j

J

i i k j i k
1

0 0

(3)

Analysis of data from search logs was excluded our backdated evalua-
tions due to the limited time span of the data (18months)—a result of
the terms of use under which the data were collected from Web
searchers.

2.7. Quantifying performance gains

To quantify the improvement gained using composite signal scores
in lieu of individual scores we use both absolute and relative differences
in the AUC (or LAUC) that result from the use of two competing
methods. We capture relative differences using the AUC (or LAUC)
proportion of error reduction defined as

… − …
− …

AUC f S S AUC S AUC S
AUC S AUC S

( ( , , )) max( ( ), , ( ))
1 max( ( ), , ( ))

K K

K

1 1

1

where K is the number of data sources being used for signal detection,
Sk is the set of signal scores generated from data source k, and

…f S S( , , )K1 is the corresponding set of composite signal scores.
The AUC proportion of error reduction relates to a family of sta-

tistical measures known as Proportional Reduction Of Error (PRE),
which are based on comparing predictive error levels that result from
the use of two methods of prediction [53]. The AUC proportion of error
reduction has also been used in prior studies of signal detection
[25,31,37].

The AUC proportion of error reduction provides an added dimen-
sion in understanding performance gains that cannot be directly ob-
served from absolute differences alone. Arguably, an absolute AUC
difference of 0.05 between one method compared to a baseline method
with an AUC of 0.8 is more interesting or more significant than the
same 0.05 difference compared to a baseline method with an AUC of
0.5. Arguably, it is also harder to improve on a better performing
method than on a weaker performing method. The former example
results in an AUC proportion of error reduction of 25% while the latter
results in an AUC proportion of error reduction of 10%, thus high-
lighting the significance of the former improvement. Notwithstanding,
because the AUC proportion of error reduction is relative to prediction
error rather than prediction accuracy, it may appear to amplify gains
and should therefore be interpreted correctly. Consequently, we report
and quantify performance gains in terms of both the absolute AUC
difference and the proportion of error reduction.

2.8. Cross validation and significance tests

The performance of the predictive approaches for combining signals
was determined using cross-validation. AUC/LAUC was determined
using the recommended leave-pair-out cross-validation procedure [54],
whereas MLT2D was determined using leave-one-out cross-validation.

For the former the left-out pair consists of one positive and one negative
test case. For the latter, the left-out observation consists of a positive
test case. In leave-pair-out cross-validation we iterate through all
combinations of pairs made of one positive and one negative test case.
In each iteration, the training set consists of all test cases with the ex-
clusion of a single pair. The trained model is then applied to predict a
pair of signal scores for the held-out pair, which are then input to Eq.
(2) to compute AUC/LAUC.

DeLong’s test for the difference between correlated AUCs [55] (and
by extension error reduction) was used to obtain one-sided p-values for
the difference between the AUC of the multimodal (composite) signal
statistics and those of the single modalities (differences significantly
greater than zero). A trivial modification of DeLong’s original for-
mulation was used to calculate cross-validated and LAUC-based p-va-
lues for evaluations that utilized the two. One-sided p-values for dif-
ferences in MLT2D were obtained using paired T-tests.

3. Results

The full set of performance statistics generated for this study are
provided in the Appendix. Here we summarize key findings and trends.

3.1. Retrospective performance evaluation

Fig. 3 shows a performance comparison of signal detection mod-
alities based on the OMOP benchmark. The best performing predictive
approach to combine signals resulted in an AUC of 0.87, improving the
AUC of the best performing single modality (FAERS) by 0.09, which
represents an AUC error reduction of 41%. The best performing
weighted averaging approach resulted in an AUC improvement of 0.07,
which represents an AUC error reduction of 30%. All methods to
combine signals with the exclusion of two weighted averaging ap-
proaches resulted in statistically significant (p < .05) error reductions.
Appendix A provides the full set performance statistics for this eva-
luation.

