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Abstract
While recent data studies have focused on associations between sleep and exercise patterns as captured by digital fitness
devices, it is known that sleep and exercise quality are affected by a much broader set of factors not captured by these devices,
such as general lifestyle, eating, and stress. Here, we conduct a large-scale data study of exercise and sleep effects through
an analysis of 8 months of exercise and sleep data for 20 k users, combined with search query logs, location information and
aggregated social media data. We analyze factors correlated with better sleep and more effective exercise, and confirm these
relationships through causal inference analysis. Further, we build linear models to predict individuals’ sleep and exercise
quality. This analysis demonstrates the potential benefits of combining online and social data sources with data from health
trackers, and is a potentially rich computational benchmark for health studies. We discuss the implications of our work for
individuals, health practitioners and health systems.

Keywords User modeling · Health tracker · Sleep and exercise quality · Online and social features · Prediction

1 Introduction

Improving sleep and exercise quality has many health bene-
fits [1–3] and also leads to greater happiness and enhanced
productivity [4–6]. Health practitioners consider sleep as an
indicator of an individual’s health; good quality sleep is a
key part of a healthy lifestyle, benefiting the heart, mind,
performance, and emotional balance [5], while poor sleep
usually leads to daytime sleepiness, fatigue, and an impaired
ability to learn and perform tasks [7]. Similarly, effective
exercise helps individuals live longer and better, boosting
mental wellness by relieving tension, anxiety, depression [8];
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it also improves physical wellness by enhancing blood circu-
lation, weight control and muscle strength [1]. Coupled with
the increasing popularity of mobile and wearable devices
(e.g, FitBit,1 Jawbone,2 Misfit,3 and Sense4), the importance
of exercise and sleep has led to the development of a number
of non-clinical systems for monitoring and analyzing them.

Researchers have identified relationships between peo-
ple’s sleep and exercise quality and their demographic
attributes and daily activities [9]. Extensive research has
also been conducted to assess people’s health from social
media data, especially Twitter [10,11]. While it is gener-
ally accepted that a person’s lifestyle (e.g., food habits) [12],
stressful events (e.g., financial worries) [13], and events that
disrupt a routine (e.g., travel, celebrations) can significantly
impact sleep and exercise [14], there is a lack of research on
incorporating such rich data sources into sleep and exercise
analysis.

In this paper, we present a large-scale study of the sleep
and exercise quality effects of a wide variety of individ-
ual behaviors. To expand the set of behaviors we can study,

1 http://www.fitbit.com/.
2 https://jawbone.com/up.
3 http://misfit.com/.
4 https://hello.is/.
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we link health device data to non-traditional datasets, such
as search query logs, location information, and aggregated
social media data. While combining such varied data has
been reported to be effective in other health domains (e.g.,
forecasting disease [15]), to our knowledge, such a large-
scale study of diverse data sources has not been reported
for sleep and exercise. Overall, our analysis encompasses
approximately 20 k users’ sleep and exercise data, contain-
ing 1.3M sleep and 600 k exercise observations (cf. Table 2).

Following the practice of previous studies, we character-
ize sleep quality through the following measures: (i) time to
fall asleep [16]; (ii) number of wakeups [17]; (iii) sleep effi-
ciency [18] (the fraction of the total time spent in bed that
the user is asleep). We quantify exercise and fitness quality
based on (i) exercise intensity [19] (the rate of calorie burn
during exercise); and (ii) resting heart rate [20] (the heart
rate recorded during sleep, which is an indicator of heart
health). We first present an exploratory characterization of
our data. Using a regression analysis, we identify behav-
iors that are significantly correlated with sleep and exercise
quality.We validate these associations using causal inference
models [21] that reduce bias due to observed confounders.
We further build linear regressionmodels to predict sleep and
exercise quality targets. In addition to examining the predic-
tion accuracy on held-out data, we highlight specific features
that are especially important for achieving good prediction
performance, i.e., location and search features. Furthermore,
we conduct experiments to analyze how the prediction accu-
racy can be improved and how features perform individually,
which is helpful when data are limited. Finally, we predict
sleep- and exercise-related variables and show that our mod-
els achieve low errors in prediction. The insights and analysis
presented in Sects. 4.1 and 4.2 are most helpful for individu-
als and practitioners wishing to promote a healthy lifestyle.
Results presented in Sect. 4.3 about prediction lead times and
their effect on prediction quality (e.g., how early in the day
low-quality sleep can be reliably predicted)may bemost use-
ful for wearable device manufacturers and health application
developers.

2 Related work

In this section, we review prior research on monitoring, mea-
suring, and predicting exercise and sleep and comment on
their highlights and properties.

2.1 Exercise and sleepmonitoring

Existing research related to sleep/exercise quality focuses
primarily on monitoring and detection using signals from
dedicated devices. Phone usage information has been uti-
lized to find the onset of sleep [22], but not much about

the quality of sleep. Researchers have estimated bedtime,
wakeup time and sleep duration using phone sensor data and
daily activities over 10 weeks, albeit limited to students only
[23]. A mobile service was deployed that leverages built-in
sensors (light sensor, accelerometer, microphone) on smart-
phones to detect sleep stages and sleep quality [24]. The
bulk of existing research relies on special sensors or monitor-
ing devices, reducing their general applicability. In a closely
related study researchers built a practical system to mon-
itor seven individuals’ sleep quality using the smartphone
microphone to detect events that are related to sleep qual-
ity, classify them by a decision-tree-based algorithm, and
finally infer quantitative measures of sleep quality [25]. The
number of subjects under study limits result generalizabil-
ity. Leveraging the built-in sensors on smartphones, other
researchers have integrated physical activities with the sleep
environment, inherent temporal relations, and personal fac-
tors using statistical modeling for fine-grained sleep stage
detection and to generate sleep quality reports [26]. The nov-
elty is that it involved physical activity for sleep quality
measurement. However, the sources of relevant informa-
tion and features could have been much broader. To address
the problem of monitoring exercise quality, Pernek and col-
leagues propose a network of wearable accelerometers and
an off-the-shelf smartphone to measure exercise intensity
[27]. They use a hierarchical algorithm, consisting of two
layers of support vector machines to first recognize the type
of exercise and then measure the exercise intensity. Unfor-
tunately, wearing special sensors is not always feasible. In
contrast, ourwork leverages common sources of information.
Other researchers introduce a motion rehabilitation system
for chronic patients based on smartphones [28], process-
ing motion sensor data online to output real-time acoustic
feedback regarding exercise quality. This study is limited
to chronic patients requiring physical rehabilitation with
the goal of maintaining the motivation to exercise in real-
time.

