Specifying Concurrent Systems with TLA⁺

Leslie Lamport

24 Dec 1999

©1999 by Leslie Lamport

Preliminary Draft

Be sure to read the description of this document on page 3 of the Introduction.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>I Getting Started</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1 A Little Simple Math</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1.1 Propositional Logic</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1.2 Sets</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>1.3 Predicate Logic</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2 Specifying a Simple Clock</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.1 Behaviors</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.2 An Hour Clock</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.3 A Closer Look at the Hour-Clock Specification</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>2.4 The Hour-Clock Specification in TLA$^+$</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2.5 Another Way to Specify the Hour Clock</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>3 An Asynchronous Interface</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>3.1 The First Specification</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3.2 Another Specification</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3.3 Types: A Reminder</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3.4 Definitions</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3.5 Comments</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>4 A FIFO</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4.1 The Inner Specification</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>4.2 Instantiation Examined</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>4.2.1 Instantiation is Substitution</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>4.2.2 Parametrized Instantiation</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>4.2.3 Implicit Substitutions</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>4.2.4 Instantiation Without Renaming</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>4.3 Hiding the Queue</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>4.4 A Bounded FIFO</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>
CONTENTS

4.5 What We're Specifying .. 43

5 A Caching Memory .. 45
 5.1 The Memory Interface 45
 5.2 Functions .. 48
 5.3 A Linearizable Memory Specification 50
 5.4 Tuples as Functions 51
 5.5 Recursive Function Definitions 53
 5.6 A Write-Through Cache 54
 5.7 Invariance .. 60
 5.8 Proving Implementation 62

6 Some More Math ... 65
 6.1 Sets .. 65
 6.2 Silly Expressions ... 67
 6.3 Recursive Function Definitions Revisited 67
 6.4 Functions versus Operators 69
 6.5 Using Functions .. 71
 6.6 Choose .. 72

7 Writing a Specification—Some Advice 75
 7.1 Why to Specify ... 75
 7.2 What to Specify .. 76
 7.3 The Grain of Atomicity 76
 7.4 The Data Structures 78
 7.5 Writing the Specification 79
 7.6 Some Further Hints 79
 7.7 When and How to Specify 82

II More Advanced Topics .. 85

8 Liveness and Fairness .. 87
 8.1 Temporal Formulas .. 87
 8.2 Weak Fairness ... 91
 8.3 Liveness for the Memory Specification 94
 8.4 Strong Fairness .. 95
 8.5 Liveness for the Write-Through Cache 97
 8.6 Quantification ... 98
 8.7 Temporal Logic Examined 100
 8.7.1 A Review ... 100
 8.7.2 Machine Closure 100
 8.7.3 Machine Closure and Possibility 102
 8.7.4 The Unimportance of Liveness 103
CONTENTS

8.7.5 Temporal Logic Considered Confusing 103

9 Real Time

9.1 The Hour Clock Revisited .. 105
9.2 Real-Time Specifications in General 108
9.3 The Real-Time Write-Through Cache 112
9.4 Zeno Specifications .. 117
9.5 Hybrid System Specifications 119
9.6 Remarks on Real Time .. 121

10 Composing Specifications

10.1 Composing Two Specifications 124
10.2 Composing Many Specifications 126
10.3 The FIFO ... 129
10.4 Composition with Shared State 132
10.4.1 Explicit State Changes 132
10.4.2 Composition with Joint Actions 135
10.5 A Brief Review .. 139
10.5.1 A Taxonomy of Composition 139
10.5.2 Interleaving Reconsidered 139
10.5.3 Joint Actions Reconsidered 140
10.6 Liveness and Hiding .. 141
10.6.1 Liveness and Machine Closure 141
10.6.2 Hiding ... 142
10.7 Open-System Specifications 144
10.8 Interface Refinement ... 146
10.8.1 A Binary Hour Clock 146
10.8.2 Refining a Channel .. 148
10.8.3 Interface Refinement in General 151
10.8.4 Open-System Specifications 153
10.9 Should You Compose? ... 155

11 Advanced Examples

11.1 Specifying Data Structures 158
11.1.1 Local Definitions ... 158
11.1.2 Graphs ... 159
11.1.3 Solving Differential Equations 163
11.1.4 The Riemann Integral 165
11.2 Other Memory Specifications 165
11.2.1 The Interface ... 168
11.2.2 The Correctness Condition 168
11.2.3 A Serial Memory ... 171
11.2.4 A Sequentially Consistent Memory 178
11.2.5 The Memory Specifications Considered 183
CONTENTS

III The Tools 187

12 The Java Front End 189
 12.1 Finding an Error 189

13 The TLC Model Checker 191
 13.1 Introduction to TLC 191
 13.2 How TLC Works 198
 13.2.1 TLC Values 198
 13.2.2 How TLC Evaluates Expressions 199
 13.2.3 Assignment and Replacement 201
 13.2.4 Overriding Modules 203
 13.2.5 How TLC Computes States 203
 13.2.6 When TLC Computes What 204
 13.2.7 Random Simulation 205
 13.3 How to Use TLC 206
 13.3.1 Running TLC 206
 13.3.2 Debugging a Specification 207
 13.3.3 The TLC Module 212
 13.3.4 Checking Action Invariance 214
 13.3.5 Checking Implementation 217
 13.3.6 Some Hints 218
 13.4 What TLC Doesn’t Do 221
 13.5 Future Plans 223
 13.6 The Fine Print: What TLC Really Does 224
 13.6.1 TLC Values 224
 13.6.2 Overridden Values 225
 13.6.3 Expression Evaluation 225
 13.6.4 Fingerprinting 234

IV The TLA+ Language 235

14 The Syntax of TLA+ 245
 14.1 The Simple Grammar 246
 14.1.1 BNF Grammars 246
 14.1.2 The BNF Grammar of TLA+ 250
 14.2 The Complete Grammar 258
 14.2.1 Precedence and Associativity 258
 14.2.2 Alignment 261
 14.2.3 Comments 262
 14.2.4 Temporal Formulas 263
 14.2.5 Two Anomalies 264
 14.3 What You Type 264
15 The Operators of TLA^+ .. 265
 15.1 Constant Operators 265
 15.1.1 Boolean Operators 267
 15.1.2 The Choose Operator 268
 15.1.3 The Three Interpretations of Boolean Operators 270
 15.1.4 Conditional Constructs 272
 15.1.5 LET .. 272
 15.1.6 The Operators of Set Theory 273
 15.1.7 Functions 275
 15.1.8 Records 279
 15.1.9 Tuples 280
 15.1.10 Strings 281
 15.1.11 Numbers 282
 15.2 Nonconstant Operators 283
 15.2.1 The Meaning of a Basic Constant Expression ... 283
 15.2.2 The Meaning of a State Function 284
 15.2.3 Action Operators 286
 15.2.4 Temporal Operators 288
16 The Meaning of a Module 291
 16.1 Operators and Expressions 291
 16.1.1 The Order and Arity of an Operator 292
 16.1.2 λ Expressions 293
 16.1.3 Simplifying Operator Application 294
 16.1.4 Expressions 295
 16.2 Levels .. 295
 16.3 Contexts .. 298
 16.4 The Meaning of a λ Expression 299
 16.5 The Meaning of a Module 301
 16.5.1 Extends 302
 16.5.2 Declarations 302
 16.5.3 Operator Definitions 303
 16.5.4 Function Definitions 303
 16.5.5 Instantiation 304
 16.5.6 Theorems and Assumptions 305
 16.5.7 Submodules 305
 16.6 Correctness of a Module 306
 16.7 Finding Modules 306
 16.8 The Semantics of Instantiation 307
17 The Standard Modules
 17.1 Module Sequences 313
 17.2 Module FiniteSets 314
 17.3 Module Bags .. 314
 17.4 The Numbers Modules 318

V Appendix
 A The ASCII Specifications 325
 A.1 The Asynchronous Interface 325
 A.2 A FIFO ... 326
 A.3 A Caching Memory 327
 A.4 The Alternating Bit Protocol 332

References ... 335
List of Figures

2.1 The hour clock specification—typeset and ASCII versions. 20

3.1 The First Specification of an Asynchronous Interface 27
3.2 Our second specification of an asynchronous interface. 30
3.3 The hour clock specification with comments. 33

4.1 The specification of a FIFO, with the internal variable q visible. 38
4.2 Specification of a FIFO buffer of length N. 43

5.1 The Specification of a Memory Interface 48
5.2 The internal memory specification (beginning). 52
5.3 The internal memory specification (end). 53
5.4 The memory specification. 53
5.5 The write-through cache specification (beginning). 56
5.6 The write-through cache specification (middle). 57
5.7 The write-through cache specification (end). 58

9.1 The real-time specification of an hour clock. 109
9.2 The RealTime module for writing real-time specifications. 112
9.3 A real-time version of the linearizable memory specification. 113
9.4 A real-time version of the write-through cache (beginning). 116
9.5 A real-time version of the write-through cache (end). 117

10.1 A noninterleaving composite specification of the FIFO. 131
10.2 A joint-action compositional specification of the linearizable memory. 138
10.3 A specification of a binary hour clock. 148
10.4 Refining a channel. 150

11.1 A module for specifying operators on graphs. 162
11.2 A module for specifying the solution to a differential equation. 166
11.3 A specification of the Riemann integral. 167
11.4 A module for specifying a register interface to a memory. 169
11.5 Module InnerSerial (beginning) .. 179
11.6 Module InnerSerial (middle) ... 180
11.7 Module InnerSerial (end) .. 181
11.8 Module InnerSequential (beginning) 184
11.9 Module InnerSequential (end) ... 185

13.1 The Alternating Bit Protocol (beginning) 194
13.2 The Alternating Bit Protocol (end) 195
13.3 Module MCAlternatingBit .. 196
13.4 A configuration file for module MCAlternatingBit 197
13.5 The standard module TLC .. 213
13.6 An invariant of the alternating bit protocol’s next-state action.. 215
13.7 A higher-level specification of the alternating bit protocol. 218
13.8 A module for checking the alternating bit protocol 219
13.9 The constant operators .. 238
13.10 Miscellaneous constructs ... 239
13.11 Action operators .. 239
13.12 Temporal operators ... 239
13.13 User-definable operator symbols 240
13.14 The precedence ranges of operators 241
13.15 Operators defined in the standard modules 242
13.16 The ASCII representations of typeset symbols 243

14.1 The definition of the grammar GSE for the language SE 250
14.2 The module BNFGrammars ... 251

17.1 The standard Sequences module 315
17.2 The standard FiniteSets module 315
17.3 The standard Bags module .. 317
17.4 The Peano module .. 319
17.5 The ProtoReals module (beginning) 320
17.6 The ProtoReals module (end) .. 321
17.7 The standard Naturals module .. 322
17.8 The standard Integers module .. 322
17.9 The standard Reals module ... 322
Introduction

Writing is nature’s way of letting you know how sloppy your thinking is.
Guindon

Writing a specification for a system helps us understand it. It’s a good idea to understand something before you build it, so it’s a good idea to specify a system before you implement it.

Mathematics is nature’s way of letting you know how sloppy your writing is. Specifications written in an imprecise language like English are usually imprecise. In engineering, imprecision is an invitation to error. Science and engineering have adopted mathematics as a language for writing precise descriptions.

Formal mathematics is nature’s way of letting you know how sloppy your mathematics is. The mathematics written by most mathematicians and scientists is still imprecise. Most mathematics texts are precise in the small, but imprecise in the large. Each equation is a precise assertion, but you have to read the text to understand how the equations relate to one another, and what the theorems really mean. Logicians have developed ways of eliminating the words and formalizing mathematics.

Most mathematicians and computer scientists think that writing mathematics formally, without words, is tiresome. I’ve asked a number of computer scientists the following question: How long would a formal specification of the Riemann integral of elementary calculus be, assuming only arithmetic operations on real numbers. The answers I received ranged up to 50 pages. Section 11.1.4 shows how to do it in about 20 lines. Once you learn how, it’s easy to express ordinary mathematics in a precise, completely formal language.

To specify systems with mathematics, we must decide what kind of mathematics to use. We can specify an ordinary sequential program by describing its output as a function of its input. So, sequential programs can be specified in terms of functions. Concurrent systems are usually described in terms of their behaviors—what they do in the course of an execution. In 1977, Amir Pnueli introduced the use of temporal logic for describing such behaviors.

Temporal logic is appealing because, in principle, it allows a concurrent system to be described by a single formula. In practice, temporal logic proved to be
cumbersome. Pnueli’s temporal logic was ideal for describing some properties of systems, but awkward for others. So, it was usually combined with some more traditional way of describing systems.

In the late 1980’s, I discovered TLA, the Temporal Logic of Actions. TLA is a simple variant of Pnueli’s original logic that makes it practical to write a specification as a single formula. Most of a TLA specification consists of ordinary, nontemporal mathematics. Temporal logic plays a significant role only in describing those properties that it’s good at describing. TLA also provides a nice way to formalize the style of reasoning about systems that has proved to be most effective in practice—a style known as assertional reasoning. However, the topic of this document is specification, not proof, so I will have little to say about proofs.

TLA provides a mathematical foundation for describing concurrent systems. To write specifications, we need a complete language built atop that foundation. I initially thought that this language should be some sort of abstract programming language whose semantics would be based on TLA. I didn’t know what kind of programming language constructs would be best, so I decided to start writing specifications directly in TLA. I intended to introduce programming constructs as I needed them. To my surprise, I discovered that I didn’t need them. What I needed was a robust language for writing mathematics.

Although mathematicians have developed the science of writing formulas, they haven’t turned that science into an engineering discipline. They have developed notations for mathematics in the small, but not for mathematics in the large. The specification of a real system can be dozens or even hundreds of pages long. Mathematicians know how to write 20-line formulas, not 20-page formulas. So, I had to introduce notations for writing long formulas. What I took from programming languages were ideas for modularizing large specifications.

The language I came up with is called TLA+. I refined TLA+ in the course of writing specifications of disparate systems. But it has changed little in the last few years. I have found TLA+ to be quite good for specifying a wide class of systems—from program interfaces (APIs) to distributed systems. It can be used to write a precise, formal description of almost any sort of discrete system. It’s especially well suited to describing asynchronous systems—that is, systems with components that do not operate in strict lock-step.

One advantage of a precise specification language is that it enables us to build tools that can help us write correct specifications. There are now at least two such tools under development: a parser and a model checker, described in Part III. The parser can catch simple errors in any TLA+ specification. The model checker can catch many more errors, but it works on a restricted class of specifications—a class that seems to include most of the specifications of interest to industry today.
The State of this Document

This document is a preliminary draft. Here is a brief description of the individual parts what and who should read them.

Part I

These chapters are complete and shouldn’t have too many errors. They are an introduction and should be read by everyone interested in using TLA+. They explain how to specify the class of properties known as safety properties. These properties, which can be specified with almost no temporal logic, are all that most engineers need to know about.

Part II

Temporal logic comes to the fore in Chapter 8, where it is used to specify the additional class of properties known as liveness properties. This chapter is in pretty good shape, but probably has more errors per page than the preceding chapters. The remaining chapters in this part are rough drafts and are full of errors. Chapter 9 describes how to specify real-time properties, and Chapter 10 describes how to write specifications as compositions. Chapter 11 describes some more advanced examples.

Part III

This part describes the parser and the TLC model checker. If you are reading this because you want to use TLA+, then you’ll probably want to use these tools and should read these chapters. They are preliminary and have lots of errors. Before trying to use TLC be sure to read Section 13.4 on page 221; it describes limitations of the current version of the program.

Part IV

This part is a reference manual for the language. It has not been read carefully and is undoubtedly full of errors. Part I should give you a good enough working knowledge of the language for most of your needs. Part IV describes the fine points of the syntax and semantics; it also contains the standard modules. Chapter 14 gives the syntax of TLA+ and includes a BNF grammar (written in TLA+). Chapter 15 describes the precise meanings and the general forms of all the built-in operators of TLA+. It should answer any questions you might have about exactly a TLA+ operator means. Chapter 16 describes the precise meaning of all the higher-level TLA+ constructs, such as definitions and module inclusion. Chapters 15 and 16 together specify the semantics of the language.
Chapter 17 describes the standard modules—except for module *RealTime*, described in Chapter 9, and module *TLC*, described in Chapter 13. You might want to look at this chapter if you’re curious about how standard elementary mathematics can be formalized in TLA⁺.

You will seldom have occasion to read any of Part IV. However, it does have something you may want to refer to often: a mini-manual that compactly presents lots of useful information. Pages 238–243 list all TLA⁺ operators, all user-definable symbols, the precedence of all operators, all operators defined in the standard modules, and the ASCII representation of symbols like ⊗.

The Appendix

The specifications that appear in the book are typeset for easy reading by humans. To be read by a tool, a specification must be written in ASCII. The appendix includes the ASCII versions of all the specifications in Part I, as well as the specifications from Chapter 13. Comparing the ASCII and the typeset version can teach you how to write TLA⁺ specifications in ASCII.
Part I

Getting Started
A system specification consists of a lot of ordinary mathematics glued together with a little bit of temporal logic. So, most of the work in writing a precise specification consists of expressing ordinary mathematics precisely. That’s why most of the details of TLA+ are concerned with expressing ordinary mathematics.

Unfortunately, the computer science departments in many universities apparently believe that fluency in C++ is more important than a sound education in elementary mathematics. So, some readers may be unfamiliar with the mathematics needed to write specifications. Fortunately, this mathematics is quite simple. If overexposure to C++ hasn’t destroyed your ability to think logically, you should have no trouble filling any gaps in your mathematics education. You probably learned arithmetic before being exposed to C++, so I will assume you know about numbers and arithmetic operations on them.\(^1\) I will try to explain all other mathematical concepts that you need, starting in Chapter 1 with a review of some elementary math. I hope most readers will find this review completely unnecessary.

After the brief review of simple mathematics in the next section, Chapters 2 through 5 describe TLA+ with a sequence of examples. Chapter 6 explains some more about the math used in writing specifications, and Chapter 7 reviews everything and provides some advice. By the time you finish Chapter 7, you should be able to handle most of the specification problems that you are likely to encounter in ordinary engineering practice.

\(^1\)Some readers may need reminding that numbers are not strings of bits, and \(2^{33} \times 2^{33}\) equals \(2^{66}\), not overflow error.
Chapter 1

A Little Simple Math

1.1 Propositional Logic

Elementary algebra is the mathematics of real numbers and the operators $+$, $-$, \ast (multiplication), and $/$ (division). Propositional logic is the mathematics of the two Boolean values \textsc{true} and \textsc{false} and the five operators whose names (and common pronunciations) are:

- \land conjunction (and)
- \lor disjunction (or)
- \equiv equivalence (is equivalent to)
- \neg negation (not)
- \implies implication (implies)

To learn how to compute with numbers, you had to memorize addition and multiplication tables and algorithms for calculating with multidigit numbers. Propositional logic is much simpler, since there are only two values, \textsc{true} and \textsc{false}. To learn how to compute with these values, all you need to know are the following definitions of the five Boolean operators:

\land $F \land G$ equals \textsc{true} iff both F and G equal \textsc{true}.

\lor $F \lor G$ equals \textsc{true} iff F or G equals \textsc{true} (or both do).

\neg $\neg F$ equals \textsc{true} iff F equals \textsc{false}.

\implies $F \implies G$ equals \textsc{true} iff F equals \textsc{false} or G equals \textsc{true} (or both).

\equiv $F \equiv G$ equals \textsc{true} iff F and G both equal \textsc{true} or both equal \textsc{false}.

\textit{iff} stands for \textit{if and only if}. Like most mathematicians, I use \textit{or} to mean \textit{and/or}.

9
We can also describe these operators by *truth tables*. This truth table for \(F \Rightarrow G \) gives its value for all four combinations of truth values of \(F \) and \(G \):

<table>
<thead>
<tr>
<th>(F)</th>
<th>(G)</th>
<th>(F \Rightarrow G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

People are often confused about why \(\Rightarrow \) means implication. In particular, they don’t understand why \(\text{false} \Rightarrow \text{true} \) and \(\text{false} \Rightarrow \text{false} \) should equal \(\text{true} \). The explanation is simple. We expect that if \(n \) is greater than 3 then it should be greater than 1, so \(n > 3 \) should imply \(n > 1 \). Substituting 4, 2, and 0 for \(n \) in the formula \((n > 3) \Rightarrow (n > 0) \) explains why we can read \(F \Rightarrow G \) as \(F \) implies \(G \) or, equivalently, as if \(F \) then \(G \).

The equivalence operator \(\equiv \) is equality for Booleans. We can replace \(\equiv \) by =, but not vice versa. (We can write \(\text{false} \equiv \text{true} \), but not \(\text{false} = \text{true} \).) Writing \(\equiv \) instead of = makes it clear that the equal expressions are Booleans.\(^1\)

Formulas of propositional logic are made up of values, operators, variables, and parentheses just like those of algebra. In algebraic formulas, \(* \) has higher precedence (binds more tightly) than +, so \(x + y * z \) means \(x + (y * z) \). Similarly, \(\neg \) has higher precedence than \& and \(\lor \), which have higher precedence than \(\Rightarrow \) and \(\equiv \), so \(\neg F \land G \Rightarrow H \) means \(((\neg F) \land G) \Rightarrow H \). Other mathematical operators like + and > have higher precedence than the operators of propositional logic, so \(n > 0 \Rightarrow n - 1 \geq 0 \) means \((n > 0) \Rightarrow (n - 1 \geq 0) \). Redundant parentheses can’t hurt and often make a formula easier to read. If you have any doubt about whether parentheses are needed, use them.

The operators \(\land \) and \(\lor \) are associative, just like + and *. Associativity of + means that \(x + (y + z) \) equals \((x + y) + z \), so we can write \(x + y + z \) without parentheses. Similarly, associativity of \(\land \) and \(\lor \) lets us write \(F \land G \land H \) or \(F \lor G \lor H \).

A *tautology* of propositional logic is a formula like \((F \Rightarrow G) \equiv (\neg F \lor G) \) that is true for all possible truth values of its variables. One can prove all tautologies from a few simple axioms and rules. However, that would be like computing 437 + 256 from the axioms of arithmetic. It’s much easier to verify that a simple formula is a tautology by writing its truth table—that is, by directly calculating the value of the formula for all possible truth values of its components. The formula is a tautology iff it equals \text{true} for all these values. To construct the truth table for a formula, we construct the truth table for all its subformulas. For example, the following truth table shows that \((F \Rightarrow G) \equiv (\neg F \lor G) \) is indeed a

1Section 15.1.3 explains a more subtle reason for using \(\equiv \) instead of = for equality of Boolean values.
1.2 Sets

Sets are the foundation of ordinary mathematics. A set is often described as a collection of elements, but saying that a set is a collection doesn’t explain very much. The concept of set is so fundamental that we don’t try to define it. We take as undefined concepts the notion of a set and the relation $x \in S$, where $x \in S$ means that x is an element of S. We often say *is in* instead of *is an element of*.

A set can have a finite or infinite number of elements. The set of all natural numbers (0, 1, 2, etc.) is an infinite set. The set of all natural numbers less than 3 is finite, and contains the three elements 0, 1, and 2. We can write this set $\{0, 1, 2\}$.

A set is completely determined by its elements. Two sets are equal if they have the same elements. Thus, $\{0, 1, 2\}$ and $\{2, 1, 0\}$ and $\{0, 0, 1, 2, 2\}$ are all the same set—the unique set containing the three elements 0, 1, and 2. The empty set, which we write $\{\}$, is the unique set that has no elements.

The most common operations on sets are:

- \cap intersection
- \cup union
- \subseteq subset
- \setminus set difference

Here are their definitions and examples of their use:

- $S \cap T$ The set of elements in both S and T.
 \[
 \{1, -1/2, 3\} \cap \{1, 2, 3, 5, 7\} = \{1, 3\}
 \]

- $S \cup T$ The set of elements in S or T (or both).
 \[
 \{1, -1/2\} \cup \{1, 5, 7\} = \{1, -1/2, 5, 7\}
 \]
CHAPTER 1. A LITTLE SIMPLE MATH

S ⊆ T True iff every element of S is an element of T.
{1,3} ⊆ {3,2,1}

S \ T The set of elements in S that are not in T.
{1,−1/2,3} \ {1,5,7} = {−1/2,3}

This is all you need to know about sets before we start looking at how to specify systems. We’ll return to set theory in Section 6.1.

1.3 Predicate Logic

Once we have sets, it’s natural to say that some formula is true for all the elements of a set, or for some of the elements of a set. Predicate logic extends propositional logic with the two quantifiers:

∀ universal quantification (for all)
∃ existential quantification (there exists)

The formula ∀x ∈ S : F asserts that formula F is true for every element x in the set S. For example, ∀n ∈ Nat : n + 1 > n asserts that the formula n + 1 > n is true for all elements n of the set Nat of natural numbers. This formula happens to be true.

The formula ∃x ∈ S : F asserts that formula F is true for at least one element x in S. For example, ∃n ∈ Nat : n² = 2 asserts that there exists a natural number n whose square equals 2. This formula happens to be false.

Formula F is true for all x ∈ S iff there is no x ∈ S for which F is false, which is true iff there is no x ∈ S for which ¬F is true. Hence, the formula

(1.1) (∃x ∈ S : F) ≡ ¬(∀x ∈ S : ¬F)

is a tautology of predicate logic.\(^2\)

Since there exists no element in the empty set, the formula ∃x ∈ ∅ : F is false for every formula F. By (1.1), this implies that ∀x ∈ ∅ : F must be true for every F.

The quantification in the formulas ∀x ∈ S : F and ∃x ∈ S : F is said to be bounded, since these formulas make an assertion only about elements in the set S. There is also unbounded quantification. The formula ∀x : F asserts that F is true for all values x, and ∃x : F asserts that F is true for at least one value of x—a value that is not constrained to be in any particular set. Bounded and unbounded quantification are related by the following tautologies:

(∀x ∈ S : F) ≡ (∀x : (x ∈ S) ⇒ F)
(∃x ∈ S : F) ≡ (∃x : (x ∈ S) ∧ F)

\(^2\)Strictly speaking, ∈ isn’t an operator of predicate logic, so this isn’t really a predicate logic tautology.
1.3. PREDICATE LOGIC

The analog of (1.1) for unbounded quantifiers is also a tautology:

\[(\exists x : F) \equiv \neg (\forall x : \neg F)\]

Whenever possible, it is better to use bounded than unbounded quantification in a specification. This makes the specification easier for both people and tools to understand.

Universal quantification generalizes conjunction. If \(S\) is a finite set, then \(\forall x \in S : F\) is the conjunction of the formulas obtained by substituting the different elements of \(S\) for \(x\) in \(F\). For example,

\[(\forall x \in \{2, 3, 7\} : x < y^2) \equiv (2 < y^2) \land (3 < y^3) \land (7 < y^7)\]

We sometimes informally talk about the conjunction of an infinite number of formulas when we formally mean a universally quantified formula. For example, the conjunction of the formulas \(x \leq y^x\) for all natural numbers \(x\) is the formula \(\forall x \in \text{Nat} : x \leq y^x\). Similarly, existential quantification generalizes disjunction.

Logicians have rules for proving predicate-logic tautologies such as (1.1), but you shouldn’t need them. You should become familiar enough with predicate logic that simple tautologies are obvious. Thinking of \(\forall\) as conjunction and \(\exists\) as disjunction can help. For example, the associativity and commutativity of conjunction and disjunction lead to the tautologies:

\[(\forall x \in S : F) \land (\forall x \in S : G) \equiv (\forall x \in S : F \land G)\]
\[(\exists x \in S : F) \lor (\exists x \in S : G) \equiv (\exists x \in S : F \lor G)\]

for any set \(S\) and formulas \(F\) and \(G\).

Mathematicians use some obvious abbreviations for nested quantifiers. For example:

\[\forall x \in S, y \in T : F\] means \(\forall x \in S : (\forall y \in T : F)\)
\[\exists w, x, y, z \in S : F\] means \(\exists w \in S : (\exists x \in S : (\exists y \in S : (\exists z \in S : F)))\)

In the expression \(\exists x \in S : F\), logicians say that \(x\) is a bound variable and that occurrences of \(x\) in \(F\) are bound. For example, \(n\) is a bound variable in the formula \(\exists n \in \text{Nat} : n + 1 > n\), and the two occurrences of \(n\) in the subexpression \(n + 1 > n\) are bound. A variable \(x\) that’s not bound is said to be free, and occurrences of \(x\) that are not bound are called free occurrences. This terminology is rather misleading. A bound variable doesn’t really occur in a formula because replacing it by some new variable doesn’t change the formula. The two formulas

\[\exists n \in \text{Nat} : n + 1 > n\]
\[\exists x \in \text{Nat} : x + 1 > x\]

are equivalent. Calling \(n\) a variable of the first formula is a bit like calling \(a\) a variable of that formula because it appears in the name \(\text{Nat}\). Although misleading, this terminology is common and often convenient.
Chapter 2

Specifying a Simple Clock

2.1 Behaviors

Before we try to specify a system, let’s look at how scientists do it. For centuries, they have described a system with equations that determine how its state evolves with time, where the state consists of the values of variables. For example, the state of the system comprising the earth and the moon might be described by the values of the four variables \(e_{\text{pos}}, m_{\text{pos}}, e_{\text{vel}}, \) and \(m_{\text{vel}}, \) representing the positions and velocities of the two bodies. These values are elements in a 3-dimensional space. The earth-moon system is described by equations expressing the variables’ values as functions of time and of certain constants—namely, their masses and initial positions and velocities.

A behavior of the earth-moon system consists of a function \(F \) from time to states, \(F(t) \) representing the state of the system at time \(t. \) A computer system differs from the systems traditionally studied by scientists because we can pretend that its state changes in discrete steps. So, we represent the execution of a system as a sequence of states. Formally, we define a behavior to be a sequence of states, where a state is an assignment of values to variables. We specify a system by specifying a set of possible behaviors—the ones representing a correct execution of the system.

2.2 An Hour Clock

Let’s start with a very trivial system—a digital clock that displays only the hour. To make the system completely trivial, we ignore the relation between the display and the actual time. The hour clock is then just a device whose display cycles through the values 1 through 12. Let the variable \(hr \) represent the clock’s
display. A typical behavior of the clock is the sequence
\[(hr = 11) \rightarrow (hr = 12) \rightarrow (hr = 1) \rightarrow (hr = 2) \rightarrow \cdots\]
of states, where \((hr = 11)\) is a state in which the variable \(hr\) has the value 11. A pair of successive states, such as \((hr = 1) \rightarrow (hr = 2)\), is called a step.

To specify the hour clock, we describe all its possible behaviors. We write an initial predicate that specifies the possible initial values of \(hr\), and a next-state relation that specifies how the value of \(hr\) can change in any step.

We don’t want to specify exactly what the display reads initially; any hour will do. So, we want the initial predicate to assert that \(hr\) can have any value from 1 through 12. Let’s call the initial predicate \(HCini\). We might informally define \(HCini\) by:

\[HCini \triangleq hr \in \{1, \ldots, 12\}\]

Later, we’ll see how to write this definition formally, without the “…” that stands for the informal and so on.

The next-state relation \(HCnxt\) is a formula expressing the relation between the values of \(hr\) in the old (first) state and new (second) state of a step. We let \(hr\) represent the value of \(hr\) in the old state and \(hr'\) represent its value in the new state. (The ‘ in \(hr'\) is read prime.) We want the next-state relation to assert that \(hr'\) equals \(hr + 1\) except if \(hr\) equals 12, in which case \(hr'\) should equal 1. Using an if/then/else construct with the obvious meaning, we can define \(HCnxt\) to be the next-state relation by writing:

\[HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ then } hr + 1 \text{ else } 1\]

\(HCnxt\) is an ordinary mathematical formula, except that it contains primed as well as unprimed variables. Such a formula is called an action. An action is true or false of a step. A step that satisfies the action \(HCnxt\) is called an \(HCnxt\) step.

When an \(HCnxt\) step occurs, we sometimes say that \(HCnxt\) is executed. However, it would be a mistake to take this terminology seriously. An action is a formula, and formulas aren’t executed.

We want our specification to be a single formula, not the pair of formulas \(HCini\) and \(HCnxt\). This formula must assert about a behavior that (i) its initial state satisfies \(HCini\), and (ii) each of its steps satisfies \(HCnxt\). We express (i) as the formula \(HCini\), which we interpret as a statement about behaviors to mean that the initial state satisfies \(HCini\). To express (ii), we use the temporal-logic operator \(\square\) (pronounced box). The temporal formula \(\square F\) asserts that formula \(F\) is always true. In particular, \(\square HCnxt\) is the assertion that \(HCnxt\) is true for every step in the behavior. So, \(HCini \land \square HCnxt\) is true of a behavior iff the initial state satisfies \(HCini\) and every step satisfies \(HCnxt\). This formula describes all behaviors like the one in (2.1) on this page; it seems to be the specification we’re looking for.
If we considered the clock only in isolation, and never tried to relate it to another system, then this would be a fine specification. However, suppose the clock is part of a larger system—for example, the hour display of a weather station that displays the current hour and temperature. The state of the station is described by two variables: \(hr \), representing the hour display, and \(tmp \), representing the temperature display. Consider this behavior of the weather station:

\[
\begin{align*}
hr &= 11 \\
tmp &= 23.5 \\
\rightarrow
hr &= 12 \\
tmp &= 23.5 \\
\rightarrow
hr &= 12 \\
tmp &= 23.4 \\
\rightarrow
hr &= 12 \\
tmp &= 23.3 \\
\rightarrow
hr &= 12 \\
tmp &= 23.3
\end{align*}
\]

In the second and third steps, \(tmp \) changes but \(hr \) remains the same. These steps are not allowed by \(HC_{\text{nxt}} \), which asserts that every step must increment \(hr \). The formula \(HC_{\text{ini}} \land \Box HC_{\text{nxt}} \) does not describe the hour clock in the weather station.

A formula that describes any hour clock must allow steps that leave \(hr \) unchanged—in other words, \(hr' = hr \) steps. These are called stuttering steps of the clock. A specification of the hour clock should allow both \(HC_{\text{nxt}} \) steps and stuttering steps. So, a step should be allowed iff it is either an \(HC_{\text{nxt}} \) step or a stuttering step—that is, iff it is a step satisfying \(HC_{\text{nxt}} \lor (hr' = hr) \). This suggests that we adopt \(HC_{\text{ini}} \land \Box(\neg HC_{\text{nxt}} \lor (hr' = hr)) \) as our specification. In TLA, we let \([HC_{\text{nxt}}]_{hr} \) stand for \(HC_{\text{nxt}} \lor (hr' = hr) \), so we can write the formula more compactly as \(HC_{\text{ini}} \land \Box[HHC_{\text{nxt}}]_{hr} \).

The formula \(HC_{\text{ini}} \land \Box[HHC_{\text{nxt}}]_{hr} \) does allow stuttering steps. In fact, it allows the behavior

\[
[hr = 11] \rightarrow [hr = 12] \rightarrow [hr = 12] \rightarrow [hr = 12] \rightarrow \cdots
\]

that ends with an infinite sequence of stuttering steps. This behavior describes a clock whose display attains the value 12 and then keeps that value forever—in other words, a clock that stops at 12. In a like manner, we can represent a terminating execution of any system by an infinite behavior that ends with a sequence of nothing but stuttering steps. We have no need of finite behaviors (finite sequences of states), so we consider only infinite ones.