3.2. Prospective performance evaluation

Fig. 4 displays a performance comparison of signal detection mod-
alities based on LAUC. The evaluation was performed for lead times
ranging from 12months to 72months in 6month intervals. The figure
shows that the class-leading methods for combining signals result in
LAUCs in the range 0.78–0.86, AUC improvements in the range
0.04–0.09, which represent error reductions ranging from 17% to 37%.
For example, given a lead time of 48months, the multimodal approach
provides an AUC improvement of 0.09 over MEDLINE and FAERS,

Fig. 3. A performance comparison of signal detection modalities based on the OMOP
benchmark. Percentages in parentheses represent proportions of AUC error reduction.
Combined-PR; combined signals produced by the best performing predictive algorithm.
Combined-WA; combined signals produced by the best performing weighted averaging
approach.
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which represents an AUC error reduction of 37%. For the majority of
lead times, the LAUC error reductions provided by these leading
methods are statistically significant. Appendix B provides the full set of
performance statistics for this LAUC evaluation.

Fig.5 shows a comparison of MLT2D between modalities as a func-
tion of eight representative false alert rate cutoffs ranging from 1% to
30%. A total of 24 time points ranging from a lead time of 0 to
81months, with three month intervals, were used to form a time series
of signal scores for each test case, and a three-point moving average was
used to smooth short-term signal score fluctuations.

Expectedly, the figure shows that lead time to detection increases as
our tolerance for false alerts increases. For example, with a false alert
rate of 5% the multimodal approach detects ADRs 3.5 years in advance
of our index dates (labeling revision dates). A false alert tolerance of
30% would add one more year of lead time. Relative to our index dates,
the added lead time provided by the multimodal approach over the
MEDLINE modality ranges from 7 to 10months, and 7 to 22months
over the FAERS modality. The class-leading methodologies to combine
signals provided virtually equivalent performance, with statistically
significant improvements over the single modalities for the majority of
false alert rates.

The distribution of lead times resulting in MLT2D for the two class-
leading methodologies is illustrated in Fig. 6. The figure shows that the
proportion of test cases with lead times at the time series boundaries
(0–81months) decreases from about 50% to 30% as we vary the false
alert tolerance from 1% to 30%. The figure also shows that about 10%
of our test cases are undetectable (lead time= 0) and about 10%
are always detectable (lead time= 81) regardless of the false alert
tolerance.

Appendix B provides the full set of performance statistics for the
MLT2D evaluation, and an equivalent evaluation for median lead time
to detection, with similar results, is also provided in Appendix B.

3.3. Method differences

The predictive class of approaches to combine signals generally
performed better than the weighted averaging class of methods, but the
performance differences between the class leaders were small and sta-
tistically insignificant. The within class performance variation was
larger for the weighted averaging class, and while there was no clear
winner among methods within the predictive class, their performance
differences were minimal. The arithmetic and geometric average ap-
proaches resulted in near equivalent performance, usually better than
their other class members. This was because the weights attached to
each source, which are proportional to the amount of data available for
a given association, was inversely related to predictive power of the
data sources. Table 3 displays the best performing methods for each
evaluation category. With the exclusion of FAERS and search logs in the
retrospective evaluation, the point estimate s (Eq. (1)) provided greater
performance than its 5% lower limit.

Fig. 4. Longitudinal-AUCs based on the time-indexed
benchmark (recently labeled ADRs) for leads times of 12–72
months. Percentages above/below curves represent error
reductions. Combined-PR; combined signals produced by the
best performing predictive algorithm. Combined-WA; com-
bined signals produced by the best performing weighted
averaging approach.

Fig. 5. Mean lead time to detection as a function of eight representative false alert rates.
Combined-PR; combined signals produced by the best performing predictive algorithm.
Combined-WA; combined signals produced by the best performing weighted averaging
approach. Note that the scale of the first two points on the x-axis is different from the
remaining points.

