Structured Region Graphs: Morphing EP into GBP

Max Welling
Tom Minka
Yee Whye Teh

Structured Region Graphs

• A general representation for both GBP and EP approximations
• Reveals equivalence between GBP/EP
 – Can convert between equivalent GBP/EP algorithms
• Simple tests ensure good performance: non-singularity, $\sum_R c_R = 1$, maximality
• A framework for constructing good SRGs for any graphical model

GBP and EP

• Approximate inference in large graphical models
• Generalized belief propagation
 – Minimize Kikuchi free energy [Yedidia, Freeman, Weiss, NIPS 2000]
• Expectation propagation
 – Minimize local KL-divergence [Minka, UAI 2001]
• Require choosing approximation structure
 – Kikuchi clusters, exponential family
• Need a constructive framework...

A simple graphical model

\[p(x) = f_{12}(x_1, x_2)f_{23}(x_2, x_3)f_{14}(x_1, x_4)f_{25}(x_2, x_5) \ldots \]

Want single-variable marginals $p(x_1)$, $p(x_2)$, ...
Common theme

- GBP and EP approximate \(p(x) \) in a distributed fashion
- Factors are allocated to local regions
- Each region has a distribution of a specific form, tied together by constraints
- Regions pass messages until they meet the constraints

Outline

- Structured region graphs
- Equivalence operators
- Design criteria
- Design examples

Approximation choices

1. Number of regions
2. Allocation of factors to regions
3. Number of parameters per region
4. Which regions to constrain
5. What type of constraints
 - How can we reason about these choices?

Structured Region Graph

- A general representation for GBP and EP approximations
- A DAG of regions, each with a graph structure, and a set of factors
- Graph structure defines the form of \(q_R(x_R) \)
- Links define constraints – parent and child have the same clique-marginals
- Extends region graph formalism of [Yedidia,Freeman,Weiss, 2002]
Structured Region Graph

- **q_R** must match **q_D** on (1,3,4) and (3,4,5):
 \[\sum_{x \in (x_1, x_3, x_4)} q_R(x_R) = q_D(x_1, x_3, x_4) \]
 \[\sum_{x \in (x_3, x_4, x_5)} q_R(x_R) = q_D(x_3, x_4, x_5) \]

- Cliques (1,3,4)(3,4,5) (or similar)
- Parent must be super-graph of child

EP region graphs

- Only one inner region
- Every region contains all variables

GBP region graphs

- All inner regions are complete [Yedida, Freeman, Weiss, 2002]
- Thus **q_R(x_R)** is not factorized

Free energy

- Each region has counting number
 \[c_R = 1 - \sum_{A \in \text{an}(R)} c_A \]

- Free energy:
 \[F(q \parallel p) = \sum_R c_R \sum_{x_R} q_R(x_R) \log \frac{q_R(x_R)}{f_R(x_R)} \]
 subject to the parent-child marginal constraints

- Applies to both GBP and EP (special cases)
Generalized EP messages

- Parent-child algorithm (for discrete variables):
 \[
 \Delta \text{msg}_{R \rightarrow D}(x_D) = \frac{\text{clique.marginals}(q_R)}{q_D(x_D)}
 \]
- D relays this to other parents
- Iterate until all constraints satisfied
- Fixed point of msg passing = critical point of free energy

Equivalence operators

- Graphical operators that preserve the critical points of the free energy:
 1. Region-Drop
 2. Region-Merge
 3. Region-Split
 4. Link-Death
 5. Clique-Grow/Shrink
 6. Factor-Move

Outline

- Structured region graphs
- Equivalence operators
- Design criteria
- Design examples

Region Drop

- A region with one parent can be dropped (replaced by direct links)
Region Merge

- Linked regions with the same structure can be merged

Equivalence of BP and fully-factorized EP

Region split

- Any region can be split into two regions plus a separator
- Separator must be complete
- Pieces must be super-graphs of children

Fully-factorized EP
SPLIT

Belief propagation graph

BP and fully-factorized EP have the same fixed points

MERGE

Equivalence of GBP-squares and tree-structured EP
When does EP reduce to GBP?

- When all variables are discrete, and inner region is triangulated (i.e. approximation family is decomposable)
- E.g. TreeEP always reduces to GBP
- Proof: split all inner regions, starting at the bottom, until only complete regions are left
- But EP is often faster
 - (10x faster in [Minka & Qi, NIPS 2003])

GBP-squares region graph

- The chosen TreeEP region graph has the same fixed points as GBP-squares
- Extends to any grid

Outline

- Structured region graphs
- Equivalence operators
- Design criteria
- Design examples
Good region graphs

• Consider 2 extreme cases:
 – maximally correlated variables (strong factors)
 – uniform variables (weak factors)
• Want approx to be exact in (at least) these cases [Yedidia,Freeman,Weiss, 2004]

Factor strength: none (uniform) maximal (deterministic)

SRG exact iff: Non-singular $\sum R c_R = 1$

Simple test for non-singularity

• Non-singularity is preserved by equivalence operators
• Theorem: SRG is non-singular iff reduces to single-variable regions when all factors are removed

Non-singularity

• Def: All fixed points are uniform when the factors are uniform
• Not true for all region graphs
• Equivalent def: No ‘redundant’ regions
 – create spurious fixed points
 – analogous to singular matrix
• E.g. all triples in $K_4 = \text{singular}

Example: Squares graph

1. Remove factors

```
   1       1
   |
   2       5
   |
   3 ------ 6
   |
   4       7
```

```
   1       1
   |
   2       5
   |
   3 ------ 6
   |
   4       7
```
Example: Squares graph

1. Remove factors
2. Split

Example: Squares graph

1. Remove factors
2. Split
3. Merge
4. Clique-shrink
5. Split & merge

The squares graph is non-singular

Example: Squares graph

1. Remove factors
2. Split
3. Merge
4. Clique-shrink

Example: An extra loop

- Adding any extra loop (and overlap edges) to the squares graph makes it singular
- Squares graph is maximal wrt loops

\[\text{Singular} \]
General results

- Every acyclic SRG (no cycles of regions) is non-singular and has $\sum_R c_R = 1$
 - EP-graphs are acyclic
- If all regions contain at most one loop, then non-singular & $\sum_R c_R = 1$ implies *maximal wrt loops*
 - E.g. squares graph

Region graph design

- Want non-singular, $\sum_R c_R = 1$, maximal
 1. Start with EP-graph and reduce
 2. Start with BP-graph and add regions (region pursuit)

Outline

- Structured region graphs
- Equivalence operators
- Design criteria
- Design examples

Star graph

- Non-singular, $\sum_R c_R = 1$, maximal
- Closed under intersection
- Very effective on dense graphs
Region pursuit

- Start with edge regions only
- Greedily add the most “significant” cluster
 - changes free energy the most
 [Welling, UAI 2004]
- Performs poorly when too many clusters are added
- New twist: Skip clusters which would make the graph singular (tested automatically)

Summary

- A general formalism for GBP and EP approximations
- Equivalence operators between SRGs
 - equivalences between EP and GBP
- Simple tests ensure good performance: non-singularity, $\sum_R c_R = 1$, maximality

Future work

- More design principles
 - strength of actual factors
 - closed under intersection
- General test for maximality
- Generalized EP on continuous variables
 [Heskes & Zoeter, AISTATS 2003]