Abstract

Several special-purpose systems have been proposed to analyze programs in JavaScript and other dynamically typed languages. However, none of these prior systems support automated, modular verification for both higher-order and stateful features.

This paper proposes a new refinement of the state monad, the Dijkstra state monad, as a way of structuring specifications for higher-order, stateful programs. Relying on a type inference algorithm for the Dijkstra monad, we obtain higher-order verification conditions (VCs) for programs that use a dynamically typed higher-order store. Via a novel encoding, we show that these higher-order VCs can be discharged by an off-the-shelf automated SMT solver.

We put the Dijkstra monad to use by building a tool chain to verify JavaScript programs. Our tool chain begins by translating JavaScript programs to \(F^\star \), a dependently typed dialect of ML. Within \(F^\star \), we define a library for dynamic typing idioms based on the Dijkstra monad. We then infer and solve precise verification conditions for translated JavaScript clients of this library.

We report on our experience using this tool chain to verify a collection of web browser extensions for the absence of JavaScript runtime errors. Despite some limitations of our work (e.g., we do not model asynchrony), we conclude that the Dijkstra monadic approach is a promising and powerful way to structure the verification of JavaScript programs within a general purpose dependently typed programming language.

1. Introduction

For some years now, JavaScript has been the language of choice for client-side web programming. Recent trends indicate that it is also poised to be used widely outside the confines of a web browser, e.g., for Metro applications in Windows 8. A chief characteristic of the language is its highly dynamic nature, which makes it easy to use, at least for small programs. However, the dynamism also makes program verification for JavaScript a significant challenge.

1.1 Challenges with verifying JavaScript programs

A first challenge in verifying JavaScript programs is identifying its semantics. JavaScript involves many subtle features, including prototype hierarchies, unusual scoping rules, implicit parameters and conversions. Guha et al. (2010) provide a useful semantics for JavaScript by showing how to desugar JavaScript into a simpler, dynamically typed lambda calculus called \(\text{JS} \). Closely following \(\text{JS} \), we give a semantics to JavaScript by translating it to \(J^\star \), a subset of a dialect of ML called \(F^\star \) (Swamy et al. 2011).

To illustrate some key features of JavaScript’s semantics, we present the programs in Figure 1. The JavaScript program at the top is translated to the \(J^\star \) program shown below. The \(J^\star \) program is in the ML-like syntax of \(F^\star \), and is typed against an \(F^\star \) library \(\text{JSPrims} \) that defines a type \(\text{dyn} \) for dynamically typed values, with constructors like \(\text{Str} \), \(\text{Int} \), and \(\text{Fun} \) to inject values into the \(\text{dyn} \) type. \(\text{JSPrims} \) also provides functions like \(\text{allocObject} \), \(\text{select} \), and \(\text{update} \) to create heap-allocated objects and to read and modify their fields.

```
1 function foo(x) { this.g = x.f + 1; }
2 foo({f:0});
3 foo = 17;
```

```
1 let foo this args = let x = select args "0" in
2 update this "g" (plus (select x "f") (Int 1)) in
3 update global "foo" (Fun foo);
4 let args = let x = update (allocObject()) "f" (Int 0) in
5 update (allocObject()) "0" x in
6 apply (select global "foo") global args;
7 update global "foo" (Int 17)
```

Figure 1. A JavaScript program (top) and its translation to \(J^\star \)

The JavaScript function \(\text{foo} \) is translated to the let-bound \(\lambda \)-term \(\text{foo} \) in \(J^\star \), with two arguments: \(\text{this} \), corresponding to the implicit \(\text{this} \) parameter in JavaScript, and an argument \(\text{args} \), an object containing all the (variable number of) arguments that a JavaScript function may receive. Just like in JavaScript itself, objects in \(J^\star \) are dictionaries indexed by string-typed keys, rather than containing statically known field names. In the body of \(\text{foo} \), the \(x \) argument corresponds to the value stored at the key "0" in the \(\text{args} \) object.

At line 3 of the \(J^\star \) program, the function \(\text{foo} \) is stored in the \(\text{global} \) object (an implicit object in JavaScript) at the key "\(\text{foo} \)". At line 6 we see that a function call proceeds by reading a value out of the \(\text{global} \) object, calling the \(\text{apply} \) library function, which checks that its first argument is a \(\text{Fun} \), and then applies \(\text{f} \) to its next two arguments—here, the \(\text{global} \) object, the receiver object for the call; and the \(\text{args} \) object containing a single argument. At line 7, we update the \(\text{global} \) object storing the integer 17 at the key "\(\text{foo} \)".

Now, suppose that one wished to prove that the call to the addition function \(\text{plus} \) at line 2 always returned an integer. One must prove that all callers of \(\text{foo} \) pass in an object \(x \) as the zeroth value in the \(\text{args} \) object and that \(x \) has a field called "\(f \)", which contains an integer value. But, even discovering all call-sites of \(\text{foo} \) is hard—all (non-primitive) function calls occur via lookups into an untyped higher order store (line 6), and this store is subject to strong updates that can change the type of a field at any point (line 7). The problem is similar to verifying C programs that call functions via \(\text{void}^{*} \) pointers stored in the heap—in JavaScript, nearly all function calls are done in this style.

1.2 Our contributions

Figure 2 depicts the verification methodology and tool chain developed by this paper. As already mentioned, we begin by translating JavaScript to \(J^\star \), a subset of \(F^\star \). Once in \(F^\star \), we rely on its SMT-based dependent type checker to generate and prove VCs. We have used our tool chain to verify a collection of JavaScript web-browser extensions for the absence of runtime errors. Aside from annotating loop invariants, verification was automatic.

Our main technical contributions provide a new way of structuring specifications for higher-order, stateful programs, and of in-
We provide a compiler, JS2JS*, to translate JavaScript programs to JS*. Our work adapts λJS, retargeting it to a typed language.

We present the Dijkstra state monad, a new variant of the Hoare state monad of Nanevski et al. (2008). The Dijkstra monad equips a state monad with a predicate transformer (Dijkstra 1975) that can be used to compute a pre-condition for a computation, for any context in which that computation may be used. (§3)

We present JSPrims, a library of dynamic typing primitives in F*. This library includes the definition of a type dyn, a new refinement of type dynamic (Cartwright and Fagan 1991; Heneghan 1994). We make use of the Dijkstra monad within our type dyn to refine the type of functions: the refinement of a function is the predicate transformer corresponding to its weakest pre-condition. We verify the implementation of JSPrims against a strong specification, ensuring assertion safety for well-typed clients of JSPrims. (§4)

We provide a type inference algorithm that allows stateful programs written in a direct style to be interpreted in the Dijkstra state monad, yielding a VC for the program. We prove our inference algorithm sound and also complete. Informally, this means that we can compute a VC for any loop-free JS* program, and if that VC is provable, then the JS* program has no failing assertions. As usual, programs with loops require loop invariant annotations. (§5)

The proof obligations produced by our inference algorithm make heavy use of higher-order logic. Our fifth contribution is a new technique that incrementally compiles higher-order verification conditions computed for JS* programs to a set of first-order proof obligations that can be automatically discharged by an off-the-shelf SMT solver—we use Z3 (de Moura and Bjørner 2008). (§6)

We extend JSPrims to include a partial specification of common APIs used by JavaScript programs, including a fragment of the Document Object Model (DOM). Our specification includes properties of recursive data structures (like DOM elements) using inductive predicates, and giving specifications to higher-order functions (including in some cases, functions of the third order). (§7)

We evaluate our work experimentally by collecting a JavaScript web-browser extensions (on the order of 100 lines each) for various properties, including the absence of JavaScript runtime errors. In each case, apart from carefully specifying loop invariants, verification was automatic. Our tool chain makes use of Gatekeeper (Guarnieri and Livshits 2009), an efficient but generally unsound pointer analysis for JavaScript programs. We show how to soundly integrate such a tool with our verification methodology to improve the efficiency of verification. (§7)

As such, ours is the first tool to enable precise, modular, verification for a sizeable subset of JavaScript, including its higher-order and stateful features. In contrast, prior work on analysis for dynamically typed programming languages either rely on a whole-program abstract interpretation (Jensen et al. 2009), or provide a modularity type-based analysis for languages that lack higher-orderness or state, or both (Bierman et al. 2010; Chugh et al. 2012; Tobin-Hochstadt and Felleisen 2010). Furthermore, our approach conveniently rides on the mechanized soundness and certified implementation of F*, which we reuse with little modification.

Limitations. The main limitations of this paper are with regard to the subset of JavaScript we discuss. We focus primarily on the difficulty of modeling and reasoning about JavaScript’s higher-order store. Our presentation elides the following main features of JavaScript: exceptions, control operators like breaking to a label, treating functions as objects, and prototype chain traversals. These omissions are not fundamental limitations; a concurrent submission on secure compilation to JavaScript builds on the ideas of this paper to provide a high-fidelity model of JavaScript using the Dijkstra monad within F*, including all of the missing features mentioned above as well as several others. However, neither paper provides a complete model of the DOM. This paper models some elements of DOM structure, like parent/child relationships, but does not precisely model the (anti-)aliasing patterns of the DOM, and does not model asynchrony. Finally, this paper ignores eval. Although not suitable for verification, the other papermodels the power of an eval-capable attacker.

