Inferring intent from proof attempts: AI4FM project

Cliff Jones
Computing Science
Newcastle University
Contents

Intro

Examples

Where next?
Observations

- (IMHO): “formal methods” pay off during development
 - post facto proof — not a smart way to debug
- (my belated) acceptance that tools are essential
- sadly, full formal reification rarely used in industry
 (possibly imaginary) data:
 - a development step generates 500 proof obligations
 - of which, 400 discharged automatically
 - by search, clever heuristics, theories (courtesy of AI)
 - discharging 100 POs by engineering staff is not acceptable
 - but 5 mini ideas cover the remaining proof tasks!
 - typically, these ideas are specific to the data structures etc.
- can we:
 - learn the “5 ideas” from an expert; apply to other 95 POs
 - accept that this will/may not help with “next 100”
Approach

Show where “smarts” come in: traditional

Inferring intent from proof attempts: AI4FM project (WG 2.3)
Approach

Show where “smarts” come in: AI4FM

Inferring intent from proof attempts: AI4FM project (WG 2.3)
Architecture (Leo/Andrius)

WhyM

Create Why Model
- Ask expert what's happening
- Infer proof process

WhyM Integration
- WhyM: Isabelle
- WhyM: Z/Eves
- WhyM: Rodin
- WhyM: ...

Apps
- "Clippy"
- Proof replay
- App X.. ?

Abstract

term data

• Proof scripts
• Proof log (?)

Whys

• Attempts
• Strategies
• Clues
• ...

Theorem Proving System

Expert

Inferring intent from proof attempts: AI4FM project (WG 2.3)
Notes on architecture (i)

- TP systems good at low-level search
 - domain of tactics/tacticals
 - unlikely to be the cause of failure
 - strengths differ in various TP systems
- what the expert sees
 - high-level strategy: “Why”
 - “missing” lemmas/side-conditions/generalisations
 - (we hope) higher level will be similar
- note: mine proof “process”
 - rather than finished proofs
- spotting what user is doing
 - “parse” + “clippy”
 - “matching” to spot what is missing
- indication that tactics are too low level:
 - work once
 - fail after minor change to definitions
 - cf. Mehta’s thesis / RodinTools

Inferring intent from proof attempts: AI4FM project (WG 2.3)
Notes on architecture (ii)

- use parallelism
 - at least as in RodinTools (parallel with user thoughts)
 - explore multiple strategies
 - control issues non-trivial?
- inclusion of (parallel) “disproving”
 - counter examples may have been underrated!
 - e.g. concatenation not commutative
 - vs. extra side-conditions
- work in in progress: there now follow some examples:
Some common points

- *not* aiming at general maths proofs
 - precisely: FM POs
 - remember that POG is already a decomposition of an (unstated?) equivalence theorem
 - rarely require deep proofs
 - but they do vary from one application to another

- tailored lemmas are important (see below)

- role of “proof critics”
example: “adequacy” PO

(as in VDM data reification)

\[\forall a \in A \cdot \exists r \in R \cdot a = retr(r) \]

sometimes messy because of embedded existential quantifier

consider:

- application area
- POG (name)
- is type A of bounded size?
- know we’ll need a witness for r

choose:

- choice function $(a = retr(choose(a)))$
- switch to $reln$
low level example: *Conjecture*

consider:
- application area
- POG (name)
- ...
- hyp/goal use operators from different *Theories*

choose:
- definitions of operators
- lemmas relating operators
- map to different data type
example: (any) Conjecture
“matching” / shape

consider:
- application area
- POG (name)
- shape

choose:
- look for lemma
- form new lemma (cf. “shape” in similar proofs)
- generalise? (cf. “shape” in similar proofs)
- split (cut rule)? (cf. “shape” in similar proofs)
low-level example: *Conjecture*

consider:
- hyp/goal have operators in different orders

choose:
- normal form
- distribution lemmas
- commutative lemmas
example: record structure

consider:

• big?

choose:

• structure with fewer fields (cf. J’s “toy problem”)
• eliminate dependencies (inv)
example: on seeing a new *Theory*

consider:
- sibling theories

choose:
- lemmas “by analogy”
- (rarely!) morphisms?
example: induction

consider:

- ??

choose:

- standard
- “k-induction”
- complete
- lemma shape for multiple operators \((a \overset{\sim}{\rightarrow} b \overset{\sim}{\rightarrow} c)\)
example: new \textit{function} definition

\textit{consider:}

\begin{itemize}
\item domain given
\end{itemize}

\textit{choose:}

\begin{itemize}
\item prove where defined
\item generate induction lemmas
\end{itemize}
example: *Term involving function*

(recursive) reference

\[\text{rev} == \cdots \]

\[\text{rev}(\text{rev}(s)) = s \]

\[\text{len} \text{rev}(s) = \text{len} s \]

consider:

- sibling theories

choose:

- lemma relating \(\text{len}(s1 \bowtie s2) = \text{len} s1 + \text{len} s2 \)
Handling failure

...can we reduce “failure” to analysis of generated *Conjectures*

consider:

- looks “broken”

choose:

- suspend?
- reduce weights
What we are doing now

- “how to say why” + “models of why”
- remember — at this stage of AI4FM:
 - think about how to record high-level proof strategies
 - the issue of how to learn them comes next
 - weights above are but a small nod to learning!
- understand role of “failure” in proof
 - I love the “proof critic” idea (Edinburgh)
 - . . . but do wonder if tracking failure is too sequential?
- there are many other things that inhibit adoption of FMs:
 - tools themselves (mono-lingual)
 - no one universal method
 - “concept overload”

Inferring intent from proof attempts: AI4FM project (WG 2.3)
More information

- www.ai4fm.org
- open mailing list: ai4fm-info@jiscmail.ac.uk
- *mural* — see [JJLM91]
- Rippling — see [BBHI05]
- AI4FM itself — see [JGB10, FJ10]
- Dagstuhl event 2012-07-02/06
A. Bundy, D. Basin, D. Hutter, and A. Ireland.
**Rippling: Meta-level Guidance for Mathematical Reasoning.**

Leo Freitas and Cliff B. Jones.
Learning from an expert’s proof: AI4FM.
In Tom Ball, Lenore Zuck, and Natarajan Shankar, editors, _UV10 (Usable Verification)_, November 2010.

Cliff B. Jones, Gudmund Grov, and Alan Bundy.
Some facets of a strategy language for proofs.
In _5th Automated Formal Methods workshop (AFM’10)_ , July 2010.
Also available as Edinburgh University, School of Informatics technical report EDI-INF-RR-1377.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore.
mural: A Formal Development Support System.