2.2 Exercise and sleep analysis and prediction

While most existing research targets diseases such as insom-
nia and circadian rhythm sleep disorders, some prior work
has tried to predict and analyze sleep and exercise quality
in general settings. Bai and colleagues try to predict sleep
quality using user data such as daily activity, living environ-
ment and social activity information [29]. They show that
user context can predict sleep quality with a 78% accuracy.
However, they used survey data, which can be challenging to
obtain and featurize, and requires direct involvement from
subjects. Other researchers use 1 month of phone sensor
data and sleep diary entries from 27 participants to con-
struct models that detect sleep and non-sleep states, daily
sleep quality, and global sleep quality [30]. Sleep diaries
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are intrusive and burdensome for participants, which lim-
its their scalability. Jayarjah and colleagues present a study
on 400 undergraduate students over 15 months that quan-
tifies the quality of sleep and tries to correlate this with
aspects of their daily lives, especially individuals’ usage
of apps during the day and their physical environment that
may impact sleep [31]. While this study has scale, under-
graduate students have special habits and this again limits
the generalizability of the results to the broader popula-
tion. A set of causality analysis techniques is adopted in
other research to find relationships between the environment
and sleep quality via information collected using built-in
sensors in off-the-shelf mobile and wearable devices [32].
Their model is adapted to their specific environment only
and is not readily usable in other settings. Krishna and col-
leagues present an automated sleep qualitymonitor and sleep
duration estimator for a user that combines features related
to user surroundings and those related to user movements
during sleep to generate personalized sleep quality mea-
surements [33]. However, the movements are only useful
for real-time detection and are not applicable for predic-
tion.

Given the increasing availability of social data there have
been notable efforts to use social media to study sleep
[34–36]. In one article, the authors combine social media
with data from a sleep-tracking app [34], conduct a large-
scale study of sleep with more than 500 k users [35], and
develop a novel way to predict individuals’ sleep condi-
tions by scrutinizing facial cues as sleep specialists would
[37]. They find that higher social media activity levels are
associated with lower sleep quality and duration. How-
ever, their method is not robust to noise within the data.
Other research uses qualitative methods to study sleep pat-
terns [36] or predicts sleep quality from sensor data using
state-of-the-art deep learning techniques [38]. While very
related, none of the aforementioned research has used a
feature set as rich as that employed in this study. Further-
more, we study the factors affecting the prediction and
support our findings on correlation with a causal analysis.
All of these contribute to making our paper a comprehen-
sive study of the subject and a reference for other related
research.

3 Data, preprocessing, andmethods

In this section, we explain data collection and the prepro-
cessing steps to “sanitize” the data. This is done for all
predictive features and the targets of interest. Data were
collected between August 2015 and April 2016 and from
users who agreed to link their Cortana data and Microsoft
Health data (including their Microsoft Band device data)
for use in generating additional insights or recommenda-

tions about their sleep or activity. Demographic variables
are self-reported through the Microsoft Health app, which
served as the companion application for the Band wearable
device. While the user age and weight distributions closely
track official estimates in the USA, we note that our sample
is predominantly male. Furthermore, we acknowledge that
the target of this study comprises those individuals who can
afford to purchase a Microsoft Band device, which retailed
for 150–200 USD. Further studies on different user popu-
lations or statistical methods for removing possible biases
from study is left as future work.

3.1 Sleep and exercise measures

The top five rows of Table 1 denote five measures of sleep
and exercise quality that are recorded by the Microsoft Band
fitness device. In addition, our dataset includes age, weight
and height, and daily activity features, such as step count and
calories burned.

3.1.1 Sleep

Sleep data from wearable devices and smart phones provide
objectivemeasurementswhich have been preferred to subjec-
tive self-reports thatmay be significantly biased [39]. Among
our sleep quality targets, the concept of “number of wake-
ups” and “time to fall asleep” is clear. “Sleep efficiency” is
defined as the fraction of time spent in bed that the user is
asleep. Sleep efficiencies under 85% are frequently reported
in insomnia patients [18,40,41] and are used in both quali-
tative and quantitative sleep analysis. To detect sleep events,
theMicrosoft Band considers movement signals that utilize a
three-axis accelerometer and gyrometer, and an optical heart
rate sensor.

The Band employs internally vestigated proprietary algo-
rithms for detection of sleep versus movement. The Band
uses its hardware/software for sleep detection and computes
sleep efficiency, number of wakeups. We use these quanti-
ties as our ground truth targets for training predictivemodels,
as we detail later. Time in bed is either provided by manual
input from the user (both before going to sleep and immedi-
ately after waking up) or automatically based on movement
if the user does not provide manual input. The use of an event
marker to denote bed timing is widely used in sleep research
involving sleep diaries [42]. Following best practices [43,44],
we filter out any sleep record with duration below 0.5 h and
above 12 h of time in bed. Recent research [44] has verified
that the Microsoft Band’s measurements match published
sleep estimates [43].
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Table 1 Targets (dependent variables) and features (independent variables)

Target/feature Health measure Source Range Comment

Sleep quality � Time to fall sleep MS Band Real Recorded in minutes

� Number of wakeups MS Band Integer 0, 1, 2,…

� Efficiency MS Band Integer Percentage of being actually sleep
over being in bed (in 0–100)

Exercise and fitness � Exercise intensity MS Band Real Rate of burning calories while
doing exercise in Cal/min (0–30)

� Resting heart rate MS Band Integer Heart rate recorded during sleep in
bpm (typically in 40–80)

Basic � Age Profile Integer Recorded in years

� Gender Profile Binary Male, female

� Weight Profile Integer Typically in 80–250 (lb)