Supplementary materials associated with this paper are available from http://research.microsoft.com/fstar. This includes a compiler download, a more general formulation of inference for the Dijkstra monad, proofs of all the theorems in this paper, and the complete JSPrims library.

2. A brief review of F*

F* is a variant of ML with a similar syntax and dynamic semantics but with a more expressive type system based on dependent types. In this paper, aside from the types of ML, we limit ourselves to a few main F*-specific typing constructs.

The type system of F* is partitioned into several subsystems using a discipline of kinds. We use two base kinds in this paper. The kind ⋆ is the kind of types given to computations. In contrast, the kind E is the kind of types that are purely specificational. A sub-kinding relation places the kinds in the order ⋆ ≤ E.

Ghost refinement types of the form x:t(φ) represent values x:t for which the formula φ[\mathcal{V}/x] is derivable from the hypothesis in the current typing context. The formula φ is itself a type of kind ⋆—it is purely specificational and has no runtime representation. Thus, x:t(φ) is a subtype of t. Dependent function arrows x:t→x:t represent functions whose domain is named x of type t and whose co-domain is of type t', where t' may depend on x. For non-dependent function types, we simply write \lambda x:t→t'. We write (x:t→t') for a dependent pair, where x names the first component and is bound in t'. We also use function arrows whose domain are types a:k→t, i.e., these are types polymorphic in types a of kind k.
Aside from the base kinds (\(\ast\) and \(E\)), we use product kinds \(\text{a}\times k \Rightarrow k'\) and \(\text{xct} \Rightarrow k\) for type constructors or functions. For example, the list type constructor has kind \(k \Rightarrow \ast\), while the predicate Neq (for integer inequality) has kind \(\text{int} \Rightarrow \text{int} \Rightarrow E\). We also write functions from types to types as \(\text{fun}(\text{a}:k) \Rightarrow t\), and from terms to types as \(\text{fun}(\text{xct}) \Rightarrow t\). For example, \(\text{fun}(\text{xct}) = \text{Neq}x \times 0\) is a predicate asserting that its integer argument \(x\) is non-zero. As a general rule, the kind of a type is \(\ast\), if not explicitly stated otherwise.

\(F^*\) is also parametric in the logic used to describe program properties in refinement formulas \(\phi\). These formulas \(\phi\) are themselves types (of kind \(E\), and so purely specification), but these types can be interpreted in a logic of one’s choosing. In this paper, we use a higher-order logic, extended with a theory of equality over terms and types, a theory of linear integer arithmetic, datatypes, and a select/update theory of functional arrays (McCarty 1962) (useful for modeling heaps). Except for the higher-order constructs (which we handle specially), all decision problems for the refinement logic are handled by \(Z_3\), the SMT solver integrated with \(F^*\)’s typechecker. The binary predicates \(\text{EqVal}\) and \(\text{EqTyp}\) below are decided by \(F^*\)’s standard prelude and represent syntactic equality on values and types respectively. For brevity, we write \(\text{v} = \text{v'}\) and \(\text{t} = \text{t'}\) instead of \(\text{EqVal} v v'\) and \(\text{EqTyp} t t'\), respectively.

Every type and data constructor in an \(F^*\) program is, by default, treated as an injective function in the logic (i.e., according to the theory of datatypes). To override this default behavior, we tag certain declarations with various qualifiers. For example, the declaration of \(\text{TypeOf}\) above is tagged \(\logict\), indicating that it is to be interpreted as a non-injective type function from values \(E\)-types in the refinement logic.

Values can also be provided with interpretations in the logic. For example, to model a map type as a functional array in \(Z_3\), we write the following declaration in \(F^*\).

This provides an abstract type called \(\text{heap}\), with four interpreted functions in the logic: \(\text{sel}\) selects the value from the heap at the specified reference; \(\text{upd}\) updates the heap at the specified reference location; \(\text{emp}\) is the empty heap; and \(\text{InDom}\) is an interpreted predicate to test whether a reference is allocated in the heap. The \(\text{logic val}\) tag records that these functions are interpreted in the logic only—they may be used only within specifications.

The system type and metatheory of \(F^*\) has been formalized in Coq, showing substitutivity and subject reduction, while a separate progress proof has been done manually. These type soundness results (modulo the soundness of the refinement logic) imply the absence of failing assertions in any run of a well-typed \(F^*\) program.

The \(JS^*\) language. \(JS^*\) is a small subset of \(F^*\)—its syntax is shown below. Values \(v\) include variables, \(n\)-ary lambdas, and \(n\)-ary data constructor applications. Formally, we encode other common constants (strings, integers, unit, etc.) as nullary data constructors, although our examples use the usual constants. Expressions include values, function application (as in \(F^*\)), we require the arguments to be values), let bindings, and pattern matching.

\[\begin{align*}
v &::= x \mid \lambda x. e \mid C v \\
e &::= v \mid \overline{v} \mid \text{let } x = e_1 \text{ in } e_2 \mid \text{match } v \text{ with } C. \overline{x} \rightarrow e_1 \text{ else } e_2
\end{align*}\]

No JavaScript-specific constructs appear in \(JS^*\) directly. Instead, we provide an \(F^*\) library, \(\text{JSPrims}\), which is used by every \(JS^*\) program produced by the \(JS2JS^*\) translation. For example, the data constructors for type \(\text{dyn}\) are also defined by \(\text{JSPrims}\). Additionally, as shown in Figure 1, functions to manipulate state are provided by the \(\text{JSPrims}\) library. We give specifications to these primitive functions (and hence also to their \(JS^*\) clients) using the Dijkstra monad, which we discuss next.

3. The Dijkstra state monad

Monads provide a convenient way of structuring effectful computations in functional programs. For example, the type \(\text{ST}\) \(a\) can be given to an expression of type \(\text{heap} \Rightarrow (\text{a} \times \text{heap})\), which is the type of a computation transforming an input heap to a result of type \(\text{a}\) and an output heap. To give specifications to such stateful computations, Nanevski et al. propose the Hoare monad, refining the \(ST\) monad with predicates corresponding to a pre-condition on the input heap and a post-condition on the result and output heap, e.g., \(h.\text{heap}(\text{pre} h) \rightarrow (\text{x}\times h.\text{heap}(\text{post} x h'))\).

Inferring verification conditions for the Hoare monad poses two difficulties. First, weakest pre-condition calculi for the Hoare monad generally rely on a programmer-specified post-condition, to compute a pre-condition by “pushing the post-condition” backward. However, for \(JS^*\), no such post-condition may exist. Second, when composing computations in the Hoare monad, one needs a subsumption rule to weaken pre-conditions and strengthen post-conditions. This is difficult to use in a type inference algorithm, since unification must now be performed modulo subtyping.

We propose to refine the state monad with a \textit{predicate transformer}, a function that computes the weakest pre-condition for the computation from an arbitrary post-condition. We call the resulting monad the Dijkstra monad, and show its definition in \(F^*\) below.

\[\text{Definition of the Dijkstra state monad in } F^*\]

\[\begin{align*}
1 &\text{type } \text{DST}(\text{a}\times:\ast) (\phi:\{a \Rightarrow \text{heap} \Rightarrow E\} \Rightarrow \text{heap} \Rightarrow E) = \\
2 &\{\psi:\{a \Rightarrow \text{heap} \Rightarrow E\} \Rightarrow h.\text{heap}(\phi \psi h) \rightarrow (\text{x}\times h.\text{heap}(\psi x h'))\}
3 &\text{val } \text{return } a. x h = x, h \\
4 &\text{let } return a x y h = x, h \\
5 &\text{val } \text{bind } a. x y h = b. x y h \\
6 &\Rightarrow \phi_1 (a \Rightarrow \text{heap} \Rightarrow E) \Rightarrow \text{heap} \Rightarrow E \\
7 &\Rightarrow \phi_2 (a \Rightarrow \text{heap} \Rightarrow E) \Rightarrow \text{heap} \Rightarrow E \\
8 &\Rightarrow \text{DST } a \phi_1 \\
9 &\Rightarrow (\text{x}\times a \Rightarrow \text{DST } b (\phi_2 x)) \\
10 &\Rightarrow \text{DST } b (\text{fun } (\psi) : b \Rightarrow \text{heap} \Rightarrow E) \Rightarrow \phi_1 (\text{fun } (y.\phi) \Rightarrow \phi_2 y) \\
11 &\text{let } \text{bind } b. a \phi_1 c \Rightarrow c y h = \\
12 &\text{let } y. h = c (\lambda y. \phi y) \\
13 &\text{in } c y h
\end{align*}\]

At line 1, we define the type \(\text{DST } a \phi\) as the type of a computation which, for any post-condition \(\psi\), produces a result \(x, h'\) satisfying \(\psi x h'\), given an input heap \(h\) satisfying \(\phi x h\). That is, \(\phi\) is the predicate transformer computing a pre-condition on the input heap from any post-condition on the result and output heap.

