Secure Traceroute to Detect Faulty or Malicious Routing

Venkat Padmanabhan and Dan Simon
Microsoft Research

HotNets-I Workshop
October 2002
Motivation

• Networks are vulnerable to router malfunction
 - faults (bugs, misconfigurations)
 - malicious misbehavior
• What can a malfunctioning router do?
 - compromise routing by fabricating, modifying, or dropping route advertisements
 - disrupt data forwarding by dropping or delaying packets
• This is a problem in various settings
 - Internet
 - P2P/overlay networks
 - multi-hop wireless networks
What can be done about it?

• Flood routing information
 - e.g., sabotage-free routing [Per’88]
 - robust flooding of link-state packets & public keys
 - end hosts construct digitally signed source routes
 - switch to alternate source route upon complaints
 - scaling issues, blind failover could be inefficient

• Authenticate route advertisements
 - e.g., Secure-BGP [KLS’00], SEAD [HJP ’02]
 - prevents spoofing attacks
 - but authenticated info could be wrong...
 - ...and router could drop packets anyway
What can be done about it?

- **Central repository for checking consistency of routing info**
 - e.g., Routing Arbiter (MERIT/ISI)
 - can catch many inadvertent errors
 - but malicious router can still create problems for routes it is “entitled” to advertise
 - ISPs may be reluctant to share policy info
- **Check if packets are forwarded properly**
 - e.g., “watchdog” technique [MGLB’00]
 - assumes that onward transmissions can be heard
 - may not hold even in a wireless setting (for instance, due to directional antennae)
In summary...

• The problem is twofold
 - ensuring the authenticity and consistency of routing info
 • less important when attacks are rare
 • focus of much of the prior work
 - detecting failure of a node to forward packets
 • important when dealing with sophisticated attacks, regardless of their frequency
 • focus of our work
Proposed Approach

• Assumptions
 - single-path routing
 - all nodes are individually globally addressable

• Multiple phases
 - complaint
 - complaint evaluation
 - problem investigation \(\rightarrow\) secure traceroute
 - problem correction
Secure Traceroute

• Normal traceroute useful for identifying bugs or misconfigurations
• But a malicious router could intercept and alter traceroute traffic to give an arbitrary misleading impression
 - it could selectively let traceroute traffic through
 - it could fake responses to frame an innocent router
• Secure traceroute prevents such disruption by
 - verifying the origin of responses
 - validating the correctness of responses
 - preventing special treatment of traceroute traffic
Secure Traceroute Operation

• Tracing can be initiated by any node
• Proceeds hop-by-hop:
 - tracing node establishes secret key with current node
 • ensures secure and authenticated communication
 - tracing node specifies signature of packets to be treated as traceroute packets
 - current node returns “proof” of receipt of traceroute packets
 - current node also returns address of next-hop router
• Two possible outcomes
 - either a complete route is found, or
 - a faulty link is found
R2 initiates secure traceroute

link flagged as faulty

<Check S₃>
<Check S₄>
<Check S₅>

<OK, R₄>
<OK, R₅>

<Not OK>
Authenticating Secure Traceroute

• Need to do a secure key exchange to set up an encrypted and authenticated channel
• Several alternatives:
 - a PKI for routers (as in S-BGP)
 - PGP-style “Web of trust” techniques
 - trusted “key servers”
 - route key exchange via multiple overlay paths
Validating Secure Traceroute Response

• How does traced node prove that it has received the designated traceroute packets?

• Several alternatives:
 - return hash of (certain fields in) all packets
 • no tolerance for packet loss
 - return separate hash for each group of packets
 • probabilistic tolerance for packet loss
 - threshold secret-sharing scheme [Sha’79]
 • allows precise control over tolerance for packet loss
 • but requires packets to be marked
 • quite efficient (e.g., polynomial interpolation)
Using Secure Traceroute

- Complaint
- Complaint evaluation
- Problem investigation
- Problem correction
Complaint & Complaint Evaluation

• Complaint
 - end host experiencing a severe performance problem sets “complaint bit”
 - we assume that spoofing is solved by other means

• Complaint evaluation
 - if complaint level is high enough, a router may choose to investigate
 - best for a router closest to the problem to investigate
 - so each router waits for a random interval based on how far downstream it thinks it is
Investigation

• First do normal traceroute
 - relatively inexpensive
 - effective for the (common) case of failure
• Then do secure traceroute
 - first try to confirm result of normal traceroute by starting with “successful” node closest to destination
 - if normal traceroute found to be misleading, then start at the first downstream node and go all the way
• What if secure traceroute partially deployed?
 - can still identify the subsegment containing the faulty link
Problem Correction

- Corrective action depends on the context
- Several possibilities:
 - route around faulty link
 - source routing makes this easy to do
 - inform a human operator
Impact of Routing Asymmetry

- Impact on end-host complaint process
 - is the problem in the A→B direction, B→A direction, or both?
 - steady stream of bidirectional traffic can help disambiguate unless
 - there is a problem in both direction
 - problem precedes communication between A and B
 - solution: host waits for a random duration and then initiates the complaint process anyway
Impact of Routing Asymmetry

• Impact on secure traceroute
 - makes it hard for investigating router R to check if downstream router D is receiving packets
 • network problems in reverse direction can disrupt key exchange and/or secure traceroute response
 - D can try reverse of forward route to try and reach R
 - in the worst case, R would incorrectly deduce that the problem is at or around D
Attacks on Secure Traceroute

• **Attack**: malicious router can behave correctly when it detects secure traceroute attempts

• **Solution**: simulate secure traceroute activity from time to time

• **Attack**: pair of malicious routers can frame a link in between them
 - upstream one disrupts key exchanges
 - downstream one disrupts traffic

• **Solution**: “onion routing” style encryption of key exchange
blocks key exchange between R_2 and R_5

falsely suspected link

blocks traffic to D
Attacks on Secure Traceroute

- **Attack**: malicious router(s) can lead secure traceroute astray down a path of bogus routers
- **Solution**: persistent application of a succession of secure traceroutes can eliminate bad links one by one
- **Attack**: attacker can generate bogus key exchange messages
- **Solution**: respond to a key exchange message with a “client puzzle”
confederates of R_4 or fictitious routers created by R_4
Summary

• There are two aspects to routing security
 - securing the routing protocol
 - securing data forwarding
• Secure traceroute enables verification of the correct operation of data forwarding
• Open issues:
 - performance attacks
 - problem correction:
 • similarities to load adaptive routing
 - multi-path routing