It’s natural to require that a clock does not stop, so our specification should assert that there are infinitely many nonstuttering steps. Chapter 8 explains how to express this requirement. For now, we content ourselves with clocks that may stop, and we take as our specification of an hour clock the formula \(HC \) defined by

\[
HC \triangleq HC_{\text{ini}} \land \Box[HC_{\text{nxt}}]_{hr}
\]
2.3 A Closer Look at the Hour-Clock Specification

A state is an assignment of values to variables, but what variables? The answer is simple: all variables. In the behavior (2.1) on page 16, \([hr = 1]\) represents some particular state that assigns the value 1 to \(hr\). It might assign the value 23 to the variable \(tmp\) and the value \(\sqrt{-17}\) to the variable \(m_{pos}\). We can think of a state as representing a potential state of the entire universe. A state that assigns 1 to \(hr\) and a particular point in 3-space to \(m_{pos}\) describes a state of the universe in which the hour clock reads 1 and the moon is in a particular place. A state that assigns \(\sqrt{-2}\) to \(hr\) doesn’t correspond to any state of the universe that we recognize, because the hour-clock can’t display the value \(\sqrt{-2}\). It might represent the state of the universe after a bomb fell on the clock, making its display purely imaginary.

A behavior is an infinite sequence of states—for example:

\[
(2.2) \quad [hr = 11] \rightarrow [hr = 77.2] \rightarrow [hr = 78.2] \rightarrow [hr = \sqrt{-2}] \rightarrow \ldots
\]

A behavior describes a potential history of the universe. The behavior (2.2) doesn’t correspond to a history that we understand, because we don’t know how the clock’s display can change from 11 to 77.2. Whatever kind of history it represents is not one in which the clock is doing what it’s supposed to.

Formula \(HC\) is a temporal formula. A temporal formula is an assertion about behaviors. We say that a behavior satisfies \(HC\) iff \(HC\) is a true assertion about the behavior. Behavior (2.1) satisfies formula \(HC\). Behavior (2.2) does not, because \(HC\) asserts that every step satisfies \(HC_{nxt}\), and the first and third steps of (2.2) don’t. (The second step, \([hr = 77.2] \rightarrow [hr = 78.2]\), does satisfy \(HC_{nxt}\).) We regard formula \(HC\) to be the specification of an hour clock because it is satisfied by exactly those behaviors that represent histories of the universe in which the clock functions properly.

If the clock is behaving properly, then its display should be an integer from 1 through 12. So, \(hr\) should be an integer from 1 through 12 in every state of any behavior satisfying the clock’s specification, \(HC\). Formula \(HC_{ini}\) asserts that \(hr\) is an integer from 1 through 12, and \(\Box HC_{ini}\) asserts that \(HC_{ini}\) is always true. So, \(\Box HC_{ini}\) should be true for any behavior satisfying \(HC\). Another way of saying this is that \(HC\) implies \(\Box HC_{ini}\), for any behavior. Thus, the formula \(HC \Rightarrow \Box HC_{ini}\) should be satisfied by every behavior. A temporal formula satisfied by every behavior is called a theorem, so \(HC \Rightarrow \Box HC_{ini}\) should be a theorem.\(^1\) It’s easy to see that it is: \(HC\) implies that \(HC_{ini}\) is true initially (in the first state of the behavior), and \(\Box [HC_{nxt}]_{hr}\) implies that each step either advances \(hr\) to its proper next value or else leaves \(hr\) unchanged. We can

\(^1\)Logicians call a formula valid if it is satisfied by every behavior; they reserve the term theorem for provably valid formulas.
formalize this reasoning using the proof rules of TLA, but I’m not going to delve into proofs and proof rules.

2.4 The Hour-Clock Specification in TLA$^+$

Figure 2.1 on the next page shows how the hour clock specification can be written in TLA$^+$. There are two versions: the ASCII version on the bottom is the actual TLA$^+$ specification, the way you type it; the top version is typeset the way a “pretty-printer” might display it. Before trying to understand the specification, observe the relation between the two syntaxes:

- Reserved words that appear in small upper-case letters (like EXTENDS) are written in ASCII with ordinary upper-case letters.

- When possible, symbols are represented pictorially in ASCII—for example, \Box is typed as $\{1\}$ and \neq as #. (You can also type \neq as \neq.)

- When there is no good ASCII representation, \LaTeX notation \[\] is used—for example, \in is typed as \in.

A complete list of symbols and their ASCII equivalents appears in Figure 13.16 on page 243. I will usually show the typeset version of a specification; the ASCII versions of all specifications appear in the Appendix.

Now let’s look at what the specification says. It starts with

```latex
MODULE HourClock
```

which begins a module named `HourClock`. TLA$^+$ specifications are partitioned into modules; the hour clock’s specification consists of this single module.

Arithmetic operators like $+$ are not built into TLA$^+$, but are themselves defined in modules. (You might want to write a specification in which $+$ means addition of matrices rather than numbers.) The usual operators on natural numbers are defined in the `Naturals` module. Their definitions are incorporated into module `HourClock` by the statement

```latex
EXTENDS Naturals
```

Every symbol that appears in a formula must either be a built-in operator of TLA$^+$, or else it must be declared or defined. The statement

```latex
VARIABLE hr
```

declares hr to be a variable.

To define $HCini$, we need to express the set \{1, \ldots, 12\} formally, without the ellipsis “\ldots”. We can write this set out completely as

\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}
but that’s tiresome. Instead, we use the operator ", defined in the Naturals module, to write this set as 1..12. In general \(i..j\) is the set of integers from \(i\) through \(j\), for any integers \(i\) and \(j\). (It equals the empty set if \(j < i\).) It’s now obvious how to write the definition of \(HCini\). The definitions of \(HCnxt\) and \(HC\) are written just as before. (The ordinary mathematical operators of logic and set theory, like \(\land\) and \(\in\), are built into TLA\(^+\).)

The line

\[
\text{can appear anywhere between statements; it’s purely cosmetic and has no meaning. Following it is the statement }
\]

\[
\text{THEOREM } HC \Rightarrow \Box HCini
\]

of the theorem that was discussed above. This statement asserts that the formula \(HC \Rightarrow \Box HCini\) is true in the context of the statement. More precisely, it asserts that the formula follows logically from the definitions in this module, the definitions in the Naturals module, and the rules of TLA\(^+\). If the formula were not true, then the module would be incorrect.

The module is terminated by the symbol
2.5. ANOTHER WAY TO SPECIFY THE HOUR CLOCK

The specification of the hour clock is the definition of HC, including the definitions of the formulas HC_{nxt} and HC_{ini} and of the operators \cdot and $+$ that appear in the definition of HC. Formally, nothing in the module tells us that HC rather than HC_{ini} is the clock’s specification. TLA$^+$ is a language for writing mathematics—in particular, for writing mathematical definitions and theorems. What those definitions represent, and what significance we attach to those theorems, lies outside the scope of mathematics and therefore outside the scope of TLA$^+$. Engineering requires not just the ability to use mathematics, but the ability to understand what, if anything, the mathematics tells us about an actual system.

2.5 Another Way to Specify the Hour Clock

The Naturals module also defines the modulus operator, which we write $\%$. The formula $i \% n$, which mathematicians write $i \mod n$, is the remainder when i is divided by n. More formally, $i \% n$ is the natural number less than n satisfying $i = q \cdot n + (i \% n)$ for some natural number q. Let’s express this condition mathematically. The Naturals module defines Nat to be the set of natural numbers, and the assertion that there exists a q in the set Nat satisfying a formula F is written $\exists q \in \text{Nat} : F$. Thus, if i and n are elements of Nat and $n > 0$, then $i \% n$ is the unique number satisfying

$$(i \% n \in 0 \ldots (n-1)) \land (\exists q \in \text{Nat} : i = q \cdot n + (i \% n))$$

We can use $\%$ to simplify our hour-clock specification a bit. Observing that $(11 \% 12)+1$ equals 12 and $(12 \% 12)+1$ equals 1, we can define a different next-state action HC_{nxt2} and a different formula $HC2$ to be the clock specification:

$$HC_{nxt2} \triangleq hr' = (hr \% 12) + 1 \quad HC2 \triangleq HC_{ini} \land \Box[HC_{nxt2}]_{hr}$$

Actions HC_{nxt} and HC_{nxt2} are not equivalent. The step $[hr = 24] \rightarrow [hr = 25]$ satisfies HC_{nxt} but not HC_{nxt2}, while the step $[hr = 24] \rightarrow [hr = 1]$ satisfies HC_{nxt2} but not HC_{nxt}. However, any step starting in a state with hr in $1 \ldots 12$ satisfies HC_{nxt} if it satisfies HC_{nxt2}. It’s therefore not hard to deduce that any behavior starting in a state satisfying HC_{ini} satisfies $\Box[HC_{nxt}]_{hr}$ iff it satisfies $\Box[HC_{nxt2}]_{hr}$. Hence, formulas HC and $HC2$ are equivalent. It doesn’t matter which of them we take to be the specification of an hour clock.

Mathematics provides infinitely many ways of expressing the same thing. The expressions $6 + 6$, $3 \cdot 4$, and $141 - 129$ all have the same meaning; they are just different ways of writing the number 12. We could replace either instance of the number 12 in module HourClock by any of these expressions without changing the meaning of any of the module’s formulas.
When writing a specification, you will often be faced with a choice of how to express something. When that happens, you should first make sure that the choices yield equivalent specifications. If they do, then you can choose the one that you feel makes the specification easiest to understand. If they don’t, then you must decide which one you mean.
Chapter 3

An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices. A sender and a receiver are connected as shown here:

![Diagram of sender and receiver connected with val, rdy, and ack lines]

Data is sent on val, and the rdy and ack lines are used for synchronization. The sender must wait for an acknowledgement (an Ack) for one data item before it can send the next. The interface uses the standard two-phase handshake protocol, described by the following sample behavior.

\[
\begin{align*}
\begin{bmatrix}
val = 26 \\
rdy = 0 \\
ack = 0
\end{bmatrix} & \xrightarrow{\text{Send 37}} \\
\begin{bmatrix}
val = 37 \\
rdy = 1 \\
ack = 0
\end{bmatrix} & \xrightarrow{\text{Ack}} \\
\begin{bmatrix}
val = 37 \\
rdy = 1 \\
ack = 1
\end{bmatrix} & \xrightarrow{\text{Send 4}} \\
\begin{bmatrix}
val = 4 \\
rdy = 0 \\
ack = 1
\end{bmatrix} & \xrightarrow{\text{Ack}} \\
\begin{bmatrix}
val = 4 \\
rdy = 0 \\
ack = 0
\end{bmatrix} & \xrightarrow{\text{Send 19}} \\
\begin{bmatrix}
val = 19 \\
rdy = 1 \\
ack = 0
\end{bmatrix} & \xrightarrow{\text{Ack}} \\
\end{align*}
\]

(It doesn’t matter what value val has in the initial state.)

It’s easy to see from this sample behavior what the set of all possible behaviors should be—once we decide what the data values are that can be sent. But, before writing the TLA+ specification that describes these behaviors, let’s look at what I’ve just done.

In writing this behavior, I made the decision that val and rdy should change in a single step. The values of the variables val and rdy represent voltages...
on some set of wires in the physical device. Voltages on different wires don’t change at precisely the same instant. I decided to ignore this aspect of the physical system and pretend that the values of \textit{val} and \textit{rdy} represented by those voltages change instantaneously. This simplifies the specification, but at the price of ignoring what may be an important detail of the system. In an actual implementation of the protocol, the voltage on the \textit{rdy} line shouldn’t change until the voltages on the \textit{val} lines have stabilized; but you won’t learn that from my specification. Had I wanted the specification to convey this requirement, I would have written a behavior in which the value of \textit{val} and the value of \textit{rdy} change in separate steps.

A specification is an abstraction. It describes some aspects of the system and ignores others. We want the specification to be as simple as possible, so we want to ignore as many details as we can. But, whenever we omit some aspect of the system from the specification, we admit a potential source of error. With my specification, we can verify the correctness of a system that uses this interface, and the system could still fail because the implementor didn’t know that the \textit{val} line should stabilize before the \textit{rdy} line is changed.

The hardest part of writing a specification is choosing the proper abstraction. I can teach you about TLA+, so expressing an abstract view of a system as a TLA+ specification becomes a straightforward task. But I don’t know how to teach you about abstraction. A good engineer knows how to abstract the essence of a system and suppress the unimportant details when specifying and designing it. The art of abstraction is learned only through experience.

When writing a specification, you must first choose the abstraction. In a TLA+ specification, this means choosing (i) the variables that represent the system’s state and (ii) the granularity of the steps that change those variables’ values. Should the \textit{rdy} and \textit{ack} lines be represented as separate variables or as a single variable? Should \textit{val} and \textit{rdy} change in one step, two steps, or an arbitrary number of steps? To help make these choices, I recommend that you start by writing the first few steps of one or two sample behaviors, just as I did at the beginning of this section. Chapter 7 has more to say about these choices.

3.1 The First Specification

Now let’s specify the interface with a module \textit{AsynchInterface}. The variables \textit{rdy} and \textit{ack} can assume the values 0 and 1, which are natural numbers, so our module \textit{extends} the \textit{Naturals} module. We next decide what the possible values of \textit{val} should be—that is, what data values may be sent. We could write a specification that places no restriction on the data values. The specification could allow the sender to first send 37, then send \(\sqrt{-15}\), and then send \textit{Nat} (the entire set of natural numbers). However, any real device can send only a restricted set of values. We could pick some specific set—for example, 32-bit
numbers. However, the protocol is the same regardless of whether it’s used to send 32-bit numbers or 128-bit numbers. So, we compromise between the two extremes of allowing anything to be sent and allowing only 32-bit numbers to be sent by assuming only that there is some set \(Data \) of data values that may be sent. The constant \(Data \) is a parameter of the specification. It’s declared by the statement

\[
\text{CONSTANT } Data
\]

Our three variables are declared by

\[
\text{VARIABLES } val, rdy, ack
\]

The keywords \text{VARIABLE} and \text{VARIABLES} are synonymous, as are \text{CONSTANT} and \text{CONSTANTS}.

The variable \(rdy \) can assume any value—for example, \(-1/2\). That is, there exist states that assign the value \(-1/2\) to \(rdy \). When discussing the specification, we usually say that \(rdy \) can assume only the values 0 and 1. What we really mean is that the value of \(rdy \) equals 0 or 1 in every state of any behavior satisfying the specification. But a reader of the specification shouldn’t have to understand the complete specification to figure this out. We can make the specification easier to understand by telling the reader what values the variables can assume in a behavior that satisfies the specification. We could do this with comments, but I prefer to use a definition like this one:

\[
\text{TypeInvariant} \triangleq (val \in Data) \land (rdy \in \{0, 1\}) \land (ack \in \{0, 1\})
\]

I call the set \(\{0, 1\} \) the \text{type} of \(rdy \), and I call \text{TypeInvariant} a \text{type invariant}.

Let’s define \text{type} and some other terms more precisely:

- A \text{state function} is an ordinary expression (one with no prime or \(\square \)) that can contain variables and constants.
- A \text{state predicate} is a Boolean-valued state function.
- An \text{invariant} \(Inv \) of a specification \(Spec \) is a state predicate such that \(Spec \Rightarrow \square Inv \) is a theorem.
- A variable \(v \) has \text{type} \(T \) in a specification \(Spec \) iff \(v \in T \) is an invariant of \(Spec \).

We can make the definition of \text{TypeInvariant} easier to read by writing it as follows.

\[
\text{TypeInvariant} \triangleq (val \in Data) \land (rdy \in \{0, 1\}) \land (ack \in \{0, 1\})
\]
Each conjunct begins with a \land and must lie completely to the right of that \land. (The conjunct may occupy multiple lines). We use a similar notation for disjunctions. When using this bulleted-list notation, the \land‘s or \lor‘s must line up precisely (even in the ASCII input). Because the indentation is significant, we can eliminate parentheses, making this notation especially useful when conjunctions and disjunctions are nested.

The formula $TypeInvariant$ will not appear as part of the specification. We do not assume that $TypeInvariant$ is an invariant; the specification should imply that it is. In fact, its invariance will be asserted as a theorem.

The initial predicate is straightforward. Initially, val can equal any element of $Data$. We can start with rdy and ack either both 0 or both 1.

$$Init \triangleq \land val \in Data$$
$$\land rdy \in \{0, 1\}$$
$$\land ack = rdy$$

Now for the next-state action $Next$. A step of the protocol either sends a value or receives a value. We define separately the two actions $Send$ and Rcv that describe the sending and receiving of a value. A $Next$ step (one satisfying action $Next$) is either a $Send$ step or a Rcv step, so it is a $Send \lor Rcv$ step. Therefore, $Next$ is defined to equal $Send \lor Rcv$. Let’s now define $Send$ and Rcv.

We say that action $Send$ is enabled in a state from which it is possible to take a $Send$ step. From the sample behavior above, we see that $Send$ is enabled iff rdy equals ack. Usually, the first question we ask about an action is, when is it enabled? So, the definition of an action usually begins with its enabling condition. The first conjunct in the definition of $Send$ is therefore $rdy = ack$. The next conjuncts tell us what the new values of the variables val, rdy, and ack are. The new value val' of val can be any element of $Data$—that is, any value satisfying $val' \in Data$. The value of rdy changes from 0 to 1 or from 1 to 0, so rdy' equals $1 - rdy$ (because $1 = 1 - 0$ and $0 = 1 - 1$). The value of ack is left unchanged.

TLA^+ defines UNCHANGED v to mean that the expression v has the same value in the old and new states. More precisely, UNCHANGED v equals $v' = v$, where v' is the expression obtained from v by priming all variables. So, we define $Send$ by:

$$Send \triangleq \land rdy = ack$$
$$\land val' \in Data$$
$$\land rdy' = 1 - rdy$$
$$\land \text{UNCHANGED} \ ack$$

(I could have written $ack' = ack$ instead of UNCHANGED ack, but I prefer to use the UNCHANGED construct in specifications.)

A Rcv step is enabled iff rdy is different from ack; it complements the value of ack and leaves val and rdy unchanged. Both val and rdy are left unchanged iff
3.1. THE FIRST SPECIFICATION

Module AsynchInterface

Extends Naturals
Constant Data
Variables val, rdy, ack

TypeInvariant \(\triangleq \) \(\land \) val \(\in \) Data
\(\land \) rdy \(\in \) \{0, 1\}
\(\land \) ack \(\in \) \{0, 1\}

Init \(\triangleq \) \(\land \) val \(\in \) Data
\(\land \) rdy \(\in \) \{0, 1\}
\(\land \) ack = rdy

Send \(\triangleq \) \(\land \) rdy = ack
\(\land \) val' \(\in \) Data
\(\land \) rdy' = 1 - rdy
\(\land \) UNCHANGED ack

Rcv \(\triangleq \) \(\land \) rdy \(\neq \) ack
\(\land \) ack' = 1 - ack
\(\land \) UNCHANGED (val, rdy)

Next \(\triangleq \) Send \(\lor \) Rcv

Spec \(\triangleq \) Init \(\land \) \(\lozenge \)[Next](val, rdy, ack)

Theorem Spec \(\Rightarrow \) \(\Box \) TypeInvariant

Figure 3.1: The First Specification of an Asynchronous Interface

the pair of values val, rdy is left unchanged. TLA+ uses angle brackets \(\langle \) and \(\rangle \) to enclose ordered tuples, so Rcv asserts that \(\langle val, rdy \rangle \) is left unchanged. (Angle brackets are typed in ASCII as \(\ll \) and \(\gg \).) The definition of Rcv is therefore:

\[Rcv \triangleq \land rdy \neq ack \]
\[\land ack' = 1 - ack \]
\[\land \text{UNCHANGED } \langle \text{val, rdy} \rangle \]

As in our clock example, the complete specification Spec should allow stuttering steps—in this case, ones that leave all three variables unchanged. So, Spec allows steps that leave \(\langle \text{val, rdy, ack} \rangle \) unchanged. Its definition is

\[\text{Spec} \triangleq \text{Init} \land \Box[\text{Next}](\text{val, rdy, ack}) \]

Module AsynchInterface also asserts the invariance of TypeInvariant. It appears in full in Figure 3.1 on this page.
3.2 Another Specification

Module *AsynchInterface* is a fine description of the interface and its handshake protocol. However, it’s not easy to use it to help specify a system that uses the interface. Let’s rewrite the interface specification in a form that makes it more convenient to use as part of a larger specification.

The first problem with the original specification is that it uses three variables to describe a single interface. A system might use several different instances of the interface. To avoid a proliferation of variables, we replace the three variables \(\text{val} \), \(\text{rdy} \), \(\text{ack} \) with a single variable \(\text{chan}\) (short for *channel*). A mathematician would do this by letting the value of \(\text{chan}\) be an ordered triple—for example, a state \([\text{chan} = (-1/2, 0, 1)]\) might replace the state with \(\text{val} = -1/2\), \(\text{rdy} = 0\), and \(\text{ack} = 1\). But programmers have learned that using tuples like this leads to mistakes; it’s easy to forget if the \(\text{ack}\) line is represented by the second or third component. TLA+ therefore provides records in addition to more conventional mathematical notation.

Let’s represent the state of the channel as a record with \(\text{val} \), \(\text{rdy} \), and \(\text{ack}\) fields. If \(r\) is such a record, then \(r.\text{val}\) is its \(\text{val}\) field. The type invariant asserts that the value of \(\text{chan}\) is an element of the set of all such records \(r\) in which \(r.\text{val}\) is an element of the set \(\text{Data}\) and \(r.\text{rdy}\) and \(r.\text{ack}\) are elements of the set \(\{0, 1\}\). This set of records is written:

\[
[\text{val} : \text{Data}, \text{rdy} : \{0, 1\}, \text{ack} : \{0, 1\}]
\]

The components of a record are not ordered, so it doesn’t matter in what order we write them. This same set of records can also be written as:

\[
[\text{ack} : \{0, 1\}, \text{val} : \text{Data}, \text{rdy} : \{0, 1\}]
\]

Initially, \(\text{chan}\) can equal any element of this set whose \(\text{ack}\) and \(\text{rdy}\) fields are equal, so the initial predicate is the conjunction of the type invariant and the condition \(\text{chan.ack} = \text{chan.rdy}\).

A system that uses the interface may perform an operation that sends some data value \(d\) and performs some other changes that depend on the value \(d\). We’d like to represent such an operation as an action that is the conjunction of two separate actions: one that describes the sending of \(d\) and the other that describes the other changes. Thus, instead of defining an action \(\text{Send}\) that sends some unspecified data value, we define the action \(\text{Send}(d)\) that sends data value \(d\). The next-state action is satisfied by a \(\text{Send}(d)\) step, for some \(d\) in \(\text{Data}\), or a \(\text{Rcv}\) step. (The value received by a \(\text{Rcv} \) step equals \(\text{chan.val}\).) Saying that a step is a \(\text{Send}(d)\) step for some \(d\) in \(\text{Data}\) means that there exists a \(d\) in \(\text{Data}\) such that the step satisfies \(\text{Send}(d)\)—in other words, that the step is an \(\exists d \in \text{Data} \vdash \text{Send}(d)\) step. So we define

\[
\text{Next} \triangleq (\exists d \in \text{Data} : \text{Send}(d)) \lor \text{Rcv}
\]
3.2. ANOTHER SPECIFICATION

The Send\((d)\) action asserts that \(chan^{'}\) equals the record \(r\) such that:

\[
\begin{align*}
 r.val &= d \\
 r.rdy &= 1 - chan.rdy \\
 r.ack &= chan.ack
\end{align*}
\]

This record is written in TLA\(^+\) as:

\[
[val \mapsto d, \ rdy \mapsto 1 - chan.rdy, \ ack \mapsto chan.ack]
\]

(The symbol \(\mapsto\) is typed in ascii as \(|->|\).) The fields of records are not ordered, so this record can just as well be written:

\[
[ack \mapsto chan.ack, \ val \mapsto d, \ rdy \mapsto 1 - chan.rdy]
\]

The enabling condition of Send\((d)\) is that the \(rdy\) and \(ack\) lines are equal, so we can define:

\[
\begin{align*}
 Send(d) & \triangleq \\
 \land chan.rdy &= chan.ack \\
 \land chan^{'} &= [val \mapsto d, \ rdy \mapsto 1 - chan.rdy, \ ack \mapsto chan.ack]
\end{align*}
\]

This is a perfectly good definition of Send\((d)\). However, I prefer a slightly different one. We can describe the value of \(chan^{'}\) by saying that it is the same as the value of \(chan\) except that its \(val\) component equals \(d\) and its \(rdy\) component equals \(1 - chan.rdy\). In TLA\(^+\), we can write this value as

\[
[chan \text{ except } !.val = d, \ !.rdy = 1 - chan.rdy]
\]

Think of the \(!\) as standing for the new record that the \(\text{except}\) expression forms by modifying \(chan\). So, the expression can be read as the record \(!\) that is the same as \(chan\) except \(!.val\) equals \(d\) and \(!.rdy\) equals \(1 - chan.rdy\). In the expression that \(!.rdy\) equals, the symbol \(\oplus\) stands for \(chan.rdy\). In TLA\(^+\), we can write this \(\text{except}\) expression as:

\[
[chan \text{ except } !.val = d, \ !.rdy = 1 - \oplus]
\]

In general, for any record \(r\), the expression

\[
[r \text{ except } !.c_1 = e_1, \ldots, !.c_n = e_n]
\]

is the record obtained from \(r\) by replacing \(r.c_i\) with \(e_i\), for each \(i\) in \(1 \ldots n\). An \(\oplus\) in the expression \(e_i\) stands for \(r.c_i\). Using this notation, we define:

\[
\begin{align*}
 Send(d) & \triangleq \\
 \land chan.rdy &= chan.ack \\
 \land chan^{'} &= [chan \text{ except } !.val = d, \ !.rdy = 1 - \oplus]
\end{align*}
\]

The definition of Rcv is straightforward. A value can be received when \(chan.rdy \neq chan.ack\), and receiving the value complements \(chan.ack\):

\[
\begin{align*}
 Rcv & \triangleq \\
 \land chan.rdy \neq chan.ack \\
 \land chan^{'} &= [chan \text{ except } !.ack = 1 - \oplus]
\end{align*}
\]
CHAPTER 3. AN ASYNCHRONOUS INTERFACE

MODULE Channel

EXTENDS Naturals
CONSTANT Data
VARIABLE chan

TypeInvariant \triangleq chan $\in [val : Data, rdy : \{0,1\}, ack : \{0,1\}]

Init \triangleq TypeInvariant
\& chan.ack = chan.rdy

Send(d) \triangleq chan.rdy = chan.ack
\& chan' = [chan EXCEPT !.val = d, !.rdy = 1 - @]

Rcv \triangleq chan.rdy \neq chan.ack
\& chan' = [chan EXCEPT !.ack = 1 - @]

Next \triangleq (\exists d \in Data : Send(d)) \lor Rcv

Spec \triangleq Init $\& \Box[\text{Next}].chan$

THEOREM Spec \Rightarrow \BoxTypeInvariant

Figure 3.2: Our second specification of an asynchronous interface.

The complete specification appears in Figure 3.2 on this page.

We have now written two different specifications of the asynchronous interface. They are two different mathematical representations of the same physical system. In module AsynchInterface, we represented the system with the three variables val, rdy, and ack. In module Channel, we used a single variable $chan$. Since these two representations are at the same level of abstraction, they should, in some sense, be equivalent. Section 5.8 explains one sense in which they’re equivalent.

3.3 Types: A Reminder

As defined in Section 3.1, a variable v has type T in specification $Spec$ iff $v \in T$ is an invariant of $Spec$. Thus, hr has type $1..12$ in the specification HC of the hour clock. This assertion does not mean that the variable hr can assume only values in the set $1..12$. A state is an arbitrary assignment of values to variables, so there exist states in which the value of hr is $\sqrt{-2}$. The assertion does mean that, in every behavior satisfying formula HC, the value of hr is an element of $1..12$.

If you are used to types in programming languages, it may seem strange that TLA$^+$ allows a variable to assume any value. Why not restrict our states to ones in which variables have the values of the right type? In other words, why
not add a formal type system to TLA\(^+\)? A complete answer would take us too far afield. The question is addressed further in Section 6.2. For now, remember that TLA\(^+\) is an untyped language. Type correctness is just a name for a certain invariance property. Assigning the name *TypeInvariant* to a formula gives it no special status.

3.4 Definitions

Let’s examine what a definition means. If *Id* is a simple identifier like *Init* or *Spec*, then the definition *Id* \(\triangleq\) *exp* defines *Id* to be synonymous with the expression *exp*. Replacing *Id* by *exp*, or vice-versa, in any expression *e* does not change the meaning of *e*. This replacement must be done after the expression is parsed, not in the “raw input”. For example, the definition \(x \triangleq a + b\) makes \(x \ast c\) equal to \((a + b) \ast c\), not to \(a + b \ast c\), which equals \(a + (b \ast c)\).

The definition of *Send* has the form *Id*(\(p\)) \(\triangleq\) *exp*, where *Id* and *p* are identifiers. For any expression *e*, this defines *Id*(\(e\)) to be the expression obtained by substituting *e* for *p* in *exp*. For example, the definition of *Send* in the *Channel* module defines *Send*(\(-5\)) to equal

\[
\begin{align*}
\land chan.\text{rdy} &= chan.\text{ack} \\
\land chan' &= [chan \text{ except } !.\text{val} = -5, !.\text{rdy} = 1 - @]
\end{align*}
\]

Send(\(e\)) is an expression, for any expression *e*. Thus, we can write the formula *Send*(\(-5\)) \& (\(chan.\text{ack} = 1\)). The identifier *Send* by itself is not an expression, and *Send* \& (\(chan.\text{ack} = 1\)) is not a grammatically well-formed string. It’s non-syntactic nonsense, like \(a + \ast b +\).

We say that *Send* is an *operator* that takes a single argument. We define operators that take more than one argument in the obvious way, the general form being:

\[
(Id(p_1, \ldots, p_n) \triangleq exp)
\]

where the *p*\(_i\) are distinct identifiers and *exp* is an expression. We can consider defined identifiers like *Init* and *Spec* to be operators that take no argument, but we generally use *operator* to mean an operator that takes one or more arguments.

I will use the term *symbol* to mean an identifier like *Send* or an operator symbol like +. Every symbol that is used in a specification must either be a built-in operator of TLA\(^+\) (like \(\in\)) or it must be declared or defined. Every symbol declaration or definition has a *scope* within which the symbol may be used. The scope of a variable or constant declaration, and of a definition, is the part of the module that follows it. Thus, we can use *Init* in any expression that follows its definition in module *Channel*. The statement *EXTENDS Naturals* extends the scope of symbols like + defined in the *Naturals* module to the *Channel* module.
The operator definition (3.1) implicitly includes a declaration of the identifiers p_1, \ldots, p_n whose scope is the expression exp. An expression of the form

$$\exists v \in S : \text{exp}$$

has a declaration of v whose scope is the expression exp. Thus the identifier v has a meaning within the expression exp (but not within the expression S).

A symbol cannot be declared or defined if it already has a meaning. The expression

$$(\exists v \in S : \text{exp}_1) \land (\exists v \in T : \text{exp}_2)$$

is all right, because neither declaration of v lies within the scope of the other. Similarly, the two declarations of the symbol d in the $Channel$ module (in the definition of $Send$ and in the expression $\exists d$ in the definition of $Next$) have disjoint scopes. However, the expression

$$(\exists v \in S : (\text{exp}_1 \land \exists v \in T : \text{exp}_2))$$

is illegal because the declaration of v in the second $\exists v$ lies inside the scope of the its declaration in the first $\exists v$. Although conventional mathematics and programming languages allow such redeclarations, TLA+ forbids them because they can lead to confusion and errors.

3.5 Comments

Even simple specifications like the ones in modules $AsynchInterface$ and $Channel$ can be hard to understand from the mathematics alone. That’s why I began with an intuitive explanation of the interface. That explanation made it easier for you to understand formula $Spec$ in the module, which is the actual specification. Every specification should be accompanied by an informal prose explanation. The explanation may be in an accompanying document, or it may be included as comments in the specification.

Figure 3.3 on the next page shows how the hour clock’s specification in module $HourClock$ might be explained by comments. In the typeset version, comments are distinguished from the specification itself by the use of a different font. As shown in the figure, TLA+ provides two way of writing comments in the ascii version. A comment may appear anywhere enclosed between (* and *). The text of the comment itself may not contain *, so these comments can’t be nested. An end-of-line comment is preceded by \\.*

A comment almost always appears on a line by itself or at the end of a line. I put a comment between $HCnxt$ and \triangleq just to show that it can be done.

To save space, I will write few comments in the example specifications. But specifications should have lots of comments. Even if there is an accompanying document describing the system, comments are needed to help the reader understand how the specification formalizes that description.
3.5. COMMENTS

--- MODULE HourClock ---

This module specifies a digital clock that displays the current hour. It ignores real time, not specifying when the display can change.

EXTENDS Naturals

VARIABLE hr /* Variable hr represents the display. */

\(HC_{ini} \triangleq hr \in (1..12) \) Initially, hr can have any value from 1 through 12.

\(HC_{nxt} \) This is a weird place for a comment. △

The value of hr cycles from 1 through 12.

\(hr' = \text{IF} \ hr \neq 12 \ \text{THEN} \ hr + 1 \ \text{ELSE} \ 1 \)

\(HC \triangleq HC_{ini} \land \Box [HC_{nxt}]_{hr} \)

The complete spec. It permits the clock to stop.

THEOREM \(HC \Rightarrow \Box HC_{ini} \) Type-correctness of the spec.

Figure 3.3: The hour clock specification with comments.
Comments can help solve a problem posed by the logical structure of a specification. A symbol has to be declared or defined before it can be used. In module `Channel`, the definition of `Spec` has to follow the definition of `Next`, which has to follow the definitions of `Send` and `Rcv`. But it’s usually easiest to understand a top-down description of a system. We would probably first want to read the declarations of `Data` and `chan`, then the definition of `Spec`, then the definitions of `Init` and `Next`, and then the definitions of `Send` and `Rcv`. In other words, we want to read the specification more or less from bottom to top. This is easy enough to do for a module as short as `Channel`; it’s inconvenient for longer specifications. We can use comments to guide the reader through a longer specification. For example, we could precede the definition of `Send` in the `Channel` module with the comment:

Actions `Send` and `Rcv` below are the disjuncts of the next-state action `Next`.

The module structure also allows us to choose the order in which a specification is read. For example, we can rewrite the hour-clock specification by splitting the `HourClock` module into three separate modules:

- `HCVar` A module that declares the variable `hr`.
- `HCActions` A module that extends modules `Naturals` and `HCVar` and defines `HCini` and `HCnxt`.
- `HCSpec` A module that extends module `HCActions`, defines formula `HC`, and asserts the type-correctness theorem.