We also define two operations \textit{return} and \textit{bind}, to inject pure values into the monad, and to sequentially compose two monadic computations. It is easy to check that \textit{bind} is associative and that \textit{return} is both a left- and right-identity for \textit{bind}, making \(\text{DST}\) monad-like.

The type of \textit{return} shows that the weakest pre-condition of a value \(x\) with respect to some post-condition \(\psi\), is \(\psi x\), since the heap does not change at all. The type for \textit{bind} allows any two stateful computations to be composed (so long as the second can consume the result of the first). The predicate transformer for the composed computation is, in effect, the composition of the individual predicate transformers—unlike the Hoare monad, we do not need a subsumption rule to compose computations.
Writing post-condition polymorphic specifications for the DST-monad is also convenient, e.g., one does not have to directly state that return leaves the input heap h unchanged. One can also easily give specifications to stateful operations in the DST monad. For example, we show the type of the infix assignment operator for heap.

4. A library for dynamic typing in F∗

We now describe an F∗ library, JSPrims, which defines various constructs suitable for verifying JS∗ programs. There are two key innovations. First, we make use of the Dijkstra monad to define a precise refinement of type dynamic. Second, we provide a novel model of a typeful higher-order heap suitable for use with the core of JavaScript modeled here. We show how to verify the implementation of JSPrims against its specification, and to prove that JavaScript programs translated to JS∗ have no failing assertions.

4.1 A refined type dynamic

Figure 3 shows the definition of our type dyn, based on the standard algebraic type dynamic, but with refinement types on each case to recover precision. For example, we have the constructor Int, which allows an integer i to be injected into the dyn type. The type of (Int i) is d: dyn {TypeOf d = int}. The type of Str is similar.

We use the Obj constructor to promote heap-resident JS∗ objects to the dyn type—the type loc, isomorphic to the natural numbers, is the type of heap locations. The Undefined constructor is for the undefined value in JS∗.

The case for Fun merits closer attention. As we will see, the JS2JS∗ translation translates every JavaScript function to a binary, curried function. The first argument is for the implicit this parameter (made explicit in the translation), and the second parameter is for all the other arguments represented as a dictionary. To first approximation, the type of Fun is (dyn → dyn → dyn) → dyn, but this is, of course, too imprecise. We need a more precise type that can capture the behavior of the function, including its effects on the heap—the predicate transformers of the DST monad come to mind. We interpret every JS∗ function in the DST monad, and give them types of the form this: dyn → args: dyn → DST dyn ('Tx args this), for some predicate transformer 'Tx. Then, the refinement on the Fun constructor simply records the predicate transformer capturing the semantics of its arguments. The type constructor Function serves simply to coerce the predicate transformer to kind E.
tations of this type in the logic as a functional array. Similarly, the type heap is abstract, and is interpreted in the logic as a map from object locations loc to fields—again with three interpreted functions and one interpreted predicate.

Based on these interpreted array types, we define four derived forms that allow us to manipulate the heap as a two dimensional map indexed by dyn values and field names. The function Loc (line 16) is defined to project the location out of an Obj value. At line 18, the derived form Select is defined to select just the value part of a heap cell, while SelectT at line 21 selects just the type part. We define Update at line 24, and interpret it in the logic as an update to a single field of an object, and, finally, we define a predicate HasField to check if an object contains a field.

Recall that all these logic values are purely specificationally—they may only be used in refinement formulas not in the executable part of the program text. However, real JS* programs must be able to actually read from and write to heap cells. For this, we provide three function symbols, selcell, updcell, and alloc, whose implementation can be in native code, and assert that the specification of these primitive operations corresponds to selecting, updating and allocating objects. Since these functions will be called from our library, we give them refined types to restrict their usage. For example, both selcell and updcell insist that they be called only with locations that are guaranteed to be in the heap.

Our specification for alloc is worth discussing more. It says that alloc returns a heap h' that differs from the initial heap h only in a new location x, where the content of x is initialized to the empty object. In real JavaScript, as in our full library, objects are allocated with a prototype property. As mentioned in §1, for simplicity and space constraints, we elide prototype chains in our JS* model. The public API provides a monadic wrapper allocObject for alloc.

4.3 A Dijkstra monadic public API for JSPrims

We now discuss selected functions in the public API of JSPrims that allow safely reading and writing fields in the heap, and safely applying dynamically typed functions. In designing this API we had to balance two concerns. On the one hand, we want the API specification to be strong enough so that well-typed JS* clients are sure to not have any runtime errors, e.g., they do not attempt to project a field out of an integer value, or apply a non-function. Simultaneously, we want our specification to be weak enough that typical, well-behaved JS* programs can be successfully typechecked.

To ensure that we correctly balance these concerns, we carry out two tasks. First, we provide verified implementations (in F*) of each of the functions in our public API. Thus, from the soundness of F* we have a proof that well-typed clients of JSPrims indeed do not have the assertion failures we forbid. Secondly, while a formal proof demonstrating that our specification is the weakest would be desirable, for the moment, we simply validate empirically that our specification is sufficiently weak, i.e., we show that several typical programs can be checked against this API.

Safe field selection. Informally, for o:dyn and f:fn, the term select o f corresponds to the JavaScript field lookup operation o[f]. More precisely, the specification of select o f below (lines 1–4) shows that it is a computation which produces a dyn value, and satisfies any post-condition 'Post when run in an input heap h satisfying the pre-condition at lines 2–3 ("⇒" stands for implication). The caller must prove three properties. The first requires that the type of o be object, since projecting a field from other values is a JavaScript error. The second ensures that field o[f] exists. If the field does not exist, JavaScript semantics permits returning the undefined value, which is, strictly speaking, not an error condition. However, checking for the absence of unexpected undefined values in a JavaScript program is generally considered a good idea (Crockford 2008), so we check for it here. Finally, the client is required to prove the predicate 'Post (Select h o f h) (indicating that select indeed returns the contents of the o[f] field and leaves the heap unchanged), under the assumption that the returned value (Select h o f) has the type associated with it in its heapcell.

Signature and implementation of field selection

1	type SelTX o f 'Post h =		
2	2 (TypeOf o=object && HasField h o f & &		
3	(TypeOf (Select h o f)=SelectT h o f ⇒ 'Post (Select h o f) h))		
4	val select: o:dyn → f:fn → DST dyn (SelTX o f)		
5			
6	let select o f 'Post h = match o with		
7			
8] and Int _	Fun _ → assert False
9] → (match selcell h f with Some (Cell _ v) → v,h	
10] → None → assert False)	

We also show the implementation of select, to be typechecked against its specification. F* types each pattern branch under the assumption that the scrutiny o is equal to the pattern. Thus, the first branch is typed under the assumption that o = Undef, or o=Str _, etc. Given our pre-condition that TypeOf o=object, we reach a contradiction, i.e., we are able to prove False. In the last case, we have the assumption that o=Obj _, and from the post-condition of selcell we have that the scrutiny in the nested match construct is equal to SelCell h o f. From our pre-condition HasField h o f, we can prove that the scrutiny is not equal to None, and thus, only the first case of the nested match is reachable. In this case, we return the selected value v and the unchanged heap h. The whole function is verified automatically against its specification.

Safe field update. Informally, for o:dyn, f:fn, v: dyn, the term update o v f corresponds to the JavaScript field assignment o[f] = v. The specification of update has a similar form to that of select, and is shown in the listing below. The caller is required, first, to prove that o is an object. Second, o must be in the domain of the current heap, although it may not have the field f yet—JavaScript permits adding fields to an object "on the fly". Finally, the caller has to prove the post-condition assuming that update o v f returns Undef and that the heap is updated appropriately. The implementation of update, also shown below, is straightforward.

Signature and implementation of field update

1	type UpdTX o f v 'Post h =		
2	2 (TypeOf o=object && InDom h (Loc o) & & 'Post Undef (Update h o f v)		
3	val update: o:dyn → f:fn → v: dyn → DST dyn (UpdTX o f v)		
4			
5	let update o f v 'Post h = match o with		
6			
7] and Int _	Fun _ → assert False
8] → (match updcell h f l with Some (Cell _ v) → v,h	

Safe function application. Informally, for f: dyn, this: dyn, args: dyn, the term apply f this args corresponds (roughly) to the JavaScript construct this.f(args). As in the other cases, our goal is to ensure that function applications in JS* (and hence in JavaScript) do not cause errors. There are two things that could potentially go wrong. First, f may not be a function—it is an error in JavaScript to apply, say, an integer. Second, f's pre-condition may not be satisfied. Addressing both these concerns, we show the type and implementation of apply below.