� Height Profile Integer Typically in 60–80 (in)

Daily � Day of week MS Band Discrete Fri, Sat, Sun, …, Thu

� Hour of event MS Band Real The hour (of sleep or exercise
event) elapsed from last midnight

� Calories burned MS Band Real Average rate of burning calories in
that day

� Steps taken MS Band Integer Total number of steps in that day
(typically in 1000–20000)

� Today’s exercise MS Band Discrete Bike, run, workout (just for
analyzing sleep quality)

� Prev. Night sleep 6 × 1 vector MS Band – Time to fall asleep (mins), resting
heart rate (beeps per mins)
number of wakeups, sleep
efficiency percentage, sleep
duration time going to bed (for
analyzing exercise quality)

Location � 11 × 1 vector Cortana Mixed Binary visit association to each of
10 categories: food, retail, health,
entertainment, banking,
education, sports, beauty, travel,
service (in [0, 1]); offset time

Information � 14 × 1 vector Bing Mixed Binary association to 12
categories: food, exercise, health,
celebration arts, police, religious,
science, technology, business,
positive, negative (each in [0, 1]);
other/no category; offset time

Aggregated social � 13 × 1 vector Twitter Mixed Membership to 12 categories:
Food, exercise, health,
celebration arts, police, religious,
science, technology, business,
positive negative (each in [0, 1]);
other/no category

3.1.2 Exercise

For exercise, users have an option to input the type of exer-
cise they are engaging in—run, bike, or workout. The Band
device tracks heart rate during exercise using its optical heart
monitor. The device also uses GPS and movement sensors,
the heart rate monitor, and the basic information to estimate

calories burned. Following best practices, we excluded exer-
cise events whose length (minutes) are below 5 or above 180.

3.1.3 Basic features

To remove outliers, we exclude users with age (in years)
below10 or above 100,weight (in lbs) below50 or above 250,
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Table 2 Summary statistics for
sleep and exercise data

Task # Users # Events

Male Female Male Female

Sleep 18,346 (93%) 1287 (7%) 1,204,558 (94%) 77,490 (6%)

Exer. 16,607 (93%) 1181 (7%) 596,345 (93%) 45,775 (7%)

andheight (in inches) below50or above80.All these features
are commonly used to model sleep and exercise quality [45,
46].

3.1.4 Daily and activity features

Our list of daily features is as follows: (1) day of theweek; (2)
the hour when the event started; the next three express what
the user has done in the day that the sleep event commenced:
(3) steps taken; (4) calories burned, (5) type of exercise (if
any). The last six are about the previous night and are used to
predict exercise quality: last night’s: (5) time to fall asleep; (6)
resting heart rate; (7) sleep efficiency; (8) number of wake-
ups; (9) sleep duration; and (10) bedtime.

After pruning the dataset, we obtain a final dataset of
20 K users and 1.3 M sleep and 600 K exercise records (see
Table 2). We believe that this is a sufficiently large dataset
for our analysis.

3.2 Characterizing behaviors and lifestyle

To connect information captured by health tracking devices
to other behaviors and lifestyle factors, we aggregate data
from various sources, specifically Cortana (personal digital
assistant, offering location and search data) and Twitter. The
combination of data from these disparate sources leads to a
rich set of user features, including: (i) Locations visited dur-
ing the day, such as restaurants, banks; and (ii) interests and
intent inferred from both search queries and geo-aggregated
tweets.

3.2.1 Location features

These features are collected by users’ personal digital assis-
tant (Cortana), where GPS and proprietary triangulation
techniques are used to infer visits to points of interest, specif-
ically businesses. The location features are split into various
categories, summarized in Table 1 under the feature set
“Locations.” Since there are only a few categories, one-hot
encoding is used to denote the presence or absenceof a certain
category in the user’s visited location. For example, if a user
visits a retail location that also has a food court, the relevant
feature vector for such a location, by examining Table 1, is
(1, 0, 1, 0, 0, 0, 0, 0, 0, 0). For each sleep or exercise event for
a (user, day) tuple, we generate a location feature vector for

that day by averaging over all such ten-dimensional vectors
for that user on that day before the actual sleep or exercise
event. In addition to the location visited, the time difference
between when the location event began, and the actual sleep
or exercise event also tends to be important and is recorded
(referred to as “visit offset time” henceforth). Capturing this
time for visited locations is useful for designing interven-
tions and alerts related to the impact of visiting a particular
location before a sleep or an exercise event. For example,
with restaurants and food locations, it has been reported that
food consumption close to bedtime is negatively associated
with sleep quality [12]. We account for the temporal nature
of location visits by expanding the location feature vector
to 11 dimensions where the 11th coordinate is the average
of all visit offset times of the user over all locations for that
day before the sleep or exercise event. Averaging visit offset
times is a useful indicator of how the individual’s day relates
to a sleep or an exercise event. For instance, we expect a
negative correlation between low offset times between food
visits and bedtime. To the best of our knowledge, the effect
of visited location categories on sleep and exercise quality
has not previously been studied at this scale.

The strong connection between locations and activities
has been the subject of much research [47–50]. Researchers
have observed that activities are often used instead of places
when responding to a request for location [49], suggesting an
interchangeable usage of activity and location. Other works
search for a semantic representation for a location [48,50]
that best represents it, for example associating “office” to
“working”. While associating a location with only one likely
activity is clearly a simplification, associating a behavior or
property to a class of location is common in activity recog-
nition in location-based services [50–52].