The `extends` relation implies a logical ordering of the modules: `HCVar` precedes `HCActions`, which precedes `HCSpec`. But the modules don’t have to be read in that order. The reader can be told to read `HCVar` first, then `HCSpec`, and finally `HCActions`. The `instance` construct introduced below in Chapter 4 provides another tool for modularizing specifications.

Splitting a tiny specification like `HourClock` in this way would be ludicrous. But the proper splitting of modules can help make a large specification easier to read. When writing a specification, you should decide in what order it should be read. You can then design the module structure to permit reading it in that order, when each individual module is read from beginning to end. Finally, you should ensure that the comments within each module make sense when the different modules are read in the appropriate order.
Chapter 4

A FIFO

Our next example is a FIFO buffer, a device with which a sender process transmits a sequence of values to a receiver. The sender and receiver use two channels, in and out, to communicate with the buffer:

![Diagram of Sender, Buffer, and Receiver with channels in and out]

Values are sent over in and out using the asynchronous protocol specified by the Channel module of Figure 3.2 on page 30. The system's specification will allow behaviors with four kinds of nonstuttering steps: Send and Rcv actions on both the in channel and the out channel.

4.1 The Inner Specification

The specification of the FIFO first extends modules Naturals and Sequences. The Sequences module defines operations on finite sequences. We represent a finite sequence as a tuple, so the sequence of three numbers 3, 2, 1 is the triple (3, 2, 1). The sequences module defines the following operators on sequences.

\[Seq(S) \] The set of all sequences of elements of the set \(S \). For example, \(\langle 3, 7 \rangle \) is an element of \(Seq(Nat) \).

\[Head(s) \] The first element of sequence \(s \). For example, \(Head(\langle 3, 7 \rangle) \) equals 3.
Tail(s) The tail of sequence s (all but the head of s). For example, Tail(⟨3, 7⟩) equals ⟨7⟩.

Append(s, e) The sequence obtained by appending element e to the tail of sequence s. For example, Append(⟨3, 7⟩, 3) equals ⟨3, 7, 3⟩.

s ∘ t The sequence obtained by concatenating the sequences s and t. For example, ⟨3, 7⟩ ∘ ⟨3⟩ equals ⟨3, 7, 3⟩. (We type ∘ in ASCII as \o.)

Len(s) The length of sequence s. For example, Len(⟨3, 7⟩) equals 2.

The FIFO’s specification continues by declaring the constant Message, which represents the set of all messages that can be sent. It then declares the variables. There are three variables: in and out, representing the channels, and a third variable q that represents the queue of buffered messages. The value of q is the sequence of messages that have been sent by the sender but not yet received by the receiver. (Section 4.3 has more to say about this additional variable q.)

We want to use the definitions in the Channel module to specify operations on the channels in and out. This requires two instances of that module—one in which the variable chan of the Channel module is replaced with the variable in of our current module, and the other in which chan is replaced with out. In both instances, the constant Data of the Channel module is replaced with Message. We obtain the first of these instances with the statement:

\[
\text{InChan} \triangleq \text{instance Channel with } \text{Data} \leftarrow \text{Message}, \text{chan} \leftarrow \text{in}
\]

For every symbol σ defined in module Channel, this defines InChan!σ to have the same meaning in the current module as σ had in module Channel, except with Message substituted for Data and in substituted for chan. For example, this statement defines InChan!TypeInvariant to equal

\[
in \in [\text{val} : \text{Message}, \text{rdy} : \{0, 1\}, \text{ack} : \{0, 1\}]
\]

(The statement does not define InChan!Data because Data is declared, not defined, in module Channel.) We introduce our second instance of the Channel module with the analogous statement:

\[
\text{OutChan} \triangleq \text{instance Channel with } \text{Data} \leftarrow \text{Message}, \text{chan} \leftarrow \text{out}
\]

The initial states of the in and out channels are specified by InChan!Init and OutChan!Init. Initially, no messages have been sent or received, so q should

1I like to use a singular noun like Message rather than a plural like Messages for the name of a set. That way, the ∈ in the expression \(m \in \text{Message} \) can be read is a. This is the same convention that most programmers use for naming types.
equal the empty sequence. The empty sequence is the zero-tuple (there’s only one, and it’s written \(\langle\rangle\)), so we define the initial predicate to be:

\[
\text{Init} \overset{\Delta}{=} \land \text{InChan}!\text{Init} \\
\land \text{OutChan}!\text{Init} \\
\land q = \langle\rangle
\]

We next define the type invariant. The type invariants for \textit{in} and \textit{out} come from the \textit{Channel} module, and the type of \(q\) is the set of finite sequences of messages. The type invariant for the FIFO specification is therefore:

\[
\text{TypeInvariant} \overset{\Delta}{=} \land \text{InChan}!\text{TypeInvariant} \\
\land \text{OutChan}!\text{TypeInvariant} \\
\land q \in \text{Seq}(\text{Message})
\]

The four kinds of nonstuttering steps allowed by the next-state action are described by four actions:

- \textit{SSend}(msg) The sender sends message \(msg\) on the \textit{in} channel.
- \textit{BufRcv} The buffer receives the message from the \textit{in} channel and appends it to the tail of \(q\).
- \textit{BufSend} The buffer removes the message from the head of \(q\) and sends it on channel \textit{out}.
- \textit{RRcv} The receiver receives the message from the \textit{out} channel.

The definitions of these actions, along with the rest of the specification, are in module \textit{InnerFIFO} of Figure 4.1 on the next page. The reason for the adjective \textit{Inner} is explained in Section 4.3 below.

4.2 Instantiation Examined

4.2.1 Instantiation is Substitution

Consider the definition of \textit{Next} in module \textit{Channel} (page 30). We can remove every defined symbol that appears in that definition by using the symbol’s definition. For example, we can eliminate the expression \textit{Send}(d) by expanding the definition of \textit{Send}. We can repeat this process. For example the \(\land\) that appears in the expression \(1 - @\) (obtained by expanding the definition of \textit{Send}) can be eliminated by using the definition of \(\land\) from the \textit{Naturals} module. Continuing in this way, we eventually obtain a definition for \textit{Next} in terms of only the built-in operators of TLA\(^+\) and the parameters \textit{Data} and \textit{chan} of the \textit{Channel} module.
EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES in, out, q

InChan \triangleq \text{instance Channel with Data} \leftarrow \text{Message}, \text{chan} \leftarrow \text{in}
OutChan \triangleq \text{instance Channel with Data} \leftarrow \text{Message}, \text{chan} \leftarrow \text{out}

Init \triangleq \wedge \text{InChan!Init}
\wedge \text{OutChan!Init}
\wedge q = \langle \rangle

TypeInvariant \triangleq \wedge \text{InChan!TypeInvariant}
\wedge \text{OutChan!TypeInvariant}
\wedge q \in \text{Seq}(ext{Message})

SSend(msg) \triangleq \wedge \text{InChan!Send(msg)}
\wedge \text{UNCHANGED } \langle \text{out}, q \rangle

BufRcv \triangleq \wedge \text{InChan!Rcv}
\wedge q' = \text{Append}(q, \text{in.val})
\wedge \text{UNCHANGED } \text{out}

BufSend \triangleq \wedge q \neq \langle \rangle
\wedge \text{OutChan!Send(Head}(q))
\wedge q' = \text{Tail}(q)
\wedge \text{UNCHANGED } \text{in}

RRcv \triangleq \wedge \text{OutChan!Rcv}
\wedge \text{UNCHANGED } \langle \text{in}, q \rangle

Next \triangleq \lor \exists \text{msg} \in \text{Message} : \text{SSend}(\text{msg})
\lor \text{BufRcv}
\lor \text{BufSend}
\lor \text{RRcv}

Spec \triangleq \text{Init} \land \Box[\text{Next}]_{\langle \text{in}, \text{out}, q \rangle}

THEOREM Spec \Rightarrow \Box \text{TypeInvariant}

Figure 4.1: The specification of a FIFO, with the internal variable q visible.
4.2. INSTANTIATION EXAMINED

We consider this to be the “real” definition of Next in module Channel. The statement

\[\text{InChan} \triangleq \text{instance Channel with Data} \leftarrow \text{Message, chan} \leftarrow \text{in} \]

in module InnerFIFO defines InChan!Next to be the formula obtained from this real definition of Next by substituting Message for Data and in for chan. This defines InChan!Next in terms of only the built-in operators of TLA+ and the parameters Message and in of module InnerFIFO.

Let’s now consider an arbitrary instance statement

\[IM \triangleq \text{instance M with } p_1 \leftarrow e_1, \ldots, p_n \leftarrow e_n \]

Let \(\Sigma \) be a symbol defined in module \(M \) and let \(d \) be its “real” definition. The instance statement defines \(IM!\Sigma \) to have as its real definition the expression obtained from \(d \) by replacing all instances of \(p_i \) by the expression \(e_i \) for each \(i \). The definition of \(IM!\Sigma \) must contain only the parameters (declared constants and variables) of the current module, not the ones of module \(M \). Hence, the \(p_i \) must consist of all the parameters of module \(M \). The \(e_i \) must be expressions that are meaningful in the current module.

4.2.2 Parametrized Instantiation

The FIFO specification uses two instances of module Channel—one with \(in \) substituted for \(chan \) and the other with \(out \) substituted for \(chan \). We could instead use a single parametrized instance by putting the following statement in module InnerFIFO:

\[\text{Chan}(ch) \triangleq \text{instance Channel with Data} \leftarrow \text{Message, chan} \leftarrow \text{ch} \]

For any symbol \(\Sigma \) defined in module Channel and any expression \(exp \), this defines \(\text{Chan}(exp)!\Sigma \) to equal formula \(\Sigma \) with \(\text{Message} \) substituted for \(\text{Data} \) and \(\text{exp} \) substituted for \(\text{chan} \). The \(\text{Rcv} \) action on channel \(\text{in} \) could then be written \(\text{Chan}(\text{in})!\text{Rcv} \), and the \(\text{Send}(\text{msg}) \) action on channel \(\text{out} \) could be written \(\text{Chan}(\text{out})!\text{Send}(\text{msg}) \).

The instantiation above defines \(\text{Chan}!\text{Send} \) to be an operator with two arguments. Writing \(\text{Chan}(\text{out})!\text{Send}(\text{msg}) \) instead of \(\text{Chan}!\text{Send}(\text{out, msg}) \) is just an idiosyncrasy of the syntax. It is no stranger than the syntax for infix operators, which makes us write \(a + b \) instead of \(+ (a, b)\).

4.2.3 Implicit Substitutions

The use of Message as the name for the set of transmitted values in the FIFO specification is a bit strange, since we had just used the name Data for the
analogous set in the asynchronous channel specifications. Suppose we had used \textit{Data} in place of \textit{Message} as the constant parameter of module \textit{InnerFIFO}. The first instantiation statement would then have been

\begin{align*}
\texttt{InChan} \triangleq \text{instance Channel with} \quad \text{Data} \leftarrow \text{Data}, \text{chan} \leftarrow \text{in}
\end{align*}

The substitution \textit{Data} \leftarrow \textit{Data} indicates that the constant parameter \textit{Data} of the instantiated module \textit{Channel} is replaced with the expression \textit{Data} of the current module. TLA+ allows us to drop any substitution of the form \textit{\Sigma} \leftarrow \textit{\Sigma}, for a symbol \textit{\Sigma}. So, the statement above can be written as

\begin{align*}
\texttt{InChan} \triangleq \text{instance Channel with} \quad \text{chan} \leftarrow \text{in}
\end{align*}

We know there is an implied \textit{Data} \leftarrow \textit{Data} substitution because an \texttt{instance} statement must have a substitution for every parameter of the instantiated module. If some parameter \textit{p} has no explicit substitution, then there is an implicit substitution \textit{p} \leftarrow \textit{p}. This means that the \texttt{instance} statement must lie within the scope of a declaration or definition of the symbol \textit{p}.

It is quite common to instantiate a module with this kind of implicit substitution. Often, every parameter has an implicit substitution, in which case the list of explicit substitutions is empty. The \texttt{with} is then omitted.

\subsection{4.2.4 Instantiation Without Renaming}

So far, all the instantiations we’ve used have been with renaming. For example, the first instantiation of module \textit{Channel} renames the defined symbol \textit{Send} as \texttt{InChan!Send}. This kind of renaming is necessary if we are using multiple instances of the module, or a single parametrized instance. The two instances \texttt{InChan!Init} and \texttt{OutChan!Init} of \textit{Init} in module \textit{InnerFIFO} are different formulas, so they need different names.

Sometimes we need only a single instance of a module. For example, suppose we are specifying a system with only a single asynchronous channel. We then need only one instance of \textit{Channel}, so we don’t have to rename the instantiated symbols. In that case, we can write something like

\begin{align*}
\texttt{instance Channel with} \quad \text{Data} \leftarrow \text{D}, \text{chan} \leftarrow \text{x}
\end{align*}

This instantiates \textit{Channel} with no renaming, but with substitution. Thus, it defines \textit{Rcv} to be the formula of the same name from the \textit{Channel} module, except with \textit{D} substituted for \textit{Data} and \textit{x} substituted for \textit{chan}. The expressions substituted for an instantiated module’s parameters must be defined. So, this \texttt{instance} statement must be within the scope of the definitions or declarations of \textit{D} and \textit{x}.
Module \textit{InnerFIFO} of Figure 4.1 defines \textit{Spec} to be \textit{Init} \land \Box[\textit{Next}]\ldots, the sort of formula we’ve become accustomed to as a system specification. However, formula \textit{Spec} describes the value of variable \(q \), as well as of the variables \textit{in} and \textit{out}. The picture of the FIFO system I drew on page 35 shows only channels \textit{in} and \textit{out}; it doesn’t show anything inside the boxes. A specification of the FIFO should describe only the values sent and received on the channels. The variable \(q \), which represents what’s going on inside the box labeled \textit{Buffer}, is used to specify what values are sent and received. In the final specification, it should be hidden.

In TLA, we hide a variable with the existential quantifier \(\exists \) of temporal logic. The formula \(\exists x : F \) is true of a behavior iiff there exists some sequence of values—one in each state of the behavior—that can be assigned to the variable \(x \) that will make formula \(F \) true. (The meaning of \(\exists \) is defined more precisely in Section 8.6.)

The obvious way to write a FIFO specification in which \(q \) is hidden is with the formula \(\exists q : \textit{Spec} \). However, we can’t put this definition in module \textit{InnerFIFO} because \(q \) is already declared there, and a formula \(\exists q : \ldots \) would redeclare it. Instead, we use a new module with a parametrized instantiation of the \textit{InnerFIFO} module (see Section 4.2.2 above):

\begin{verbatim}
MODULE FIFO

CONSTANT Message

VARIABLES in, out

Inner(q) △ INSTANCE InnerFIFO

Spec △ \exists q : Inner(q)!Spec

\end{verbatim}

Observe that the \texttt{INSTANCE} statement is an abbreviation for

\begin{verbatim}
Inner(q) △ INSTANCE InnerFIFO

with q ← q, in ← in, out ← out, Message ← Message
\end{verbatim}

The variable parameter \(q \) of module \textit{InnerFIFO} is instantiated with the parameter \(q \) of the definition of \textit{Inner}. The other parameters of the \textit{InnerFIFO} module are instantiated with the parameters of module \textit{FIFO}.

4.4 A Bounded FIFO

We have specified an unbounded FIFO—a buffer that can hold an unbounded number of messages. Any real system has a finite amount of resources, so it can
A specification of a bounded FIFO differs from our specification of the unbounded FIFO only in that action \texttt{BufRcv} should be enabled only when there are fewer than \(N \) messages in the buffer—that is, only when \(\text{Len}(q) \) is less than \(N \). It would be easy to write a complete new specification of a bounded FIFO by copying module \texttt{InnerFIFO} and just adding the conjunct \(\text{Len}(q) < N \) to the definition of \texttt{BufRcv}. But let’s use module \texttt{InnerFIFO} as it is, rather than copying it.

The next-state action \texttt{BNext} for the bounded FIFO is the same as the FIFO’s next-state action \texttt{Next} except that it allows a \texttt{BufRcv} step only if \(\text{Len}(q) \) is less than \(N \). In other words, \texttt{BNext} should allow a step only if (i) it’s a \texttt{Next} step and (ii) if it’s a \texttt{BufRcv} step, then \(\text{Len}(q) < N \) is true in the first state. In other words, \texttt{BNext} should equal

\[
\text{Next} \land (\text{BufRcv} \Rightarrow (\text{Len}(q) < N))
\]

Module \texttt{BoundedFIFO} in Figure 4.2 on the next page contains the specification. It introduces the new constant parameter \(N \). It also contains the statement

\[
\text{assume} \ (N \in \text{Nat}) \land (N > 0)
\]

which asserts that, in this module, we are assuming that \(N \) is a positive natural number. Such an assumption has no effect on any definitions made in the module. However, it may be taken as a hypothesis when proving any theorems asserted in the module. In other words, a module asserts that its assumptions imply its theorems. It’s a good idea to assert this kind of simple assumption about constants.

An \texttt{assume} statement should only be used to assert assumptions about constants. The formula being assumed should not contain any variables. It might be tempting to assert type declarations as assumptions—for example, to add to module \texttt{InnerFIFO} the assumption \(q \in \text{Seq}(ext{Message}) \). However, that would be wrong because it asserts that, in any state, \(q \) is a sequence of messages. As we observed in Section 3.3, a state is a completely arbitrary assignment of values to variables, so there are states in which \(q \) has the value \(\sqrt{-17} \). Assuming that such a state doesn’t exist would lead to a logical contradiction.

You may wonder why module \texttt{BoundedFIFO} asserts that \(N \) is a positive natural, but doesn’t assert that \texttt{Message} is a set. Similarly, why didn’t we have to specify that the constant parameter \texttt{Data} in our asynchronous interface specifications is a set? The answer is that, in TLA\(^+\), every value is a set.\(^2\) A

\(^2\)TLA\(^+\) is based on the mathematical formalism known as Zermelo-Fränkel set theory, also called \(\text{ZF}\).
4.5. WHAT WE’RE SPECIFYING

MODULE BoundedFIFO

EXTENDS Naturals

VARIABLES in, out

CONSTANT Message, N

ASSUME \((N \in \text{Nat}) \land (N > 0)\)

\[\text{Inner}(q) \triangleq \text{instance InnerFIFO}\]

\[\text{BNext}(q) \triangleq \text{Inner}(q)!\text{Next} \land \text{Inner}(q)!\text{BufRcv} \Rightarrow (\text{Len}(q) < N)\]

\[\text{Spec} \triangleq \exists q : \text{Inner}(q)!\text{Init} \land \square[\text{BNext}(q)]_{\text{in, out, } q}\]

Figure 4.2: Specification of a FIFO buffer of length \(N\).

A value like the number 3, which we don’t think of as a set, is formally a set. We just don’t know what its elements are. The formula \(2 \in 3\) is a perfectly reasonable one, but TLA\(^+\) does not specify whether it’s true or false. So, we don’t have to assert that Message is a set because we know that it is one.

Although Message is automatically a set, it isn’t necessarily a finite set. For example, Message could be instantiated with the set Nat of natural numbers. If you want to assume that a constant parameter is a finite set, then you need to state this as an assumption. (You can do this with the IsFiniteSet operator from the FiniteSets module, described in Section 6.1.) However, most specifications make perfect sense for infinite sets of messages or processors, so there is no reason to require these sets to be finite.

4.5 What We’re Specifying

I wrote above, at the beginning of this section, that we were going to specify a FIFO buffer. Formula Spec of the FIFO module actually specifies a set of behaviors, each representing a sequence of sending and receiving operations on the channels in and out. The sending operations on in are performed by the sender, and the receiving operations on out are performed by the receiver. The sender and receiver are not part of the FIFO buffer; they form its environment.

Our specification describes a system consisting of the FIFO buffer and its environment. The behaviors satisfying formula Spec of module FIFO represent those histories of the universe in which both the system and its environment behave correctly. It’s often helpful in understanding a specification to indicate explicitly which steps are system steps and which are environment steps. We can do this by defining the next-state action to be

\[\text{Next} \triangleq \text{SysNext} \lor \text{EnvNext}\]
where $SysNext$ describes system steps and $EnvNext$ describes environment steps. For the FIFO, we have

$$
SysNext \triangleq BufRcv \lor BufSend
$$

$$
EnvNext \triangleq (\exists \, msg \in Message : SSend(msg)) \lor RRcv
$$

While suggestive, this way of defining the next-state action has no formal significance. The specification $Spec$ equals $Init \land \Box[Next]$, changing the way we structure the definition of $Next$ doesn’t change its meaning. If a behavior fails to satisfy $Spec$, nothing tells us if the system or its environment is to blame.

A formula like $Spec$, which describes the correct behavior of both the system and its environment, is called a closed-system or complete-system specification. An open-system specification is one that describes only the correct behavior of the system. A behavior satisfies an open-system specification if it represents a history in which either the system operates correctly, or it failed to operate correctly only because its environment did something wrong. Section 10.7 explains how to write open-system specifications.

Open-system specifications are philosophically more satisfying. However, closed-system specifications are a little bit easier to write, and the mathematics underlying them is simpler. So, we almost always write closed-system specifications. It’s usually quite easy to turn a closed-system specification into an open-system specification. But in practice, there’s little reason to do so.
Chapter 5

A Caching Memory

A memory system consists of a set of processors connected to a memory by some abstract interface, which we label \(\text{memInt} \).

In this section we specify what the memory is supposed to do, then we specify a particular implementation of the memory using caches. We begin by specifying the memory interface, which is common to both specifications.

5.1 The Memory Interface

The asynchronous interface described in Chapter 3 uses a handshake protocol. Receipt of a data value must be acknowledged before the next data value can be sent. In the memory interface, we abstract away this kind of detail and represent both the sending of a data value and its receipt as a single step. We call it a Send step if a processor is sending the value to the memory; it’s a Reply step if the memory is sending to a processor. Processors do not send values to one another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable \(\text{memInt} \). A Send step changes \(\text{memInt} \) in some way, but we don’t want to specify exactly how. The way to leave something unspecified in a specification is to make it a parameter. For example, in the bounded FIFO of Section 4.4, we left the size of the buffer unspecified by making it a parameter \(N \). We’d
therefore like to declare a parameter $Send$ so that $Send(p, d)$ describes how memInt is changed by a step that represents processor p sending data value d to the memory. However, TLA$^+$ provides only constant and variable parameters, not action parameters. So, we declare $Send$ to be a constant operator and write $Send(p, d, \text{memInt}, \text{memInt}')$ instead of $Send(p, d)$.

In TLA$^+$, we declare $Send$ to be a constant operator that takes four arguments by writing

$$\text{constant } Send(_; _; _; _))$$

This means that $Send(p, d, \text{miOld}, \text{miNew})$ is an expression, for any expressions p, d, miOld, and miNew, but it says nothing about what the value of that expression is. We want it to be a Boolean value that is true if a step in which memInt equals miOld in the first state and miNew in the second state represents the sending by p of value d to the memory. We can assert that the value is a Boolean by the assumption:

$$\text{assume } \forall p, d, \text{miOld}, \text{miNew} :$$

$$Send(p, d, \text{miOld}, \text{miNew}) \in \text{BOOLEAN}$$

This asserts that the formula

$$Send(p, d, \text{miOld}, \text{miNew}) \in \text{BOOLEAN}$$

is true for all values of p, d, miOld, and miNew. The built-in symbol BOOLEAN denotes the set \{TRUE, FALSE\}, whose elements are the two Boolean values TRUE and FALSE.

This ASSUME statement asserts formally that the value of

$$Send(p, d, \text{miOld}, \text{miNew})$$

is a Boolean. But the only way to assert formally what that value signifies would be to say what it actually equals—that is, to define $Send$ rather than making it a parameter. We don’t want to do that, so we just state informally what the value means. This statement is part of the intrinsically informal description of the relation between our mathematical abstraction and a physical memory system.

To allow the reader to understand the specification, we have to describe informally what $Send$ means. The ASSUME statement asserting that $Send(\ldots)$ is a Boolean is then superfluous as an explanation. However, it could help tools understand the specification, so it’s a good idea to include it anyway.

1Even if TLA$^+$ allowed us to declare an action parameter, we would have no way to specify that a $Send(p, d)$ action constrains only memInt and not other variables.

2We expect $Send(p, d, \text{miOld}, \text{miNew})$ to have this meaning only when p is a processor and d a value that p is allowed to send, but we simplify the specification a bit by requiring it to be a Boolean for all values of p and d.

A specification that uses the memory interface can use the operators Send and Reply to specify how the variable memInt changes. The specification must also describe memInt’s initial value. We therefore declare a constant parameter InitMemInt that is the set of possible initial values of memInt.

We also introduce three constant parameters that are needed to describe the interface:

- **Proc** The set of processor identifiers. (We usually shorten processor identifier to processor when referring to an element of Proc.)
- **Adr** The set of memory addresses.
- **Val** The set of possible memory values that can be assigned to an address.

Finally, we define the values that the processors and memory send to one another over the interface. A processor sends a request to the memory. We represent a request as a record with an op field that specifies the type of request and additional fields that specify its arguments. Our simple memory allows just read and write requests. A read request has op field “Rd” and an adr field specifying the address to be read. The set of all read requests is therefore the set

\[\{ \text{op} : \text{“Rd”}, \text{adr} : \text{Adr} \} \]

of all records whose op field equals “Rd” (is an element of the set \{“Rd”\} whose only element is the string “Rd”) and whose adr field is an element of Adr. A write request must specify the address to be written and the value to write. It is represented by a record with op field equal to “Wr”, and with adr and val fields specifying the address and value. We define MReq, the set of all requests, to equal the union of these two sets. (Set operations, including union, are described in Section 1.2.)

The memory responds to a read request with the memory value it read. We will also have it respond to a write request; and it seems nice to let the response be different from the response to any read request. We therefore require the memory to respond to a write request by returning a value NoVal that is different from any memory value. We could declare NoVal to be a constant parameter and add the assumption NoVal \notin Val. (The symbol \notin is typed in ASCII as \texttt{notin}.) But it’s best, when possible, to avoid introducing parameters. Instead, we define NoVal by:

\[\text{NoVal} \overset{\Delta}{=} \text{choose } v : v \notin Val \]

The expression \texttt{choose } x : F equals an arbitrarily chosen value x that satisfies the formula F. (If no such x exists, the expression has a completely arbitrary value.) This statement defines NoVal to be some value that is not an element of
CHAPTER 5. A CACHING MEMORY

MODULE MemoryInterface

VARIABLE memInt

CONSTANTS Send(-, -, -, -), A Send(p, d, memInt, memInt') step represents processor p sending value d to the memory.

Reply(-, -, -, -), A Reply(p, d, memInt, memInt') step represents the memory sending value d to processor p.

InitMemInt, The set of possible initial values of memInt.

Proc, The set of processor identifiers.

Adr, The set of memory addresses.

Val The set of memory values.

ASSUME \forall p, d, miOld, miNew : \& Send(p, d, miOld, miNew) \in BOOLEAN
\& Reply(p, d, miOld, miNew) \in BOOLEAN

MReq \overset{\triangle}{=} \{ op: \{“Rd”\}, adr: Adr \} \cup \{ op: \{“Wr”\}, adr: Adr, val: Val \}
The set of all requests; a read specifies an address, a write specifies an address and a value.

NoVal \overset{\triangle}{=} \text{CHOOSE } v : v \notin Val \quad \text{An arbitrary value not in Val.}

Figure 5.1: The Specification of a Memory Interface

Val. We have no idea what the value of NoVal is; we just know what it isn’t—namely, that it isn’t an element of Val. The CHOOSE operator is discussed in Section 6.6.

The complete memory interface specification is module MemoryInterface in Figure 5.1 on this page.

5.2 Functions

A memory assigns values to addresses. The state of the memory is therefore an assignment of elements of Val (memory values) to elements of Adr (memory addresses). In a programming language, such an assignment is called an array of type Val indexed by Adr. In mathematics, it’s called a function from Adr to Val. Before writing the memory specification, let’s look at the mathematics of functions, and how it is described in TLA⁺.

A function f has a domain, written \text{DOMAIN } f, and it assigns to each element x of its domain the value f[x]. (Mathematicians write this as f(x), but TLA⁺ uses the array notation of programming languages, with square brackets.) Two functions f and g are equal iff they have the same domain and f[x] = g[x] for all x in their domain.

The range of a function f is the set of all values of the form f[x] with x in \text{DOMAIN } f. For any sets S and T, the set of all functions whose domain equals
5.2. FUNCTIONS

S and whose range is any subset of T is written $[S \rightarrow T]$.

Ordinary mathematics does not have a convenient notation for writing an expression whose value is a function. TLA + defines $[x \in S \mapsto e]$ to be the function f with domain S such that $f[x] = e$ for every $x \in S$. For example,

$$\text{succ} \triangleq [n \in \text{Nat} \mapsto n + 1]$$

defines succ to be the successor function on the natural numbers—the function with domain Nat such that $\text{succ}[n] = n + 1$ for all $n \in \text{Nat}$.

A record is a function whose domain is a finite set of strings. For example, a record with val, ack, and rdy fields is a function whose domain is the set $\{\text{"val"}, \text{"ack"}, \text{"rdy"}\}$ consisting of the three strings "val", "ack", and "rdy". The expression $r.\text{ack}$, the ack field of a record r, is an abbreviation for $r[\text{"ack"}]$. The record

$$[\text{val} \mapsto 42, \text{ack} \mapsto 1, \text{rdy} \mapsto 0]$$
can be written

$$[i \in \{\text{"val"}, \text{"ack"}, \text{"rdy"}\} \mapsto \begin{cases} 42 & \text{if } i = \text{"val"} \\ 1 & \text{if } i = \text{"ack"} \\ 0 & \text{else} \end{cases}]$$

The EXCEPT construct for records, explained in Section 3.2, is a special case of a general EXCEPT construct for functions, where $!c$ is an abbreviation for $![\text{"c"}]$. For any function f, the expression $[f \text{ EXCEPT } !c = e]$ is the function \hat{f} that is the same as f except with $\hat{f}[c] = e$. This function can also be written:

$$[x \in \text{domain } f \mapsto \begin{cases} e & \text{if } x = c \\ f[x] & \text{else} \end{cases}]$$

assuming that the symbol x does not occur in any of the expressions f, c, and e. For example, $[\text{succ EXCEPT } !42 = 86]$ is the function g that is the same as succ except that $g[42] = 86$ instead of 43.

As in the EXCEPT construct for records, the expression e in

$$[f \text{ EXCEPT } ![c] = e]$$
can contain the symbol \emptyset, where it means $f[c]$. For example,

$$[\text{succ EXCEPT } ![42] = 2 * \emptyset] = [\text{succ EXCEPT } ![42] = 2 * \text{succ}[42]]$$

In general,

$$[f \text{ EXCEPT } ![c_1] = e_1, \ldots, ![c_n] = e_n]$$

\footnote{The \in in $[x \in S \mapsto e]$ is just part of the syntax; TLA + uses that particular symbol to help you remember what the construct means. Computer scientists write $\lambda x : S.e$ to represent something similar to $[x \in S \mapsto e]$, except that their λ expressions aren’t quite the same as the functions of ordinary mathematics that are used in TLA +.}
is the function \hat{f} that is the same as f except with $\hat{f}[c_i] = e_i$ for each i. More precisely, this expression equals

$$[\ldots [f \text{ EXCEPT } ![c_1] = e_1] \text{ EXCEPT } ![c_2] = e_2] \ldots \text{ EXCEPT } ![c_n] = e_n]$$

Functions correspond to the arrays of programming languages. The domain of a function corresponds to the index set of an array. The function $[f \text{ EXCEPT } ![c] = e]$ corresponds to the array obtained from f by assigning e to $f[c]$. A function whose range is a set of functions corresponds to an array of arrays. TLA+ defines $[f \text{ EXCEPT } ![c][d] = e]$ to be the function corresponding to the array obtained by assigning e to $f[c][d]$. It can be written as

$$[f \text{ EXCEPT } ![c] = [\@ \text{ EXCEPT } ![d] = e]]$$

The generalization to $[f \text{ EXCEPT } ![c_1] \ldots ![c_n] = e]$ for any n should be obvious. Since a record is a function, this notation can be used for records as well. TLA+ uniformly maintains the notation that $\sigma.c$ is an abbreviation for $\sigma["c"]$. For example, this implies:

$$[f \text{ EXCEPT } ![c].d = e] = [f \text{ EXCEPT } ![c] = [\@ \text{ EXCEPT } ![d] = e]]$$

The TLA+ definition of records as functions makes it possible to manipulate them in ways that have no counterparts in programming languages. For example, we can define an operator R such that $R(r, s)$ is the record obtained from r by replacing the value of each field c that is also a field of the record s with $s.c$. In other words, for every field c of r, if c is a field of s then $R(r, s).c = s.c$; otherwise $R(r, s).c = r.c$. The definition is:

$$R(r, s) \triangleq [c \in \text{DOMAIN } r \mapsto \text{IF } c \in \text{DOMAIN } s \text{ THEN } s[c] \text{ ELSE } r[c]]$$

So far, I have described only functions of a single argument. TLA+ also allows functions of multiple arguments. Section 15.1.7 on page 275 describes the general versions of the TLA+ function constructs for functions with any number of arguments. However, functions of a single argument are all you really need. You can always replace a function of multiple arguments with a function-valued function—for example, writing $f[a][b]$ instead of $f[a, b]$.

5.3 A Linearizable Memory Specification

We specify a very simple memory system in which a processor p issues a memory request and then waits for a response before issuing the next request. In our specification, the request is executed by accessing (reading or modifying) a variable mem, which represents the current state of the memory. Because the memory can receive requests from other processors before responding to processor p, it matters when mem is accessed. We let the access of mem occur
any time between the request and the response. This specifies what is called a linearizable memory. Less restrictive, more practical memory specifications are described in Section 11.2.

In addition to mem, the specification has the internal variables ctl and buf, where $\text{ctl}[p]$ describes the status of processor p’s request and $\text{buf}[p]$ contains either the request or the response. Consider the request req that equals

\[
\begin{align*}
{\text{op}} & \mapsto \text{Wr}, \quad {\text{adr}} \mapsto a, \quad {\text{val}} \mapsto v
\end{align*}
\]

It is a request to write v to memory address a, and it generates the response NoVal. The processing of this request is represented by the following three steps:

\[
\begin{align*}
\begin{bmatrix}
\text{ctl}[p] & = \text{rdy} \\
\text{buf}[p] & = \cdots \\
\text{mem}[a] & = \cdots
\end{bmatrix} & \quad \Rightarrow
\begin{bmatrix}
\text{ctl}[p] & = \text{busy} \\
\text{buf}[p] & = \text{req} \\
\text{mem}[a] & = \cdots
\end{bmatrix} \\
\begin{bmatrix}
\text{ctl}[p] & = \text{rdy} \\
\text{buf}[p] & = \text{req} \\
\text{mem}[a] & = \text{vol}
\end{bmatrix} & \quad \Rightarrow
\begin{bmatrix}
\text{ctl}[p] & = \text{done} \\
\text{buf}[p] & = \text{NoVal} \\
\text{mem}[a] & = v
\end{bmatrix} \\
\begin{bmatrix}
\text{ctl}[p] & = \text{done} \\
\text{buf}[p] & = \text{NoVal} \\
\text{mem}[a] & = v
\end{bmatrix} & \quad \Rightarrow
\begin{bmatrix}
\text{ctl}[p] & = \text{rdy} \\
\text{buf}[p] & = \text{NoVal} \\
\text{mem}[a] & = v
\end{bmatrix}
\end{align*}
\]

A $\text{Req}(p)$ step represents the issuing of a request by processor p. It is enabled when $\text{ctl}[p] = \text{rdy}$; it sets $\text{ctl}[p]$ to “busy” and sets $\text{buf}[p]$ to the request. A $\text{Do}(p)$ step represents the memory access; it is enabled when $\text{ctl}[p] = \text{busy}$ and it sets $\text{ctl}[p]$ to “done” and $\text{buf}[p]$ to the response. A $\text{Rsp}(p)$ step represents the memory’s response to p; it is enabled when $\text{ctl}[p] = \text{done}$ and it sets $\text{ctl}[p]$ to “rdy”.