Signature and implementation of function application

1	logic type Unfun :: E → dyn → dyn → dyn → heap → E)⇒ heap → E		
2	assume '∀ T:V . Unfun (Function 'Tx) = 'Tx		
3	assume '∀ a . 'a <> (Function _) ⇒ (Unfun 'a) = (fun _ _ _ ⇒ False)		
4	val apply: f: dyn → this: dyn → args: dyn		
5	→ DST dyn (Unfun (TypeOf f) args this)		
6	let apply f this args 'Post h = match f with		
7			
8] and Int _	Obj _ → assert False
9] → Fun 'T fn → fn this args 'Post h	
Intuitively, if we can ensure that \(\text{valueOf} f = \text{Function}^* \) for some transformer \(^*\)T, then we can rule out the first kind of error (i.e., \(f \) is guaranteed to be a function). Then, to enforce \(f \)'s pre-condition we can simply apply the predicate transformer to the arguments, the post-condition, and the heap to compute the pre-condition, i.e., we require \(\text{Tx args} \) this Post h.

Stating these requirements in a form amenable to easy proving takes a little work. First, lines 1–3 define a type function \(\text{unfun} \) from arbitrary \(\mathcal{E} \)-types to types that represent predicate transformers. The interpretation of \(\text{unfun} \) (the two \text{assumptions}) shows that when applied to a type of the form \(\text{Function}^* \mathcal{T} \), \(\text{unfun} \) simply projects out the transformer \(\mathcal{T} \). Otherwise, \(\text{unfun} \) returns the False predicate. Using \(\text{unfun} \), the specification of apply \(f \) is easy: the predicate transformer of \(\text{apply} f \) this is just \(\text{unfun} (\text{TypeOf} f) \) args this. If \(f \), the value being applied, can be proved to be a predicate, then the behavior of \text{apply} is just as if \(f \) were applied; otherwise the pre-condition of \(\text{apply} f \) this is unsatisfiable.

The implementation of \text{apply} is straightforward. When \(f \) is not a function, \(\text{unfun} (\text{TypeOf} f) \) gives us the False pre-condition, which suffices to show that the first case is unreachable. In the second case, we have the pre-condition of \(\text{fn} \) among our hypotheses, so we can again prove the goal. Now, proving these goals directly using \(\text{Z3} \), a first-order SMT solver, is infeasible—it does not understand \(\mathcal{F}^\ast \) verification problems in \(\text{Z3} \) allows these higher-order problems to be compiled into a set of first-order problems which \(\text{Z3} \) can handle. We describe this encoding in detail in §6.

5. Monadic type inference for JS\(^\ast\)

This section formalizes a type inference algorithm for JS\(^\ast\) programs that are typed against \(\mathcal{F}^\ast \) libraries (like \(\text{JSPrims} \)) that make use of the DST monad. We prove our algorithm sound by showing that JS\(^\ast\) programs are easily elaborated to standard \(\mathcal{F}^\ast \) where they can be checked to have the types we infer—soundness follows from the soundness of \(\mathcal{F}^\ast \). Additionally, we show that for programs (typed in a context meeting a certain regularity condition), we can always infer a sound type; i.e., type inference is also complete. The supplementary materials include a detailed formulation of the inference algorithm, and its meta-theory. Here, we present a version of the algorithm specialized to the type \(\text{dyn} \), and quote the theorems from the full version of the paper without providing proofs.

5.1 Type inference for the Dijkstra monad

Figure 5 formalizes two judgments. The first judgment, \(\Gamma \vdash v : t \), infers a type \(t \) for a JS\(^\ast\) value \(v \) from a context \(\Gamma \). For expressions, we have \(\Gamma \vdash e : \phi \), which infers a predicate transformer \(\phi \) for an expression \(e \) from a context \(\Gamma \). Informally, from this latter judgment, we conclude that \(e \) has type \(\text{DST dyn} \phi \). Thus, all expressions are typed monadically and produce \(\text{dyn} \)-typed results.

Syntax. The types we use include \(\sigma \), prenex quantified type schemes—as in the previous section, we elide kind annotations for compactness. Types \(t \) include type constants \(T \) (like \text{int}, \text{bool}, etc.). We also have refinements of type \(\text{dyn} \). Impure functions have types like \(\mathcal{X} \rightarrow \mathcal{D} \phi \), where the co-domain \(\mathcal{D} \phi \) is an abbreviation for \(\text{DST dyn} \phi \). Finally, we have pure functions \(\mathcal{X} \rightarrow \mathcal{R} \), which, generally, is used only to describe the type of data constructors. In both arrow constructions, the bound names \(\mathcal{X} \) are in scope to the right of the arrow. The formulas \(\phi \) used in types are just drawn from \(\mathcal{F}^\ast \)'s refinement logic, as used in the previous section. One point to note: in the formal system, we write \(\text{fun} \psi \mathcal{X} = \phi \) instead of \text{fun}(\psi/\mathcal{X}) = \phi \) and \(\text{fun} \chi t = \text{fun}(t/\chi) = \phi \). Typing contexts \(\Gamma \) are finite maps from variable and data constructor names to type schemes.

Value typing. Value typing makes use of the type instantiation relation \(\sigma \models t \). We use this relation non-deterministically in the premises of the first two rules. In the full version of the paper, we show how to easily compute instantiations using unification. Typing abstractions is straightforward—we note that all JS\(^\ast\) functions have \(\text{dyn} \)-typed arguments.

Expression typing. The first expression typing rule corresponds to a monadic unit, and allows a \(\text{dyn} \)-typed value \(v \) to be injected into the DST monad. The rule follows the signature of \text{return} shown earlier, except that, if the value being returned has a refined type, then the weakest pre-condition is guarded by this refinement. The rule for function applications is standard for a dependently typed language. Note that we require the function to be impure and the result to have monadic type. Typing a conditional is straightforward—we type each branch and compute a predicate transformer by guarding the pre-conditions of each branch by the branch condition. Finally, the rule for \text{let-bindings} corresponds to the monadic bind. As in the signature of \text{bind} shown earlier, the conclusion composes the predicate transformers of each sub-expression.

Soundness. The full paper defines a type-directed elaboration of JS\(^\ast\) into \(\mathcal{F}^\ast \), based on the structure of the inference rules in Figure 5. These judgments are written \(\Gamma \vdash v : t \leadsto v' \) and \(\Gamma \vdash e : \phi \leadsto e' \), where \(v' \) and \(e' \) are \(\mathcal{F}^\ast \) values and expressions, respectively. The elaboration essentially interprets each \text{let-binding} in JS\(^\ast\) program as an application of \text{bind} for the DST monad, and the value injection rule as an application of the \text{return} operator of DST. Additionally, the type arguments of these operators are computed and inserted in the elaboration. Our soundness theorem guarantees that the elaborated program is well-typed in \(\mathcal{F}^\ast \), and, hence, contains no failing assertions. In the statement below, \(\text{JSPrims} \) is the signature of the \text{JSPrims} module and the judgment with the \(\vdash \text{for} F_x \) turnstile is the \(\mathcal{F}^\ast \) typing judgment.

Theorem 1 (Type inference is sound). For all \(\Gamma,v,t,v',e,\phi,e' \), if \(\Gamma \vdash e : \phi \leadsto e' \), then \(\Gamma \vdash \text{JSPrims} \Gamma ; F_x : e' \vdash \text{DST dyn} \phi \); and if \(\Gamma \vdash v : t \leadsto v' \) then \(\Gamma \vdash \text{JSPrims} \Gamma ; F_x : v' : t \).

Completeness. Our completeness result applies to all JS\(^\ast\) programs that are typeable in the standard ML typing discipline while making use of an unrefined type \(\text{dyn} \)—we write this judgment as \(\vdash_{\mathcal{ML}} \Gamma \vdash F_x : e : \text{ML} \) and call such programs “ML-typeable”. Here, \(\vdash_{\mathcal{ML}} \) is the erasure of a JS\(^\ast\) typing context \(\Gamma \) to an ML typing context. Trivially, every program in the image of the JS2JS\(^\ast\) translation is ML-typeable. We prove that given a well-formed JS\(^\ast\) typing context \(\Gamma \), any ML-typeable program \(e \) in \(\Gamma_{\mathcal{ML}} \) is also typeable by our inference algorithm. Intuitively, our well-formedness condition, written \(\vdash \Gamma \text{ ok} \), requires every higher-order function type in \(\Gamma \) to be
maximally general in the predicate transformers of its function-typed arguments. For example, we permit types in Γ of the form $\forall \psi. ((x: \text{dyn} \rightarrow D \psi) \rightarrow D \phi)$, since this is a higher-order type that is parametric in the predicate transformer ψ of its argument. Another example of a type meeting this generality condition is the type of the Fun constructor from JSPrims. In contrast, the generality condition forbids types of the form $((x: \text{dyn} \rightarrow D \Lambda \psi. \lambda h. \psi x h) \rightarrow D \phi)$.

Theorem 2 (Type inference is complete). For all $\Gamma, \psi : \text{ML}$, such that $\Gamma \vdash \psi$, and $\Lambda \psi. \psi \in \text{ML}$, then there exists t such that $\Gamma \vdash v : t$ and $\Lambda \psi. \Gamma \vdash e : \text{dyn}$. Additionally, for all e such that $\Lambda \psi. \Gamma \vdash e : \text{dyn}$, there exists ϕ such that $\Gamma \vdash e : \phi$.