3.2.2 Information features

Search logs (from Bing) offer insight into people’s inter-
ests and intents, beliefs and thoughts [53], problems and
health concerns [54]. Information features are extracted
by membership proportion to preselected categories with
a hand-crafted glossary summarized in Table 3. These fea-
tures will be detailed shortly. Extracting textual features from
a hand-crafted glossary is pragmatic and prudent since the
development of automated tools (e.g., latent Dirichlet alloca-
tion) is not the focus of this paper. Furthermore, prior studies
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Table 3 Text processing classes
and subclasses

Class Other subclasses # Terms

Food – 1629

Exercise Fitness, hiking, sport, football 1046

Health Wellness, dentistry, cancer 826

Celebration Festival, wedding, christmas 980

Arts Music, oscar, film, photo 853

Police Army, law, detective, terrorist 1001

Religion Faith, spirit, pope, passover 740

Science Physics, chemistry, astronomy, biology 1136

Technology Computer, internet, engineering 702

Business Finance, economy, money, markets 1019

Positive – 1385

Negative – 3163

show that a manual textual feature extraction could result in
superior performance when dealing with noisy texts [55], in
our case search queries and tweets. Since there are only a
few categories, one-hot encoding is used to denote the pres-
ence or absence of a certain category in user search queries.
For each sleep or exercise event for a (user, day) tuple, we
generate an information feature vector for that day by aver-
aging over all such 12-dimension vectors for that user on that
day before the actual sleep or exercise event. We account for
the temporal nature of information features by expanding the
location feature vector to 13 dimensions where the 13th coor-
dinate is the average of all visit offset times of the user over
all searches for that day before the sleep or exercise event
takes place. Similarly, we add a 14th element to distinguish
the case that the query does not fall into any of the above
categories from the case that the user does not search at all.
This is proverbially like utilizing the “Others” class in multi-
class classification problems to account for patterns that do
not match any of our pre-defined categories.

3.2.3 Social media features

Studies have shown that social data such as tweets are a rich
source of information about people and their health trends
[10]. They can also provide interesting insights into user
behavior [56]. We do not have a way to identify a Microsoft
Band user in the Twitter data and so do not use these data
to directly build individual-level social features. Instead, we
use location features to tag a user’s event (sleep or exercise)
with the appropriate textual features extracted from all tweets
at that location, and use the English Twitter data to generate
textual features for the locations users have ever visited.

Since Twitter posts and Bing queries are typically short
and potentially noisy, following [55],we featurize this textual
data by extracting features based on a hand-crafted glos-
sary of topics. For terms related to food, we used the terms

extracted in [57]. Positive and negative sentiments are also
important in health analysis [58], and we use the glossary
curated by [59] to extract sentiment from the contents. For
the other categories, listed in “Aggregated Social” and “Infor-
mation” portion of Table 1, we use contextual words for
topical vocabulary games.5 Each category captures words
that appear in the associated context. For example, the busi-
ness category has words commonly occurring in finance,
economics, money, etc. Inspired by [60,61], the topics are
hand-crafted based on subjects that might affect sleep and
exercise such as fitness, travel, celebration. Table 3 summa-
rizes the categories of our textual glossary. Note that there are
12 categories here. For each tweet/query, we count related
terms from each category and normalize by query/tweet
length andglossary size and averageover all the queryvectors
of that day or tweets of that location. Similarly, for locations
with no social features, we introduce a 13th feature. By using
a glossary of topics or specified locations for extracting fea-
tures, a natural question is whether we only detect things we
know to look for a priori, like the effect of food consumption
on exercise or effect of travel-related locations on sleep.

Here,we assume that the feature is extracted from the loca-
tion, not the person. The hypothesis is that visiting a location
with positive/negative emotion affects sleep and this is vali-
dated by the observed statistically significant correlation.We
do not claim that we are considering the effect of the pos-
itive/negative sentiment of the user on their sleep/exercise
quality.

We acknowledge that these features are noisy. For exam-
ple, a visit to a location labeled as a food court is assumed
to be associated with eating, but it could be due to using a
restroom or going to a different store or office in the build-
ing. A related issue can occur for social features where the
positive or negative feeling of an individual differs from the

5 https://myvocabulary.com/.
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Table 4 Normalizing constants for features and targets

Variable Const Variable Const Variable Const Variable Const Variable Const

Age 11.5 Height 3.2 Weight 42 CalrsBrnd 459 SlpStrtHour 2.2

Steps taken 3914 Loc-Food 0.57 Loc-Retail 0.49 Loc-Health 0.26 Loc-Entertain 0.15

Loc-Banking 0.18 Loc-education 0.29 Loc-Sprots 0.19 Loc-Beauty 0.14 Loc-Travel 0.22

Loc-Service 0.29 Loc-Offset 4625 Soc-Food 0.05 Soc-Exercise 0.04 Soc-Health 0.03

Soc-Celebrate 0.05 Soc-Arts 0.03 Soc-Police 0.04 Soc-Religious 0.03 Soc-Science 0.02

Soc-Tech 0.03 Soc-Business 0.04 Soc-Positive 0.05 Soc-Negative 0.04 Soc-No-Twt 0.4

Inf-Food 0.12 Inf-Exercise 0.11 Inf-Health 0.09 Inf-Celebrate 0.11 Inf-Arts 0.08

Inf-Police 0.10 Inf-Religious 0.07 Inf-Science 0.08 Inf-Tech 0.12 Inf-Business 0.11

Inf-Positive 0.08 Inf-Negative 0.07 Inf-No-Bing 0.50 Inf-Offset 17,685 TimeToFallAsleep 791

NumOfWakeups 2.44 SleepEfficiency 6.05 RestHeartRate 3.65 ExerciseIntensity 2.89

general public visiting a location. We believe that this uncer-
tainty is reflected in the p-values and confidence intervals in
regression. Furthermore, a small coefficient of a feature may
be attributed to this noise. The more noisy the data, the less
apparent the effects will be. Therefore, the results associated
to these features (especially location and social features) are
one-sided results, i.e., a statistically significant correlation
(either positive or negative) shows a relation and is credible,
however, lack of correlation may be due to noise. While we
believe that the current features still lead to interpretable and
significant results and are sufficient, we encourage follow-up
work on de-noising, more feature engineering and curation
to find yet more credible and meaningful results.