Writing the specification is a straightforward exercise in representing these changes to the variables in TLA$^+$ notation. The internal specification, with mem, ctl, and buf visible (free variables), appears in module InternalMemory on the following two pages. The memory specification, which hides the three internal variables, is module Memory in Figure 5.4 on page 53.

5.4 Tuples as Functions

Before writing our caching memory specification, let’s take a closer look at tuples. Recall that (a, b, c) is the 3-tuple with components a, b, and c. In TLA$^+$, this 3-tuple is actually the function with domain $\{1, 2, 3\}$ that maps 1 to a, 2 to b, and 3 to c. Thus, $(a, b, c)[2]$ equals b.

TLA$^+$ provides the Cartesian product operator \times of ordinary mathematics, where $A \times B \times C$ is the set of all 3-tuples (a, b, c) such that $a \in A$, $b \in B$, and $c \in C$. Note that $A \times B \times C$ is different from $A \times (B \times C)$, which is the set of pairs (a, p) with a in A and p in the set of pairs $B \times C$.

The Sequences module defines finite sequences to be tuples. Hence, a sequence of length n is a function with domain $1 \ldots n$. In fact, s is a sequence iff
MODULE InternalMemory

EXTENDS MemoryInterface

VARIABLES mem, ctl, buf

Init ≜ The initial predicate
\[\land \text{mem} \in [\text{Adr} \rightarrow \text{Val}]\] Initially, memory locations have any legal values,
\[\land \text{ctl} = [p \in \text{Proc} \mapsto \text{“rdy”}]\] each processor is ready to issue requests,
\[\land \text{buf} = [p \in \text{Proc} \mapsto \text{NoVal}]\] each buf[p] is arbitrarily initialized to NoVal,
\[\land \text{memInt} \in \text{InitMemInt}\] and memInt is any element of InitMemInt.

TypeInvariant ≜ The type-correctness invariant.
\[\land \text{mem} \in [\text{Adr} \rightarrow \text{Val}]\] mem is a function from Adr to Val.
\[\land \text{ctl} \in [\text{Proc} \rightarrow \{\text{“rdy”}, \text{“busy”}, \text{“done”}\}]\] ctl[p] equals “rdy”, “busy”, or “done”.
\[\land \text{buf} \in [\text{Proc} \rightarrow \text{MReq} \cup \text{Val} \cup \{\text{NoVal}\}]\] buf[p] is a request or a response.

Req(p) ≜ Processor p issues a request.
\[\land \text{ctl}[p] = \text{“rdy”}\] Enabled iff p is ready to issue a request.
\[\land \exists \text{req} \in \text{MReq} : \text{For some request req:}\]
\[\land \text{Send}(p, \text{req}, \text{memInt}, \text{memInt}’)\] Send req on the interface.
\[\land \text{buf’} = [\text{buf \ except \ !}[p] = \text{req}]\] Set buf[p] to the request.
\[\land \text{ctl’} = [\text{ctl \ except \ !}[p] = \text{“busy”}]\] Set ctl[p] to “busy”.
\[\land \text{UNCHANGED mem}\]

Do(p) ≜ Perform p’s request to memory.
\[\land \text{ctl}[p] = \text{“busy”}\] Enabled iff p’s request is pending.
\[\land \text{mem’} = \text{IF} \ \text{buf}[p].\text{op} = \text{“Wr”}\] Write to memory on a “Wr” request.
\[\text{THEN} \ \text{mem \ except} \ \![\text{buf}[p].\text{adr}] = \text{buf}[p].\text{val}\]
\[\text{ELSE} \ \text{mem} \ \text{Leave mem unchanged on a “Rd” request.}\]
\[\land \text{buf’} = [\text{buf \ except} \ \![p] = \text{IF} \ \text{buf}[p].\text{op} = \text{“Wr”}\]
\[\text{THEN} \ \text{NoVal}\] Set buf[p] to the response: NoVal for a write;
\[\text{ELSE} \ \text{mem[buf[p].adr]}\] the memory value for a read.
\[\land \text{ctl’} = [\text{ctl \ except} \ \![p] = \text{“done”}]\] Set ctl[p] to “done”.
\[\land \text{UNCHANGED memInt}\]

Figure 5.2: The internal memory specification (beginning).
5.5. RECURSIVE FUNCTION DEFINITIONS

We need one more tool to write the caching memory specification: recursive function definitions. Recursively defined functions are familiar to programmers. The classic example is the factorial function, which I’ll call \(\text{fact} \). It’s usually defined by writing:

\[
\text{fact}[n] = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{fact}[n-1] & \text{otherwise}
\end{cases}
\]

for all \(n \in \text{Nat} \). The TLA\(^+\) notation for writing functions suggests trying to define \(\text{fact} \) by:

\[
\text{fact} \triangleq [n \in \text{Nat} \mapsto \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{fact}[n-1] & \text{otherwise}
\end{cases}]
\]

THEOREM \(\text{ISpec} \Rightarrow \Box \text{TypeInvariant} \)

Figure 5.3: The internal memory specification (end).

it equals \([i \in 1 .. \text{Len}(s) \mapsto s[i]] \). Below are a few operator definitions from the **Sequences** module. (The meanings of the operators are described in Section 4.1.)

\[
\begin{align*}
\text{Head}(s) & \triangleq s[1] \\
\text{Tail}(s) & \triangleq [i \in 1 .. (\text{Len}(s) - 1) \mapsto s[i + 1]] \\
s \circ t & \triangleq [i \in 1 .. (\text{Len}(s) + \text{Len}(t)) \mapsto \\
& \quad \begin{cases}
\text{if } i \leq \text{Len}(s) \text{ then } s[i] \text{ else } t[i - \text{Len}(s)]
\end{cases}]
\end{align*}
\]

5.5 Recursive Function Definitions

Figure 5.4: The memory specification.
This definition is illegal because the occurrence of \(\text{fact} \) to the right of the \(\triangleq \) is undefined—\(\text{fact} \) is defined only after its definition.

\(\text{TLA}^+ \) does allow the apparent circularity of recursive function definitions. We can define the factorial function \(\text{fact} \) by:

\[
\text{fact}[n \in \text{Nat}] \triangleq \begin{cases}
1 & \text{if } n = 0 \\
1 + n \text{fact}[n-1] & \text{else }
\end{cases}
\]

In general, a definition of the form \(f[x \in S] \triangleq e \) can be used to define recursively a function \(f \) with domain \(S \). Section 6.3 explains exactly what such a definition means. For now, we will just write recursive definitions without worrying about their meaning.

5.6 A Write-Through Cache

We now specify a simple write-through cache that implements the memory specification. The system is described by the following picture:

Each processor \(p \) communicates with a local controller, which maintains three state components: \(\text{buf}[p] \), \(\text{ctl}[p] \), and \(\text{cache}[p] \). The value of \(\text{cache}[p] \) represents the processor’s cache; \(\text{buf}[p] \) and \(\text{ctl}[p] \) play the same role as in the internal memory specification (module \text{InternalMemory}). (However, as we will see below, \(\text{ctl}[p] \) can assume an additional value “waiting”.) These local controllers communicate with the main memory \(\text{mem} \),\(^4\) and with one another, over a bus. Requests from the processors to the main memory are in the queue \(\text{memQ} \) of maximum length \(QLen \).

\(^4\)Although the write-through cache implements the linearizable memory, its main memory does not directly implement the variable \(\text{mem} \) of the specification in module \text{InternalMemory}.
A write request by processor p is performed by the action $\text{DoWr}(p)$. This is a write-through cache, meaning that every write request updates main memory. So, the $\text{DoWr}(p)$ action writes the value into $\text{cache}[p]$ and adds the write request to the tail of memQ. It also updates $\text{cache}[q]$ for any other processor q that has a copy of the address in its cache. When the request reaches the head of memQ, the action MemQWr stores the value in mem.

A read request by processor p is performed by the action $\text{DoRd}(p)$, which obtains the value from the cache. If the value is not in the cache, the action $\text{RdMiss}(p)$ adds the request to the tail of memQ and sets $\text{ctl}[p]$ to “waiting”. When the enqueued request reaches the head of memQ, the action MemQRd reads the value and puts it in $\text{cache}[p]$, enabling the $\text{DoRd}(p)$ action.

We might expect the MemQRd action to read the value from mem. However, this could cause an error if there is a write to that address enqueued in memQ behind the read request. In that case, reading the value from memory could lead to two processors having different values for the address in their caches: the one that issued the read request, and the one that issued the write request that followed the read in memQ. So, the MemQRd action must read the value from the last write to that address in memQ, if there is such a write; otherwise, it reads the value from mem.

Eviction of an address from processor p’s cache is represented by a separate $\text{Evict}(p)$ action. Since all cached values have been written to memory, eviction does nothing but remove the address from the cache. There is no reason to evict an address until the space is needed, so in an implementation, this action would be executed only when a request for an uncached address is received from p and p’s cache is full. But that’s a performance optimization; it doesn’t affect the correctness of the algorithm, so it doesn’t appear in the specification. We allow a cached address to be evicted from p’s cache at any time—except if the address was just put there by a MemQRd action for the current request. This is the case when $\text{ctl}[p]$ equals “waiting” and $\text{buf}[p].adr$ equals the cached address.

The actions $\text{Req}(p)$ and $\text{Rsp}(p)$, which represent processor p issuing a request and the memory issuing a reply to p, are the same as the corresponding actions of the memory specification, except that they also leave the new variables cache and memQ unchanged.

To specify all these actions, we must decide how the processor caches and the queue of requests to memory are represented by the variables memQ and cache. We let memQ be a sequence of pairs of the form (p, req), where req is a request and p is the processor that issued it. For any memory address a, we let $\text{cache}[p][a]$ be the value in p’s cache for address a (the “copy” of a in p’s cache). If p’s cache does not have a copy of a, we let $\text{cache}[p][a]$ equal NoVal.

The specification appears in module WriteThroughCache on pages 56–58. I’ll now go through this specification, explaining some of the finer points and some notation that we haven’t encountered before.
MODULE WriteThroughCache

EXTENDS Naturals, Sequences, MemoryInterface

VARIABLES mem, ctl, buf, cache, memQ

CONSTANT QLen

ASSUME (QLen ∈ Nat) ∧ (QLen > 0)

M ≜ INSTANCE InternalMemory

Init ≜ The initial predicate

¬ M Init mem, buf, and ctl are initialized as in the internal memory spec.

¬ cache = All caches are initially empty (cache[p][a] = NoVal for all p, a).

¬ memQ = {} The queue memQ is initially empty.

TypeInvariant ≜ The type invariant.

¬ mem ∈ [Adr → Val]

¬ ctl ∈ [Proc → {“rdy”, “busy”, “waiting”, “done”}]

¬ buf ∈ [Proc → MReq ∪ Val ∪ {NoVal}]

¬ cache ∈ [Proc → [Adr → Val ∪ {NoVal}]]

¬ memQ ∈ Seq(Proc × MReq) memQ is a sequence of (proc., request) pairs.

Coherence ≜ Asserts that if two processors’ caches both have copies of an

address, then those copies have equal values.

∀ p, q ∈ Proc, a ∈ Adr :

(NoVal ∉ {cache[p][a], cache[q][a]}) ⇒ (cache[p][a] = cache[q][a])

Req(p) ≜ Processor p issues a request.

¬ M!Req(p) ∧ UNCHANGED (cache, memQ)

Rsp(p) ≜ The system issues a response to processor p.

¬ M!Rsp(p) ∧ UNCHANGED (cache, memQ)

RdMiss(p) ≜ Enqueue a request to write value from memory to p’s cache.

¬ (ctl[p] = “busy”) ∧ (buf[p].op = “Rd”) Enabled on a read request when

¬ cache[p][buf[p].adr] = NoVal the address is not in p’s cache

¬ Len(memQ) < QLen and memQ is not full.

¬ memQ’ = Append(memQ, ⟨p, buf[p]⟩) Append ⟨p, request⟩ to memQ.

¬ ctl’ = ctl EXCEPT ![p] = “waiting” Set ctl[p] to “waiting”.

¬ UNCHANGED ⟨memInt, mem, buf, cache⟩

Figure 5.5: The write-through cache specification (beginning).
5.6. A WRITE-THROUGH CACHE

\[\text{DoRd}(p) \triangleq \]
\[\begin{align*}
\land \ & \text{Perform a read by } p \text{ of a value in its cache.} \\
\land \ & \text{ctl}[p] \in \{ \text{"busy"}, \text{ "waiting"} \} \\
\land \ & \text{buf}[p].op = \text{"Rd"} \\
\land \ & \text{cache}[p][buf[p].adr] \neq \text{NoVal} \\
\land \ & \text{buf} = [\text{buf EXCEPT } ![p] = \text{cache}[p][buf[p].adr]] \\
\land \ & \text{ctl} = [\text{ctl EXCEPT } ![p] = \text{"done"}] \\
\land \ & \text{UNCHANGED } \langle \text{memInt, mem, cache, memQ} \rangle
\end{align*} \]

\[\text{DoWr}(p) \triangleq \]
\[\begin{align*}
\text{LET } \ & r \triangleq \text{buf}[p] \quad \text{Processor } p \text{'s request.} \\
\text{IN } \ & (\text{ctl}[p] = \text{"busy"}) \land (r.op = \text{"Wr"}) \\
\land \ & \text{Len}(\text{memQ}) < QLen \\
\land \ & \text{cache} = \text{Update } p \text{'s cache and any other cache that has a copy.} \\
\quad \ & q \in \text{Proc} \rightarrow \text{IF } (p = q) \lor (\text{cache}[q][r.adr] \neq \text{NoVal}) \\
\quad \ & \text{THEN } [\text{cache}[q] \text{ EXCEPT } ![r.adr] = \text{r.val}] \\
\quad \ & \text{ELSE } \text{cache}[q] \\
\land \ & \text{memQ} = \text{Append}(\text{memQ, } (p, r)) \\
\land \ & \text{buf} = [\text{buf EXCEPT } ![p] = \text{NoVal}] \\
\land \ & \text{ctl} = [\text{ctl EXCEPT } ![p] = \text{"done"}] \\
\land \ & \text{UNCHANGED } \langle \text{memInt, mem} \rangle
\end{align*} \]

\[\text{vmem} \triangleq \]
\[\begin{align*}
\text{LET } f[i \in 0 \ldots \text{Len}(\text{memQ})] \triangleq & \text{The value } \text{mem } \text{will have after the first} \\
\text{IF } i = 0 \text{ THEN mem} \\
\text{ELSE IF } \text{memQ}[i][2].op = \text{"Rd"} \\
\text{THEN } f[i - 1] \\
\text{ELSE } [f[i - 1] \text{ EXCEPT } ![\text{memQ}[i][2].adr] = \text{memQ}[i][2].val] \\
\text{IN } f[\text{Len}(\text{memQ})]
\end{align*} \]

\[\text{MemQWr} \triangleq \]
\[\begin{align*}
\text{LET } r \triangleq \text{Head}(\text{memQ})[2] \quad \text{The request at the head of memQ.} \\
\text{IN } \ & (\text{memQ} \neq \langle \rangle) \land (r.op = \text{"Wr"}) \\
\land \ & \text{mem} = [\text{mem EXCEPT } ![r.adr] = \text{r.val}] \\
\land \ & \text{memQ} = \text{Tail}(\text{memQ}) \\
\land \ & \text{UNCHANGED } \langle \text{memInt, cache, buf, ctl, cache} \rangle
\end{align*} \]

Figure 5.6: The write-through cache specification (middle).
CHAPTER 5. A CACHING MEMORY

\[\text{MemQRd} \triangleq \text{Perform an enqueued read to memory.} \]

LET \(p \triangleq \text{Head}(\text{memQ})[1] \) The requesting processor.

\(r \triangleq \text{Head}(\text{memQ})[2] \) The request at the head of \(\text{memQ} \).

\[\text{IN} \wedge (\text{memQ} \neq \langle \rangle) \wedge (r.\text{op} = \text{“Rd”}) \quad \text{Enabled if Head(\text{memQ}) is a read.} \]

\(\wedge \text{memQ}' = \text{Tail}(\text{memQ}) \) Remove the head of \(\text{memQ} \).

\(\wedge \text{cache}' = \text{Put value from memory or \text{memQ} in p’s cache.} \)

\[[\text{cache EXCEPT } ![p][r.\text{adr}] = \text{vmem}[r.\text{adr}]] \]

\(\wedge \text{UNCHANGED } (\text{memInt}, \text{mem}, \text{buf}, \text{ctl}) \]

\(\text{Evict}(p, a) \triangleq \text{Remove address a from p’s cache.} \)

\(\wedge (\text{ctl}[p] = \text{“waiting”}) \Rightarrow (\text{buf}[p].\text{adr} \neq a) \) Can’t evict \(a \) if it was just read into cache from memory.

\(\wedge \text{cache}' = [\text{cache EXCEPT } ![p][a] = \text{NoVal}] \)

\(\wedge \text{UNCHANGED } (\text{memInt}, \text{mem}, \text{buf}, \text{ctl}, \text{memQ}) \)

\(\text{Next } \triangleq \forall \exists p \in \text{Proc} : \forall \text{ Req}(p) \vee \text{ Rsp}(p) \]

\(\vee \text{ RdMiss}(p) \vee \text{ DoRd}(p) \vee \text{ DoWr}(p) \)

\(\vee \exists a \in \text{Adr} : \text{Evict}(p, a) \)

\(\vee \text{ MemQWr} \vee \text{MemQRd} \)

\(\text{Spec } \triangleq \text{Init} \wedge \Box[\text{Next}]_{\langle \text{memInt}, \text{mem}, \text{buf}, \text{ctl}, \text{cache}, \text{memQ} \rangle} \)

THEOREM \(\text{Spec } \Rightarrow \Box(\text{TypeInvariant } \wedge \text{Coherence}) \)

\(\text{LM } \triangleq \text{INSTANCE Memory} \) The memory spec. with internal variables hidden.

THEOREM \(\text{Spec } \Rightarrow \text{LM}!\text{Spec} \) Formula \(\text{Spec} \) implements the memory spec.

Figure 5.7: The write-through cache specification (end).

The **extends**, declaration statements, and **assume** are familiar. We can re-use some of the definitions from the **InternalMemory** module, so an **instance** statement instantiates a copy of that module. (The parameters of module **InternalMemory** are instantiated by the parameters of the same name in module **WriteThroughCache**.)

The initial predicate **Init** contains the conjunct \(M!\text{Init} \), which asserts that \(\text{mem}, \text{ctl}, \) and \(\text{buf} \) have the same initial values as in the internal memory specification. The write-through cache allows \(\text{ctl}[p] \) to have the value “waiting” that it didn’t in the internal memory specification, so we can’t re-use the internal memory’s type invariant \(M!\text{TypeInvariant} \). Formula \(\text{TypeInvariant} \) therefore explicitly describes the types of \(\text{mem}, \text{ctl}, \) and \(\text{buf} \). The type of \(\text{memQ} \) is the set of sequences of \(\langle \text{processor}, \text{request} \rangle \) pairs.

The module next defines the predicate **Coherence**, which asserts the basic cache coherence property of the write-through cache: for any processors \(p \) and \(q \)
and any address \(a \), if \(p \) and \(q \) each has a copy of address \(a \) in its cache, then those copies are equal. Note the trick of writing \(x \notin \{ y, z \} \) instead of the equivalent but longer formula \((x \neq y) \land (x \neq z) \).

The actions \(\text{Req}(p) \) and \(\text{Rsp}(p) \), which represent a processor sending a request and receiving a reply, are essentially the same as the corresponding actions in module \textit{InternalMemory}. The only difference is that they must specify that the variables \textit{cache} and \textit{memQ}, not present in module \textit{InternalMemory}, are left unchanged.

In the definition of \(\text{RdMiss} \), the expression \(\text{Append}(\text{memQ}, \langle p, \text{buf}[p] \rangle) \) is the sequence obtained by appending the element \(\langle p, \text{buf}[p] \rangle \) to the end of \(\text{memQ} \).

The \(\text{DoRd}(p) \) action represents the performing of the read from \(p \)'s cache. If \(\text{ctl}[p] = \text{“busy”} \), then the address was originally in the cache. If \(\text{ctl}[p] = \text{“waiting”} \), then the address was just read into the cache from memory.

The \(\text{DoWr}(p) \) action writes the value to \(p \)'s cache and updates the value in any other caches that have copies. It also enqueues a write request in \(\text{memQ} \). In an implementation, the request is put on the bus, which transmits it to the other caches and to the \(\text{memQ} \) queue. In our high-level view of the system, we represent all this as a single step.

The definition of \(\text{DoWr} \) introduces the TLA+ \texttt{let/in} construct. The \texttt{let} clause consists of a sequence of definitions, whose scope extends until the end of the \texttt{in} clause. In the definition of \(\text{DoWr} \), the \texttt{let} clause defines \(r \) to equal \(\text{buf}[p] \) within the \texttt{in} clause. Observe that the definition of \(r \) contains the parameter \(p \) of the definition of \(\text{DoWr} \). Hence, we could not move the definition of \(r \) outside the definition of \(\text{DoWr} \).

A definition in a \texttt{let} is just like an ordinary definition in a module; in particular, it can have parameters. These local definitions can be used to shorten an expression by replacing common subexpressions with an operator. In the definition of \(\text{DoWr} \), I replaced five instances of \(\text{buf}[p] \) by the single symbol \(r \). This was a silly thing to do, because it makes almost no difference in the length of the definition and it requires the reader to remember the definition of the new symbol \(r \). But using a \texttt{let} to eliminate common subexpressions can often greatly shorten and simplify an expression.

A \texttt{let} can also be used to make an expression easier to read, even if the operators it defines appear only once in the \texttt{in} expression. We write a specification with a sequence of definitions, instead of just defining a single monolithic formula, because a formula is easier to understand when presented in smaller chunks. The \texttt{let} construct allows the process of splitting a formula into smaller parts to be done hierarchically. A \texttt{let} can appear as a subexpression of an \texttt{in} expression. Nested \texttt{let}s are common in large, complicated specifications.

Next comes the definition of the state function \(\text{vmem} \), which is used in defining action \(\text{MemQRd} \) below. It equals the value that the main memory \(\text{mem} \) will have after all the write operations currently in \(\text{memQ} \) have been performed. Recall that the value read by \(\text{MemQRd} \) must be the most recent one written
to that address—a value that may still be in \textit{memQ}. That value is the one in \textit{vmem}. The function \textit{vmem} is defined in terms of the recursively defined function \(f \), where \(f[i] \) is the value \textit{mem} will have after the first \(i \) operations in \textit{memQ} have been performed. Note that \(\textit{memQ}[i][2] \) is the second component (the request) of \(\textit{memQ}[i] \), the \(i \)th element in the sequence \(\textit{memQ} \).

The next two actions, \textit{MemQWr} and \textit{MemQRd}, represent the processing of the request at the head of the \textit{memQ} queue—\textit{MemQWr} for a write request, and \textit{MemQRd} for a read request. These actions also use a \texttt{let} to make local definitions. Here, the definitions of \(p \) and \(r \) could be moved before the definition of \textit{MemQWr}. In fact, we could save space by replacing the two local definitions of \(r \) with one global (within the module) definition. However, making the definition of \(r \) global in this way would be somewhat distracting, since \(r \) is used only in the definitions of \textit{MemQWr} and \textit{MemQRd}. It might be better instead to combine these two actions into one. Whether you put a definition into a \texttt{let} or make it more global should depend on what makes the specification easier to read.

Writing specifications is a craft whose mastery requires talent and hard work.

The \texttt{Evict}(\(p \); \(a \)) action represents the operation of removing address \(a \) from processor \(p \)'s cache. As explained above, we allow an address to be evicted at any time—unless the address was just written to satisfy a pending read request, which is the case iff \(\textit{ctl}[p] = \text{"waiting"} \) and \(\textit{buf}[p].adr = a \). Note the use of the “double subscript” in the \texttt{except} expression of the action’s second conjunct. This conjunct “assigns \texttt{NoVal} to \textit{cache}[p][a]”. If address \(a \) is not in \(p \)'s cache, then \(\textit{cache}[p][a] \) already equals \texttt{NoVal} and an \texttt{Evict}(\(p \); \(a \)) step is a stuttering step.

The definitions of the next-state action \texttt{Next} and of the complete specification \texttt{Spec} are straightforward. The module closes with two theorems that are discussed below.

5.7 Invariance

Module \textit{WriteThroughCache} contains the theorem

\[
\text{THEOREM } \texttt{Spec} \Rightarrow \Box (\texttt{TypeInvariant} \land \texttt{Coherence})
\]

which asserts that \(\texttt{TypeInvariant} \land \texttt{Coherence} \) is an invariant of \(\texttt{Spec} \). A state predicate \(P \land Q \) is always true iff both \(P \) and \(Q \) are always true, so \(\Box(P \land Q) \) is equivalent to \(\Box P \land \Box Q \). This implies that the theorem above is equivalent to the two theorems:

\[
\begin{align*}
\text{THEOREM } \texttt{Spec} & \Rightarrow \Box \texttt{TypeInvariant} \\
\text{THEOREM } \texttt{Spec} & \Rightarrow \Box \texttt{Coherence}
\end{align*}
\]

The first theorem is the usual type-invariance assertion. The second, which asserts that \texttt{Coherence} is an invariant of \(\texttt{Spec} \), expresses an important property of the algorithm.
Although *TypeInvariant* and *Coherence* are both invariants of the temporal formula *Spec*, they differ in a fundamental way. If *s* is any state satisfying *TypeInvariant*, then any state *t* such that *s* → *t* is a *Next* step also satisfies *TypeInvariant*. This property is expressed by:

Theorem *TypeInvariant* ∧ *Next* ⇒ *TypeInvariant*′

(Recall that *TypeInvariant*′ is the formula obtained by priming all the variables in formula *TypeInvariant.*) In general, when *P* ∧ *N* ⇒ *P′* holds, we say that predicate *P* is an invariant of action *N*. Predicate *TypeInvariant* is an invariant of *Spec* because it is an invariant of *Next* and it is implied by the initial predicate *Init*.

Predicate *Coherence* is not an invariant of the next-state action *Next*. For example, suppose *s* is a state in which

- *cache*[1][a] = 1
- *cache*[q][b] = *NoVal*, for all *(q, b)* different from *(p1, a)*
- *mem*[a] = 2
- *memQ* contains the single element *(p2, [op ← “Rd”, adr ← a]*)

for two different processors *p1* and *p2* and some address *a*. Such a state *s* (an assignment of values to variables) exists, assuming that there are at least two processors and at least one address. Then *Coherence* is true in state *s*. Let *t* be the state obtained from *s* by taking a *MemQRd* step. In state *t*, we have *cache*[2][a] = 2 and *cache*[1][a] = 1, so *Coherence* is false. Hence *Coherence* is not an invariant of the next-state action.

Coherence is an invariant of formula *Spec* because states like *s* cannot occur in a behavior satisfying *Spec*. Proving its invariance is not so easy. We must find a predicate *Inv* that is an invariant of *Next* such that *Inv* implies *Coherence* and is implied by the initial predicate *Init*.

Important properties of a specification can often be expressed as invariants. Proving that a state predicate *P* is an invariant of a specification means proving a formula of the form

\[\text{Init} \land \Box [\text{Next}] _v \Rightarrow \Box P \]

This is done by finding an appropriate state predicate *Inv* and proving

\[\text{Init} \Rightarrow \text{Inv}, \quad \text{Inv} \land [\text{Next}] _v \Rightarrow \text{Inv}', \quad \text{Inv} \Rightarrow P \]

Since our subject is specification, not proof, I won’t discuss how to find *Inv*.\[\text{An invariant of a specification } S \text{ that is also an invariant of its next-state action is sometimes called an } \text{inductive invariant of } S. \]
5.8 Proving Implementation

Module WriteThroughCache ends with the theorem

THEOREM Spec ⇒ LM!Spec

where LM!Spec is formula Spec of module Memory. By definition of this formula (page 53), we can restate the theorem as

THEOREM Spec ⇒ ∃ mem, ctl, buf : LM!Inner(mem, ctl, buf)!ISpec

where LM!Inner(mem, ctl, buf)!ISpec is formula ISpec of the InternalMemory module. The rules of logic tell us that to prove such a theorem, we must find “witnesses” for the quantified variables mem, ctl, and buf. These witnesses are state functions (ordinary expressions with no primes), which I’ll call omem, octl, and obuf, that satisfy:

(5.1) Spec ⇒ LM!Inner(omem, octl, obuf)!ISpec

The tuple (omem, octl, obuf) of witness functions is called a refinement mapping, and we describe (5.1) as the assertion that Spec implements formula ISpec (of module InternalMemory) under this refinement mapping. Intuitively, this means Spec implies that the value of the tuple of state functions hmemInt; mem; ctl; buf,i changes the way ISpec asserts that the tuple of variables hmemInt; mem; ctl; buf,i should change.

I will now briefly describe how we prove (5.1); for details, see [2]. Let me first introduce a bit of non-TLA+ notation. For any formula F of module InternalMemory, let F equal LM!Inner(omem, octl, obuf)!F, which is formula F with omem, octl, and obuf substituted for mem, ctl, and buf. In particular, mem, ctl, and buf equal omem, octl, and obuf, respectively.

Replacing Spec and ISpec by their definitions transforms (5.1) to

Init ∧ □[Next](memInt, mem, buf, ctl, cache, memQ)
⇒ TInit ∧ □[INext](memInt, mem, ctl, buf)

This is proved by finding an invariant Inv of Spec such that

∧ Init ⇒ TInit
∧ Inv ∧ Next ⇒ ∨ INext
∨ UNCHANGED (memInt, mem, ctl, buf)

The second conjunct is called step simulation. It asserts that a Next step starting in a state satisfying the invariant Inv is either an INext step—a step that changes the 4-tuple (memInt, omem, octl, obuf) the way an INext step changes (memInt, mem, ctl, buf)—or else it leaves that 4-tuple unchanged.

The mathematics of an implementation proof is simple, so the proof is straightforward—in theory. For specifications of real systems, such proofs can
be quite difficult. Going from the theory to practice requires turning the mathematics of proofs into an engineering discipline—a subject that deserves a book to itself. However, when writing specifications, it helps to understand refinement mappings and step simulation.

We now return to the question posed in Section 3.2: what is the relation between the specifications of the asynchronous interface in modules \textit{AsynchInterface} and \textit{Channel}? Recall that module \textit{AsynchInterface} describes the interface in terms of the three variables \texttt{val}, \texttt{rdy}, and \texttt{ack}, while module \textit{Channel} describes it with a single variable \texttt{chan} whose value is a record with \texttt{val}, \texttt{rdy}, and \texttt{ack} components. In what sense are those two specifications of the interface equivalent?

One answer that now suggests itself is that each of the specifications should implement the other under a refinement mapping. We expect formula \texttt{Spec} of module \textit{Channel} to imply the formula obtained from \texttt{Spec} of module \textit{AsynchInterface} by substituting for its variables \texttt{val}, \texttt{rdy}, and \texttt{ack} the \texttt{val}, \texttt{rdy}, and \texttt{ack} components of the variable \texttt{chan} of module \textit{Channel}. This assertion is expressed precisely by the theorem in the following module.

\begin{verbatim}
MODULE ChannelImplAsynch

EXTENDS Channel

AInt(val, rdy, ack) \triangleq INSTANCE AsynchInterface

THEOREM Spec => AInt(chan.val, chan.rdy, chan.ack)!Spec

\end{verbatim}

Here, the refinement mapping substitutes \langle chan.val, chan.rdy, chan.ack \rangle for the tuple \langle val, rdy, ack \rangle of variables in the formula \texttt{Spec} of module \textit{AsynchInterface}.

Similarly, formula \texttt{Spec} of module \textit{AsynchInterface} implies formula \texttt{Spec} of module \textit{Channel} with \texttt{chan} replaced by the record-valued expression:

\([\text{val} \mapsto \text{val}, \text{rdy} \mapsto \text{rdy}, \text{ack} \mapsto \text{ack}]\)

(The first \texttt{val} in \texttt{val} \mapsto \texttt{val} is the field name in the record constructor, while the second \texttt{val} is the variable of module \textit{AsynchInterface}.)
Chapter 6

Some More Math

Our mathematics is built on a small, simple collection of concepts. You’ve already seen most of what’s needed to describe almost any kind of mathematics. All you lack are a handful of operators on sets that are described below in Section 6.1. After learning about them, you will be able to define all the data structures and operations that occur in specifications.

While our mathematics is simple, its foundations are nonobvious—for example, the meanings of recursive function definitions and the CHOOSE operator are subtle. This section discusses some of those foundations. Understanding them will help you use mathematics more effectively.

6.1 Sets

The simple operations on sets described in Section 1.2 are all you’ll need for writing most system specifications. However, you may occasionally have to use more sophisticated operators—especially if you need to define data structures beyond tuples, records, and simple functions.