Incomplete with recursion and loops. As stated above, our completeness result applies only to loop-free JS* programs. As defined, JS* programs contain no explicit recursion, however, since the store is higher-order, recursion through the store is possible. For programs that are recursive through the store, our type inference algorithm will compute a candidate pre-condition, but, without a programmer-supplied annotation, that condition will in general be unprovable. Space constraints preclude a detailed discussion of recursion through the store. More commonly, we allow JS* programs to contain loops and provide combinators in JSPrims for JavaScript’s for in- and while-loops. We discuss programs that use these combinators in §7. Suffice to say for the moment that calls to these combinators require the programmer to supply additional predicate arguments that stand for loop invariants—clearly, our inference algorithm is incomplete for such looping programs.

5.2 Monadic inference in action

We illustrate our type inference algorithm using the JS* program in Figure 1. The general syntactic shape of the program is

```latex
let foo = \in e and we assume that the transformer for foo has already been inferred as \text{FooTX}. We show the derivation for the remainder for the program, writing the transformer $\phi_1$ for the predicate transformer inferred for the let-binding at the line just below.
```

An example derivation

```latex
1 let foo this args : D (\text{FooTX} args this) = ... in
2 \phi_0 = \Lambda \psi. \Lambda h. TypeOf (\text{Fun} foo) = \text{Function} (\text{FooTX})
3 \quad \Rightarrow (fun \phi \in \phi \psi) (Fun foo)
4 let fun = (Fun foo) in
5 \phi_1 = \Lambda \psi. \text{UpdateTX global} “foo” fun \psi (fun \Rightarrow \phi_1 \psi)
6 let _ = update global “foo” fun in
7 \phi_2 = \Lambda \psi. TypeOf (\text{Fun} foo) fun \Rightarrow \phi_2 \psi (\ast \text{for some ARG} \text{TXs})
8 let args = ... in
9 \psi_0 = \Lambda \psi. \text{SetTX global} “foo” (fun f = \phi_2 \psi)
10 let _ = select global “foo” fun in
11 \phi_3 = \Lambda \psi. Unfun (TypeOf f) \Rightarrow \phi_3 \psi (fun \Rightarrow \phi_3 \psi)
12 let _, = apply f global args in
13 \phi_4 = \Lambda \psi. \Lambda h. TypeOf (Int 17) \Rightarrow \text{UpdateTX global} “foo” (Int 17) \psi h
14 let i = (Int 17) in
15 update global “foo” i ; UpdateTX global “foo” i
```

It is convenient to start at the bottom-most let-binding, although our inference algorithm proceeds top-down. At the call to apply at line 15, we just apply UpdateTX. To compose this with the transformer of Int 17, we use the rule for returning values into the monad and compose the transformers to obtain the transformer ϕ_1 at line 13. Notice that the pre-condition is guarded by the typing assumption of Int 17. Proceeding upwards, we compose the transformer ϕ_1 with the transformer from the call to apply, obtaining ϕ_2. Traversing the let-binding at line 10, notice that we close ϕ_0 over the let-bound variable i, and compose it with SetTX obtaining ϕ_1. We proceed in this manner until we reach ϕ_0 at line 3, which gives the predicate transformer for the entire expression. Notice that for any post-condition ψ, the pre-condition we compute is guarded by the typing assumption of Fun foo which records the transformer FooTX.

To verify the program against a particular post-condition, say, $\lambda x. \text{true}$, we apply ϕ_0 to this formula obtaining a predicate ϕ on the initial heap. We apply ϕ to a variable h_0 bound in the initial typing context Γ_0 representing the initial heap. In addition to the definitions and assumptions in the JSPrims library (e.g., the definition of the dyn type and the assumptions about Unfun, etc.), Γ_0 also includes assumptions about the initial heap, e.g., that it contains the global object. (In §7, we give a concrete InitialHeap predicate for JavaScript programs.) Our verification goal then is to show that in Γ_0 the formula ϕh_0 is derivable, or, equivalently, that the context Γ_0 extended with the assumption $\neg (\phi h_0)$ is unsatisfiable.

6. Solving verification conditions

Given an initial context Γ_0, our goal is to prove (automatically) that $\Gamma_0, \neg (\phi h_0)$ is unsatisfiable. This problem is well-understood when Γ_0 and ϕh_0 are first-order formulas. A range of program verification tools, including F*, rely on efficient SMT solvers which have heuristic support for reasoning about quantified formulas to successfully discharge first-order proof obligations. However, the proof obligations produced for JS* programs are not always first-order formulas. While some experimental automated solvers for certain higher-order logics are being developed, these remain inefficient, and provide little support for reasoning about the theories we need for JS*, e.g., functional arrays, integers, etc. In this section, we show how to encode the proof obligations for JS* programs in a first-order theory amenable to automated proving via Z3.

6.1 Incremental compilation of higher-order queries

We have seen two examples of higher-order formulas so far. The first arose when verifying the JSPrims library, in particular in the implementation of apply in §4.3. There, in the first branch of the match (at line 7), we had to prove that a context $\Gamma_1 = \Gamma_0, \text{dyn}, \text{args}, \text{dyn}, \text{this}, \text{dyn}, \text{hheap}, (f=\text{undef} \lor \ldots \lor f=\text{Obj} \ldots)$. $\neg (\text{Unfun (TypeOf f) args this}) \neg (\text{Post h})$. A similar problem arises when verifying line 8 of apply, except, there, we have to prove the unsatisfiability of $\Gamma_2 = \Gamma_0, \ldots, f=\text{Fun (Tx fn)}, \neg (\text{Unfun (TypeOf f) args this}) \neg (\text{Post h})$. The other case is when verifying the program of Figure 1, where our goal is (roughly) to show $\Gamma_3 = \Gamma_0, \neg (\text{Unfun (TypeOf f) args global}) \neg (\text{Unfun (TypeOf f) args global})$. The ideal solution is to implement a query compiler that translates higher-order problems to a series of first-order problems that Z3 can understand. We use the program Γ_3 to illustrate—the same strategy applies to Γ_1 and Γ_2.

Rather than present Γ_3 directly to Z3, our query compiler implements a simple, incremental, first-order solving strategy outside of Z3. We describe our algorithm as an iterative process, arguing for its soundness at each step.

Step 0: Handling a first-order theory. If the query is first-order, then prove it unsatisfiable in Z3. If this fails, reject the program.

Step 1: Extract a first-order partial theory. The query compiler begins by identifying a first-order subset of the theory. In our example, this means translating Γ_3 into $\Gamma_4 = (\text{TypeOf f} = \text{Function} \text{FooTx})$, leaving a residue $\neg (\text{Unfun (TypeOf f) args global})$. A higher-order formula to be compiled later. The theory Γ_4 is first-order (provided Γ_0 is, which it is). The goal is to find a way to evaluate the Unfun (TypeOf f) (the predicate transformer in the residue) into some concrete predicate transformer.

Step 2: Extract a candidate witness from a model for the partial theory. Next, we present the first-order partial theory to Z3 and attempt to prove this theory satisfiable. If Z3 decides that the partial theory is unsatisfiable, then we are done: clearly, via weakening, the whole context is also unsatisfiable. If we have a quantifier free theory, the only other possibility is for Z3 to decide that the theory...
is satisfiable, and in this case Z3 produces a model M. If the theory has quantifiers, Z3 may reply "unknown", but, even in this case, Z3 produces a partial model—we discuss the problem of generating models for theories with quantifiers in further detail in §6.2. Given the model M, we ask Z3 to evaluate the guard of the residue—in our example, this is $(\text{Unfun} \ (\text{TypeOf} f))$—and we obtain a type T_x which is a candidate predicate transformer that we can use to compile the residue of the query.

Step 3: Confirm the candidate witness. Of course, our partial theory may have many models, and our candidate T_x may not be a valid solution. Our next step is to prove that $(\text{Unfun} \ (\text{TypeOf} f)) = T_x$ is true in all models, i.e., we ask Z3 to prove the unsatisfiability of $\Gamma ' \land \neg ((\text{Unfun} \ (\text{TypeOf} f)) = T_x)$. If this step fails, then we can proceed no further and our query compiler rejects the entire query saying that it was not able to prove the theory’s unsatisfiability. However, if this step succeeds, we have confirmed that T_x is a valid witness and can move to step 4. In our example, we have $T_x = \text{FooTX}$.

Step 4: Compile the rest of the query using the witness. Using our valid witness, we can compile the residue further. In our example, we now have to prove that $\neg \text{FooTX args} \bigcup \{ \text{fun}_i \Rightarrow \phi_i \}$ is unsatisfiable in the theory $\Gamma '$. But, FooTX is a concrete transformer $\text{fun args this} \Rightarrow \phi$, and our goal now contains a redex which can be reduced via several β-reductions to a first-order formula, with potentially some higher-order residues contained within. So, we iterate the process and go back to step 0.

Termination of the query compiler. The satisfiability problem for a first-order theory is undecidable. Thus, at each call to Z3, our query compiler may diverge, and hence the compilation of a higher-order query into a series of first-order queries is, necessarily, incomplete. In the future, it may be interesting to identify a fragment of higher-order logic that can be compiled to a finite sequence of effectively propositional theories, and to obtain an complete decision procedure for this case. However, the verification conditions for most common programs is unlikely to fall in this fragment.