To be able to conduct cross-target and cross-feature anal-
ysis and comparisons, we standardize all feature and target
values across the full dataset. They are normalized to have
mean and standard deviation equal to zero and one, respec-
tively. The normalizer coefficients can be found in Table 4.
The regression coefficients can be multiplied by the val-
ues in this table to be transformed back to an interpretable
scale in accordance with Table 1. We decided to trans-
form the data for various reasons. First, recall that statistical
significance tests assume that the modeling errors are uncor-
related and uniform, hence their variances do not vary with
the effects being modeled. While least squares estimator
(linear regression fitting) is unbiased in the presence of het-
eroscedasticity, it is inefficient because the true variance and
covariance are underestimated. For example, in testing for
differences between subpopulations (e.g., male and female
in our case), standard tests assume that variances within
groups are equal. Presence of heteroscedasticity entails the
solution of ordinary least squares is not the “best linear
unbiased estimator” and neither is its variance. Addition-
ally, it provides us with a way to easily cross-compare the
features and their contribution in a unified view given that
we know their scaling and normalization factors. The same
argument holds for the causal analysis even with higher

priority as the confounder intervention in correlation is unob-
served.

For the statistical inference, we used a simple linear
regression model and fit the coefficients using ordinary least
squares. Using t-test, a p-value is extracted to analyze the
confidence interval for the inferred parameters. This provides
us with a measure to express our certainty in the linear cor-
relation observed between the targets and values. For the
implementation details, we refer the reader to the standard
scikit learn package in python for the regression analysis [62]
that we leveraged in our research. We discuss findings and
insights only on feature-target pairs that have a statistically
significant correlation. In what follows, whenever we use
the term “significance” it implies a statistical significance
of p ≤ 0.05. The hypothesis under test was if the feature
has any linear relationship (either positive or negative) with
the target variable or not. β is used to denote the regression
coefficient corresponding to feature-target pair in the multi-
ple regression fitted via ordinary least squares minimization.

4 Results

In this section, we first present the results of an exploratory
analysis. We show how multiple regression results in some
insights from data. Then, we apply a stratified propensity
score analysis as a causal inference method to analyze this
rich data set. Finally, we build predictive models and explore
the ways that features can contribute to model performance.

4.1 Sleep and exercise analysis

We focus our analysis on the relationship between people’s
activities throughout the day, including their location traces
and web searches and the target variables capturing differ-
ent aspects of sleep and exercise quality. Figure 1 shows
the distribution of our target variables, as well as their cor-
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Fig. 1 Exploration of target variables with variation of basic information. Row 1: time to fall asleep; Row 2: number of wakeups; Row 3: sleep
efficiency percentage; Row 4: resting heart rate; Row 5: exercise intensity. a Distribution, b age, c day of week, d weight, e height

relations with basic attributes of users and the day of the
week. The influence of age and weight on sleep quality and
exercise intensity is well-studied in the literature [45,46] and
confirms our results. These figures show that the popula-
tion sample of this study has similar properties as samples
used in studies of the more traditional style (e.g., without
social data). They also show the general trends and proper-
ties of these quantities at a glance and provide a quick way
to get a sense of the data. As an example, let us consider
Fig. 1c. Number of wakeups for females shows a significant
increase during weekends compared to those for males. This
alone may mean little while we study all aspect of this phe-
nomena, but it can serve as an starting point for researchers
to dive deeper into the underlying reasons. That additional
research may lead to interesting and unknown facts about
sleep habits of females and males on weekdays and week-
ends. Next, we will study correlation in a multiple linear
regression models described in the previous section. The

goal is to find the strength of the relation (coefficient) and
a confidence score (p-value) to understand how features con-
tribute to explaining the variability in the target variable.
Figures 2 and 3 contain the full results of our regression
analysis. Each entry in the matrix comes with the pair’s
coefficient followed with the p-value in parentheses. The sta-
tistically significant correlations are written in bold. Red and
blue colors are used to indicate positive and negative correla-
tions, respectively, while the strength of the color highlights
the magnitude of the correlation. The matrix will serve as
a reference for readers and researchers in this field. Ana-
lyzing all feature-target pairs is out of scope of the current
study. The following contains a discussion on statistically
significant correlations we found in our analysis and their
connection to findings in the literature of sleep and exercise
quality.

123



International Journal of Data Science and Analytics

Fig. 2 All coefficients and p-values: basic and daily features

4.1.1 Time to fall asleep

Our analysis finds that exercise is usually correlated with
a faster time to fall asleep that day, including steps (β =
−.022) and bicycling (β = −.024), but not including gym
workouts (β = .02). Note that coefficients are computed
when all features are normalized to have mean 0 and vari-
ance 1. We find that people who visit food-related locations
take longer to fall asleep (β = .004), indicating a rela-
tionship between restaurant food and sleep quality. More
interestingly, perhaps, we find that those who visit banking-
related locations take longer to fall asleep (β = .005), where
bank visits may be acting as possible proxies for positive
or negative life events causing stress (e.g., financial worries
around life transitions). Burgard and colleagues [13] studied
connections between common workplace experiences and
sleep quality. Given the potential impact of home finances
on sleep quality (similar to the effects of spousal-/partner-
/child-related issues), they accounted for financial factors in
their analysis and considered their interference with work-
place issues affecting sleep.

Moreover, the closer a location visit is to bedtime, the
longer it takes to fall asleep (β = −.012). Among the
information features, we observe that users with no web
searches before sleep usually take less time to fall asleep
(β = −0.023), and the more time that elapses from the final
search to bedtime, the quicker they fall asleep (β = −0.23).

This is consistent with findings that the blue light emitted
by devices disturbs sleep quality [63] and the importance of
“winding down” before bedtime.