Two powerful operators of set theory are the unary operators \textsc{union} and \textsc{subset}, defined as follows.

\begin{itemize}
 \item \textsc{union} \textbf{S} \quad \text{The union of the elements of} \textbf{S}. In other words, a value \textit{e} is an element of \textsc{union} \textbf{S} iff it is an element of an element of \textbf{S}. For example:
 \begin{align*}
 \text{union } \{\{1,2\},\{2,3\},\{3,4\}\} &= \{1,2,3,4\} \\
 \text{subset } \{1,2\} &= \{\{\},\{1\},\{2\},\{1,2\}\}
 \end{align*}

 \item \textsc{subset} \textbf{S} \quad \text{The set of all subsets of} \textbf{S}. In other words, \textit{T} \in \textsc{subset} \textbf{S} iff \textit{T} \subseteq \textbf{S}. For example:
 \begin{align*}
 \text{subset } \{1,2\} &= \{\{\},\{1\},\{2\},\{1,2\}\} \\
 \text{Mathematicians} &\quad \text{write} \text{union } \textbf{S} \text{ as} \cup \textbf{S}. \\
 \text{Mathematicians} &\quad \text{call union } \textbf{S} \text{ the power set of } \textbf{S} \text{ and write it } \mathcal{P}(\textbf{S}) \text{ or } 2^\textbf{S}.
 \end{align*}
\end{itemize}
Mathematicians often describe a set as “the set of all . . . such that . . .”. TLA\(^+\) has two constructs that formalize such a description:

\[
\{ x \in S : P \} \quad \text{The subset of } S \text{ consisting of all elements } x \text{ satisfying property } P. \text{ For example, the set of odd natural numbers can be written } \{ n \in \text{Nat} : n \% 2 = 1 \}. \text{ The identifier } x \text{ is bound in } P; \text{ it may not occur in } S. \\
\{ e : x \in S \} \quad \text{The set of elements of the form } e, \text{ for all } x \text{ in the set } S. \text{ For example, } \{ 2 \ast n + 1 : n \in \text{Nat} \} \text{ is the set of all odd natural numbers. The identifier } x \text{ is bound in } e; \text{ it may not occur in } S.
\]

The construct \(\{ e : x \in S \} \) has the same generalizations as \(\exists x \in S : F \). For example, \(\{ e : x \in S, y \in T \} \) is the set of all elements of the form \(e, \text{ for } x \text{ in } S \text{ and } y \text{ in } T. \) In the construct \(\{ x \in S : P \} \), we can let \(x \) be a tuple. For example, \(\{ (y, z) \in S : P \} \) is the set of all pairs \((y, z) \) in the set \(S \) that satisfy \(P \). The BNF grammar of TLA\(^+\) in Section 14.1.2 specifies precisely what set expressions you can write.

All the set operators we’ve seen so far are built-in operators of TLA\(^+\). There is also a standard module \(\text{FiniteSets} \) that defines two operators:

\[
\text{Cardinality}(S) \quad \text{The number of elements in set } S, \text{ if } S \text{ is a finite set.} \\
\text{IsFiniteSet}(S) \quad \text{True iff } S \text{ is a finite set.}
\]

Careless reasoning about sets can lead to problems. The classic example of this is Russell’s paradox:

Let \(\mathcal{R} \) be the set of all sets \(S \) such that \(S \notin S \). The definition of \(\mathcal{R} \) implies that \(\mathcal{R} \in \mathcal{R} \) is true iff \(\mathcal{R} \notin \mathcal{R} \) is true.

The formula \(\mathcal{R} \notin \mathcal{R} \) is simply the negation of \(\mathcal{R} \in \mathcal{R} \), and a formula and its negation can neither both be true nor both be false. The source of the paradox is that \(\mathcal{R} \) isn’t a set. There’s no way to write it in TLA\(^+\). Intuitively, \(\mathcal{R} \) is too big to be a set. A collection \(C \) is too big to be a set if it is as big as the collection of all sets—meaning that we can assign to every set a different element of \(C \). That is, \(C \) is too big to be a set if we can define an operator \(S\text{Map} \) such that:

- \(S\text{Map}(S) \) is in \(C \), for any set \(S \).
- If \(S \) and \(T \) are two different sets, then \(S\text{Map}(S) \neq S\text{Map}(T) \).

For example, the collection of all sequences of length 2 is too big to be a set; we can define the operator \(S\text{Map} \) by

\[
S\text{Map}(S) \triangleq (1, S)
\]
6.2 Silly Expressions

Most modern programming languages introduce some form of type checking to prevent you from writing silly expressions like \(3/"abc"\). TLA\(^+\) is based on the usual formalization of mathematics, which doesn’t have types. In an untyped formalism, every syntactically well-formed expression has a meaning—even a silly expression like \(3/"abc"\). Mathematically, the expression \(3/"abc"\) is no sillier than the expression \(3/0\), and mathematicians implicitly write that silly expression all the time. For example, consider the valid formula

\[
\forall x \in \text{Real} : (x \neq 0) \Rightarrow (x \times (3/x) = 3)
\]

where \(\text{Real}\) is the set of all real numbers. This asserts that \((x \neq 0) \Rightarrow (x \times (3/x) = 3)\) is true for all real numbers \(x\). Substituting 0 for \(x\) yields the valid formula \((0 \neq 0) \Rightarrow (0 \times (3/0) = 3)\) that contains the silly expression \(3/0\). It’s valid because \(0 \neq 0\) equals \(\text{false}\), and \(\text{false} \Rightarrow P\) is true for any formula \(P\).

A correct formula can contain silly expressions. For example, \(3/0 = 3/0\) is a correct formula because any value equals itself. However, the validity of a correct formula cannot depend on the meaning of a silly expression. If an expression is silly, then its meaning is probably unspecified. The definitions of 0, 3, /, and \(*\) (which are in the standard module \(\text{Reals}\)) don’t specify the value of \(0 \times (3/0)\), so there’s no way of knowing whether that value equals 3.

No sensible syntactic rules can prevent you from writing \(3/0\) without also preventing you from writing perfectly reasonable expressions. The typing rules of programming languages introduce complexity and limitations on what you can write that don’t exist in ordinary mathematics. In a well-designed programming language, the costs of types are balanced by benefits: types allow a compiler to produce more efficient code, and type checking catches errors. For programming languages, the benefits seem to outweigh the costs. For writing specifications, I have found that the costs outweigh the benefits.

If you’re used to the constraints of programming languages, it may be a while before you start taking advantage of the freedom afforded by mathematics. At first, you won’t think of defining anything like the operator \(R\) defined on page 50 of Section 5.2, which couldn’t be written in a typed programming language.

6.3 Recursive Function Definitions Revisited

Section 5.5 introduced recursive function definitions. Let’s now examine what such definitions mean mathematically. Mathematicians usually define the factorial function \(\text{fact}\) by writing:

\[
\text{fact}[n] = \text{IF } n = 0 \text{ THEN } 1 \text{ ELSE } n \times \text{fact}[n-1], \text{ for all } n \in \text{Nat}
\]
This definition can be justified by proving that it defines a unique function fact with domain Nat. In other words, fact is the unique value satisfying:

$\text{fact} = \begin{cases} n \in \text{Nat} \mapsto \text{IF } n = 0 \text{ THEN } 1 \text{ ELSE } n \cdot \text{fact}[n - 1] \end{cases}$

The \textit{choose} operator, introduced on pages 47–48 of Section 5.1, allows us to express “the value satisfying property P” as $\text{choose } x : P$. We can therefore define fact as follows to be the value satisfying (6.1):

$\text{fact} \triangleq \text{choose } \text{fact} :$

$\text{fact} = \begin{cases} n \in \text{Nat} \mapsto \text{IF } n = 0 \text{ THEN } 1 \text{ ELSE } n \cdot \text{fact}[n - 1] \end{cases}$

(Since the symbol fact is not yet defined in the expression to the right of the \triangleq, we can use it as the bound identifier in the \text{choose} expression.) The TLA$^+$ definition

$\text{fact}[n \in \text{Nat}] \triangleq \begin{cases} n = 0 \text{ THEN } 1 \text{ ELSE } n \cdot \text{fact}[n - 1] \end{cases}$

is simply an abbreviation for (6.2). In general, $f[x \in S] \triangleq e$ is an abbreviation for:

$\text{choose } f : f = [x \in S \mapsto e]$

TLA$^+$ allows you to write silly definitions. For example, you can write

$\text{circ}[n \in \text{Nat}] \triangleq \text{choose } y : y \neq \text{circ}[n]$

This appears to define circ to be a function such that $\text{circ}[n] \neq \text{circ}[n]$ for any natural number n. There obviously is no such function, so circ can’t be defined to equal it. A recursive function definition doesn’t necessarily define a function. If there is no f that equals $[x \in S \mapsto e]$, then (6.3) defines f to be some unspecified value. Thus, the nonsensical definition (6.4) defines circ to be some unknown value.

If we want to reason about a function f defined by $f[x \in S] \triangleq e$, we need to prove that there exists an f that equals $[x \in S \mapsto e]$. The existence of f is obvious if f does not occur in e. If it does, so this is a recursive definition, then there is something to prove. Since I’m not discussing proofs, I won’t describe how to prove it. Intuitively, you have to check that, as in the case of the factorial function, the definition uniquely determines the value of $f[x]$ for every x in S.

Recursion is a common programming technique because programs must compute values using a small repertoire of simple elementary operations. It’s not used as often in mathematical definitions, where we needn’t worry about how to compute the value and can use the powerful operators of logic and set theory. For example, the operators Head, Tail, and \circ are defined in Section 5.4 without recursion, even though computer scientists usually define them recursively. Still, there are some things that are best defined inductively, using a recursive function definition.
6.4 Functions versus Operators

Consider these definitions, which we’ve seen before:

\[
\begin{align*}
\text{Tail}(s) & \triangleq [i \in 1 \ldots (\text{Len}(s) - 1) \mapsto s[i + 1]] \\
\text{fact}[n \in \text{Nat}] & \triangleq \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot \text{fact}[n - 1]
\end{align*}
\]

They define two very different kinds of objects: \text{fact} is a function, and \text{Tail} is an operator. Functions and operators differ in a few basic ways.

Their most obvious difference is that a function like \text{fact} by itself is a complete expression that denotes a value, but an operator like \text{Tail} is not. Both \text{fact}[n] \in S and \text{fact} \in S are syntactically correct expressions. But, while \text{Tail}(n) \in S is syntactically correct, \text{Tail} \in S is not. It is gibberish—a meaningless string of symbols, like \text{x}+ = 0.

Their second difference is more profound. The definition of \text{Tail} defines \text{Tail}(s) for all values of s. For example, it defines \text{Tail}(1/2) to equal

\[
\begin{align*}
[i \in 1 \ldots (\text{Len}(1/2) - 1) \mapsto (1/2)[i + 1]]
\end{align*}
\]

We have no idea what this expression means, because we don’t know what \text{Len}(1/2) or (1/2)[i + 1] mean. But, whatever (6.5) means, it equals \text{Tail}(1/2).

The definition of \text{fact} defines \text{fact}[n] only for \text{n \in Nat}. It tells us nothing about the value of \text{fact}[1/2]. The expression \text{fact}[1/2] is syntactically well-formed, so it denotes some value. But the definition of \text{fact} tells us nothing about what that value is.

Unlike an operator, a function must have a domain, which is a set. We cannot define a function \text{Tail} so that \text{Tail}[s] is the tail of any nonempty sequence s; the domain of such a function would have to include all nonempty sequences, and the collection of all such sequences is too big to be a set. (The operator \text{SMap} defined by \text{SMap}(S) \triangleq (S) maps every set to a different nonempty sequence.) Hence, we can’t define \text{Tail} to be a function.

Unlike a function, an operator cannot be defined recursively. However, we can usually transform an illegal recursive operator definition into a nonrecursive one using a recursive function definition. For example, let’s try to define the \text{Cardinality} operator on the set of finite sets. (Recall that the cardinality of a finite set S is the number of elements in S.) The collection of all finite sets is too big to be a set. (The operator \text{SMap}(S) \triangleq (S) maps every set S to a different set \{S\} of cardinality 1.) The \text{Cardinality} operator has a simple intuitive definition:

- \text{Cardinality}() = 0.
- If S is a nonempty finite set, then
 \[
 \text{Cardinality}(S) = 1 + \text{Cardinality}(S \setminus \{x\})
 \]
 where x is an arbitrary element of S. (The set \(S \setminus \{x\}\) contains all the elements of S except x.)
Using the \texttt{choose} operator to describe an arbitrary element of \(S \), we can write this as the more formal-looking, but still illegal, definition:

\[
\text{Cardinality}(S) \triangleq \\
\text{if } S = \{\} \text{ then } 0 \\
\text{else } 1 + \text{Cardinality}(S \setminus \{\text{choose } x : x \in S\})
\]

This definition is illegal because it’s circular—only in a recursive function definition can the symbol being defined appear to the right of the \(\triangleq \).

To turn this into a legal definition, observe that, for a given set \(S \), we can define a function \(CS \) such that \(CS[T] \) equals the cardinality of \(T \) for every subset \(T \) of \(S \). The definition is

\[
CS[T \in \text{subset } S] \triangleq \\
\text{if } T = \{\} \text{ then } 0 \\
\text{else } 1 + CS[T \setminus \{\text{choose } x : x \in T\}]
\]

Since \(S \) is a subset of itself, this defines \(CS[S] \) to equal \(\text{Cardinality}(S) \), if \(S \) is a finite set. (We don’t know or care what \(CS[S] \) equals if \(S \) is not finite.) So, we can define the \(\text{Cardinality} \) operator by:

\[
\text{Cardinality}(S) \triangleq \\
\text{let } CS[T \in \text{subset } S] \triangleq \\
\text{if } T = \{\} \text{ then } 0 \\
\text{else } 1 + CS[T \setminus \{\text{choose } x : x \in T\}] \\
\text{in } CS[S]
\]

Operators also differ from functions in that an operator can take an operator as an argument. For example, we can define an operator \(\text{IsPartialOrder} \) so that \(\text{IsPartialOrder}(R, S) \) equals true iff the operator \(R \) defines an irreflexive partial order on \(S \). The definition is

\[
\text{IsPartialOrder}(R(__, _), S) \triangleq \\
\forall x, y, z \in S : R(x, y) \land R(y, z) \Rightarrow R(x, z) \\
\land \forall x \in S : \neg R(x, x)
\]

We could also use an infix-operator symbol like \(\prec \) instead of \(R \) as the parameter of the definition, writing:

\[
\text{IsPartialOrder}(__ \prec __, S) \triangleq \\
\forall x, y, z \in S : (x \prec y) \land (y \prec z) \Rightarrow (x \prec z) \\
\land \forall x \in S : \neg (x \prec x)
\]

The first argument of \(\text{IsPartialOrder} \) is an operator that takes two arguments; its second argument is an expression. Since \(> \) is an operator that takes two arguments, the expression \(\text{IsPartialOrder}(>, \text{Nat}) \) is syntactically correct. In fact, it’s valid—if \(> \) is defined to be the usual operator on numbers. The expression
IsPartialOrder(+, 3) is also syntactically correct, but it’s silly and we have no idea whether or not it’s valid.

The last difference between operators and functions has nothing to do with mathematics and is an idiosyncrasy of TLA+: the language doesn’t permit you to define infix functions. So, if we want to define /, we have no choice but to make it an operator.

One can write equally nonsensical things using functions or operators. However, whether you use functions or operators may determine whether the nonsense you write is nonsyntactic gibberish or syntactically correct but semantically silly. The string of symbols 2(“a”) is not a syntactically correct formula because 2 is not an operator. However, 2[“a”], which can also be written 2.a, is a syntactic correct expression. It’s nonsensical because 2 isn’t a function, so we don’t know what 2[“a”] means. Similarly, Tail(s, t) is syntactically incorrect because Tail is an operator that takes a single argument. However, as explained in Section 15.1.7 (page 275), fact[m, n] is syntactic sugar for fact[(m, n)], so it is a syntactically correct, semantically silly formula. Whether an error is syntactic or semantic determines what kind of tool can catch it. In particular, the parser described in Chapter 12 catches syntactic errors, but not semantic silliness.

The distinction between functions and operators seems to confuse some people. One reason is that, although this distinction exists in ordinary math, it usually goes unnoticed by mathematicians. If you point out to them that subset can’t be a function because its domain couldn’t be a set, mathematicians will realize that they use operators like subset and 2 all the time. But they never think of them as forming a distinct kind of entity. Logicians will observe that the distinction between operators and values, including functions, arises because TLA+ is a first-order logic rather than a higher-order logic.

When defining an object V, you may have to decide whether to make V an operator or a function. The differences between operators and functions will often determine the decision. For example, if a variable may have V as its value, then V must be a function. Thus, in the memory specification of Section 5.3, we had to represent the state of the memory by a function rather than an operator, since the variable mem couldn’t equal an operator. If these differences don’t determine whether to use an operator or a function, then it’s a matter of taste. I usually prefer operators.

6.5 Using Functions

Consider the following two formulas:

(6.6) \(f' = i \in \text{Nat} \mapsto i + 1 \)

(6.7) \(\forall i \in \text{Nat} : f'[i] = i + 1 \)
These formulas both imply that $f'[i] = i + 1$ for every natural number i, but they are not equivalent. Formula (6.6) uniquely determines f', asserting that it’s a function with domain Nat. Formula (6.7) is satisfied by lots of different values of f'—for example, by the function

$$i \in \text{Real} \rightarrow \text{if } i \in \text{Nat} \text{ then } i + 1 \text{ else } \sqrt{i}$$

In fact, from (6.7), we can’t even deduce that f' is a function. Formula (6.6) implies formula (6.7), but not vice-versa.

When writing specifications, we almost always want to specify the new value of a variable f rather than the new values of $f[i]$ for all i in some set. We therefore usually write (6.6) rather than (6.7),

6.6 Choose

The choose operator was introduced in the memory interface of Section 5.1 in the simple idiom $\text{choose } v : v \notin S$, which is an expression whose value is not an element of S. In Section 6.3 above, we saw that it is a powerful tool that can be used in rather subtle ways.

The most common use for the choose operator is to “name” a uniquely specified value. For example, a/b is the unique real number that satisfies the formula $a = b \cdot (a/b)$, if a and b are real numbers and $b \neq 0$. So, the standard module Reals defines division on the set Real of real numbers by

$$a/b \triangleq \text{choose } c \in \text{Real} : a = b \cdot c$$

(The expression $\text{choose } x \in S : P$ means $\text{choose } x : (x \in S) \land P$.) If a is a nonzero real number, then there is no real number c such that $a = 0 \cdot c$. Therefore, $a/0$ has an unspecified value. We don’t know what a real number times a string equals, so we cannot say whether or not there is a real number c such that a equals “xyz”. Hence, we don’t know what the value of $a/"xyz"$ is.

People who do a lot of programming and not much mathematics often think that choose must be a nondeterministic operator. In mathematics, there is no such thing as a nondeterministic operator or a nondeterministic function. If some expression equals 42 today, then it will equal 42 tomorrow, and it will still equal 42 a million years from tomorrow. The specification

$$(x = \text{choose } n : n \in \text{Nat}) \land \Box[x' = \text{choose } n : n \in \text{Nat}]_x$$

allows only a single behavior—one in which x always equals choose $n : n \in \text{Nat}$, which is some particular, unspecified natural number. It is very different from the specification

$$(x \in \text{Nat}) \land \Box[x' \in \text{Nat}]_x$$
that allows all behaviors in which x is always a natural number—possibly a different number in each state. This specification is highly nondeterministic, allowing lots of different behaviors.
Chapter 7

Writing a Specification—Some Advice

You have now learned all you need to know about TLA\(^+\) to write your own specifications. Here are a few additional hints to help you get started.

7.1 Why to Specify

Specifications are written to help eliminate errors. Writing a specification requires effort; the benefits it provides must be worth that effort. There are several benefits:

- Writing a TLA\(^+\) specification can help the design process. Having to describe a design precisely often reveals problems—subtle interactions and “corner cases” that are easily overlooked. These problems are easier to correct when discovered in the design phase rather than after implementation has begun.

- A TLA\(^+\) specification can provide a clear, concise way of communicating a design. It helps ensure that the designers agree on what they have designed, and it provides a valuable guide to the engineers who implement and test the system. It may also help users understand the system.

- A TLA\(^+\) specification is a formal description to which tools can be applied to help find errors in the design and to help in testing the system. Some tools for TLA\(^+\) specifications are being built.

Whether these benefits justify the effort of writing the specification depends on the nature of the project. Specification is not an end in itself; it is just one of many tools that an engineer should be able to use when appropriate.
7.2 What to Specify

Although we talk about specifying a system, that’s not what we do. A specification is a mathematical model of a particular view of some part of a system. When writing a specification, the first thing you must choose is exactly what part of the system you want to describe. Sometimes the choice is obvious; often it isn’t. The cache-coherence protocol of a real multiprocessor computer may be intimately connected with how the processors execute instructions. Finding an abstraction that describes the coherence protocol while suppressing the details of instruction execution may be difficult. It may require defining an interface between the processor and the memory that doesn’t exist in the actual system design.

Remember that the purpose of a specification is to help avoid errors. You should specify those parts of the system for which a specification is most likely to reveal errors. TLA+ is particularly effective at revealing concurrency errors—ones that arise through the interaction of asynchronous components. So, you should concentrate your efforts on the parts of the system that are most likely to have such errors.

7.3 The Grain of Atomicity

After choosing what part of the system to specify, you must choose the specification’s level of abstraction. The most important aspect of the level of abstraction is the grain of atomicity, the choice of what system changes are represented as a single step of a behavior. Sending a message in an actual system involves multiple suboperations, but we usually represent it as a single step. On the other hand, the sending of a message and its receipt are usually represented as separate steps when specifying a distributed system.

The same sequence of system operations is represented by a shorter sequence of steps in a coarser-grained representation than in a finer-grained one. This almost always makes the coarser-grained specification simpler than the finer-grained one. However, the finer-grained specification more accurately describes the behavior of the actual system. A coarser-grained specification may fail to reveal important details of the system.

There is no simple rule for deciding on the grain of atomicity. However, there is one way of thinking about the granularity that can help. To describe it, we need the TLA+ action-composition operator “.” If A and B are actions, then the action $A\cdot B$ is executed by first executing A then B in a single step. More precisely, $A\cdot B$ is the action defined by letting $s \rightarrow t$ be an $A\cdot B$ step iff there exists a state u such that $s \rightarrow u$ is an A step and $u \rightarrow t$ is a B step.

When determining the grain of atomicity, we must decide whether to represent the execution of an operation as a single step or as a sequence of steps, each
corresponding to the execution of a suboperation. Let’s consider the simple case of an operation consisting of two suboperations that are executed sequentially, where those suboperations are described by the two actions \(R \) and \(L \). (Executing \(R \) enables \(L \) and disables \(R \).) When the operation’s execution is represented by two steps, each of those steps is an \(R \) step or an \(L \) step. The operation is then described with the action \(R \lor L \). When its execution is represented by a single step, the operation is described with the action \(R \cdot L \).¹ Let \(S_2 \) be the finer-grained specification in which the operation is executed in two steps, and let \(S_1 \) be the coarser-grained specification in which it is executed as a single \(R \cdot L \) step. To choose the grain of atomicity, we must choose whether to take \(S_1 \) or \(S_2 \) as the specification. Let’s examine the relation between the two specifications.

We can transform any behavior \(\sigma \) satisfying \(S_1 \) into a behavior \(\tilde{\sigma} \) satisfying \(S_2 \) by replacing each step \(s \xrightarrow{R} L t \) with the pair of steps \(s \xrightarrow{R} u \xrightarrow{L} t \), for some state \(u \). If we regard \(\sigma \) as being equivalent to \(\tilde{\sigma} \), then we can regard \(S_1 \) as being a strengthened version of \(S_2 \)—one that allows fewer behaviors. Specification \(S_1 \) requires that each \(R \) step be followed immediately by an \(L \) step, while \(S_2 \) allows behaviors in which other steps come between the \(R \) and \(L \) steps. To choose the appropriate grain of atomicity, we must decide whether those additional behaviors allowed by \(S_2 \) are important.

The additional behaviors allowed by \(S_2 \) are not important if the actual system executions they describe are also described by behaviors allowed by \(S_1 \). So, we can ask whether each behavior \(\tau \) satisfying \(S_2 \) has a corresponding behavior \(\tilde{\tau} \) satisfying \(S_1 \) that is, in some sense, equivalent to \(\tau \). One way to construct \(\tilde{\tau} \) from \(\tau \) is to transform a sequence of steps

\[
(7.1) \quad s \xrightarrow{R} u_1 \xrightarrow{A_1} u_2 \xrightarrow{A_2} u_3 \ldots u_n \xrightarrow{A_n} u_{n+1} \xrightarrow{L} t
\]

into the sequence

\[
(7.2) \quad s \xrightarrow{A_1} v_1 \ldots v_{k-2} \xrightarrow{A_{k-1}} v_{k-1} \xrightarrow{R} v_k \xrightarrow{L} v_{k+1} \xrightarrow{A_{k+1}} v_{k+2} \ldots v_{n+1} \xrightarrow{A_n} t
\]

where the \(A_i \) are other system actions that can be executed between the \(R \) and \(L \) steps. Both sequences start in state \(s \) and end in state \(t \), but the intermediate states may be different.

When is such a transformation possible? An answer can be given in terms of commutativity relations. We say that actions \(A \) and \(B \) commute if performing them in either order produces the same result. Formally, \(A \) and \(B \) commute iff \(A \cdot B \) is equivalent to \(B \cdot A \). A simple sufficient condition for commutativity is that two actions commute if (i) each one leaves unchanged any variable whose value may be changed by the other, and (ii) neither enables or disables the other.

¹We actually describe the operation with an ordinary action, like the ones we’ve been writing, that is equivalent to \(R \cdot L \). The operator “\(\cdot \)” rarely appears in an actual specification. If you’re ever tempted to use it, look for a better way to write the specification; you can probably find one.
It’s not hard to see that we can transform (7.1) to (7.2) in the following two cases:

- R commutes with each A_i. (In this case, $k = n$.)
- L commutes with each A_i. (In this case, $k = 0$.)

In general, if an operation consists of a sequence of m subactions, we must decide whether to choose the finer-grained representation $O_1 \lor O_2 \lor \ldots \lor O_m$ or the coarser-grained one $O_1 \cdot O_2 \cdot \cdots \cdot O_m$. The generalization of the transformation from (7.1) to (7.2) is one that transforms an arbitrary behavior satisfying the finer-grained specification into one in which the sequence of O_1, O_2, \ldots, O_m steps come one right after the other. Such a transformation is possible if all but one of the actions O_i commute with every other system action. Commutativity can be replaced by weaker conditions, but it is the most common case.

By commuting actions and replacing a sequence $s \xrightarrow{O_i} \cdots \xrightarrow{O_m} t$ of steps by a single $O_1 \cdot O_m$ step, you may be able to transform any behavior of a finer-grained specification into a corresponding behavior of a coarser-grained one. But that doesn’t mean that the coarser-grained specification is just as good as the finer-grained one. The sequences (7.1) and (7.2) are not the same, and a sequence of O_i steps is not the same as a single $O_1 \cdot O_m$ step. Whether you can consider the transformed behavior to be equivalent to the original one, and use the coarser-grained specification, depends on the particular system you are specifying and on the purpose of the specification. Understanding the relation between finer- and coarser-grained specifications can help you choose between them; it won’t make the choice for you.

7.4 The Data Structures

Another aspect of a specification’s level of abstraction is the accuracy with which it describes the system’s data structures. For example, should the specification of a programming interface describe the actual layout of a procedure’s arguments in memory, or should the arguments be represented more abstractly?

To answer such a question, you must remember that the purpose of the specification is to help catch errors. A precise description of the layout of procedure arguments will help prevent errors caused by misunderstandings about that layout, but at the cost of complicating the programming interface’s specification. The cost is justified only if such errors are likely to be a real problem and the TLA$^+$ specification provides the best way to avoid them.

If the purpose of the specification is to catch errors caused by the asynchronous interaction of concurrently executing components, then detailed descriptions of data structures will be a needless complication. So, you will probably want to use high-level, abstract descriptions of the system’s data structures
in the specification. For example, to specify a program interface, you might introduce constant parameters to represent the actions of calling and returning from a procedure—parameters analogous to Send and Reply of the memory interface described in Section 5.1 (page 45).

7.5 Writing the Specification

Once you’ve chosen the part of the system to specify and the level of abstraction, you’re ready to start writing the TLA+ specification. We’ve already seen how this is done; let’s review the steps.

First, pick the variables and define the type invariant and initial predicate. In the course of doing this, you will determine the constant parameters and assumptions about them that you need. You may also have to define some additional constants.

Next, write the next-state action, which forms the bulk of the specification. Sketching a few sample behaviors may help you get started. You must first decide how to decompose the next-state action as the disjunction of actions describing the different kinds of system operations. You then define those actions. The goal is to make the action definitions as compact and easy to read as possible. This requires carefully structuring them. One way to reduce the size of a specification is to define state predicates and state functions that are used in several different action definitions. When writing the action definitions, you will determine which of the standard modules you will need to use and add the appropriate extends statement. You may also have to define some constant operators for the data structures that you are using.

You must now write the temporal part of the specification. (If you want to specify liveness properties, you have to choose the fairness conditions, as described below in Chapter . You then combine the initial predicate, next-state action, and any fairness conditions you’ve chosen into the definition of a single temporal formula that is the specification.

Finally, you can assert theorems about the specification. If nothing else, you may want to add a type-correctness theorem.

7.6 Some Further Hints

Here are a few miscellaneous suggestions that may help you write better specifications.
Don’t be too clever.

Cleverness can make a specification hard to read—and even wrong. The formula \(q = (h') \circ q' \) may look like a nice, short way of writing:

\[
(7.3) \quad (h' = \text{Head}(q)) \land (q' = \text{Tail}(q))
\]

But not only is \(q = (h') \circ q' \) harder to understand than (7.3), it’s also wrong. We don’t know what \(a \circ b \) equals if \(a \) and \(b \) are not both sequences, so we don’t know whether \(h_0 = \text{Head}(q) \) and \(q_0 = \text{Tail}(q) \) are the only values of \(h' \) and \(q' \) that satisfy \(q = (h') \circ q' \). There could be other values of \(h' \) and \(q' \), which are not sequences, that satisfy the formula.

A type invariant is not an assumption.

Type invariance is a property of a specification, not an assumption. When writing a specification, we usually define a type invariant. But that’s just a definition; a definition is not an assumption. Suppose you define a type invariant that asserts that a variable \(n \) is of type \(\text{Nat} \). You may be tempted to then think that a conjunct \(n' > 7 \) in an action asserts that \(n' \) is a natural number greater than 7. It doesn’t. The formula \(n' > 7 \) asserts only that \(n' > 7 \). It is satisfied if \(n' = \sqrt{96} \) as well as if \(n' = 8 \). Since we don’t know whether or not “abc” > 7 is true, it might be satisfied if \(n' = “abc” \). The meaning of the formula is not changed just because you’ve defined a type invariant that asserts \(n \in \text{Nat} \).

In general, you may want to describe the new value of a variable \(x \) by asserting some property of \(x' \). However, the next-state relation should imply that \(x' \) is an element of some suitable set. For example, a specification might define:

\[
\begin{align*}
\text{Action1} & \triangleq (n' > 7) \land \ldots \\
\text{Action2} & \triangleq (n' \leq 6) \land \ldots \\
\text{Next} & \triangleq (n' \in \text{Nat}) \land (\text{Action1} \lor \text{Action2})
\end{align*}
\]

Don’t be too abstract

Suppose a user interacts with the system by typing on a keyboard. We could describe the interaction abstractly with a variable \(\text{typ} \) and an operator parameter \(\text{KeyStroke} \), where the action \(\text{KeyStroke}(“a”, \text{typ}, \text{typ}') \) represents the user typing an “a”. This is the approach we took in describing the communication between the processors and the memory in the \text{MemoryInterface} module (page 48).

A more concrete description would be to let \(\text{kbd} \) represent the state of the keyboard, perhaps letting \(\text{kbd} = {} \) mean that no key is depressed, and \(\text{kbd} = \{ “a” \} \) mean that the \(a \) key is depressed. The typing of an \(a \) is represented by

\[2\text{An alternative approach is to define Next to equal Action1 \lor Action2 and to let the specification be Init \land \Box[Next] \land (n \in \text{Nat}). But it’s usually better to stick to the simple form Init \land \Box[Next]. For specifications.} \]
two steps, a \([\text{kbd} = \{\} \rightarrow \text{kbd} = \{\text{“a”}\}]\) step represents the pressing of the \(a\) key, and a \([\text{kbd} = \{\text{“a”}\}] \rightarrow [\text{kbd} = \{\}]\) step represents its release. This is the approach we took in the asynchronous interface specifications of Chapter 3.

The abstract interface is simpler; typing an \(a\) is represented by a single \(\text{KeyStroke(“a”, typ, typ’)}\) step instead of a pair of steps. However, using the concrete representation leads us naturally to ask: what if the user presses the \(a\) key and, before releasing it, presses the \(b\) key? That’s easy to describe with the concrete representation. The state with both keys depressed is \(\text{kbd} = \{a, b\}\). Pressing and releasing a key are represented simply by the two actions

\[
\text{Press}(k) \triangleq \text{kbd} = \text{kbd} \cup \{“k”\} \quad \text{Release}(k) \triangleq \text{kbd} = \text{kbd} \setminus \{“k”\}
\]

This possibility cannot be expressed with the simple abstract interface. To express it abstractly, we would have to replace the parameter \(\text{KeyStroke}\) with two parameters \(\text{Press}\) and \(\text{Release}\), and we would have to express explicitly the property that a key can’t be released until it has been depressed, and vice-versa. The more concrete representation is simpler.

We might decide that we don’t want to consider the possibility of the user pressing two keys at once, and that we prefer the abstract representation. But that should be a conscious decision. Our abstraction should not blind us to what can happen in the actual system. When in doubt, it’s safer to use a concrete representation that more accurately describes the real system. That way, you are less likely to overlook problems that can arise in the actual system.

Don’t assume values that look different are unequal.

The rules of TLA\(^+\) do not imply that \(1 \neq \text{“a”}\). If the system can send a message that is either a string or a number, represent the message as a record with a \(\text{type}\) and \(\text{value}\) field—for example,

\[
\text{[type} \mapsto \text{“String”}, \text{value} \mapsto \text{“a”}] \text{ or } \text{[type} \mapsto \text{“Nat”}, \text{value} \mapsto 1]\]

We know that these two values are different because they have different \(\text{type}\) fields.

Move quantification to the outside.

Specifications are usually easier to read if \(\exists\) is moved outside disjunctions and \(\forall\) is moved outside conjunctions. For example, instead of:

\[
\text{Up} \triangleq \exists e \in \text{Elevator} : \ldots \\
\text{Down} \triangleq \exists e \in \text{Elevator} : \ldots \\
\text{Move} \triangleq \text{Up} \lor \text{Down}
\]
it’s usually better to write:

\[
\begin{align*}
Up(e) & \triangleq \ldots \\
Down(e) & \triangleq \ldots \\
Move & \triangleq \exists e \in Elevator : Up(e) \lor Down(e)
\end{align*}
\]

Prime only what you mean to prime.

When writing an action, be careful where you put your primes. The expression \(f[e'] \) equals \(f'[e'] \); it equals \(f'[e] \) only if \(e' = e \), which need not be true if the expression \(e \) contains variables. Be especially careful when priming an operator whose definition contains a variable. For example, suppose \(x \) is a variable and \(op \) is defined by

\[
\begin{align*}
op(a) & \triangleq x + a
\end{align*}
\]

Then \(op(y') \) equals \((x+y)' \), which equals \(x'+y' \), while \(op(y') \) equals \(x+y' \). There is no way to use \(op \) and \(' \) to write the formula \(x'+y \). (Writing \(op'(y) \) doesn’t work because it’s illegal—you can only prime an expression, not an operator.)

Write comments as comments.