6.2 Obtaining candidate witnesses from an external tool

Extracting candidate witnesses by generating heap models in Z3 can be expensive—we observed running times of tens of minutes for model generation in some cases. This can make the entire query compilation process extremely slow. By far the most expensive step in our query compilation procedure is the model generation in step 2. However, step 2 is only necessary to produce a candidate witness. If we can efficiently guess a candidate by some other means, then we can bypass step 2, and use step 3 directly to confirm our guess—confirming the candidate requires the use of an unnat query, and on such queries, Z3 is typically very efficient (on the order of a few seconds, rather than several minutes). If the guess is incorrect, we fall back on model generation, but good guesses provide us with a fast path through query compilation.

Recall that we require a witness for the predicate transformer at each function call in an JavaScript program. We use Gatekeeper (Guarnieri and Livshits 2009), an efficient but generally unsound pointer analysis on JavaScript programs, to produce a may-alias set for the target of function calls. We carry this information in the JS21S* translation and use it to speed up the query compilation.

We begin by showing the signature of applyhint, a variant of the apply combinator in JSPrims.

```javascript
val applyhint1: 'Tx1::dyn⇒dyn⇒(dyn⇒heap⇒E)⇒heap⇒E
⇒f dyn⇒this dyn⇒args dyn
⇒D (fun 'P h ⇒ (TypeOf f==Function 'Tx1) \&\& 'Tx args this 'P h)
```

The applyhint1 function requires the caller to provide an explicit predicate transformer argument, Tx, which is to serve as the witness for the specification of f. Unlike apply, the verification condition produced for applyhint1 can be handled within the first-order fragment of Z3, without the need for expensive model generation.

To illustrate the generation of witnesses using Gatekeeper, we recall our running example from Figure 1 and show an alternative translation that makes use of hints. Gatekeeper, a flow- and context-insensitive pointer analysis, runs on the source program and concludes that the target of the call at line 2 is the function closure defined at line 1. In general, Gatekeeper provides an approximation of the call graph of the program, resolving each function call to zero or more function closures.

Translating programs with hints

```javascript
1 function foo(x) { ... }
2 foo({x:0});
3 foo = 17;
```

```javascript
1 let foo this args = ... in
2 update global "foo" (Fun "U0" foo);
3 applyhint1 'U0 (select global "foo") global (...);
4 update global "foo" (Int 17)
```

The JS21S* translation makes use of this call graph to produce the JS* program above. The translation is identical to the one shown previously, except for two differences. Each definition of a lambda-term in the translated program produces an application of the Fun constructor. Where previously the first argument of Fun (a predicate transformer) was omitted, when a hint is available from Gatekeeper involving this function closure, JS21S* inserts a new unification variable, $'U0$ in our example, as the first argument to Fun. When the type inference algorithm computes a predicate transformer for foo, say FooTX, $'U0$ is unified with FooTX.

Next, at each call site where Gatekeeper is able to definitively resolve a function call to a particular closure (say, foo), JS* inserts a call to applyhint1, passing as a first parameter the same unification variable ($'U0$) that was used when translating foo. As type inference proceeds and $'U0$ is unified with FooTX, the witness argument to applyhint1 is suitably unified too.

Of course, Gatekeeper may sometimes be unable to resolve a function call definitively and can instead provide a non-empty set of potential targets for the call. We provide versions of applyhint to support up to 10 possible call targets (of the form shown below) and the JS* translation inserts unification variables for each of the possible call targets. If Gatekeeper provides no information about a call, we resort to using the original apply function.

```javascript
val applyhint2: 'Tx1::dyn⇒dyn⇒(dyn⇒heap⇒E)⇒heap⇒E
⇒ 'Tx2::dyn⇒dyn⇒(dyn⇒heap⇒E)⇒heap⇒E
⇒f dyn⇒this dyn⇒args dyn
⇒D (fun 'P h ⇒ (TypeOf f==Function 'Tx1 | TypeOf f==Function 'Tx2)
\&\& (TypeOf f==Function 'Tx1 ⇒ 'Tx1 args this 'P h)
\&\& (TypeOf f==Function 'Tx2 ⇒ 'Tx2 args this 'P h))
```

7. Implementation and evaluation

This section presents an empirical evaluation of applying our tool chain to verify the runtime safety of JavaScript web-browser extensions. All the major web browsers provide support for JavaScript extensions to provide a range of features for an enhanced browsing experience. Browser extensions have been the subject of some recent study, both because of their popularity, and because of the security and reliability concerns they raise (Bandhakavi et al. 2010; Barth et al. 2010; Guha et al. 2011). Extensions are executed on every page a user visits, and runtime errors caused by extensions can compromise the integrity of the entire browser platform. Thus, a methodology to prove extensions (and other JavaScript programs) free of runtime errors is of considerable practical value.

We report here on the verification of three browser extensions for the Google Chrome web browser. These extensions are based
on extensions that we studied in prior work (Guha et al. 2011). We prove each of these extensions free of runtime errors, while assuming a sequential execution model for JavaScript, rather than the asynchronous model that these extensions employ in practice, as mentioned in §4. To simplify verification, we also model collections of objects by iterators, whereas the standard DOM API provides collections of objects as arrays encoded as dictionaries. We expect to handle the array idioms directly in the future. All timing numbers were collected on a quad core 2.8GHz Windows 7 laptop.

7.1 HoverMagnifier

Our first extension is HoverMagnifier, an accessibility extension. It magnifies the text under the cursor. The core interface of HoverMagnifier with a web page is implemented in 27 lines of JavaScript. We verified this program for the absence of runtime errors, in less than 10 seconds. In doing so, our query compiler emitted 86 queries to Z3, including resolving 6 function calls by generating Z3 models (which dominated the verification time).

A key part of its code is shown below—it involves the manipulation of a collection of DOM elements. At line 2 it calls the DOM function getElementsByTagName to get all the <body> elements in a web page. Line 3 gets the first element in the result set. Then, it checks if the body is undefined and line 6 sets an event handler, magnify, to be called whenever the user’s mouse moves—we elide the definition of magnify.

A Fragment of HoverMagnifier

```
function magnify(evt) { ... }
var elts = document.getElementsByTagName("body");
var body = elts[0];
if (body !== undefined)
{
  body.onmousemove = function (evt){magnify(evt);};
  body.onmousemove(dummyEv) //added for verif. harness
}
```

Setting up a verification harness for such a program involves two main elements. First, we need some “driver” code to ensure that all the relevant parts of the program are exercised. For example, we add the code at line 7 to mock the firing of a mouse-move event, so that the code in magnify becomes reachable. Without this, our verification tool would still infer a weaker precondition for magnify, but since no call to it appears in the program, the precondition would be trivially satisfied.

Specifying the DOM (partial) using inductive predicates

```
// predicate
function ObjField h of f = HasField h of f && TypeOf(Select h f)object && InDom h (Select h o f)

// object
var IsElt :: heap => dyn => E
var EltTyping h elt =
  TypeOf elt = object \&\& HasField h elt "text" \&\&
  TypeOf (Select h elt "text") = string \&\&
  HasField h elt "getFirstChild" \&\&
  TypeOf (Select h elt "getFirstChild") =
  Function (fun args this 'Post h' => IsElt h this \&\&
    \&\& child. child = Undefined || IsElt h' child \Rightarrow 'Post child h'
  )

assume IsElt trans's h1 h2 x. { pattern (IsElt h1 x); (SelObj h2 (Loc x)) }

IsElt h1 x \&\&
(Select h1 "text"= (Select h2 "text") \&\& ...
(Select h1 "getFirstChild" = (Select h2 "getFirstChild") \&\&
IsElt h2 x)

assume IsEltTyping's h x. { pattern (IsElt h x) IsElt h x => EltTyping h x }
```

More substantially, we have to provide specifications for all the APIs used by the program. For our extensions, this API is the DOM. For each kind of DOM concept (document, element, style, etc.), we define a corresponding F type—a predicate stating that an object is an instance of the concept. For element, a predicate EltTyping h elt means that elt is an element in heap h.

The predicate EltTyping (line 5) states that elt is an object, it has a field getFirstChild, and that this field is a function whose specification is given by the predicate transformer at lines 10–11. Informally, getFirstChild expects its first argument (the implicit this pointer) to be a DOM element e, and, if e is not a leaf node, it returns another DOM element (otherwise returning undefined).

Capturing this specification involves the use of an inductive predicate. We do this using the predicate IsElt, and then providing two assumptions (at the bottom of the display) giving an interpretation to IsElt. The assumption IsElt_trans states that IsElt is transitive in its heap argument (if the relevant fields of the element elt have not changed), and IsElt_typ expands IsElt back into EltTyping. To control how Z3 uses these quantified assumptions, we provide patterns, which serve to guide Z3’s quantifier instantiation algorithm.