4.1.2 Number of wakeups

Our analysis finds that exercise hasmixed effects on the num-
ber of wakeups. While taking more steps is correlated with
fewer wakeups that day (β = −.012), running is correlated
with more wakeups (β = .019) and, overall, burning more
calories is correlated with more wakeups (β = .020). Inter-
estingly, the medical and clinical literature has also reported
mixed effects regarding the impact of exercise on sleep.
While chronic exercise is believed to increase sleep qual-
ity [64], the acute and even sometimes chronic exercise has
no consistent effect on sleep. The authors in [65] identi-
fied many factors contributing to the inconsistent effects of
exercise on sleep. In theirmeta-analysis, they discussedmod-
erator variables such as fitness of subjects, exercise heat load,
duration and time of day, and subjects light exposure and
sleep schedule. They concluded that studies that do not con-
trol for these factors will not give consistent results. Among
people who visit food (β = .0046), retail (β = .0045),
sports (β = .0033) locations, we observe more wakeups
that day. This result is confirmed by previous work, which
has shown that consuming food close to bedtime is nega-
tively associated with sleep quality [12]. Furthermore, the
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Fig. 3 All coefficients and p-values: location, social, and information features

closer a location visit is to bedtime, the more wakeups a
person experiences (β = −.009), congruent with our find-
ings for time to fall asleep. Our aggregated social features
reinforce our location visit features with a positive correla-
tion between visiting locations with food and business terms
(β = .006 and β = .005). In our informational feature set,
we see again that food-related web searches are correlated
with more wakeups (β = .009). We also see, however, that
searches for religious and spiritual terms are correlated with
more wakeups (β = .005). One possible explanation is that
people are performing such searches more frequently when
they are experiencing some stressful events, such as a death
or sickness in the family; or that such searches may be cor-
related with religious activities such as waking up for daily
prayers or church attendance. As before, not searching before
bedtime, and increased time between the last web search and
bedtime has a negative correlation with the number of wake-
ups (β = −.006 and β = −.016).

4.1.3 Sleep efficiency percentage

We find that exercise has a positive correlation with more
efficient sleep, including taking more steps (β = .005), run-
ning (β = .017), biking (β = .021) and gym workouts
(β = .019). Clinical studies (e.g., [64]) have shown that peo-
ple who exercise will sleep more, which leads to an increase
in the proportion of being asleep over the time in bed. We
find that people who visit retail stores (β = −.004) and
travel locations (e.g., airports) (β = −.004) have less effi-
cient sleep. Researchers have found physiological evidence
on sleep difficulty when traveling and visiting new locations
[14]. The closer a location visit is to bedtime, the lower the
sleep efficiency (β = .01). Food-related searches are corre-
lated with poorer sleep efficiency (β = −.006), and offset
between the last search and bedtime is correlated with more
efficient sleep (β = .009).
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4.1.4 Resting heart rate

In our data, there is a negative correlation between heart rate
and exercise including running (β = −.04), biking (β =
−.12), and gym workout (β = −.09), and steps taken (β =
−.01), as reported in the literature [66]: those who take more
steps, run, bike, or workout have better heart rates. We find
positive correlation of resting heart rate with people who
visit food (β = .01), travel (β = .011), and service oriented
locations (β = .003), possibly due to restaurant food and
disruptions associated with travel.

Among our aggregated social features, we find that peo-
ple who visit locations with food-related terms have higher
resting heart rates (β = .007), as do people who visit loca-
tions with religion-related terms (β = .005). Interestingly,
people who visit locations with positive-sentiment terms are
more likely to have a lower resting heart rate (β = . − 007).
In our data, we also see that people who search for religion
(β = −.005) and technology-related (β = −.003) terms
are associated with lower resting heart rates. Understanding
the underlying causes of this correlation will require further
study.

4.1.5 Exercise intensity

The quality of the previous night’s sleep has no statistically
significant effect on exercise intensity, with the exception of
the hour of sleep (β = −0.02): people with late bedtimes are
less likely to have intensive exercise the following day. Tired-
ness has been shown to hinder serious exercise [67]. Location
features contribute to exercise intensity significantly only via
entertainment features with positive correlation (β = .005):
those who visit entertainment and recreation centers are the
ones who exercise more intensively. For social features, we
observe positive and significant correlation of positive senti-
ments with exercise intensity (β = .005): those who visit a
locationwith generally positive sentiment terms usually have
a more intensive exercise afterward. This is in accordance
with [68], which found a significant positive correlation
between positive emotions and amount of physical activ-
ity. Among our informational features, we observe that the
amount of food (β = −.005) and celebration (β = −.004)
searches are negatively correlated with exercise intensity.

Overall, our findings indicate that web search traces
and location traces do capture information about individual
behaviors that are relevant to sleep quality and exercise inten-
sity. While it is generally accepted that a person’s lifestyle
(foodhabits, for example) anddisruptive events (travel, finan-
cial worries, celebrations) can have a significant effect on
that person’s health, today’s automated fitness/sleep devices
do not capture and take into account such information. Our
analysis demonstrates that web search and location traces
provide a possible avenue for capturing such information,

providing better insights for individuals, health practition-
ers, and device manufacturers.

4.2 Causal inference analysis

The regression coefficients presented in Sect. 4.1 capture
correlational relationships between our features and target
variables. To more strongly establish possible causal rela-
tionships, we use a stratified propensity score analysis, one
of a family of conditioning inference methods in the poten-
tial outcomes framework [69,70]. While we do not believe
we can achieve the ideal identification of causal relation-
ships, these methods are effective at reducing biases due to
observed confounding factors.

Ideally, to determine the effect of some action, we would
be able to observe and compare two potential outcomes for
an individual i : an outcome Y T=1

i , representing the outcome
after a person takes a target action T , and another Y T=0

i , rep-
resenting the outcome after the same person in an identical
context does not take the action. The causal effect of T is
then Y T=1

i − Y T=0
i . Of course, it is impossible to observe

both Y T=1
i and Y T=0

i . Thus, the problem of causal inference
is a problem of missing data, and causal inference techniques
attempt to address it by estimating themissing counterfactual
outcomes based on the outcomes of other, similar individ-
uals. The challenge is to estimate these missing outcomes
correctly despite the potentially confounding presence of
covariates that influence both treatment likelihood and out-
comes in observational (non-experimental) data.

Stratified propensity score analysis attempts to accom-
plish this through post-hoc identification of comparable
subgroups within the observational data. Conceptually, the
idea is to find pairs (generalizing to groups) of individu-
als in the observational data who are statistically similar to
one another but where one has received a treatment and the
other has not. Individuals with similar propensity scores are
grouped into strata and, in aggregate, these individuals are
likely to have similar covariates, allowing us to isolate and
estimate the effects of the treatment itself [21].

The results of our re-analysis of the key relationships from
Sect. 4.1 over 4 months of data are shown in Table 5. The
set of covariates (features) are the same as in Sect. 4.1. We
see, for example, that exercise reduced the time to fall asleep
for individuals. The relative treatment effect (RTE) of 0.92
means that for that group of individuals, exercising led to a
time to fall asleep that was 92% of the time taken by those
in the control group; therefore, the treatment had an impact
on this outcome variable. Other rows in this table should be
interpreted similarly.