Don’t put comments into the specification itself. I have seen people write things like the following action definition:

\[
\begin{align*}
A & \triangleq \lor \land x \geq 0 \\
& \quad \land \ldots \\
& \quad \lor \land x < 0 \\
& \quad \land FALSE
\end{align*}
\]

The second disjunct is meant to indicate that the writer intended \(A \) not to be enabled when \(x < 0 \). But that disjunct is completely redundant, since \(F \land FALSE \) equals \(FALSE \), and \(F \lor FALSE \) equals \(F \), for any formula \(F \). So the second disjunct of the definition serves only as a form of comment. It’s better to write:

\[
\begin{align*}
A & \triangleq \land x \geq 0 \\
& \quad \land \ldots \\
& \quad A \text{ is not enabled if } x < 0
\end{align*}
\]

7.7 When and How to Specify

Specifications are often written later than they should be. Engineers are usually under severe time constraints, and they may feel that writing a specification will slow them down. Only after a design has become so complex that they need help understanding it do engineers think about writing a precise specification.
Writing a specification helps you think clearly. Thinking clearly is hard; we can use all the help we can get. Making specification part of the design process can improve the design.

I have described how to write a specification assuming that the system design already exists. But it’s better to write the specification as the system is being designed. The specification will start out being incomplete and probably incorrect. For example, an initial specification of the write-through cache of Section 5.6 (page 54) might include the definition:

\[RdMiss(p) \triangleq \text{Enqueue a request to write value from memory to } p\text{’s cache.} \]

Some enabling condition must be conjoined here.

\[\land \text{memQ’ = Append(memQ, buf}[p]) \]

Append request to memQ.

\[\land \text{ctl’ = [ctl EXCEPT ![p] = “?”] } \]

Set ctl[p] to value to be determined later.

\[\land \text{UNCHANGED } \langle \text{memInt, mem, buf, cache} \rangle \]

Some system functionality will at first be omitted; it can be included later by adding new disjuncts to the next-state action. Tools can be applied to these preliminary specifications to help find design errors.
Part II

More Advanced Topics
Chapter 8

Liveness and Fairness

The specifications we have written so far say what a system must not do. The clock must not advance from 11 to 9; the receiver must not receive a message if the FIFO is empty. They don’t require that the system ever do anything. The clock need never tick; the sender need never send any messages. Our specifications have described what are called safety properties. If a safety property is violated, it is violated at some particular point in the behavior—by a step that advances the clock from 11 to 9, or that reads the wrong value from memory. Therefore, we can talk about a safety property being satisfied by a finite behavior, which means that it has not been violated by any step so far. (Formally, it means that the behavior obtained by adding infinitely many stuttering steps satisfies the property.)

We now learn how to specify that something does happen: the clock keeps ticking; a value is eventually read from memory. We specify liveness properties, which cannot be violated at any particular instant. Only by examining an entire infinite behavior can we tell that the clock has stopped ticking, or that a message is never sent.

8.1 Temporal Formulas

To specify liveness properties we must learn to express them as temporal formulas. We now take a more rigorous look at what a temporal formula means.

Recall that a state assigns a value to every variable, and a behavior is an infinite sequence of states. A temporal formula is true or false of a behavior. Let $\sigma \models F$ be the truth value of the formula F for the behavior σ, so σ satisfies F iff $\sigma \models F$ equals TRUE. To define the meaning of a temporal formula F, we have to explain how to determine the value of $\sigma \models F$ for any behavior σ. For now, we consider only temporal formulas that don’t contain the temporal existential
It’s easy to define the meaning of a Boolean combination of temporal formulas in terms of the meanings of those formulas. The formula $F \land G$ is true of a behavior σ iff both F and G are true of σ, and $\neg F$ is true of σ iff F is false for σ:

$$\sigma \models (F \land G) \triangleq (\sigma \models F) \land (\sigma \models G) \quad \sigma \models \neg F \triangleq \neg (\sigma \models F)$$

This defines the meanings of \land and \neg as operators on temporal formulas. The meanings of the other Boolean operators are similarly defined. In the same way, we can define the ordinary predicate-logic quantifiers \forall and \exists as operators on temporal formulas—for example:

$$\sigma \models (\exists r : F) \triangleq \exists r : (\sigma \models F)$$

We will discuss quantifiers in Section 8.6. For now, we ignore quantification in temporal formulas.

All the temporal formulas not containing \exists that we’ve seen have been Boolean combinations of the following three simple kinds of formulas. (Recall the definitions of state function and state predicate on page 25 in Section 3.1.)

- A state predicate. It is interpreted as a temporal formula that is true of a behavior iff it is true in the first state of the behavior.
- A formula $\Box P$, where P is a state predicate. It is true of a behavior iff P is true in every state of the behavior.
- A formula $\Box [N]_v$, where N is an action and v is a state function. It is true of a behavior iff every successive pair of steps in the behavior is a $[N]_v$ step.

Since a state predicate is an action that contains no primed variables, we can both combine and generalize these three kinds of temporal formulas into the two kinds of formulas A and $\Box A$, where A is an action.

Generalizing from state functions, we interpret an arbitrary action A as a temporal formula by defining $\sigma \models A$ to be true iff the first two states of σ are an A step. For any behavior σ, let $\sigma_0, \sigma_1, \ldots$ be the sequence of states that make up σ. Then the meaning of an action A as a temporal formula is defined by letting $\sigma \models A$ to be true iff the pair $\langle \sigma_0, \sigma_1 \rangle$ of states is an A step. We define $\sigma \models \Box A$ to be true iff, for all $n \in Nat$, the pair $\langle \sigma_n, \sigma_{n+1} \rangle$ of states is an A step. We now generalize this to the definition of $\sigma \models \Box F$ for an arbitrary temporal formula F.

For any behavior σ and natural number n, let σ^{+n} be the suffix of σ obtained by deleting its first n states:

$$\sigma^{+n} \triangleq \sigma_n, \sigma_{n+1}, \sigma_{n+2}, \ldots$$
The successive pair of states \((\sigma_n, \sigma_{n+1}) \) of \(\sigma \) is the first pair of states of \(\sigma^{+n} \), and \((\sigma_n, \sigma_{n+1}) \) is an \(A \) step iff \(\sigma^{+n} \) satisfies \(A \). In other words:

\[
(\sigma \models \Box A) \iff \forall n \in \text{Nat} : \sigma^{+n} \models A
\]

So, we can generalize the definition of \(\sigma \models \Box A \) to

\[
\sigma \models \Box F \triangleq \forall n \in \text{Nat} : \sigma^{+n} \models F
\]

for any temporal formula \(F \). In other words, \(\sigma \) satisfies \(\Box F \) iff every suffix \(\sigma^{+n} \) of \(\sigma \) satisfies \(F \). This defines the temporal operator \(\Box \).

We have now defined the meaning of any temporal formula built from actions (including state predicates), Boolean operators, and the \(\Box \) operator. For example:

\[
\sigma \models \Box((x = 1) \Rightarrow \Box(y > 0))
\]

\[
\equiv \forall n \in \text{Nat} : \sigma^{+n} \models ((x = 1) \Rightarrow \Box(y > 0)) \quad \text{By the meaning of } \Box.
\]

\[
\equiv \forall n \in \text{Nat} : (\sigma^{+n} \models (x = 1)) \Rightarrow (\sigma^{+n} \models \Box(y > 0)) \quad \text{By the meaning of } \Rightarrow.
\]

\[
\equiv \forall n \in \text{Nat} : (\sigma^{+n} \models (x = 1)) \Rightarrow (\forall m \in \text{Nat} : (\sigma^{+n})^{+m} \models (y > 0)) \quad \text{By the meaning of } \Box.
\]

Thus, \(\sigma \models \Box((x = 1) \Rightarrow \Box(y > 0)) \) is true iff, for all \(n \in \text{Nat} \), if \(x = 1 \) is true in state \(\sigma_n \), then \(y > 0 \) is true in all states \(\sigma_{n+m} \) with \(m \geq 0 \).

We saw in Section 2.2 that a specification should allow stuttering steps—ones that leave unchanged all the variables appearing in the formula. A stuttering step represents a change only to some part of the system not described by the formula; adding it to the behavior should not affect the truth of the formula. We say that a formula \(F \) is invariant under stuttering if adding a stuttering step to a behavior \(\sigma \) does not affect whether \(F \) is true of \(\sigma \). (This implies that removing a stuttering step from \(\sigma \) also does not affect the truth of \(\sigma \models F \).) A sensible formula should be invariant under stuttering. There's no point writing formulas that aren't sensible, so TLA+ allows you to write only temporal formulas that are invariant under stuttering.

An arbitrary action, viewed as a temporal formula, is not invariant under stuttering. The action \(x' = x + 1 \) is true for a behavior in which \(x \) is incremented by 1 in the first step; adding an initial stuttering step makes it false. A state predicate is invariant under stuttering, since its truth depends only on the first state of a behavior, and adding a stuttering step doesn’t change the first state. The formula \(\Box[N]_v \) is also invariant under stuttering, for any action \(N \) and state function \(v \). It’s not hard to see that invariance under stuttering is preserved by \(\Box \) and by the Boolean operators. So, state predicates, formulas of the form \(\Box[N]_v \), and all formulas obtainable from them by applying \(\Box \) and Boolean operators

\[1\] This is a completely new sense of the word invariant; it has nothing to do with the concept of invariance discussed already.
are invariant under stuttering. For now, let’s take these to be our temporal formulas. (Later, we’ll add quantification.)

To understand temporal formulas intuitively, think of \(n \) as the state of the universe at time instant \(n \) during the behavior \(\sigma \). For any state predicate \(P \), the expression \(\sigma^n \models P \) asserts that \(P \) is true at time instant \(n \). Thus, \(\Box((x = 1) \Rightarrow \Box(y > 0)) \) asserts that any time \(x = 1 \) is true, \(y > 0 \) is true from then on. For an arbitrary temporal formula \(F \), we also interpret \(\sigma^n \models F \) as the assertion that \(F \) is true at time instant \(n \). The formula \(\Box F \) then asserts that \(F \) is true at all times. We can therefore read \(\Box \) as always or henceforth or from then on.

We now examine five especially important classes of formulas that are constructed from arbitrary temporal formulas \(F \) and \(G \). We introduce new operators for expressing the first three.

\(\Diamond F \) is defined to equal \(\neg \Box \neg F \). It asserts that \(F \) is not always false, which means that \(F \) is true at some time:

\[
\sigma \models \Diamond F \\
\equiv \quad \sigma \models \neg \Box \neg F \quad \text{By definition of } \Diamond, \\
\equiv \quad \neg (\sigma \models \Box \neg F) \quad \text{By the meaning of } \neg, \\
\equiv \quad \neg (\forall n \in \text{Nat} : \sigma^n \models \neg F) \quad \text{By the meaning of } \Box, \\
\equiv \quad \neg (\forall n \in \text{Nat} : \neg (\sigma^n \models F)) \quad \text{By the meaning of } \neg, \\
\equiv \quad \exists n \in \text{Nat} : \sigma^n \models F \quad \text{Because } \neg \forall \neg \text{ is equivalent to } \exists.
\]

We usually read \(\Diamond \) as eventually, taking eventually to include now.

\(F \sim G \) is defined to equal \(\Box(F \Rightarrow \Diamond G) \). The same kind of calculation we just did for \(\sigma \models \Diamond F \) shows:

\[
\sigma \models (F \sim G) \equiv \\
\forall n \in \text{Nat} : (\sigma^n \models F) \Rightarrow (\exists m \in \text{Nat} : (\sigma^{+(n+m)} \models G))
\]

The formula \(F \sim G \) asserts that whenever \(F \) is true, \(G \) is eventually true—that is, true then or at some later time. We read \(\sim \) as leads to.

\(\Diamond \langle A \rangle_v \) is defined to equal \(\neg \Box[\neg A]_v \), where \(A \) is an action and \(v \) a state function. It asserts that not every step is a \((\neg A) \vee (v' = v)\) step, so some step is a \(\neg((\neg A) \vee (v' = v))\) step. But \(\neg((\neg A) \vee (v' = v))\) is equivalent to \(A \land (v' \neq v)\), so \(\Diamond \langle A \rangle_v \) asserts that some step is an \(A \land (v' \neq v)\) step. We define \(\langle A \rangle_v \) to equal \(A \land (v' \neq v)\), so \(\Diamond \langle A \rangle_v \) asserts that eventually an \(A \rangle_v \) step occurs. We think of \(\Diamond \langle A \rangle_v \) as the formula obtained by applying the operator \(\Diamond \) to \(\langle A \rangle_v \), although technically it’s not because \(\langle A \rangle_v \) isn’t a temporal formula.

\(^2\)It is because we think of \(\sigma_n \) as the state at time \(n \), and because we usually measure time starting from 0, that I start numbering the states of a behavior with 0 rather than 1.
8.2 Weak Fairness

\(\Box F \) asserts that at all times, \(F \) is true then or at some later time. For time instant 0, this implies that \(F \) is true at some time instant \(n_0 \geq 0 \). For time instant \(n_0 + 1 \), it implies that \(F \) is true at some time instant \(n_1 \geq n_0 + 1 \). For time instant \(n_1 + 1 \), it implies that \(F \) is true at some time instant \(n_2 \geq n_1 + 1 \). Continuing the process, we see that \(F \) is true at an infinite sequence of time instants \(n_0, n_1, n_2, \ldots \). So, \(\Box F \) asserts that \(F \) is infinitely often true. In particular, \(\Box (A)_v \) asserts that infinitely many \((A)_v \) steps occur.

\(\Diamond F \) asserts that eventually (at some time), \(F \) becomes true and remains true thereafter. In other words, \(\Diamond F \) asserts that \(F \) is eventually always true. In particular, \(\Diamond (N)_v \) asserts that eventually, every step is a \((N)_v \) step.

The operators \(\Box \) and \(\Diamond \) have higher precedence (bind more tightly) than the Boolean operators, so \(\Diamond F \lor \Box G \) means \((\Diamond F) \lor (\Box G) \). The operator \(\Rightarrow \) has the same precedence as \(\land \).

8.2 Weak Fairness

Using the temporal operators \(\Box \) and \(\Diamond \), it’s easy to specify liveness properties. For example, consider the hour-clock specification of module HourClock in Figure 2.1 on page 20. We can require that the clock never stops by asserting that there must be infinitely many HC\textit{nxt} steps. This is expressed by the formula \(\Box \Diamond \langle HC\textit{nxt} \rangle_{hr} \). (The \(\langle \rangle_{hr} \) is needed to satisfy the syntax rules for temporal formulas; it’s discussed in the next paragraph.) So, formula \(HC \land \Box \Diamond \langle HC\textit{nxt} \rangle_{hr} \) specifies a clock that never stops.

The syntax rules of TLA require us to write \(\Box \Diamond \langle HC\textit{nxt} \rangle_{hr} \) instead of the more obvious formula \(\Box \Diamond HC\textit{nxt} \). These rules are needed to guarantee that every syntactically correct TLA formula is invariant under stuttering. In a behavior satisfying \(HC \), an \(HC\textit{nxt} \) step necessarily changes \(hr \), so it is necessarily an \(\langle HC\textit{nxt} \rangle_{hr} \) step. Hence, \(HC \land \Box \Diamond \langle HC\textit{nxt} \rangle_{hr} \) is equivalent to the (illegal) formula \(HC \land \Box \Diamond HC\textit{nxt} \).

In a similar fashion, most of the actions we define do not allow stuttering steps. When we write \(\langle A \rangle_v \) for some action \(A \), the \(\langle \rangle_v \) is usually needed only to satisfy the syntax rules. To avoid having to think about which variables \(A \) actually changes, we generally take the subscript \(v \) to be the tuple of all variables, which is changed if any variable changes. I will usually ignore the angle brackets and subscripts in informal discussions, and will describe \(\Box \Diamond \langle HC\textit{nxt} \rangle_{hr} \) as the assertion that there are infinitely many \(HC\textit{nxt} \) steps.

Let’s now modify specification \(Spec \) of module Channel (Figure 3.2 on page 30) to require that every value sent is eventually received. We do this by adjoining a liveness condition to \(Spec \). The analog of the liveness condition for the clock would be \(\Box \Diamond \langle R\textit{cv} \rangle_{\text{chan}} \), which asserts that there are infinitely many \(R\textit{cv} \) steps.
However, this would also require that infinitely many values are sent, and we
don’t want to make that requirement. In fact, we want to permit behaviors in
which no value is ever sent, so no value is ever received. We just want to require
that, if a value is ever sent, then it is eventually received.

It’s enough to require only that the next value to be received always is
eventually received, since this implies that all values sent are eventually received.
More precisely, we require that it’s always the case that, if there is a value to
be received, then the next value to be received eventually is received. The next
value is received by a Rcv step, so the requirement is:\footnote{$\Box (F \Rightarrow \Diamond G)$ equals $F \rightsquigarrow G$, so we could write this formula more compactly with \rightsquigarrow. However, it is more convenient to keep it in the form $\Box (F \Rightarrow \Diamond G)$}
\begin{equation}
\Box (\text{There is an unreceived value } \Rightarrow \Diamond \langle Rcv \rangle_{\text{chan}})
\end{equation}
There is an unreceived value iff action Rcv is enabled. (Recall that Rcv is
enabled in a state iff it is possible to take a Rcv step from that state.) TLA$^+$
defines $\text{ENABLED } A$ to be the predicate that is true iff action A is enabled. The
liveness condition can then be written as:
(8.1) $\Box (\text{ENABLED } \langle Rcv \rangle_{\text{chan}} \Rightarrow \Diamond \langle Rcv \rangle_{\text{chan}})$

In the ENABLED formula, it doesn’t matter if we write Rcv or $\langle Rcv \rangle_{\text{chan}}$. We
add the angle brackets so the two actions appearing in the formula are the same.

Because $\langle HCnxt \rangle_{hr}$ is always enabled during any behavior satisfying HC, we
can rewrite the liveness condition $\Box \Diamond \langle HCnxt \rangle_{hr}$ for the hour clock as:
\begin{equation}
\Box (\text{ENABLED } \langle HCnxt \rangle_{hr} \Rightarrow \Diamond \langle HCnxt \rangle_{hr})
\end{equation}
This suggests a general liveness condition on an action A:
\begin{equation}
\Box (\text{ENABLED } \langle A \rangle_v \Rightarrow \Diamond \langle A \rangle_v)
\end{equation}
This formula asserts that if A ever becomes enabled, then an A step will eventu-
ally occur—even if A remains enabled for only a fraction of a nanosecond, and
is never again enabled. The obvious difficulty of physically implementing such a
requirement suggests that it’s too strong. Instead, we define the weaker formula
$\text{WF}_v(A)$ to equal:
(8.2) $\Box (\Box \text{ENABLED } \langle A \rangle_v \Rightarrow \Diamond \langle A \rangle_v)$
This formula asserts that if A ever becomes forever enabled, then an A step must eventually occur. WF stands for Weak Fairness, and the condition $\text{WF}_v(A)$ is
called weak fairness on A. Here are two formulas that are each equivalent to
(8.2):
(8.3) $\Box \Diamond (\neg \text{ENABLED } \langle A \rangle_v) \lor \Box \Diamond \langle A \rangle_v$
(8.4) $\Diamond \Box (\text{ENABLED } \langle A \rangle_v) \Rightarrow \Box \Diamond \langle A \rangle_v$

These three formulas can be expressed in English as:
8.2. It’s always the case that, if A is enabled forever, then an A step eventually occurs.

8.3. A is infinitely often disabled, or infinitely many A steps occur.

8.4. If A is eventually enabled forever, then infinitely many A steps occur.

The equivalence of these three formulas isn’t obvious. Here’s a proof that (8.2) is equivalent to (8.3), using some simple tautologies. Studying this proof, and these tautologies, will help you understand how to write liveness conditions.

$$\Box(\Box\text{Enabled } \langle A \rangle_v \Rightarrow \Diamond \langle A \rangle_v)$$

$$\equiv \Box(\neg \Box\neg\text{Enabled } \langle A \rangle_v \lor \Diamond \langle A \rangle_v) \quad \text{Because } (F \Rightarrow G) \equiv (\neg F \lor G).$$

$$\equiv \Box(\Diamond\neg\text{Enabled } \langle A \rangle_v \lor \Diamond \langle A \rangle_v) \quad \text{Because } \neg\Box F \equiv \Diamond\neg F.$$

$$\equiv \Box(\Diamond\neg\text{Enabled } \langle A \rangle_v \lor \Box\Diamond \langle A \rangle_v) \quad \text{Because } \Diamond(F \lor G) \equiv \Diamond F \lor \Diamond G.$$

$$\equiv \Box(\Diamond\neg\text{Enabled } \langle A \rangle_v) \lor \Box\Diamond \langle A \rangle_v \quad \text{Because } \Diamond\Diamond(F \lor G) \equiv \Diamond\Diamond F \lor \Diamond\Diamond G.$$

The equivalence of (8.3) and (8.4) is proved as follows

$$\Box(\neg\text{Enabled } \langle A \rangle_v) \lor \Box\Diamond \langle A \rangle_v$$

$$\equiv \neg\Box\Box\neg\text{Enabled } \langle A \rangle_v \lor \Box\Diamond \langle A \rangle_v \quad \text{Because } \Box\Diamond F \equiv \Box\neg F \equiv \neg\Box F.$$

$$\equiv \Diamond\Box\neg\text{Enabled } \langle A \rangle_v \Rightarrow \Box\Diamond \langle A \rangle_v \quad \text{Because } (F \Rightarrow G) \equiv (\neg F \lor G).$$

We now show that the liveness conditions for the hour clock and the channel can be written as weak fairness conditions.

First, consider the hour clock. In any behavior satisfying its safety specification HC, an $\langle HC\text{next} \rangle_{hr}$ step is always enabled, so $\Diamond\Box(\text{Enabled } \langle HC\text{next} \rangle_{hr})$ equals true. Hence, HC implies that WF$_{hr}(HC\text{next})$ is equivalent to $\Box\Diamond(\langle HC\text{next} \rangle_{hr})$, our liveness condition for the hour clock.

Now, consider the liveness condition (8.1) for the channel. By (8.3), weak fairness on Rcv asserts that either (a) Rcv is disabled infinitely often, or (b) infinitely many Rcv steps occur (or both). Suppose Rcv becomes enabled at some instant. In case (a), Rcv must subsequently be disabled, which can occur only by a Rcv step. Case (b) also implies that there is a subsequent Rcv step. Weak fairness therefore implies that it’s always the case that if Rcv is enabled, then a Rcv step eventually occurs. A closer look at this reasoning reveals that it is an informal proof of:

$$Spec \Rightarrow (\text{WF}_{chan}(Rcv) \Rightarrow \Box(\text{Enabled } \langle Rcv \rangle_{chan} \Rightarrow \Diamond \langle Rcv \rangle_{chan}))$$

Because $\Box F$ implies F, for any formula F, it’s not hard to check the truth of:

$$\Box(\text{Enabled } \langle Rcv \rangle_{chan} \Rightarrow \Diamond \langle Rcv \rangle_{chan})) \Rightarrow \text{WF}_{chan}(Rcv)$$

Therefore, $Spec \land \text{WF}_{chan}(Rcv)$ is equivalent to the conjunction of $Spec$ and (8.1), so weak fairness of Rcv specifies the same liveness condition as (8.1) for the channel.
8.3 Liveness for the Memory Specification

Let’s now strengthen the memory specification with the liveness requirement that every request must receive a response. (We don’t require that a request is ever issued.) The liveness requirement is conjoined to the internal memory specification, formula ISpec of module InternalMemory (Figures 5.2 and 5.3 on pages 52–53).

We will express the liveness requirement in terms of weak fairness. This requires understanding when actions are enabled. The action $\text{Rsp}(p)$ is enabled only if the action

\begin{equation}
\text{Reply}(p, \text{buf}[p], \text{memInt}, \text{memInt}')
\end{equation}

is enabled. Recall that the operator Reply is a constant parameter, declared in the MemoryInterface module (Figure 5.1 on page 48). Without knowing more about this operator, we can’t say when action (8.5) is enabled.

Let’s assume that Reply actions are always enabled. That is, for any processor p and reply r, and any old value miOld of memInt, there is a new value miNew of memInt such that $\text{Repl}(p, r, \text{miOld}, \text{miNew})$ is true. For simplicity, we just assume that this is true for all p and r, and add the following assumption to the MemoryInterface module:

\begin{equation}
\text{assume } \forall p, r, \text{miOld} : \exists \text{miNew} : \text{Repl}(p, r, \text{miOld}, \text{miNew})
\end{equation}

We should also make a similar assumption for Send, but we don’t need it here.

We will subscript our weak-fairness formulas with the tuple of all variables, so let’s add the following definition to the InternalMemory module:

\begin{equation}
\text{vars } \triangleq (\text{memInt}, \text{mem}, \text{ctl}, \text{buf})
\end{equation}

When processor p issues a request, it enables the $\text{Do}(p)$ action, which remains enabled until a $\text{Do}(p)$ step occurs. The weak-fairness condition $\text{WF}_{\text{vars}}(\text{Do}(p))$ implies that this $\text{Do}(p)$ step must eventually occur. A $\text{Do}(p)$ step enables the $\text{Rsp}(p)$ action, which remains enabled until an $\text{Rsp}(p)$ step occurs. The weak-fairness condition $\text{WF}_{\text{vars}}(\text{Rsp}(p))$ implies that this $\text{Rsp}(p)$ step, which produces the desired response, must eventually occur. Hence, the requirement

\begin{equation}
\text{WF}_{\text{vars}}(\text{Do}(p)) \land \text{WF}_{\text{vars}}(\text{Rsp}(p))
\end{equation}

assures that every request issued by processor p must eventually receive a reply.

We can rewrite condition (8.6) in the slightly simpler form of weak fairness on the action $\text{Do}(p) \lor \text{Rsp}(p)$. The disjunction of two actions is enabled iff one or both of them are enabled. A $\text{Req}(p)$ step enables $\text{Do}(p)$, thereby enabling $\text{Do}(p) \lor \text{Rsp}(p)$. The only $\text{Do}(p) \lor \text{Rsp}(p)$ step then possible is a $\text{Do}(p)$ step, which enables $\text{Rsp}(p)$ and hence $\text{Do}(p) \lor \text{Rsp}(p)$. At this point, the only $\text{Do}(p) \lor \text{Rsp}(p)$ step possible is a $\text{Rsp}(p)$ step, which disables $\text{Rsp}(p)$ and leaves $\text{Do}(p)$
disabled, hence disabling $Do(p) \lor Rsp(p)$. This all shows that (8.6) is equivalent
to $WF_{vars}(Do(p) \lor Rsp(p))$, weak fairness on the single action $Do(p) \lor Rsp(p)$.

Weak fairness of $Do(p) \lor Rsp(p)$ guarantees that every request by processor
p receives a response. We want every request from every processor to receive a
response. So, the liveness condition for the memory specification asserts weak
fairness of $Do(p) \lor Rsp(p)$ for every processor p:\footnote{Although we haven’t yet discussed quantification in temporal formulas, the meaning of the formula $\forall p \in \text{Proc}: \ldots$ should be clear.}

\[Liveness \triangleq \forall p \in \text{Proc} : WF_{vars}(Do(p) \lor Rsp(p)) \]

The example of actions $Do(p)$ and $Rsp(p)$ raises the general question: when
is the conjunction of weak fairness on actions A_1, \ldots, A_n equivalent to weak
fairness of their disjunction $A_1 \lor \ldots \lor A_n$? The general answer is complicated,
but here’s a sufficient condition:

WF Conjunction Rule If A_1, \ldots, A_n are actions such that, for any
distinct i and j, whenever action A_i is enabled, action A_j cannot be-
come enabled until an A_i step occurs, then $WF_v(A_1) \land \ldots \land WF_v(A_n)$ is
equivalent to $WF_v(A_1 \lor \ldots \lor A_n)$.

This rule is stated rather informally. It can be interpreted as an assertion about
a particular behavior σ, in which case its conclusion is

\[\sigma \models (WF_v(A_1) \land \ldots \land WF_v(A_n)) \iff WF_v(A_1 \lor \ldots \lor A_n) \]

Alternatively, it can be formalized as the assertion that if a formula F implies
the hypothesis, then F implies the equivalence of $WF_v(A_1) \land \ldots \land WF_v(A_n)$
and $WF_v(A_1 \lor \ldots \lor A_n)$.

Conjunction and disjunction are special cases of universal and existential
quantification, respectively. For example, $A_1 \lor \ldots \lor A_n$ is equivalent to $\exists i \in 1 \ldots n : A_i$.

So, we can trivially restate the WF Conjunction Rule as a condition on when
$\forall i \in S : WF_v(A_i)$ and $WF_v(\exists i \in S : A_i)$ are equivalent, for a finite set S. The
resulting rule is actually valid for any set S:

WF Quantifier Rule If the A_i are actions, for all $i \in S$, such that,
for any distinct i and j in S, whenever action A_i is enabled, action A_j
cannot become enabled until an A_i step occurs, then $\forall i \in S : WF_v(A_i)$
and $WF_v(\exists i \in S : A_i)$ are equivalent.

8.4 Strong Fairness

Formulations (8.3) and (8.4) of $WF_v(A)$ contain the operators infinitely often
($\Box \Diamond$) and eventually always ($\Diamond \Box$). Eventually always is stronger than (implies)
ininitely often. We define $\text{SF}_v(A)$, strong fairness of action A, to be either of the following equivalent formulas:

\begin{align*}
(8.7) \quad & \lozenge \Box (\neg \text{Enabled} \langle A \rangle_v) \lor \Box \lozenge (A)_v \\
(8.8) \quad & \Box \lozenge \text{Enabled} \langle A \rangle_v \Rightarrow \lozenge \Box (A)_v \\
\end{align*}

Intuitively, these two formulas assert:

(8.7) A is eventually disabled forever, or infinitely many A steps occur.

(8.8) If A is infinitely often enabled, then infinitely many A steps occur.

The proof that these two formulas are equivalent is similar to the proof of equivalence of (8.3) and (8.4).

The analogs of the WF Conjunction and WF Quantifier Rules (page 95) hold for strong fairness—for example:

SF Conjunction Rule If A_1, \ldots, A_n are actions such that, for any distinct i and j, whenever action A_i is enabled, action A_j cannot become enabled until an A_i step occurs, then $\text{SF}_v(A_1) \land \ldots \land \text{SF}_v(A_n)$ is equivalent to $\text{SF}_v(A_1 \lor \ldots \lor A_n)$.

It’s not hard to see that strong fairness is stronger than weak fairness—that is, $\text{SF}_v(A)$ implies $\text{WF}_v(A)$, for any v and A. We can express weak and strong fairness as follows.

- Weak fairness of A asserts that an A step must eventually occur if A is continuously enabled.
- Strong fairness of A asserts that an A step must eventually occur if A is continually enabled.

Continuous means without interruption. Continually means repeatedly, possibly with interruptions.

Strong fairness need not be strictly stronger than weak fairness. Weak and strong fairness of an action A are equivalent iff A infinitely often disabled implies that either A is eventually always disabled, or infinitely many A steps occur. This is expressed formally by the tautology:

\[
(\text{WF}_v(A) \equiv \text{SF}_v(A)) \equiv \\
(\Box \lozenge (\neg \text{Enabled} \langle A \rangle_v) \Rightarrow \lozenge \Box (\neg \text{Enabled} \langle A \rangle_v) \lor \Box \lozenge (A)_v)
\]

In the channel example, weak and strong fairness of Rcv are equivalent because Spec implies that, once enabled, Rcv can be disabled only by a Rcv step; so if it is disabled infinitely often, then it either eventually remains disabled forever, or else it is disabled infinitely often by Rcv steps.

Strong fairness can be more difficult to implement than weak fairness, and it is a less common requirement. A strong fairness condition should be used in a
specification only if it is needed. When strong and weak fairness are equivalent, the fairness property should be written as weak fairness.

Liveness properties can be subtle. Expressing them with ad hoc temporal formulas can lead to errors. We will specify liveness as the conjunction of fairness properties whenever possible—and it almost always is possible. Having a uniform way of expressing liveness makes specifications easier to understand. Section 8.7.2 discusses an even more compelling reason for using fairness to specify liveness.

8.5 Liveness for the Write-Through Cache

Let’s now add liveness to the write-through cache, specified in Figures 5.5–5.7 on pages 56–58. We want our specification to guarantee that every request eventually receives a response, without requiring that any requests are issued. This requires fairness on all the actions that make up the next-state action Next except the \(\text{Req}(p) \) action (which issues a request) and the \(\text{Evict}(p, a) \) action (which evicts an address from the cache). If any other action were ever enabled without being executed, then some request might not generate a response—except for one special case. If the \(\text{memQ} \) queue contains only write requests, and \(\text{memQ} \) is not full (has fewer than \(QLen \) elements), then not executing a \(\text{MemQWr} \) action would not prevent any responses. (Remember that a response to a write request can be issued before the value is written to memory.) We’ll return to this exception later. For simplicity, let’s require fairness for the \(\text{MemQWr} \) action too.

Our liveness condition has to assert fairness of the following actions:

\[
\text{MemQWr}, \text{MemQRd}, \text{Rsp}(p), \text{RdMiss}(p), \text{DoRd}(p), \text{DoWr}(p)
\]

for all \(p \) in \(\text{Proc} \). We now must decide whether to assert weak or strong fairness for these actions. Weak and strong fairness are equivalent for an action that, once enabled, remains enabled until it is executed. This is the case for all of these actions except \(\text{RdMiss}(p) \) and \(\text{DoWr}(p) \). These two actions append a request to the \(\text{memQ} \) queue, and are disabled if that queue is full. A \(\text{RdMiss}(p) \) or \(\text{DoWr}(p) \) could be enabled, and then become disabled because a \(\text{RdMiss}(q) \) or \(\text{DoWr}(q) \), for a different processor \(q \), appends a request to \(\text{memQ} \). We therefore need strong fairness for the \(\text{RdMiss}(p) \) and \(\text{DoWr}(p) \) actions. So, the fairness conditions we need are:

- Weak Fairness \(\text{Rsp}(p), \text{DoRd}(p), \text{MemQWr}, \text{and MemQRd} \)
- Strong Fairness \(\text{RdMiss}(p) \) and \(\text{DoWr}(p) \)

As before, let’s define \(\text{vars} \) to be the tuple of all variables.

\[
\text{vars} \triangleq (\text{memInt}, \text{mem}, \text{buf}, \text{ctl}, \text{cache}, \text{memQ})
\]
We could just write the liveness condition as

\[(8.9) \quad \forall p \in \text{Proc} : \bigwedge \text{WF}_{\text{vars}}(\text{Rsp}(p)) \land \text{WF}_{\text{vars}}(\text{DoRd}(p)) \]
\[\land \bigwedge \text{SF}_{\text{vars}}(\text{RdMiss}(p)) \land \text{SF}_{\text{vars}}(\text{DoWr}(p)) \]
\[\land \text{WF}_{\text{vars}}(\text{MemQWr}) \land \text{WF}_{\text{vars}}(\text{MemQRd}) \]

However, I prefer replacing the conjunction of fairness conditions by a single fairness condition on a disjunction, as we did in Section 8.3 for the memory specification. The WF and SF Conjunction Rules (page 8.3 and 8.4) easily imply that the liveness condition (8.9) can be rewritten as

\[(8.10) \quad \forall p \in \text{Proc} : \bigwedge \text{WF}_{\text{vars}}(\text{Rsp}(p) \lor \text{DoRd}(p)) \]
\[\land \bigwedge \text{SF}_{\text{vars}}(\text{RdMiss}(p) \lor \text{DoWr}(p)) \]
\[\land \text{WF}_{\text{vars}}(\text{MemQWr} \lor \text{MemQRd}) \]

We can now try to simplify (8.10) by applying the WF Quantifier Rule (page 95) to replace \(\forall p \in \text{Proc} : \text{WF}_{\text{vars}}(\ldots) \) with \(\exists p \in \text{Proc} : \ldots \). However, that rule doesn’t apply; it’s possible for \(\text{Rsp}(p) \lor \text{DoRd}(p) \) to be enabled for two different processors \(p \) at the same time. In fact, the two formulas are not equivalent. Similarly, the analogous rule for strong fairness doesn’t apply. Formula (8.10) is as simple as we can make it.