The InitialHeap predicate, with a type for the document object

```
1 type E h d = (TypeOf d = object) \&\& InDom h d \&\&
2 HasField h d "Next" \&\& (TypeOf (Select h d "Next") =
3 (Function (fun args this 'Post h' => this = d \&\&
\&\& \((x:(dyn). (x=Undefined || 'Post x') = 'Post x'))
4)
5 type DocTyping h doc = HasField h doc "getElementsByTagName"
6 \&\& (TypeOf (Select h doc "getElementsByTagName") =
7 (Function (fun args this 'Post h1' =>
8 (this = doc \&\& SingletonString h1 args \&\&
9 (\forall x. Enumerable IsElt h1 x => 'Post x h1')))
10)
11 type InitialHeap h0 = TypeOf global = object \&\& ... \&\&
12 ObjField h0 global "document" \&\&
13 DocTyping h (Select h global "document")
```

The display above shows the predicate DocTyping, a partial specification for the document object (line 6). It states that the object doc contains a function-typed field "getElementsByTagName". The pre-condition for this function requires that it be called with its argument set to the doc object itself. All JavaScript functions receive their enclosing objects as their this parameter. However, since functions are first-class and can be stored within other objects, statically predicting the this pointer of a function is non-trivial. For example, in the following program, the final function call receives the object e as the this parameter: `f = document.getElementById(); e.f()`. This can be problematic, and, in the case of the DOM, leads to a runtime error. We rule out this kind of error by requiring that every call to getElementsByTagName must pass this parameter equal to the document object doc.

The pre-condition of getElementsByTagName also requires that its arguments object args contain a single string field (the predicate SingletonString, elided here for brevity). The post-condition of getElementsByTagName is captured by line 10. It states that the function does not change the heap, and that the object x returned satisfies the predicate Enumerable IsElt h1 x.

The predicate Enumerable is shown at line 1. It is parameterized by a predicate P that applies to each of the elements in the collection. Enumerable collections are objects that have a function-typed "next" field which does not mutate the heap. The function either returns Undefined (if the collection is exhausted), or returns a value satisfying the predicate 'P h x'. As with other functions, "next" expects its this pointer to be the enclosing collection.

Finally, we extend the InitialHeap predicate (shown first in §6.2) to include the assumption about the document object.

7.2 Facepalm

Our next example is Facepalm, an extension that helps build a user’s address book by automatically recording the contact inform-
tion of a user's friends as they browse Facebook. It is implemented in 87 lines of JavaScript. Overall, verifying the entire extension took about 6 minutes. The verification time was dominated by the time spent in Z3. Our query compiler asked about 1,300 Z3 queries, and required producing models to resolve 27 function calls. Gatekeeper was able to successfully provide us with a hint 11 times, but the remaining 16 times we fell back on Z3's model finding feature, which dominated the Z3 time—so, a reduction in the number of queries that require producing models (via better hints) is likely to reduce the verification time substantially. We expect better stubs for the DOM when configuring Gatekeeper to help.

The main function of Facepalm is shown below (start at line 16). At a high level, this extension checks to see if the page currently being viewed is a Facebook page (line 18). If the check succeeds, it traverses the DOM structure of the page looking for a specific fragment that mentions the name of the user's friend (line 19). A second traversal finds the friend's contact and website information (line 20). If this information is successfully found, the extension logs it and saves it to the user's address book maintained on a third-party bookmarking service (line 24).

The main function and a DOM traversal function in Facepalm

```javascript
function getPath(root, p) {  
  var cur=root; var path=p;  
  // needs a loop invariant  
  while(path !== undefined &&  
    cur !== undefined) {  
    cur = cur.getChild(path.hd); // needs a hint  
    path = path.tl;  
  }  
  return cur;  
}
function cons(a, rest) { return {hd:a; tl:rest}; }  
function getWebsite(e1t) {  
  var path = cons(1,cons(0,cons(0,cons(0,undefined))));  
  return getPath(e1t, path);  
}
function start() {  
  var friendName, href;  
  if (document.domain === 'facebook.com') {  
    friendName = findName();  
    href = findWebsite();  
    if (href) {  
      console.log("Website on * +" + href);  
      console.log("Name is " + friendName);  
      saveWebsite(friendName, href);  
    }  
  }}
```

The main interest in verifying Facepalm is in verifying the two DOM traversals, findName and findWebsite. Both of these involve `while`-loops to iterate over the structure of the DOM. They do this by eventually calling the function `getPath`, shown at line 1. The loop in `getPath` iterates simultaneously over a list (path) of integers as well as the DOM tree rooted at cur, where the integer in the list indicates which sub-tree of cur to visit. Function `getChild(n)` returns the nth child of an element.

To verify this code, the programmer needs to supply a loop invariant. At the moment, JSPrims* has only primitive support for annotating JavaScript source with loop invariants and other specifications. Thus, we describe the verification at the JS* level.

We start by showing (in the next display) two combinators in our JSPrims library used in the translation of `while`-loops. The signature of `while` shows a function that takes three predicate parameters, a loop `guard`, and a loop body. Its implementation iterates the application of `body` so long as `guard` is true, and then returns `Undefined`. The interesting element is, of course, in its specification.

The first predicate parameter to `while` is `Inv`, an invariant on the `heap`. The next two parameters are predicate transformers specifying the loop `guard` and `body`, respectively. While our verification condition generator can infer an instantiation for `TxGuard` and `TxBody`, the loop invariant `Inv` has to be supplied by some other means, e.g., manually. Of course, `Inv` has to be an inductive invariant—the predicate transformer for `while` states this as a pre-condition. At line 7, we state that the invariant must hold on the initial heap. At line 8, we say that the invariant must be inductive—this may take some careful study to understand, since it makes heavy use of the composition of predicate transformers. Informally, it states that for any heap `h1` that satisfies the invariant, then if the loop guard executed in the heap `h1` returns `true`, then running the loop body re-establishes the invariant `Inv`; otherwise, if the loop guard returns `false`, the invariant `Inv` must be true again. The final condition (line 13) requires that `Inv` be sufficient to establish any post-condition of the loop.

JSPrims combinators for while-loops and for getting the heap

```javascript
val `while` : 'Inv :: heap ⇒ E  
  → 'TxGuard:(bool ⇒ heap ⇒ E) ⇒ heap ⇒ E  
  → 'TxBody:(dyn ⇒ heap ⇒ E) ⇒ heap ⇒ E  
  → guard(unit → DST bool 'TxGuard)  
  → body(unit → DST dyn 'TxBody)  
  → DST dyn (fun 'Post h ⇒  
    ('Inv h &  
      (v h1) 'Inv h1  
      (Inv is initial ))  
    → ('TxGuard  
      (fun v h2 ⇒ (=true ⇒ 'TxBody (fun _ ⇒ 'Inv h2))  
      & & (v=false ⇒ 'Inv h2)))  
    ) & &  
    (v h1. 'Inv h1 ⇒ 'Post Undef h1)) (Inv implies Post))  
  → get: unit → DST heap (fun 'Post h ⇒ 'Post h h)
```

At line 15, we show the signature of `get`, a simple function that returns the current heap as a value. As we will see, this is useful for stating invariants.

Now, we return to analyzing `getPath` and seeing loop invariants for clients of `while` in action. The next listing shows the translation (slightly cleaned up) of `getPath` to F* for verification. At lines 2–4, we initialize the two local variables corresponding to cur and path in the source program. The while loop is translated to a call to the `while` combinator. The first three arguments to `while` (at line 7) are the predicate arguments—the first argument `Inv locals h0` is provided by the programmer; the next two are wild cards (_) whose instantiation is inferred by the verification condition generator. The fourth argument is the thunk representing the loop guard, and the last argument is a thunk for the loop body.

Translation of `getPath` to JS*

```javascript
let getPath this args =  
  let locals = allocObject () in  
  update locals "cur" (select args *0*);  
  update locals "path" (select args *1*);  
  let h0 = get () in  
  let _ = while (Inv locals h0) _  
    (fun _ → (not (select locals "path") = Undef)) & &  
    (not (select locals "cur") = Undef))  
  (fun _ →  
    let params = allocObject () in  
    getChild = select (select locals "cur") "getChild" in  
    let hd = select (select locals "path") "hd" in  
    update params "0*" hd;  
    update locals "cur" (apply getChild (select locals "cur") params);  
    update locals "path" (select (select locals "path") "tl") in  
    select locals "cur")
```

The code of the loop guard is straightforward. The body allocates an object `params` to pass arguments to the function `getChild`.

JSPrims refers to the JavaScript Primitives extension of the Java Virtual Machine, which provides a framework for verifying JavaScript code.
The parameters at the call on line 15 is a singleton integer containing the head of the list "path". We then update the locals "cur" and "path" and iterate.

Intuitively, verifying this code for the absence of runtime errors requires two properties: at each iteration, the "path" local must either be Undef or contain an integer hd field and also a tl field, while the "cur" local must contain a DOM element (or be Undef). We state just this using the loop invariant shown in the next display.

The invariant comes in two parts. First, at lines 2–14 we define an inductive predicate IsList ′ a h l, which states that in the heap h, the value l is either Undef or a list of ′-typed values. The style of this inductive specification is similar to the specification we used for IsElt in §6.2. The invariant Inv itself is defined at line 18. The invariant is a ternary predicate relating an object holding the local variables locs, the heap h0 at the start of the loop, to a heap h1, which represents the heap at the beginning of each loop iteration.