We note that we show, for brevity, the RTE for a few pairs
of targets and treatments; however, our analysis confirms the
correlations shown by the regression coefficients for all rel-
evant target-feature combinations studied.
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Table 5 Causal inference
analysis results

Outcome Treatment (T) # Users RTE Outcome (T = 1) Outcome (T = 0)

Time to fall asleep Exercise 21,023 0.92 738.3 s 802.5 s

Number of wakeups Exercise 21,023 0.94 5.2 5.5

Exercise intensity Good sleep 22,323 1.01 15.6 cal/m 14.95 cal/m

Time to fall asleep Web search 19,768 1.07 729.8 s 682.1 s

Time to fall asleep Banking location 19,987 1.05 741.8 s 706.5 s

Exercise intensity Food location 19,801 0.99 15.45 cal/m 15.61 cal/m

Fig. 4 Predictive performance of linear regression model (reg) compared to three baselines; random (rnd), the previous target value of the user
(prv), the average of all past target values of the user (avg)

4.3 Sleep and exercise prediction

We were interested in whether the signals described thus far
in the paper could be used to develop predictive models for
sleep and exercise, for applications including early interven-
tion. We trained linear regression models to predict sleep
or exercise quality targets and investigate factors that affect
the accuracy of our predictions. All the following experi-
ments are run 10 times and the root mean squared error
(RMSE) is used to report the accuracy of the prediction.
Three baselines are used to compare the predictive perfor-
mance of the linear regression model. Given target values
yt (where t is a discrete variable that indexes time) and
corresponding predictions ypredt , for baseline rnd we have:
ypredt ∼ N (μ, σ 2), whereμ and σ 2 are the target’smean and
variance, respectively. Baseline prv ypredt = yt−1 is basi-
cally the most recent value, and finally we set ypredt = y<t

for baseline avg, where the overline denotes an average over
all past target values. To train the linear regression model
on 500 and 300 K randomly selected sleep and exercise
events, respectively, based on a variety of features as pre-
dictors and test it on the remaining records which have been
held out.

4.3.1 Model performance

Figure 4 compares the performance of the regression tech-
nique (reg) to the baselines rnd, prv, and avg. The
regression model reg has the best performance with avg
being the second best; moreover, avg is always better than
prv except when the target is exercise intensity. It seems

that exercise intensity is more temporally local than other
targets: The previous day’s exercise intensity is a better pre-
dictor than the average value of past exercises of the user.
This is especially true when users gradually improve their
exercise. As expected, rnd performs worst. Translating the
numbers back to the unnormalized measures, the RMSE of
our linear regression for time to fall asleep is around 13 min,
for number of wakeups the RMSE is 2.4, for sleep efficiency
percentage is almost 6, for resting heart rate it is 3.6 beats
per second, and finally for exercise intensity RMSE is around
2.8 calories per minute. Linear regression is only used as a
demonstration and investigating more advanced regression
methods such as support vector and decision-tree regression
remain as future work.

4.3.2 Predictive features

Figure 5 demonstrates the predictive performance of the lin-
ear regression model by incorporating different feature sets.
Not surprisingly, all consistently performs the best; daily
feature act is the second best. The considerable gap between
these two and the rest hints at the fact that most daily fea-
tures (day of week, hour of event, steps taken, etc.) are good
predictors of our target variables. In the event that data collec-
tion is limited and not all features are available, good model
performance can be achieved by priority daily and location
features. This result could be of direct interest to companies
investing on health trackers to reduce the cost of the wearable
devices by incorporating the necessary sensors delivering the
required accuracy at a minimal cost.
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Fig. 5 Predictive performance of regression model by incorporating different feature sets: basic features (bsc) only, daily only (act), location only
(loc), information feature only (inf), social feature only (soc), and all 5 feature sets together (all)

Fig. 6 Performance of linear model

4.3.3 Individual-data scale and prediction quality

One might expect that if we had more event records per user
then we might better predict sleep or exercise quality. To test
this, we first select a threshold for the number of sleep or
exercise events, and exclude users with fewer events. Then
we trained on a randomly chosen 80% of these data and test
on the remaining 20%. We repeat this procedure 10 times
and take the average.

Figure 6 demonstrates how the performance improves
as the threshold increases. Time to fall asleep, efficiency
percentage, and exercise intensity show improvement for
prediction. However, we find that the number of wakeups
and resting heart rate are not easily predictable even with
increased number of data. This is an actionable insight for
health application developers. Users and health practitioners
should be careful about using the prediction results on these
two measures relying on the abundance of historical data.

4.3.4 Personalized prediction models

To investigate personalized predictive models, we again put
a lower bound on the number of sleep or exercise events, and
filter users and data with fewer records. A per-person predic-
tive model is built based on randomly selected 80% training
data and is evaluated on the remaining 20% of the data,
which was held out for testing. This procedure is repeated
10 times and the mean and standard deviation are plotted
with respect to the threshold (see Fig. 7). We find that perfor-
mance degrades with the application of personalizedmodels.
The explanation is quite simple: a limited number of events
is insufficient to build a reliable predictive model.

Fig. 7 Performance of personalized linear model when we filter out
users with fewer (than a threshold) sleep/exercise events plotted with
respect to varying threshold

The combination of these two experiments suggests that
an ideal model for predicting sleep/exercise would be hier-
archical; the top layer contains population parameters. Then,
for each user, we build a personalized model. This is an inter-
esting direction for futurework. The implication for our three
potential target audiences is that prediction of sleep quality
and exercise intensity requires leveraging input from popu-
lation behavior.

4.3.5 Early prediction

Practically speaking, one might be curious how the model
works when we predict based on information available a few
hours before sleep/exercise. If we only predict the event qual-
ity right before the event is happening (when we observe the
complete data), then it might be too late to intervene and
improve the quality. If we are able to predict a bad sleep in
advance, e.g., a couple of hours before sleep, a system could
intervene and recommend preventative action. Recall that
finding the best intervention is not the purpose of this paper
and is another interesting line of future work. A second com-
pelling reason for determining the performance of models
that have access only to “stale” information is that in most
practical production systems, there is a time-lag between the
actual event and when it becomes available for use in pro-
duction systems.