Fig. 6. Cumulative distribution of lead times to detection for the class-leading methods to
combine signals, given false alert rates of 1% and 30%. The lower the curve, the more
probability mass attached to greater lead times. FAR; false alert rate. Combined-PR;
combined signals produced by the best performing predictive algorithm. Combined-WA;
combined signals produced by the best performing weighted averaging approach.
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3.4. Removed test cases

For the OMOP benchmark 12 of the 359 test cases were deemed
untestable (E=0) and removed from the evaluation. The number of
test cases removed in the backdated evaluations for each of the lead
times displayed in Fig. 4 were: 5, 8, 8, 8, 9, 9, 13, 14, 14, 15, 16 re-
spectively, of a total of 135 time-indexed test cases.

4. Discussion

The profusion and diversity of available information sources makes
it difficult to ignore the potential benefits associated with multimodal
approaches for drug safety surveillance. A key property of multi-
modality is complementarity, in the sense that each modality con-
tributes to the whole some added value that cannot be obtained
otherwise. This property allows data to inform each other by providing
constraints that enhance robustness, uniqueness, interpretability, and
other desired properties [12]. For signal detection these constraints
translate to the potential of suppressing drawbacks of each modality;
such as limited data, timeliness of detection, and low predictive power
that may be associated with the detection of certain types of ADRs.
Within the limitations of our evaluation framework, our results show
that multimodal signal detection based on the idea of pooling and ag-
gregating signal statistics may indeed lead to improved signal detection.

4.1. Benchmarks

As with most studies of this type, reliance on fixed benchmarks
(based on predefined test cases) makes studies feasible, but does not
guarantee generalizability to surveillance of other ADRs in the open
world. The universe of ADRs, the way in which drugs are consumed,
and the reasons for the occurrence of ADRs is too complex to be cap-
tured by limited benchmarks. In the same vein, a limitation of our time-
indexed benchmark is that its index dates do not reflect the time in
which initial concerns about ADRs may have surfaced, and therefore
the exact timing for which early signal detection would need to occur.
However, since the accurate ‘birth’ dates of all ADRs are not publicly
documented, these index dates provide a reasonable surrogate to in-
vestigate the temporal aspect of signal detection. Consequently, our
results about lead-time-to-detection should be interpreted as compara-
tive approximations of method differences and not as the absolute
added lead-time that may be provided by a methodology in real sur-
veillance scenarios.

Because the status of ADRs is often determined based on evidence
drawn from SRS and the literature, the potential correlation between
content in these data sources and the classification of test cases in our
benchmarks may have led to optimistically biased performance statis-
tics. This could explain the superior performance of FAERS and
MEDLINE compared to the other data sources, and suggest that our
performance statistics for the multimodal approach are also upward
biased. Consequently, our reported performance statistics should not be
interpreted in absolute terms, and the reported relative differences
should be viewed as approximations. However, this potential

correlation pertains to only the interpretation of the absolute perfor-
mance statistics and cannot explain the comparative improvements. In
addition, this correlation weakens as we backdate evaluations to earlier
time points since the amount of information about ADRs usually de-
creases as we move to earlier time points.

4.2. Modalities

All data sources that can contribute reliable safety evidence should
be considered in a multimodal setting to maximize its potential. The
addition of more reliable and complimentary signaling sources is likely
to further improve performance; though possibly with diminishing
gains. This work covered only a limited number of data sources, and the
role of other data sources, including approaches based on mechanistic
pharmacology, should also be investigated.