Let’s return to the observation that we don’t have to execute \(\text{MemQWr} \) if the \(\text{memQ} \) queue is not full and contains only write requests. Let’s define \(\text{QCond} \) to be the assertion that \(\text{memQ} \) is not full and contains only write requests:

\[Q\text{Cond} \triangleq \bigwedge \text{Len}(\text{memQ}) < Q\text{Len} \]
\[\land \forall i \in 1 \ldots \text{Len}(\text{memQ}) : \text{memQ}[i][2].op = “\text{Wr}” \]

We have to eventually execute a \(\text{MemQWr} \) action only when it’s enabled and \(Q\text{Cond} \) is true, which is the case iff the action \(Q\text{Cond} \land \text{MemQWr} \) is enabled. In this case, a \(\text{MemQWr} \) step is a \(Q\text{Cond} \land \text{MemQWr} \) step. Hence, it suffices to require weak fairness of the action \(Q\text{Cond} \land \text{MemQWr} \). We can therefore replace the second conjunct of (8.10) with

\[\text{WF}_{\text{vars}}((Q\text{Cond} \land \text{MemQWr}) \lor \text{MemQRd}) \]

We would do this if we wanted the specification to describe the weakest liveness condition that implements the memory specification’s liveness condition. However, if the specification were a description of an actual device, then that device would probably implement weak fairness on all \(\text{MemQWr} \) actions, so we would take (8.10) as the liveness condition.

8.6 Quantification

I’ve already mentioned, in Section 8.1, that the ordinary quantifiers of predicate logic can be applied to temporal formulas. For example, the meaning of the
8.6. QUANTIFICATION

formula $\exists r : F$, for any temporal formula F, is given by

$$\sigma \models (\exists r : F) \overset{\Delta}{=} \exists r : (\sigma \models F)$$

where σ is any behavior. The meaning of $\forall r : F$ is similarly defined.

The symbol r in $\exists r : F$ is usually called a bound variable. But we’ve been using the term *variable* to mean something else—something that’s declared by a variable statement in a module. The bound “variable” r is actually a constant in these formulas—a value that is the same in every state of the behavior.\footnote{Logicians use the term *flexible variable* for a TLA variable, and the term *rigid variable* for a symbol like r that represents a constant.} For example, the formula $\exists r : \Box(x = r)$ asserts that x always has the same value.

The bounded quantifiers are defined in a similar way—for example,

$$\sigma \models (\exists r \in S : F) \overset{\Delta}{=} \exists r \in S : (\sigma \models F)$$

For this formula to make sense, S must be a constant.\footnote{We can let $\exists r \in S : F$ equal $\exists r : (r \in S) \land F$, which makes sense if S is a state function, not just a constant. However, TLA\footnote{TLA+} requires S to be a constant in $\exists r \in S : F$. If you want it to be a state function, you have to write $\exists r : (r \in S) \land F$.} The symbol r is declared to be a constant in formula F. The expression S lies outside the scope of the declaration of r, so the symbol r cannot occur in S.

One can, in a similar way, define CHOOSE to be a temporal operator. However, it’s not needed for writing specifications, so we won’t.

We have been using the operator \exists as a hiding operator. Intuitively, $\exists x : F$ means F with variable x hidden. In this formula, x is declared to be a variable in formula F. Unlike $\exists r : F$, which asserts the existence of a single value r, the formula $\exists x : F$ asserts the existence of a value for x in each state of a behavior.

The precise definition of \exists is a bit tricky because, as discussed in Section 8.1, the formula $\exists x : F$ should be invariant under stuttering. To define it, we first define $\sigma \sim_\tau$ to be true iff σ can be obtained from τ (or vice-versa) by adding and/or removing stuttering steps and changing the values assigned to x by its states. To define \sim_τ precisely, we define two behaviors σ and τ to be stuttering-equivalent iff removing all stuttering steps from each of them produces the same sequence of states. Next, let $\sigma_{x \rightarrow 0}$ be the behavior that is the same as σ except that, in each state, x is assigned the value 0.\footnote{The use of 0 is arbitrary; any fixed value would do.} We can then define $\sigma \sim_\tau$ to be true iff $\sigma_{x \rightarrow 0}$ and $\tau_{x \rightarrow 0}$ are stuttering equivalent. Finally, the meaning of \exists is defined by letting $\sigma \models (\exists x : F)$ be true iff there exists some behavior τ such that $\tau \sim_\sigma$ and $\tau \models F$ are true. If you find this too confusing, don’t worry about it. For writing specifications, it suffices to just think of $\exists x : F$ as F with x hidden.

TLA also has a temporal universal quantifier \forall, defined by:

$$\forall x : F \overset{\Delta}{=} \neg \exists x : \neg F$$
This operator is hardly ever used.

TLA+ does not allow bounded versions of the operators \exists and \forall. If you want to write $\exists x \in S : F$, you can simply write $\exists x : (x \in S) \land F$ instead.

8.7 Temporal Logic Examined

8.7.1 A Review

Let’s look at the shapes of the specifications that we’ve written so far. We started with the simple form

\[(8.11) \ Init \land \Box[Next]_{\vars}
\]

where $Init$ is the initial predicate, $Next$ the next-state action, and \vars the tuple of all variables. This kind of specification is, in principle, quite straightforward.

We then introduced hiding: using \exists to bind variables that should not appear in the specification. Those bound variables, also called hidden or internal variables, serve only to help describe how the values of the free variables (also called visible variables) change.

Hiding variables is easy enough, and it is mathematically elegant and philosophically satisfying. However, in practice, it doesn’t make much difference to a specification. A comment can also tell a reader that a variable should be regarded as internal. Explicit hiding allows implementation to mean implication. A lower-level specification that describes an implementation can be expected to imply a specification only if the specification’s internal variables, whose values don’t really matter, are explicitly hidden. Otherwise, implementation means implementation under a refinement mapping. (See Section 5.8.) However, as explained in Section 10.8, implementation often involves a refinement of the visible variables as well.

To express liveness, the specification (8.11) is strengthened to the form

\[(8.12) \ Init \land \Box[Next]_{\vars} \land \text{Liveness}
\]

where Liveness is the conjunction of formulas of the form $WF_{\vars}(A)$ and/or $SF_{\vars}(A)$, for actions A. (I’m considering universal quantification to be a form of conjunction.)

8.7.2 Machine Closure

In the specifications of the form (8.12) we’ve written so far, the actions A whose fairness properties appear in formula Liveness have one thing in common: they are all subactions of the next-state action $Next$. An action A is a subaction of $Next$ iff every A step is a $Next$ step. Equivalently, A is a subaction of $Next$ iff A
implies Next. In almost all specifications of the form (8.12), formula Liveness should be the conjunction of weak and/or strong fairness formulas for subactions of Next. I’ll now briefly explain why.

When we look at the specification (8.12), we expect Init to constrain the initial state, Next to constrain what steps may occur, and Liveness to describe only what must eventually happen. However, consider the following formula

$$(x = 0) \land \square[x' = x + 1]_x \land \text{WF}_x((x > 99) \land (x' = x - 1))$$

The first two conjuncts of (8.13) assert that x is initially 0 and that any step either increments x by 1 or leaves it unchanged. Hence, they imply that if x ever exceeds 99, then it forever remains greater than 99. The weak fairness property asserts that, if this happens, then x must eventually be decremented by 1—contradicting the second conjunct. Hence, (8.13) implies that x can never exceed 99, so that formula is equivalent to

$$(x = 0) \land \square[(x < 99) \land (x' = x + 1)]_x$$

Conjoining the weak fairness property to the first two conjuncts of (8.13) forbids an $x' = x + 1$ step when $x = 99$.

A specification of the form (8.12) is called machine closed if the conjunct Liveness does not constrain the initial state or what steps may occur. A more general way to express this is as follows. Let a finite behavior be a finite sequence of states.9 We say that a finite behavior σ satisfies a safety property S iff the behavior obtained by adding infinitely many stuttering steps to the end of σ satisfies S. If S is a safety property, then we define the pair of formulas S, L to be machine closed iff every finite behavior that satisfies S can be extended to an infinite behavior that satisfies $S \land L$. We call (8.12) machine closed if the pair $\text{Init} \land \square[\text{Next}]_x$, Liveness is machine closed.

We seldom want to write a specification that isn’t machine closed. If we do write one, it’s usually by mistake. Specification (8.12) is guaranteed to be machine closed if Liveness is the conjunction of weak and/or strong fairness properties for subactions of Next. This condition doesn’t hold for specification (8.13), which is not machine closed, because $(x > 99) \land (x' = x - 1)$ is not a subaction of $x' = x + 1$.

Liveness requirements are philosophically satisfying. A specification of the form (8.11), which specifies only a safety property, allows behaviors in which the system does nothing. Therefore, the specification is satisfied by a system that does nothing. Expressing liveness requirements with fairness properties is
less satisfying. These properties are subtle and it’s easy to get them wrong. It requires some thought to determine that the liveness condition for the write-through cache, formula (8.10) on page 98, does imply that every request receives a reply.

It’s tempting to express liveness properties more directly, without using fairness properties. For example, it’s easy to write a temporal formula asserting for the write-through cache that every request receives a response. When processor p issues a request, it sets $\text{ctl}[p]$ to “rdy”. We just have to assert that a state in which $\text{ctl}[p] = \text{rdy}$ is true leads to a $Rsp(p)$ step—for every processor p:

(8.14) $\forall p \in \text{Proc} : (\text{ctl}[p] = \text{rdy}) \leadsto (Rsp(p))_{\text{vars}}$

(The operator \leadsto is defined on page 90.) While such formulas are appealing, they are dangerous. It’s very easy to make a mistake and write a specification that isn’t machine closed.

Except in unusual circumstances, you should express liveness with fairness properties for subactions of the next-state action. These are the most straightforward specifications, and hence the easiest to write and to understand. Most system specifications, even if very detailed and complicated, can be written in this straightforward manner. The exceptions are usually in the realm of subtle, high-level specifications that attempt to be very general. An example of such a specification is given in Section 11.2.

8.7.3 Machine Closure and Possibility

Machine closure can be thought of as a possibility condition. For example, machine closure of the pair S, $\Box A$, asserts that for every finite behavior σ satisfying S, it is possible to extended σ to an infinite behavior satisfying S in which infinitely many $\langle A \rangle_v$ actions occur. If we regard S as a system specification, so a behavior that satisfies S represents a possible execution of the system, then we can restate machine closure of S, $\Box A$, as follows: in any system execution, it is always possible for infinitely many $\langle A \rangle_v$ actions to occur.

TLA specifications express safety and liveness properties, not possibility properties. A safety property asserts that something is impossible—for example, the system cannot take a step that doesn’t satisfy the next-state action. A liveness property asserts that something must eventually happen. System requirements are sometimes stated informally in terms of what is possible. Most of the time, when examined rigorously, these requirements can be expressed with liveness and/or safety properties. (The most notable exceptions are statistical properties, such as assertions about the probability that something happens.) We are never interested in specifying that something might happen. It’s never useful to know that the system might produce the right answer. We never have to specify that the user might type an “a”; we must specify what happens if he does.
Machine closure is a property of a pair of formulas, not of a system. Although a possibility property is never a useful assertions about a system, it can be a useful assertion about a specification. A specification S of a system with keyboard input should always allow a the user to type an “a”. So, we want every finite behavior satisfying S to be extendable to an infinite behavior satisfying S in which infinitely many “a”s are typed. If the action $(A)_v$ represents the typing of an “a”, then saying that the user should always be able to type infinitely many “a”s is equivalent to saying that the pair $S, \Box \Diamond (A)_v$ should be machine closed. If $S, \Box \Diamond (A)_v$ isn’t machine closed, then it could become impossible for the user ever to type an “a”. Unless the system is allowed to lock the keyboard, this means that there is something wrong with our specification.

This kind of possibility property can be proved. For example, to prove that it’s always possible for the user to type infinitely many “a”s, we show that conjoining suitable fairness conditions on the input actions implies that the user must type infinitely many “a”s. However, proofs of this kind of simple property don’t seem to be worth the effort. When writing a specification, you should make sure that possibilities allowed by the real system are allowed by the specification. Once you are aware of what should be possible, you will usually have little trouble ensuring that the specification makes it possible. You should also make sure that what the system must do is implied by the specification’s fairness conditions. This can be more difficult.

8.7.4 The Unimportance of Liveness

While philosophically important, in practice the liveness property of (8.12) is not as important as the safety part: $\text{Init} \land \Box [\text{Next}]_{vars}$. The ultimate purpose of writing a specification is to avoid errors. Experience shows that most of the benefit from writing and using a specification comes from the safety part. On the other hand, the liveness property is usually easy enough to write. It typically constitutes less than five percent of a specification. So, you might as well write the liveness part. However, when looking for errors, most of your effort should be devoted to examining the safety part.

8.7.5 Temporal Logic Considered Confusing

The most general type of specification I’ve discussed so far has the form

$$\exists v_1, \ldots, v_n : \text{Init} \land \Box [\text{Next}]_{vars} \land \text{Liveness}$$

where Liveness is the conjunction of fairness properties of subactions of Next. This is a very restricted class of temporal-logic formulas. Temporal logic is quite expressive, and one can combine its operators in all sorts of ways to express a wide variety of properties. This suggests the following approach to writing a
specification: express each property that the system must satisfy with a temporal formula, and then conjoin all these formulas. For example, formula (8.14) above expresses the property of the write-through cache that every request eventually receives a response.

This approach is philosophically appealing. It has just one problem: it’s practical for only the very simplest of specifications—and even for them, it seldom works well. The unbridled use of temporal logic produces formulas that are hard to understand. Conjoining several of these formulas produces a specification that is impossible to understand.

The basic form of a TLA specification is (8.15). Most specifications should have this form. We can also use this kind of specification as a building block. Chapters 9 and Section 10 describe situations in which we write a specification as a conjunction of such formulas. Section 10.7 introduces an additional temporal operator \implies and explains why we might want to write a specification $F \implies G$, where F and G have the form (8.12). But such specifications are of limited practical use. Most engineers need only know how to write specifications of the form (8.15). Indeed, they can get along quite well with specifications of the form (8.11) that express only safety properties.
Chapter 9

Real Time

9.1 The Hour Clock Revisited

Let’s return to our specification of the simple hour clock in Chapter 2, which asserts that the variable hr cycles through the values 1 through 12. We now add the obvious requirement that the clock keep correct time. In science, one represents the real-time behavior of a system by introducing a variable, traditionally t, whose value is a real number that represents time. A state in which $t = -17.51$ represents a state of the system at time -17.51, perhaps measured in seconds elapsed since 00:00 UT on 1 January 2000. In TLA+ specifications, I prefer to use the variable now rather than t. For linguistic convenience, I will usually assume that the unit of time is the second, though we could just as well choose any other unit.

Unlike sciences such as physics and chemistry, computer science studies systems whose behavior can be described by a sequence of discrete states, rather than by states that vary continuously with time. We consider the hour clock’s display to change directly from reading 12 to reading 1, and ignore the continuum of intermediate states that occur in the physical display. This means that we pretend that the change is instantaneous. So, a real-time specification of the clock might allow the step

$$\frac{hr = 12 \text{ now} = \sqrt{2.47}}{} \rightarrow \frac{hr = 1 \text{ now} = \sqrt{2.47}}{}$$

The value of now advances between changes to hr. If we wanted to specify how long it takes the display to change from 12 to 1, we would have to introduce an intermediate state that represents a changing display—perhaps by letting hr assume some intermediate value such as 12.5, or by adding a Boolean-valued variable chg whose value indicates whether the display is changing. We won’t
do this, but will be content to specify an hour clock in which we consider the display to change instantaneously.

The value of \(\text{now} \) changes between changes to \(\text{hr} \). Just as we represent a continuously varying clock display by a variable whose value changes in discrete steps, we let the value of \(\text{now} \) change in discrete steps. A behavior in which \(\text{now} \) increases in femtosecond increments would be an accurate enough description of continuously changing time for our specification of the hour clock. In fact, there’s no need to specify any particular granularity of time; we can let \(\text{now} \) advance by arbitrary amounts between clock ticks. (Since the value of \(\text{hr} \) is unchanged by steps that change \(\text{now} \), the requirement that the clock keep correct time will rule out behaviors in which \(\text{now} \) changes by too much in a single step.)

What real-time condition do we want to require for our hour clock? We might require that it always display the correct time. A more realistic requirement would be that it display the time correctly to within \(\rho \) seconds, for some real number \(\rho \). However, this is not typical of the real-time requirements that arise in actual systems. Instead, we require that the clock tick approximately once per hour. More precisely, we require that the interval between ticks be one hour plus or minus \(\rho \) seconds, for some positive number \(\rho \). Of course, this requirement allows the time displayed by the clock eventually to drift away from the actual time. But that’s what most real clocks will do if not reset.

We could start our specification of the real-time clock from scratch. However, we still want the hour clock to satisfy the specification \(\text{HC} \) of module \(\text{HourClock} \) (Figure 2.1 on page 20). We just want to add an additional real-time requirement. So, we will write the specification as the conjunction of \(\text{HC} \) and a formula requiring that the clock tick every hour, plus or minus \(\rho \) seconds. This requirement is the conjunction of two separate requirements: that the clock tick at most once every \(3600 - \rho \) seconds, and at least once every \(3600 + \rho \) seconds.

To specify these requirements, we must introduce a variable that records how much time has elapsed since the last clock tick. Let’s call it \(t \) for \(\text{timer} \). The value of \(t \) is set to 0 by a step that represents a clock tick—namely, by an \(\text{HCnxt} \) step. Any step that represents the passing of \(s \) seconds should advance \(t \) by \(s \). A step represents the passage of time if it changes \(\text{now} \), and such step represents the passage of \(\text{now}' - \text{now} \) seconds. So, the change to the timer \(t \) is described by the action:

\[
T\text{Next} \triangleq t' = \text{if } \text{HCnxt} \text{ then } 0 \text{ else } t + (\text{now}' - \text{now})
\]

The specification of how \(t \) changes is a formula asserting that every step is a \(T\text{Next} \) step or else leaves \(t \) and \(\text{now} \) unchanged. Letting \(t \) initially equal 0 (so we start in a state in which the clock has just ticked), this formula is:

\[
\text{Timer} \triangleq (t = 0) \land \square[T\text{Next}](t, \text{hr})
\]

The requirement that the clock tick at least once every \(3600 + \rho \) seconds means that it’s always the case that at most \(3600 + \rho \) seconds have elapsed since the
9.1. THE HOUR CLOCK REVISITED

last HC_{nxt} step. Since t always equals the elapsed time since the last HC_{nxt} step, this requirement is expressed by the formula:

$$MaxTime \triangleq \Box(t \leq 3600 + \rho)$$

(Since we can’t measure time with perfect accuracy, it doesn’t matter whether we use $<$ or \leq. When we generalize from this example, it will be somewhat more convenient to use \leq.)

The requirement that the clock tick at most once every $3600 - \rho$ seconds means that, whenever an HC_{nxt} step occurs, at least $3600 - \rho$ seconds have elapsed since the previous HC_{nxt} step. This suggests the condition

$$(9.1) \quad \Box(HC_{nxt} \Rightarrow (t \geq 3600 - \rho))$$

However, (9.1) isn’t a legal TLA formula because $HC_{nxt} \Rightarrow \ldots$ is an action (a formula containing primes), and a TLA formula asserting that an action is always true must have the form $\Box[A]$. We don’t care about steps that leave hr unchanged, so we can replace (9.1) by the TLA formula:

$$MinTime \triangleq \Box[HC_{nxt} \Rightarrow (t \geq 3600 - \rho)]_{hr}$$

The desired real-time constraint on the clock is expressed by the conjunction of these three formulas:

$$HCTime \triangleq Timer \land MaxTime \land MinTime$$

However, formula $HCTime$ contains the variable t, and the specification of the real-time clock should describe only the changes to hr (the clock display) and now (the time). So, we have to hide t. Hiding is expressed in TLA $^+$ by the temporal existential quantifier \exists, introduced in Section 4.3 (page 41). However, as explained in that section, we can’t simply write $\exists t : HCTime$. We must define $HCTime$ in a module that declares t, and then use a parametrized instantiation of that module. This is done in Figure 9.1 on page 109. Instead of defining $HCTime$ in a completely separate module, I have defined it in a submodule named $Inner$ of the module $RealTimeHourClock$ containing the specification of the real-time hour clock. Note that all the symbols declared and defined in the main module up to that point can be used in the submodule. Submodule $Inner$ is instantiated in the main module with the statement

$$I(t) \triangleq \text{instance } Inner$$

The t in $HCTime$ can then be hidden by writing $\exists t : I(t)!HCTime$.

The formula $HC \land (\exists t : I(t)!HCTime)$ describes the possible changes to the value of hr, and relates those changes to the value of now. But it says very little about how the value of now can change. For example, it allows the following behavior:

$$\begin{align*}
hr &= 11 \\
now &= 23.5 \\
hr &= 11 \\
now &= 23.4 \\
hr &= 11 \\
now &= 23.5 \\
hr &= 11 \\
now &= 23.4 \\
\ldots
\end{align*}$$
Because time can’t go backwards, such a behavior doesn’t represent a physical possibility. Everyone knows that time only increases, so there’s no need to forbid this behavior if the only purpose of our specification is to describe the hour clock. However, a specification should also allow us to reason about a system. If the clock ticks approximately once per hour, then it can’t stop. However, as the behavior above shows, the formula $HC \land (\exists t : I(t) \land HCTime)$ by itself allows the clock to stop. To infer that it can’t, we also need to state how now changes.

We define a formula $RTnow$ that specifies the possible changes to now. This formula does not specify the granularity of the changes to now; it allows now to advance by a microsecond or by a century. However, we have decided that a step that changes hr should leave now unchanged, so a step that changes now should leave hr unchanged. Therefore, steps that change now are described by the action:

$$NowNext \triangleq \land now' \in \{ r \in Real : r > now \}$$

\land UNCHANGED hr

Formula $RTnow$ should also allows steps that leave now unchanged. The initial value of now is arbitrary (we can start the system at any time), so the safety part of $RTnow$ is:

$$(now \in Real) \land \square[NowNext]_{now}$$

The liveness condition we want is that now should increase without bound. Simple weak fairness of the $NowNext$ action isn’t good enough, because it allows “Zeno” behaviors such as:

$$[now = .9] \rightarrow [now = .99] \rightarrow [now = .999] \rightarrow [now = .9999] \rightarrow \cdots$$

in which the value of now remains bounded. Weak fairness of the action $NowNext \land (now' > r)$ implies that eventually a $NowNext$ step will occur in which the new value of now is greater than r. (This action is always enabled, so weak fairness implies that infinitely many such actions must occur.) Asserting this for all real numbers r implies that now grows without bound, so we take as the fairness condition:

$$\forall r \in Real : WF_{now}(NowNext \land (now' > r))$$

The complete specification of the real-time hour clock, including the definition of formula $RTnow$, appears in Figure 9.1 on the next page.

9.2 Real-Time Specifications in General

In Section 8.2 (page 91), we saw that the appropriate generalization of the liveness requirement that the hour clock tick infinitely often is weak fairness of the
9.2. REAL-TIME SPECIFICATIONS IN GENERAL

EXTENDS Reals, HourClock

VARIABLE now The current time, measured in seconds.

CONSTANT Rho A positive real number.

ASSUME (Rho ∈ Real) ∧ (Rho > 0)

MODULE RealTimeHourClock

module RealTimeHourClock extends Reals, HourClock

variable now The current time, measured in seconds.

constant Rho A positive real number.

assume (Rho ∈ Real) ∧ (Rho > 0)

module Inner

variable t The elapsed time since the last HCnxt step.

TNext ≜ t’ = IF HCnxt THEN 0 ELSE t + (now’ − now)

Timer ≜ (t = 0) ∧ □[TNext](t, hr) t is the elapsed time since the last HCnxt step.

MaxTime ≜ □(t ≤ 3600 + Rho) t is always less than 3600 + Rho.

MinTime ≜ □[HCnxt ⇒ t ≥ 3600 − Rho]hr An HCnxt step can occur only if t ≥ 3600 − Rho.

HCTime ≜ Timer ∧ MaxTime ∧ MinTime

I(t) ≜ INSTANCE Inner

NowNext ≜ ∧ now’ ∈ {r ∈ Real : r > now}

∧ UNCHANGED hr A NowNext step can advance now by any amount while leaving hr unchanged.

RTnow ≜ ∧ now ∈ Real

∧ □[NowNext]now

∧ ∀ r ∈ Real : WF_now(NowNext ∧ (now’ > r))

RTHC ≜ HC ∧ RTnow ∧ (∃ t : I(t)! HCTime) The complete specification.

Figure 9.1: The real-time specification of an hour clock that ticks every hour, plus or minus Rho seconds.

clock-tick action. There is a similar generalization for real-time specifications. Weak fairness of an action A asserts that if A is continuously enabled, then an A step must eventually occur. The real-time analog is that if A is continuously enabled for ϵ seconds, then an A step must occur. Since an HCnxt action is always enabled, the requirement that the clock tick at least once every 3600 + ρ seconds is can be expressed in this way by letting A be HCnxt and ϵ be 3600 + ρ.

The requirement that an HCnxt action occur at most once every 3600 − ρ seconds can be similarly generalized to the condition that an action A must be continuously enabled for at least δ seconds before an A step can occur.

The first condition, the upper bound ϵ on how long A can be enabled without an A step occurring, is vacuously satisfied if ϵ equals Infinity—a value defined in the Reals module to be greater than any real number. The second condition, the lower bound δ on how long A must be enabled before an A step can occur, is
vacuously satisfied if δ equals 0. So, nothing is lost by combining both of these conditions into a single formula containing δ and ϵ as parameters. I now define such a formula, which I call a real-time bound condition.

The weak-fairness formula $WF_v(A)$ actually asserts weak fairness of the action $\langle A \rangle_v$, which equals $A \wedge (v' \neq v)$. The subscript v is needed to rule out stuttering steps. Since the truth of a meaningful formula can’t depend on whether or not there are stuttering steps, it makes no sense to say that an A step did or did not occur if that step could be a stuttering step. For this reason, the corresponding real-time condition must also be a condition on an action $\langle A \rangle_v$, not on an arbitrary action A. In most cases of interest, v is the tuple of all variables that occur in A. I therefore define the real-time bound formula $RTBound(A, v, \delta, \epsilon)$ to assert that:

- An $\langle A \rangle_v$ step cannot occur until $\langle A \rangle_v$ has been continuously enabled for at least δ time units since the last $\langle A \rangle_v$ step—or since the beginning of the behavior.
- $\langle A \rangle_v$ can be continuously enabled for at most ϵ time units before an $\langle A \rangle_v$ step occurs.

$RTBound(A, v, \delta, \epsilon)$ generalizes the formula $\exists t : I(t)!HCTime$ of the real-time hour clock specification and it can be defined in the same way, using a sub-module. However, the definition can be structured a little more compactly as:

$$RTBound(A, v, D, E) \triangleq \text{let } Timer(t) \triangleq \ldots \text{ in } \exists t : Timer(t) \wedge \ldots$$

We first define $Timer(t)$ to be a temporal formula asserting that t always equals the length of time that $\langle A \rangle_v$ has been continuously enabled since the last $\langle A \rangle_v$ step. The value of t should be set to 0 by an $\langle A \rangle_v$ step or a step that disables $\langle A \rangle_v$. A step that advances now should increment t by $now' - now$ if $\langle A \rangle_v$ is enabled. Changes to t are therefore described by the action:

$$TNext(t) \triangleq t' = \text{if } \langle A \rangle_v \vee \neg(\text{enabled } \langle A \rangle_v)' \text{ then } 0 \text{ else } t + (now' - now)$$

We are interested in the meaning of $Timer(t)$ only when v is a tuple whose components include all the variables that may appear in A. In this case, a step that leaves v unchanged cannot enable or disable $\langle A \rangle_v$. So, the formula $Timer(t)$ should allow steps that leave t, v, and now unchanged. Letting the initial value of t be 0, we define:

$$Timer(t) \triangleq (t = 0) \wedge \Box[TNext(t)]_{(t, v, now)}$$

Formulas $MaxTime$ and $MinTime$ of the real-time hour clock’s specification have the obvious generalizations:
9.2. REAL-TIME SPECIFICATIONS IN GENERAL

- \textit{MaxTime}(t) asserts that \(t \) is always less than or equal to \(E \):
 \[
 \text{MaxTime}(t) \triangleq \lozenge (t \leq E)
 \]

- \textit{MinTime}(t) asserts that an \((A)_v \) step can occur only if \(t \geq D \):
 \[
 \text{MinTime}(t) \triangleq \lozenge [A \Rightarrow (t \geq D)]_v
 \]
 (A little propositional logic reasoning shows that \([A \Rightarrow (t \geq D)]_v\) is equivalent to \([A]_v \Rightarrow (t \geq D)]_v\).

We can then define \(RTBound(A, v, D, E) \) to equal

\[
\exists t : \text{Timer}(t) \land \text{MaxTime}(t) \land \text{MinTime}(t)
\]

We must also generalize formula \(RTnow \) of the real-time hour clock’s specification. That formula describes how \textit{now} changes, and it asserts that \textit{hr} remains unchanged when \textit{now} changes. The generalization is the formula \(RTnow(v) \), which replaces \textit{hr} with an arbitrary state function \(v \) that will usually be the tuple of all variables (other than \textit{now}) appearing in the specification. Using these definitions, the specification \(RTHC \) of the real-time hour clock can be written:

\[
HC \land RTnow(hr) \land RTBound(HC_{\text{xt}}, hr, 3600 - \text{Rho}, 3600 + \text{Rho})
\]

The \textit{RealTime} module, with its definitions of \(RTBound \) and \(RTNow \), appears in Figure 9.2 on the next page.

Strong fairness strengthens weak fairness by requiring an \(A \) step not only if action \(A \) is continuously enabled, but if it is repeatedly enabled. Being repeatedly enabled includes the possibility that it is also repeatedly disabled. We can similarly strengthen our real-time bound conditions by defining a stronger formula \(SRTBound(A, v, \delta, \epsilon) \) to assert that:

- An \((A)_v \) step cannot occur until \((A)_v \) has been enabled for a total of at least \(D \) time units since the last \((A)_v \) step—or since the beginning of the behavior.

- \((A)_v \) can be enabled for a total of at most \(\epsilon \) time units before an \((A)_v \) step occurs.

If \(\epsilon < \text{Infinity} \), then \(RTBound(A, v, \delta, \epsilon) \) and \(RTnow(v) \) imply \(\text{WF}_v(A) \), since they imply that if \((A)_v \) is continuously enabled, then it must eventually be executed within \(\epsilon \) seconds. However, \(SRTBound(A, v, \delta, \epsilon) \) and \(RTnow(v) \) do not similarly imply \(\text{SF}_v(A) \). They allow behaviors in which \((A)_v \) is enabled infinitely often but never executed—for example, it can be enabled for \(\epsilon/2 \) seconds, then for \(\epsilon/4 \) seconds, then for \(\epsilon/8 \) seconds, and so on. For this reason, \(SRTBound \) does not seem to be of much practical use, so I won’t bother defining it formally.
CHAPTER 9. REAL TIME

This module declares the variable now, which represents real time, and defines operators for writing real-time specifications. Real-time constraints are added to a specification by conjoining it with RTnow(v) and formulas of the form RTBound(A, v, δ, ε) for actions A, where v is the tuple of all specification variables and 0 ≤ δ ≤ ε ≤ Infinity.

EXTENDS Reals

VARIABLE now The value of now is a real number that represents the current time, in unspecified units.

RTBound(A, v, D, E) =
LEMTNext(t) = t' = IF (A)v ∨ ¬(ENABLED (A)v) THEN 0 ELSE t + (now' − now)
Timer(t) = (t = 0) ∧ □[TNext(t, A, v)](t, v, now)
MaxTime(t) = □(t ≤ E) Asserts that t is always ≤ E.
MinTime(t) = □[A ⇒ (t ≥ D)]v Asserts that an (A)v step can occur only if t ≥ D.

RTnow(v) = LET Next(v) = now ∈ {r ∈ Real : r > now} ∧ UNCHANGED v

IN □ now ∈ Real
□ □[Next(v)]now
∀ r ∈ Real : WFnow(Next ∧ (now' > r))

Figure 9.2: The RealTime module for writing real-time specifications.

9.3 The Real-Time Write-Through Cache

I now illustrate the use of the RealTime module for writing real-time specifications by writing real-time versions of the linearizable memory specification of Section 5.3 (page 50) and the write-through cache specification of Section 5.6 (page 54).

The real-time memory specification is obtained by strengthening the specification in Module Memory (Figure 5.4 on page 53) to require that processors respond to requests within Rho seconds. The complete memory specification Spec of module Memory was obtained by hiding the variables mem, ctl, and
9.3. THE REAL-TIME WRITE-THROUGH CACHE

MODULE RTMemory

A specification that strengthens the linearizable memory specification of Section 5.3 by requiring that a processor respond to every request within ρ seconds.

EXTENDS MemoryInterface, RealTime

CONSTANT ρ

ASSUME $(\rho \in \text{Real}) \land (\rho > 0)$

MODULE Inner

We introduce a submodule so we can hide the variables mem, ctl, and buf.

EXTENDS InternalMemory

$\text{Respond}(p) \triangleq (\text{ctl}[p] \neq \text{"rdy"}) \land (\text{ctl}'[p] = \text{"rdy"})$

$\text{Respond}(p)$ is enabled when p receives a request; it is disabled and a $\text{Respond}(p)$ step occurs when p responds.

$\text{RTISpec} \triangleq \exists \forall p \in \text{Proc} : \text{RTBound}(\text{Respond}(p), \text{ctl}, 0, \rho) \land \text{RTnow}((\text{mem}, \text{ctl}, \text{buf}))$

We assert an upper-bound delay of ρ on $\text{Respond}(p)$, for all processors p.