With the above question and the two motivations in mind,
we design the following experiment: We pick a time which
the event is going to be predicted that soon and call it predic-
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Fig. 8 Effect of prediction lead time on performance

tion lead time.We train themodel based on randomly selected
500 and 300 K events for sleep and exercise, respectively.
Then for the remaining test events, we use the information
available only up to that threshold before the event and eval-
uate the performance. This procedure is run 10 times with
random training/testing division and the results are reported
in Fig. 8 by varying the lead time from 14 h until the moment
of the event.

We observe that the performance of resting heart rate
and exercise intensity is dependent on the lead time perhaps
because they are local in time, e.g., the occurrence of a simple
event, such as receiving bad news, consuming an alchoholic
drink, or late-night exercise, might increase it easily. The
performance of other tasks is affected to a lesser extent.
Predictions made a couple of hours before are still reliable
and could provide helpful information. However, for early
prediction of resting heart rate and exercise intensity neces-
sary precautions need to be devised considering the accuracy
required by practitioners or the device.

5 Conclusion

In this study, we have demonstrated how digital traces of
individual behaviors and lifestyles—captured through web
search logs, digital assistants, and social media that are not
conventionally associated with health studies—can be linked
with fitness device data. The result is a new source of quan-
titative insights into the links between individual behaviors,
habits and stress factors and individuals’ sleep and exercise
quality. In this section, we discuss the implications of our
work for individuals, health practitioners, and health track-
ing systems. We also discuss the limitations of the current
study and finally suggest some directions for future work.

6 Limitations

We acknowledge several limitations. The characteristics of
the study participants, e.g., those who can afford to own and
consistently wear a fitness band limit the generalizability of

our findings. Furthermore, as discussed in the data section,
most of our users aremale and the data are collected during an
8-month interval which excludes the summer. We acknowl-
edge that this limitation might bias the generalizablity of
the results. Nonetheless, our main claim, demonstrating the
advantages of data triangulation with online and social data
sources, remains valid. Besides the detailed analysis of the
causal inference section, the cross-sectional nature and the
regression analysis of the study precludes conclusions about
the causal relationship between sleep and exercise quality
to the contextual information. Furthermore, we used linear
regression to obtain early insights into data, which is a simple
method unable to capture complex, nonlinear relationships
that may exist.

Also, it is worth discussing the way we treat outliers and
prune the dataset. The outliers removed were not simply
extreme points but rather were clearly wrong input values
or conceptually not sleep or exercise. For example, a sleep
under 0.5 h is not regarded as a sleep event and considering
it biases the outcome for short sleep durations (e.g., < 5 h).
As another example, there are records in the data of people
reporting an age of 200, which are clearly erroneous inputs.
Assuming this to be the result of an inadvertent typing error,
including such an example in our training data simply adds
noise to the age variable. We refer the reader to the variance
of the y-values for low and high x-values in Fig. 1. Such vari-
ances make training data noisy, and result in poor predictions
from our models. Filtering these erroneous examples is com-
mon practice in the literature for sleep analysis (c.f. [34]).

In our analysis, we relied on the sleep detection of the
Band device, which utilizes proprietary algorithms to detect
sleep. These algorithms are not publicly available, so they,
or validation studies thereof, cannot be cited in this paper.
We acknowledge that this limits the generalizablity and the
impact of the work.

7 Discussion

The potential audience of the current work is three groups:
individuals, health practitioners and clinicians, and develop-
ers of health tracking systems andwearable device designers.

Individuals can get preliminary insight into how their
sleep and exercise quality are related to basic features. There
are many such insights. For example, it may help them to
understand how biking or dining out is correlated with their
sleep habits. Interest in celebrations, festivals, carnivals, etc.
inferred from search activity suggests that peoplemight exer-
cise less efficiently. The scale of our study, both in terms of
the number of users and the fmarrnumber of sleep/exercise
events, allows health practitioners to perform reliable anal-
ysis resulting in credible insights. The predictive analysis
makes it possible for the practitioners not only to forecast
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patients’ sleep and exercise quality, but also combined with
causal analysis it allows them todesign effective, timely inter-
ventions to help their patients.

The third group which is possibly impacted by the results
of our paper is the group of manufacturers and developers
of health tracking devices and systems. Combining data to
analyze and explore target variables show how the quality
measures are distributed and how different features con-
tribute to them, e.g., if an application provides a report on
exercise intensity of a married couple, it should consider
the differences that arise due to gender that emerge clearly
from our data analysis. The report should consider these
important factors, e.g., by normalizing individual measures
based on statistics of the population. The other important
area that applications can enter is trying to predict the qual-
ity of sleep/exercise. The data triangulation equips themwith
many interesting features with interpretable relationships to
the target variable. The application can alert the user or their
care team to take necessary action. Coupled with our causal
inference, the application can even suggest preventive actions
that lead to better overall outcomes. Additionally, our frame-
work helps developers determine how to increase prediction
accuracy and how early they can predict low-quality exercise
or sleep and potentially intervene. Furthermore, we showed
that for some quality measures, the abundance of historical
data per user is not all that helpful, but for others, the accu-
racy of prediction can be significantly improved by collecting
more data from users. The accuracy of regression models
derived here serves as a benchmark for building future learn-
ing models with desired accuracies. Conversely, our analysis
indicates that daily and location features are most relevant
for prediction and should be considered if sensor usage is
limited. Finally, our findings call for manufacturers to incor-
porate information and location traces in their health trackers
and analyzers to better serve individuals’ health needs. As
people’s interactions withmobile devices and online services
continue to capture amore comprehensive view of their envi-
ronment and actions, we believe that there is a significant
opportunity to link such digital traces to health and fitness
data and draw deep insights on the health influence of behav-
iors, habits, and stressors. Immediate future work includes
more granular modeling of individual behaviors and envi-
ronmental factors.
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