In some of our evaluations MEDLINE was found to be the best
performing modality. This can be expected for benchmarks derived
from the literature as is the case for our retrospective analysis—which is
why the MEDLINE modality was omitted from our retrospective ana-
lysis. However, the high performance of MEDLINE is less expected in
our backdated evaluation of recently labeled ADRs. A possible ex-
planation could be the dependence of labeling decisions on evidence
drawn from the biomedical literature. However, as shown in Figs. 4 and
5, this correlation diminishes as we evaluate earlier time points in
which case MEDLINE is no longer the best performing source. Another
explanation is that MEDLINE is the only source included in our eva-
luation that spans the entire life cycle of a drug from early development
through market life, is more diversified with respect to the safety evi-
dence it includes (e.g., animal and in vitro studies), and is peer-re-
viewed. More research is needed to further understand the biomedical
literature as a signaling source and its relationship with the determi-
nation of ADR status.

We also found that our claims data (MarketScan Commercial Claims
and Encounters) provided marginal benefit to multimodal detection of
emerging ADRs. However, this result cannot be generalized to other
types of medical records, and it is unknown whether this result is just a
consequence of the methodology we selected to generate signals from
this data source.

Due to the limited time span of data that was available we were
unable to determine the value of Internet search logs for the detection
of emerging ADRs. However, within the limitations of the data avail-
able, a recent study demonstrated relatively high predictive value for
emerging ADRs based on a smaller subset of the time-indexed bench-
mark [56].

4.3. Methods

To demonstrate the potential of multimodal signal detection we
chose to highlight peak performance, and we acknowledge that our
reported performance statistics should be critically judged as such.
Nevertheless, the anticipated improvements of multimodal signal de-
tection were consistently seen across a large number of methodologies
we evaluated (with small differences, see Appendix), and across two
distinctive benchmarks. It also clear that the methods we selected are
only a sample of possible methods to generate and combine signals, and
others should also be considered.

Although we found that the class of predictive approaches to com-
bine signals generally resulted in greater performance and were more
consistent, the approaches based on weighted averaging provide
stronger support for the paradigm given that they are not fitted to the
evaluation benchmarks. Their relative simplicity, ease of implementa-
tion, and somewhat surprisingly good performance, makes them at-
tractive candidates for future implementations.

Table 3
Best performing methods for each evaluation category.

Retrospective Prospective

AUC LAUC MLT2D

Combined – PR RF LR SVM
Combined – WA RE AA AA

Combined-PR; class of predictive algorithms to combine signals. Combined-WA; class of
approaches based on weighted averaging to combine signals. RF; random forests. LR;
logistic regression. SVM; support vector machines. RE; weighted averaging implicit in
random effects meta-analysis. AA; arithmetic average.

R. Harpaz et al. Journal of Biomedical Informatics 76 (2017) 41–49

47



5. Conclusions

Within the scope of our evaluation framework, the results support
the notion that utilizing and jointly analyzing multiple data sources
may lead to improved signal detection. However, given several lim-
itations associated with the data and benchmarks used in this work, it is
currently not possible to make definitive statements about the ultimate
utility, or quantifiable benefits of, or the implementation of multimodal
signal detection. By highlighting the challenges and limitations in-
volved in the construction and evaluation of multimodal signal detec-
tion, by exploring methodologies to combine signal statistics, and by
developing methods to evaluate multimodal signal detection, the work
embodied in this manuscript brings us closer to understanding the
promise of multimodal signal detection. Further development requires
deeper understanding of the data sources used in the construction of a
multimodal system, their inherent biases and limitations, their re-
lationships and interactions, and the mutual properties that would
make them perform well in combination. The applicability of additional
data sources must also be examined, as well as the utility of other
methods to generate and synthesize signal statistics. Crucially, addi-
tional benchmarks will need to be developed to expand the scope of
evaluated surveillance scenarios, to quantify gains from multimodal
approaches, and to further characterize its potential benefits. Given the
complexity of ADRs, benchmarks can only provide close approxima-
tions to the true performance characteristics of signal detection meth-
odologies. To this end, our performance statistics should be interpreted
as such approximations. Finally, our work contributes new performance
indices that blend both the accuracy and the lead-time-to-detection.
These indices are general enough to support other studies of signal
detection, and in our view, are needed to capture the important time
dimension of signal detection.
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