The invariant for getPath

```plaintext
1 /* Typing polymorphic lists */
2 type IsObject h o = TypeOf o ==object && InDom h o
3 type IsList :: E => heap ⇒ dyn ⇒ E
4 type ListTyping ′a h l =
5   (IsUndefined ||
6     (IsObject h l &&
7      HasField h ′hd′ && (TypeOf (Select h ′hd′))=′a &&
8      HasField h ′tl′ && IsList ′a h (Select h ′tl′)))
9 assume typing1′ a h d;{pattern} (IsList ′a h d)
10 IsList ′a h d =⇒ ListTyping ′a h d
11 assume trans′ a h1 h2 d;{pattern} (SelObj h2 (Loc d); (IsList h1 d))
12   (IsList ′a h1 d &&
13     (Select h1 d ″hd″)=(Select h2 d ″hd″)) &&
14     (Select h1 d ″tl″)=(Select h2 d ″tl″)) =⇒ IsList ′a h2 d
15
16 /* The loop invariant */
17 type CutsElt h d = IsObject h d && (IsObject h d =⇒ IsElt h d)
18 type Inv locs h0 h1 =
19   (SelObj h0 global)=(SelObj h1 global) &&
20   IsObject h1 locs &&
21   HasField h1 locs ″path" &&
22   HasField h1 locs ″cur" &&
23   IsList int h1 (Select h1 locs ″path") &&
24     ((Select h1 locs ″cur")=Undef || CutsElt h1 (Select h1 locs ″cur"))
```

The invariant states that: (1) the loop does not mutate the global object (necessary to verify the rest of the program after the loop); (2) the locs object has fields "path" and "cur"; (3) the former is a list of integers; and (4) the latter is either Undef or a DOM element. Stating and proving (4) required an additional hint for Z3. Instead of simply writing IsElt, we had to write CutsElt, which provides Z3 with a lemma to prove first that the "cur" local contains an object, and using that lemma, prove that it is a DOM element. The lemma helps guide the pattern-based instantiation of the quantifiers needed to reason about the IsElt predicate.

Clearly, writing such an invariant took considerable manual effort. This is unsurprising—verifying loops in a more well-behaved language, say, C#, also requires writing invariants, although, of course, many simple invariants in C# can be stated using just its type system. With more experience, we hope to discover JavaScript idioms that make writing loop invariants easier, and further, to apply ideas ranging from abstract interpretation to interpolants to automatically infer these invariants.

7.3 Typograf

Our final example is Typograf, an extension that formats text as a user enters in a web form. Typograf, like most Chrome extensions, is split into two parts, content scripts which have direct access to a web page, and extension cores which access other resources. The two parts communicate through message passing. When Typograf’s content script receives a request from the extension core to capture text, it calls captureText, which calls the callback function in the request (line 2). At line 8, Typograf registers listener as an event handler with the Chrome extension framework, by calling the function addListener. We show a simplified fragment of its code below.

Message passing with callbacks in Typograf

```plaintext
1 function captureText elt, callback) {
2   if (elt.tagName =′INPUT′ callback{ text: elt.value });
3 }
4 function listener(request, callback) {
5   if (request.command =′captureText′
6     captureText(document.activeElement, callback);
7 })
8 chromeExtensionOnRequest addListener listener;
```

We verified the content script for the absence of runtime errors. This program has 28 lines of JavaScript, which we verified in less than 10 seconds. This involved 102 queries of Z3, including resolving 7 function calls by generating Z3 models (which, as in the other cases, dominated the verification time). Verifying this extension requires providing a specification for addListener, a third-order function—it receives a second-order function (listener) as an argument. As with HoverMagnifier, since we do not model asynchrony, we require a sequential verification harness. Instead of writing driver code to include a call, say, to listener, we give a specification to addListener that, in effect, treats it as a function that immediately calls the function it receives as an argument. Using more realistic drivers, and handling asynchrony in general, is future work.

The display below shows our (partial) specification of the Chrome API. It states that it contains a function addListener, which expects a function as its first argument ((Select h′ args ″0″) on the last line, i.e., listener, in our example). The specification states that it calls listener immediately in a heap h′ that differs from the input heap in that it contains a new object args (line 8). This arguments object args itself, in its zeroth field, contains an object with a "command" field; and in its first field, contains another function, the callback passed to listener. The callback in this case is very simple—it is the constant Undef function—but clearly, it could be given a more elaborate specification. Our verification methodology generalizes naturally to functions of an arbitrary order.

A third-order specification for the Chrome API

```plaintext
1 type ChromeTyping h chrome =
2   IsObject h chrome &&
3     HasField h chrome addListener &&
4     (TypeOf (Select h chrome addListener)) =
5     (Function (fun args this ′Post h′) =
6       (′args h′,
7         (not (InDom h′ (Loc args)) &&
8          h′ = Alloc h′ args&&
9          IsObject h′ args &&
10         HasField h′ args ″0″ &&
11         HasField h′ args ″1″ &&
12         HasField h′ (Select h′ args ″0″) &&
13         HasField h′ (Select h′ args ″1″) "command" &&
14         TypeOf (Select h′ args ″1″) =
15         (Function (fun _ Postcb hcb ⇒ Postcb Undef hcb)))) =⇒ Unfun (TypeOf (Select h′ args ″0″) args ′Post h′))
```

8. Related work

Our JS2JS* tool is based closely on the λJS tool Guha et al. (2010). We began our implementation based on the λJS code base. However, we proceeded to reimplement a λJS-like translation from scratch, for two reasons. First, we found the original λJS had a brittle parser—parsing JavaScript is not easy (mainly because of its
programs by extracting heap models in Z3 can also be seen as a prelude of a JavaScript program. Our method of reasoning about JavaScript
et al’s separation logic style within F
first-order
functions, which prevents them from handling both higher-order
these in that the refinement formulas speak about a typing property. However, none of these prior systems gives stable refinements to functions, which prevents them from handling both higher-order
language. Because of the richness of
our target language, we are able to verify programs in a much more precise (and only semi-automated) manner. Besides, we need not stop at simply proving runtime safety—our methodology enables proofs of functional correctness.

There are several other recent systems for dynamic typing based on dependent typing. Dminor (Bierman et al. 2010) provides semantic subtyping for a first-order dynamically typed language. Tobin-Hochstadt and Felleisen (2010) provide refinement types for a pure subset of Scheme. System D (Chugh et al. 2012) is a refinement type system for a pure higher-order language with dictionary-based objects. Our type
dyn bears some resemblance to these in that the refinement formulas speak about a typing property. However, none of these prior systems gives stable refinements to functions, which prevents them from handling both higher-order
functions and mutable state, as we do.

Gardner et al. (2012) provide an axiomatic semantics for JavaScript based on separation logic. Their semantics enables precise reasoning about first-order, eval-free
JavaScript programs, including those that explicitly manipulate scope objects and prototype chains. Technically, supporting this idiom is possible in our system with a richer heap model (as in our concurrent submission). However, automated proving for such complex idioms is still hard. Indeed, at present, Gardner et al. provide only pencil and paper proofs about small, first-order JavaScript programs. Nevertheless, a potential direction for future work is to embed a subset of Gardner et al.’s separation logic style within F
for JavaScript verification.

In other work Gardner et al. (2008) show how to write specifications and reason about the DOM using context logic. Our specifications of the DOM, in contrast, use classical logic, and is not nearly as amenable to modular reasoning about the DOM, which has many complex aliasing patterns layered on top of a basic n-ary tree data structure. Understanding how to better structure our specifications of the DOM, perhaps based on the insights of Gardner et al., is another line of future work.

Many tools for automated analyses of various JavaScript subsets have also been constructed. We have already mentioned Gatekeeper, a pointer analysis for JavaScript used by JS2JS
. The CFA2 analysis (Vardoulakis and Shivers 2011) has been implemented in the Doctor JS tool to recover information about the call structure of a JavaScript program. Our method of reasoning about JavaScript programs by extracting heap models in Z3 can also be seen as a precise control flow analysis. As discussed previously, there is ample opportunity to improve our tool to consume the results of a source-level control-flow analysis as hints to our solver.

Jensen et al. (2009) build a whole-program abstract interpretation to recover more precise type information of programs in order to statically find program errors. The goals are similar to our work, but our modular approach does not rely on complete program analysis. They assume relatively small, complete programs while our approach allows for modular verification of portions of a program. Additionally, our analysis provides a more generalized approach to verifying policies on a program rather than just searching for program errors; in this work, we just happen to verify a policy of no basic program errors.

Conclusions. JavaScript has a dubious reputation in the programming language community. It is very popular, but its semantics is considered so unwieldy that sound, automated analysis is believed extremely hard. Our work establishes that with the right abstractions for reasoning about higher-order, dynamically typed stores, automated program verification tools are within reach. With our current prototype implementation, we are able to verify several JavaScript browser extensions for the absence of runtime errors. Our results open the door to applying a wealth of research in automated program verification techniques to JavaScript.

References