$\text{Inner}(\text{mem}, \text{ctl}, \text{buf}) \triangleq \text{instance Inner}$

$\text{RTSpec} \triangleq \exists \text{mem}, \text{ctl}, \text{buf} : \text{Inner}(\text{mem}, \text{ctl}, \text{buf})! \text{RTISpec}$

Figure 9.3: A real-time version of the linearizable memory specification.

buf in the internal specification ISpec of module InternalMemory. It’s usually easier to add a real-time constraint to an internal specification, where the constraints can mention the internal (hidden) variables. So, we first add the timing constraint to ISpec and then hide the internal variables.

To specify that a processor must respond to a request within ρ seconds, we add an upper-bound timing constraint for an action that becomes enabled when a request is issued, and becomes disabled (possibly being executed) only when the processor responds to the request. In specification ISpec, responding to a request requires two actions—$\text{Do}(p)$ to perform the operation internally, and $\text{Rsp}(p)$ to issue the response. Neither of these actions is the one we want; we have to define a new action for the purpose. There is a pending request for processor p iff $\text{ctl}[p]$ equals “rdy”. So, we assert that the following action cannot be enabled for more than ρ seconds without being executed:

$\text{Respond}(p) \triangleq (\text{ctl}[p] \neq \text{"rdy"}) \land (\text{ctl}'[p] = \text{"rdy"})$

The complete specification is formula RTSpec of Module RTMemory in Figure 9.3 on this page. To permit the hiding of variables mem, ctl, and buf, Module RTMemory contains a submodule Inner that extends module InternalMemory.
Having added a real-time constraint to the specification of a linearizable memory, let’s strengthen the specification of the write-through cache so it satisfies that constraint. The object is not just to add any real-time constraint that does the job—that’s easy to do by using the same constraint that we added to the memory specification. We want to write a specification of a real-time algorithm—a specification that tells an implementor how to meet the real-time constraints. This is generally done by placing real-time bounds on the actual actions of the untimed specification, not by adding time bounds on a new action, as we did for the memory specification. An upper-bound constraint on the response time should be achieved by enforcing upper-bound constraints on the system’s actions.

If we try to achieve a bound on response time by adding real-time bounds to the write-through cache specification’s actions, we encounter the following problem. Processors have to “compete” with one another to be able to enqueue operations on the finite queue \(\text{memQ}\). For example, when servicing a write request, processor \(p\) must execute a \(\text{DoWr}(p)\) action to enqueue the operation to the tail of \(\text{memQ}\). That action is not enabled if \(\text{memQ}\) is full. The \(\text{DoWr}(p)\) action can be continually disabled by other processors performing \(\text{DoWr}\) or \(\text{RdMiss}\) actions. That’s why, to guarantee liveness—that each request eventually receives a response—in Section 8.5 (page 97) we had to assert strong fairness of \(\text{DoWr}\) and \(\text{RdMiss}\) actions. The only way to ensure that a \(\text{DoWr}(p)\) action is executed within some length of time is to use lower-bound constraints on the actions of other processors to ensure that they cannot perform \(\text{DoWr}\) or \(\text{RdMiss}\) actions too frequently. Although such a specification is possible, it is not the kind of approach anyone is likely to take in practice.

The usual method of enforcing real-time bounds on accesses to a shared resource is to schedule the use of the resource by different processors. So, let’s modify the write-through cache to add a scheduling discipline to actions that enqueue operations on \(\text{memQ}\). We use round robin scheduling, which is probably the easiest one to implement. Suppose processors are numbered from 0 through \(N - 1\). Round-robin scheduling means that processor \(p\) is the next processor after \(q\) to enqueue its operation if none of the processors \((q + 1) \mod N\), \((q + 2) \mod N\), \ldots, \((p - 1) \mod N\) is waiting to access \(\text{memQ}\).

To express this formally, we first let the set \(\text{Proc}\) of processors equal the set \(0 \ldots (N - 1)\) of integers. Normally, this is done by defining \(\text{Proc}\) to equal \(0 \ldots (N - 1)\). However, we want to reuse the parameters and definitions from the write-through cache specification. The easiest way to do this is by extending module \(\text{WriteThroughCache}\). Since \(\text{Proc}\) is a parameter in that module, we can’t define it. We therefore let \(N\) be a new constant parameter and let \(\text{Proc} = 0 \ldots (N - 1)\) be an assumption.\(^1\)

\(^1\)We could also instantiate module \(\text{WriteThroughCache}\) with \(0 \ldots (N - 1)\) substituted for \(\text{Proc}\); but that requires declaring the other parameters of \(\text{WriteThroughCache}\), including the ones from the \(\text{MemoryInterface}\) module.
To implement round-robin scheduling, we use a variable \(\text{lastP} \) whose value is the last processor to enqueue an operation to \(\text{memQ} \). We define the operator \(\text{position} \) so that \(p \) is the \(\text{position}(p)^{\text{th}} \) processor after \(\text{lastP} \) in the round-robin order:

\[
\text{position}(p) \triangleq \text{choose } i \in 1 \ldots N : p = (\text{lastP} + 1) \mod N
\]

Processor \(p \) can be the next to access \(\text{memQ} \) iff no processor \(q \) with \(\text{position}(q) < \text{position}(p) \) is ready to access it—that is, iff \(\text{canGoNext}(p) \) is true, where

\[
\text{canGoNext}(p) \triangleq \forall q \in \text{Proc} : (\text{position}(q) < \text{position}(p)) \Rightarrow \neg \text{Enabled} (\text{RdMiss}(q) \lor \text{DoWr}(q))
\]

We then define \(\text{RTRdMiss}(p) \) and \(\text{RTDoWr}(p) \) to be the same as \(\text{RdMiss}(p) \) and \(\text{DoWr}(p) \), respectively, except that they have the additional enabling condition \(\text{canGoNext}(p) \), and they set \(\text{lastP} \) to \(p \). The other subactions of the next-state action are the same as before, except that they must also leave \(\text{lastP} \) unchanged.

For simplicity, we assume a single upper bound of \(\text{Epsilon} \) on the length of time any of the actions of processor \(p \) can remain enabled without being executed—except for the \(\text{Evict}(p, a) \) action, which we never require to happen. If two actions \(A \) and \(B \) are never simultaneously enabled, and one must be executed before the other can become enabled, then a single real-time constraint on \(A \lor B \) is equivalent to separate constraints on \(A \) and \(B \). We can therefore place a single constraint on the disjunction of all the actions of processor \(p \), except we can’t use the same constraint for both \(\text{DoRd}(p) \) and \(\text{RTRdMiss}(p) \), since an \(\text{Evict}(p, a) \) step could disable \(\text{DoRd}(p) \) and enable \(\text{RTRdMiss}(p) \).

We assume an upper bound of \(\text{Delta} \) on the time \(\text{MemQWr} \) or \(\text{MemQRd} \) can be enabled without dequeuing an operation from \(\text{memQ} \). The variable \(\text{memQ} \) represents a physical queue between the bus and the main memory, and \(\text{Delta} \) must be large enough so an operation inserted into an empty queue will reach the memory and be dequeued within \(\text{Delta} \) seconds.

We want the real-time write-through cache to implement the real-time memory specification. This requires an assumption relating \(\text{Delta} \), \(\text{Epsilon} \), and \(\text{Rho} \) to assure that the memory specification’s timing constraint is satisfied—namely, that the delay between when a processor \(p \) receives a request and when it responds is at most \(\text{Rho} \). Determining this assumption requires computing an upper bound on that delay. Finding the smallest upper bound is complicated, but it isn’t too hard to show that

\[
(2 \ast N + 1) \ast \text{Delta} + (N + \text{QLen}) \ast \text{Epsilon}
\]

is an upper bound. So we assume that this value is less than or equal to \(\text{Rho} \).

The complete specification appears in Figures 9.4 and 9.5 on the following two pages. The module also asserts as a theorem that the specification \(\text{RTSpec} \) of the real-time write-through cache implements (implies) the real-time memory specification, formula \(\text{RTSpec} \) of module \(\text{RTMemory} \).
EXTENDS WriteThroughCache, RealTime

CONSTANT N

ASSUME $(N \in \text{Nat}) \land (\text{Proc} = 0 \ldots N - 1)$

CONSTANTS Delta, Epsilon, Rho

ASSUME $\land (\Delta \in \text{Real}) \land (\Delta > 0)$

$\land (\text{Epsilon} \in \text{Real}) \land (\text{Epsilon} > 0)$

$\land (\text{Rho} \in \text{Real}) \land (\text{Rho} > 0)$

$\land (2 \cdot N + 1) \cdot \Delta + (N + \text{QLen}) \cdot \text{Epsilon} \leq \text{Rho}$

We assume that the set Proc of processors equals $0 \ldots N - 1$.

We modify the write-through cache specification to require that processors wanting to enqueue an operation on memQ do so in round-robin order.

VARIABLE lastP

The last processor to enqueue an operation on memQ.

$RTInit \triangleq \text{Init} \land (\text{lastP} \in \text{Proc})$

Initially, lastP can equal any processor.

$position(p) \triangleq \text{position}(p)^{\text{th}}$ processor after lastP in the round-robin order.

$\text{chose } i \in 1 \ldots N : p = (\text{lastP} + i) \mod N$

$canGoNext(p) \triangleq \text{True if processor } p \text{ can be the next to enqueue an operation on memQ.}$

$\forall q \in \text{Proc} : (\text{position}(q) < \text{position}(p)) \Rightarrow \neg \text{ENABLED (RdMiss}(q) \lor \text{DoWr}(q))$

$RTRdMiss(p) \triangleq \land \text{canGoNext}(p)$

$\land \text{RdMiss}(p)$

$\land \text{lastP}' = p$

$RTDoWr(p) \triangleq \land \text{canGoNext}(p)$

$\land \text{DoWr}(p)$

$\land \text{lastP}' = p$

$RTNext \triangleq \lor \exists p \in \text{Proc} : \text{RTRdMiss}(p) \lor \text{RTDoWr}(p)$

$\land \lor \exists p \in \text{Proc} : \lor \text{Req}(p) \lor \text{Rsp}(p) \lor \text{DoRd}(p)$

$\lor \exists a \in \text{Adr} : \text{Evict}(p, a)$

$\lor \text{MemQWr} \lor \text{MemQRd}$

$\land \text{UNCHANGED lastP}$

$vars \triangleq \{\text{memInt, mem, buf, ctl, cache, memQ, lastP}\}$

Figure 9.4: A real-time version of the write-through cache (beginning).
9.4 Zeno Specifications

I have described the formula \(RTBound(HCnxt, hr, \delta, \epsilon) \) as asserting that an \(HCnxt \) step must occur within \(\epsilon \) seconds of the previous \(HCnxt \) step. However, implicit in this description is a notion of causality that is not present in the formula. It would be just as accurate to describe the formula as asserting that \(now \) cannot advance by more than \(\epsilon \) seconds before the next \(HCnxt \) step occurs.

The formula doesn’t tell us whether this condition is met by causing the clock to tick or by preventing time from advancing. Indeed, the formula is satisfied by a “Zeno” behavior

\[
\begin{align*}
hr &= 11 \\
now &= 0 \\
hr &= 11 \\
now &= \epsilon/2 \\
hr &= 11 \\
now &= 3\epsilon/4 \\
hr &= 11 \\
now &= 7\epsilon/8 \\
&\ldots
\end{align*}
\]

in which \(\epsilon \) seconds never pass. We rule out such Zeno behaviors by conjoining to our specification the formula \(RTnow(hr) \)—more precisely by conjoining its liveness conjunct

\[\forall r \in \text{Real} : WF_{now}(Next \land (now' > r)) \]

which implies that time advances without bound. Let’s call this formula \(NZ \) (for NonZeno).

Zeno behaviors pose no problem; they are trivially forbidden by conjoining \(NZ \). A problem does exist if a specification allows only Zeno behaviors. For example, suppose we conjoined to the untimed hour-clock’s specification the condition \(RTBound(HCnxt, hr, \delta, \epsilon) \) for some \(\delta \) and \(\epsilon \) with \(\delta > \epsilon \). This would

The Greek philosopher Zeno posed the paradox that an arrow first had to travel half the distance to its target, then the next quarter of the distance, then the next eighth, and so on; thus it should not be able to land within a finite length of time.
assert that the clock must wait at least δ seconds before ticking, but must tick within a shorter length of time. In other words, the clock could never tick. Only a Zeno behavior, in which ϵ seconds never elapsed, can satisfy this specification. Conjoining NZ to this specification yields a formula that allows no behaviors—that is, a formula equivalent to FALSE.

This example is an extreme case of what is called a Zeno specification. A Zeno specification is one for which there exists a finite behavior σ that satisfies the safety part but cannot be extended to an infinite behavior that satisfies both the safety part and NZ. In other words, the only complete behaviors satisfying the safety part that extend σ are Zeno behaviors. Equivalently, a specification is nonZeno iff the pair of properties consisting of the safety part of the specification (the conjunction of the untimed specification, the real-time bound conditions, and the safety part of the RTnow formula) and NZ is machine closed.

A Zeno specification is one in which the requirement that time increases without bound rules out some finite behaviors that would otherwise be allowed. Such a specification is likely to be incorrect because the real-time bound conditions are probably constraining the system in unintended ways. In this respect, Zeno specifications are much like other non-machine closed specifications.

In Section 8.7.2 I told you that the conjunction of fairness conditions on subactions of the next-state relation produces a machine closed specification. There is an analogous result for real-time bound conditions and nonZeno specifications. A specification is nonZeno if it is the conjunction of a formula $Init \land \Box[Next]_{vars}$, the formula $RTnow(vars)$, and a finite number of formulas of the form $RTBound(A_i; vars; \delta_i; \epsilon_i)$, where for each i:

- $0 \leq \delta_i \leq \epsilon_i \leq \text{Infinity}$
- A_i is a subaction of the next-state action $Next$.
- No step is both an A_i and an A_j step, for any A_j with $j \neq i$.

In particular, this implies that the specification $RTSpec$ of the real-time write-through cache in module $RTWriteThroughCache$ is nonZeno.

This result does not apply to the specification of the real-time memory in module $RTMemory$ (Figure 9.3 on page 113) because the action $Respond(p)$ is not a subaction of the next-state action of formula $ISpec$. ($Respond(p)$ can’t possibly be a subaction of the next-state action because it doesn’t even mention any of the specification’s variables except ctl.) The specification is nonetheless nonZeno, because any finite behavior σ that satisfies the specification can be extended to one in which time advances without bound. One can first extend σ to respond to all pending requests immediately (in 0 time), and then extend it to a behavior performing nothing but clock ticks.

\[\text{Recall that a finite behavior } \sigma \text{ satisfies a safety property } P \text{ iff adding infinitely many stuttering steps to the end of } \sigma \text{ produces a behavior that satisfies } P.\]
It’s easy to construct an example in which conjoining an \textit{RTBound} formula for an action that is not a subaction of the next-state action produces a Zeno specification. For example, consider the formula
\begin{equation}
HC \land RTBound(hr' = hr - 1, hr, 0, 3600) \land RTNow(hr)
\end{equation}
where \(HC\) is the specification of the hour clock, whose next-state action \(HCnxt\) asserts that \(hr\) is either incremented by 1 or changes from 12 to 1. The \textit{RTBound} formula asserts that \(now\) cannot advance for 3600 or more seconds without an \(hr' = hr - 1\) step occurring. Since \(HC\) asserts that every step that changes \(hr\) is an \(HCnxt\) step, the safety part of (9.2) is satisfied only by behaviors in which \(now\) increases by less than 3600 seconds. Since the complete specification (9.2) contains the conjunct \(NZ\), which asserts that \(now\) increases without bound, it is equivalent to \textit{false}, and is thus a Zeno specification.

When a specification describes how a system is implemented, the real-time constraints are likely to be expressed as \textit{RTBound} formulas for subactions of the next-state action. These are the kinds of formulas that correspond fairly directly to an implementation. More abstract, higher-level specifications—ones describing what a system is supposed to do rather than how to do it—are less likely to have real-time constraints expressed in this ways. Thus, module \textit{RTWriteThroughCache} describes an algorithm for implementing a memory, and it has real-time bounds on subactions of the next-state action. On the other hand, the high-level specification of the real-time memory in module \textit{RTMemory} contains an \textit{RTBound} formula for an action that is not a subaction of the next-state action.

\section{Hybrid System Specifications}

A system described by a TLA$^+$ specification is a physical entity. The specification’s variables represent some part of the physical state—the display of a clock, or the distribution of charge in a piece of silicon that implements a memory cell.

In a real-time specification, the variable \textit{now} is different from the others because we are not abstracting away the continuous nature of time. The specification allows \textit{now} to assume any of a continuum of values. The discrete states in a behavior mean that we are observing the state of the system, and hence the value of \textit{now}, at a sequence of discrete instants.

There may be physical quantities other than time whose continuous nature we want to represent in a specification. For an air traffic control system, we might want to represent the positions and velocities of the aircraft. For a system controlling a nuclear reactor, we might want to represent the physical parameters of the reactor itself. A specification that represents such continually varying quantities is called a \textit{hybrid system specification}.

As an example, consider a system that, among other things, controls a switch that influences the one-dimensional motion of some object. Suppose the object’s
position \(p \) obeys one of the following laws, depending on whether the switch is off or on:

\[
\begin{align*}
\frac{d^2 p}{dt^2} + c \frac{dp}{dt} + f[t] &= 0 \\
\frac{d^2 p}{dt^2} + c \frac{dp}{dt} + f[t] + k \cdot p &= 0
\end{align*}
\]

where \(c \) and \(k \) are constants, \(f \) is some function, and \(t \) represents time. At any instant, the future position of the object is determined by the object’s current position and velocity. So, the state object is described by two variables—namely, its position \(p \) and its velocity \(w \). These variables are related by \(w = \frac{dp}{dt} \).

We describe this system with a TLA+ specification in which the variables \(p \) and \(w \) are changed only by steps that change now—that is, steps representing the passage of time. We specify the changes to the discrete system state and any real-time constraints as before. However, we replace \(RTnow(v) \) with a formula having the following next-state action, where \(\text{Integrate} \) and \(D \) are explained below:

\[
\begin{align*}
\land now' &\in \{ r \in \text{Real} : r > now \} \\
\land \langle p', w' \rangle &= \text{Integrate}(D, now, now', \langle p, w \rangle) \\
\land \text{UNCHANGED } v &\quad \text{\(v \) is the tuple of all discrete variables, which change instantaneously.}
\end{align*}
\]

The second conjunct asserts that \(p' \) and \(w' \) equal the expressions obtained by solving the appropriate differential equation for the object’s position and velocity at time \(now' \), assuming that their values at time \(now \) are \(p \) and \(w \). The differential equation is specified by \(D \), while \(\text{Integrate} \) is a general operator for solving an arbitrary differential equation.

To specify the differential equation satisfied by the object, let’s suppose that \(\text{switchOn} \) is a Boolean-valued state variable that describes the position of the switch. We can then rewrite the pair of equations (9.3) as

\[
\frac{d^2 p}{dt^2} + c \frac{dp}{dt} + f[t] + (\text{if } \text{switchOn} \text{ then } -k \cdot p \text{ else } 0) = 0
\]

We define the function \(D \) so this equation can be written as

\[
D[t, p, \frac{dp}{dt}, \frac{d^2 p}{dt^2}] = 0
\]

Using the notation explained in Section 15.1.7 on page 275, the definition is:

\[
D[t, p0, p1, p2 \in \text{Real}] \triangleq p2 + c \cdot p1 + f[t] + (\text{if } \text{switchOn} \text{ then } -k \cdot p \text{ else } 0)
\]

We obtain the desired specification if the operator \(\text{Integrate} \) is defined so that \(\text{Integrate}(D, t0, t1, \langle x0, \ldots, x_{n-1} \rangle) \) is the value at time \(t1 \) of the \(n \)-tuple

\[
\langle x, dx/dt, \ldots, d^{n-1}x/dt^{n-1} \rangle
\]

where \(x \) is a solution to the differential equation

\[
D[t, x, dx/dt, \ldots, d^{n}x/ct^{n}] = 0
\]
whose 0th through (n – 1)st derivatives at time \(t_0 \) are \(x_0, \ldots, x_{n-1} \). The definition of \(\text{Integrate} \) appears in the \textit{DifferentialEquations} module of Section 11.1.3.

In general, a hybrid-system specification is similar to a real-time specification, except that the formula \(\text{RTNow}(v) \) is replaced by one that describes the changes to all variables that represent continuously changing physical quantities. The \(\text{Integrate} \) operator will allow you to specify those changes for many hybrid systems. Some systems will require different operators. For example, describing the evolution of some physical quantities might require an operator for describing the solution to a partial differential equation. However, if you can describe the evolution mathematically, then it can be specified in TLA\(^+\).

Hybrid system specifications still seem to be of only academic interest, so I won’t say any more about them. If you do have occasion to write one, this brief discussion should indicate what you can do.

9.6 Remarks on Real Time

Real-time constraints are used most often to place an upper bound on how long it can take the system to do something. In this capacity, they can be considered a strong form of liveness, specifying not just that something must eventually happen, but when it must happen. In very simple specifications, such as the hour clock and the write-through cache, real-time constraints usually replace liveness conditions. More complicated specifications can assert both real-time constraints and liveness properties.

The real-time specifications I have seen have not required very complicated timing constraints. They have been specifications either of fairly simple algorithms in which timing constraints are crucial to correctness, or of more complicated systems in which real time appears only through the use of simple timeouts to ensure liveness. I suspect that people don’t build systems with complicated real-time constraints because it’s too hard to get them right.

I’ve described how to write a real-time specification by conjoining \(\text{RTnow} \) and \(\text{RTBound} \) formulas to an untimed specification. One can prove that all real-time specifications can be written in this form. In fact, it suffices to use \(\text{RTBound} \) formulas only for subactions of the next-state action. However, this result is of theoretical interest only because the resulting specification can be incredibly complicated. The operators \(\text{RTnow} \) and \(\text{RTBound} \) solve all the real-time specification problems that I have encountered; but I haven’t encountered enough to say with confidence that they’re all you will ever need. Still, I am quite confident that whatever real-time properties you have to specify, it will not be hard to express them in TLA\(^+\).
Chapter 10

Composing Specifications

Systems are usually described in terms of their components. In the specifications we’ve written so far, the components have been represented as separate disjuncts of the next-state action. For example, the FIFO system pictured on page 35 is specified in module InnerFIFO on page 38 by representing the three components with the following disjuncts of the next-state action:

- **Sender:** \(\exists \text{msg} \in \text{Message} : SSend(\text{msg}) \)
- **Buffer:** \(\text{BufRec} \lor \text{BufSend} \)
- **Receiver:** \(\text{RRec} \)

In this chapter, we learn how to specify the components separately and compose their specifications to form a single system specification. Most of the time, there’s no point to doing this. The two ways of writing the specification differ by only a few lines—a trivial difference in a specification of hundreds or thousands of lines. Still, you may encounter a situation in which it’s better to specify a system as a composition.

First, we must understand what it means to compose specifications. We usually say that a TLA formula specifies the correct behavior of a system. However, as explained in Section 2.3 (page 18), a behavior actually represents a possible history of the entire universe, not just of the system. So, it would be more accurate to say that a TLA formula specifies a universe in which the system behaves correctly. Building a system that implements a specification \(F \) means constructing the universe so it satisfies \(F \). (Fortunately, correctness of the system depends on the behavior of only a tiny part of the universe, so it’s just that part that we must build.) Composing two systems whose specifications are \(F \) and \(G \) means making the universe satisfy both \(F \) and \(G \), which is the same as making it satisfy \(F \land G \). Thus, the specification of the composition of two systems is the conjunction of their specifications.
CHAPTER 10. COMPOSING SPECIFICATIONS

Writing a specification as the composition of its components therefore means writing the specification as a conjunction, each conjunct of which can be viewed as the specification of a component. While the basic idea is simple, the details are not always obvious. To simplify the exposition, I begin by considering only safety properties, ignoring liveness and largely ignoring hiding. Liveness and hiding are discussed in Section 10.6.

10.1 Composing Two Specifications

Let’s return once again to the simple hour clock, with no liveness or real-time requirement. In Chapter 2, we specified such a clock whose display is represented by the variable hr. We can write that specification as

$$(hr \in 1..12) \land \Box [HCN(hr)]_{hr}$$

where HCN is defined by:

$$HCN(h) \triangleq h' = (h \mod 12) + 1$$

Now let’s write a specification $TwoClocks$ of a system composed of two separate hour clocks, whose displays are represented by the variables x and y. (The two clocks are not synchronized and are completely independent of one another.) We can just define $TwoClocks$ to be the conjunction of the two clock specifications:

$$TwoClocks \triangleq (x \in 1..12) \land \Box [HCN(x)]_x$$
$$\land (y \in 1..12) \land \Box [HCN(y)]_y$$

The following calculation shows how we can rewrite $TwoClocks$ in the usual form as a “monolithic” specification with a single next-state action:¹

$TwoClocks$

$$\equiv (x \in 1..12) \land (y \in 1..12)$$
$$\land \Box [HCN(x)]_x \land \Box [HCN(y)]_y$$

$$\equiv (x \in 1..12) \land (y \in 1..12)$$
$$\land \Box (HCN(x) \lor x' = x)$$
$$\land \Box (HCN(y) \lor y' = y)$$

¹This calculation is informal because it contains formulas that are not legal TLA—namely, ones of the form $\Box A$ where A is an action that doesn’t have the syntactic form $[B]_x$. However, it can be done rigorously.
10.1. Composing Two Specifications

\[\equiv \land (x \in 1 \ldots 12) \land (y \in 1 \ldots 12) \]
\[\land \Box (\lor HCN(x) \land HCN(y)) \]
\[\lor HCN(x) \land (y' = y) \]
\[\lor HCN(y) \land (x' = x) \]
\[\lor (x' = x) \land (y' = y) \]

Because:

\[\left(\land \lor A_1 \right) \]
\[\lor A_2 \]
\[\lor B_1 \]
\[\lor B_2 \]

\[\equiv \land (x \in 1 \ldots 12) \land (y \in 1 \ldots 12) \]
\[\land \Box [\lor HCN(x) \land HCN(y)] \]
\[\lor HCN(x) \land (y' = y) \]
\[\lor HCN(y) \land (x' = x) \]

By definition of \([\ldots]_{x,y}\).

Thus, TwoClocks is equivalent to \(Init \land \Box[TCNxt]_{x,y}\) where the next-state action \(TCnxt\) is:

\[TCnxt \triangleq \lor HCN(x) \land HCN(y) \]
\[\lor HCN(x) \land (y' = y) \]
\[\lor HCN(y) \land (x' = x) \]

This next-state action differs from the ones we are used to writing because of the disjunct \(HCN(x) \land HCN(y)\), which represents the simultaneous advance of the two displays. In the specifications we have written so far, different components never act simultaneously.

Up until now, we have been writing what are called *interleaving* specifications. In an interleaving specification, each step represents an operation of only one component. For example, in our FIFO specification, a (nonstuttering) step represents an action of either the sender, the buffer, or the receiver. For want of a better term, we describe as *noninterleaving* a specification that, like TwoClocks, does permit simultaneous actions by two components.

Suppose we want to write an interleaving specification of the two-clock system as the conjunction of two component specifications. One way is to replace the next-state actions \(HCN(x)\) and \(HCN(y)\) of the two components by two actions \(HCNx\) and \(HCNy\) so that, when we perform the analogous calculation to the one above, we get

\[\land (x \in 1 \ldots 12) \land \Box[HCNx]_x \]
\[\land (y \in 1 \ldots 12) \land \Box[HCNy]_y \equiv \left(\land (x \in 1 \ldots 12) \land (y \in 1 \ldots 12) \right) \]
\[\land \Box [\lor HCNx \land (y' = y)] \]
\[\lor HCNy \land (x' = x) \]. \]

From the calculation above, we see that this equivalence holds if the following three conditions are satisfied: (i) \(HCNx\) implies \(HCN(x)\), (ii) \(HCNy\) implies \(HCN(y)\), and (iii) \(HCNx \land HCNy\) implies \(x' = x\) or \(y' = y\). (Condition (iii) implies that the disjunct \(HCNx \land HCNy\) of the next-state relation is subsumed by one of the disjuncts \(HCNx \land (y' = y)\) and \(HCNy \land (x' = x)\).) The common
way of satisfying these conditions is to let the next-state relation of each clock assert that the other clock’s display is unchanged. We do this by defining:

\[HCNx \triangleq HCN(x) \land (y' = y) \quad HCNy \triangleq HCN(y) \land (x' = x) \]

Another way to write an interleaving specification is simply to disallow simultaneous changes to both clock displays. We can do this by taking as our specification the formula:

\[\text{TwoClocks} \land \Box[(x' = x) \lor (y' = y)](x, y) \]

The second conjunct asserts that any step must leave \(x \) or \(y \) (or both) unchanged.

Everything we have done for the two-clock system generalizes to any system comprising two components. The same calculation as above shows that if

\[(v_1' = v_1) \land (v_2' = v_2) \equiv (v' = v) \]

This asserts that \(v \) is unchanged iff both \(v_1 \) and \(v_2 \) are.

then

\[
(10.1) \quad \left(\land I_1 \land \Box[N_1]_{v_1} \land I_2 \land \Box[N_2]_{v_2} \right) \equiv \left(\land I_1 \land I_2 \land \Box \left(\lor N_1 \land N_2 \lor N_1 \land (v_2' = v_2) \lor N_2 \land (v_1' = v_1) \right) \right)
\]

for any state predicates \(I_1 \) and \(I_2 \) and any actions \(N_1 \) and \(N_2 \). The left-hand side of this equivalence represents the composition of two component specifications if \(v_k \) is a tuple containing the variables that describe the \(k^{th} \) component, for \(k = 1, 2 \), and \(v \) is the tuple of all the variables.

The equivalent formulas in (10.1) represent an interleaving specification if the first disjunct in the next-state action of the right-hand side is redundant, so it can be removed. This is the case if \(N_1 \land N_2 \) implies that \(v_1 \) or \(v_2 \) is unchanged. The usual way to ensure that this condition is satisfied is by defining each \(N_k \) so it implies that the other component’s tuple is left unchanged. Another way to obtain an interleaving specification by conjoining the formula \(\Box[(v_1' = v_1) \lor (v_2' = v_2)]_v \).

10.2 Composing Many Specifications

We can generalize (10.1) to the composition of any set \(C \) of components. Because universal quantification generalizes conjunction, the following rule is a generalization of (10.1):

Composition Rule For any set \(C \), if

\[(\forall k \in C : v_k' = v_k) \equiv (v' = v) \]

This asserts that \(v \) is unchanged iff all the \(v_k \) are.
then

\[(\forall k \in C : I_k \land \square[N_k]v_k) \equiv \]
\[\land \forall k \in C : I_k \land \square \left[\bigvee \exists k \in C : N_k \land (\forall i \in C \setminus \{k\} : v_i' = v_i) \right] \]

for some action \(F_{ij}\).

The disjunct containing \(F_{ij}\) is redundant, and we have an interleaving specification, if \(N_i \land N_j\) implies that \(v_i\) or \(v_j\) is unchanged, for all \(i\) and \(j\) in \(C\) with \(i \neq j\). Typically, this is made true by letting each \(N_k\) imply that \(v_j\) is unchanged for all \(j\) in \(C\) other than \(k\). However, that means that \(N_k\) must mention \(v_j\) for components \(j\) other than \(k\). You might object to this approach—either on philosophical grounds, because you feel that the specification of one component should not mention the state of another component, or because mentioning other component’s variables complicates the component’s specification. An alternative approach is simply to assert interleaving. You can do this by conjoining the following formula, which states that no step changes both \(v_i\) and \(v_j\), for any \(i\) and \(j\) with \(i \neq j\):

\[\square[\exists k \in C : \forall i \in C \setminus \{k\} : v_i' = v_i]_v\]

This conjunct can be viewed as a global condition, not attached to any component’s specification.

For the left-hand side of the conclusion of the Composition Rule to represent the composition of separate components, the \(v_k\) need not be composed of separate variables. They could contain different “parts” of the same variable that describe different components. For example, our system might consist of a set \(\text{Clock}\) of separate, independent clocks, where clock \(k\)’s display is described by the value of \(hr[k]\). Then \(v_k\) would equal \(hr[k]\). It’s easy to specify such an array of clocks as a composition. Using the definition of \(HCN\) on page 124 above, we can write the specification as:

\[(10.2) \text{ClockArray} \triangleq \forall k \in \text{Clock} : (hr[k] \in 1 \ldots 12) \land \square[HCN(hr[k])]_{hr[k]}\]

This is a noninterleaving specification, since it allows simultaneous steps by different clocks.

Suppose we wanted to use the Composition Rule to express \(\text{ClockArray}\) as a monolithic specification. What would we substitute for \(v\)? Our first thought is to substitute \(hr\) for \(v\). However, the hypothesis of the rule requires that \(v\) must be left unchanged iff \(hr[k]\) is left unchanged, for all \(k \in \text{Clock}\). However, as explained in Section 6.5 on page 71, specifying the values of \(hr[k]'\) for all
$k \in \text{Clock}$ does not specify the value of hr. It doesn’t even imply that hr is a function. We must substitute for v the function $hrfcn$ defined by

$\text{(10.3) } hrfcn \triangleq [k \in \text{Clock} \mapsto hr[k]]$

This function equals hr iff hr is a function with domain Clock. Formula $\Box \text{isArray}(hr, \text{Clock})$ does not imply that hr is always a function. It specifies the possible values of $hr[k]$, for all $k \in \text{Clock}$, but it does not specify the value of hr. Even if we changed the initial condition to imply that hr is initially a function with domain Clock, formula $\Box \text{isArray}(hr, \text{Clock})$ allows arbitrary steps that leave each $hr[k]$ unchanged, but which can change hr in unknown ways.

We might prefer to write a specification in which hr is a function with domain Clock. (For example, some tool might require that the value of hr be completely specified.) One way of doing this is to conjoin to the specification the formula $\Box \text{IsFcnOn}(hr, \text{Clock})$, where $\text{IsFcnOn}(hr, \text{Clock})$ asserts that hr is an arbitrary function with domain Clock. The operator $\Box \text{IsFcnOn}$ is defined by

$\Box \text{IsFcnOn}(f, S) \triangleq f = [x \in S \mapsto f[x]]$

We can view the formula $\Box \text{IsFcnOn}(hr, \text{Clock})$ as a global constraint on hr, while the value of $hr[k]$ for each component k is described by that component’s specification.

Now suppose we want to write an interleaving specification of the array of clocks, again as the composition of specifications of the individual clocks. In general, for the conjunction in the Composition Rule to be an interleaving specification, $N_i \land N_j$ should imply that v_i or v_j is unchanged. We can do this by letting the next-state relation N_k of clock k imply that $hr[i]$ is unchanged for every clock i other than k. The most obvious way to do this is to define N_k to equal:

$\land hr'[k] = (hr[k] \% 12) + 1$

$\land \forall i \in \text{Clock} \setminus \{k\} : hr'[i] = hr[i]$

We can express this formula more compactly using the EXCEPT construct. This construct applies only to functions, so we must choose whether or not to require hr to be a function. If hr is a function, then we can let N_k equal

$hr' = [hr \text{ EXCEPT } ![k] = (hr[k] \% 12) + 1]$

As noted above, we can ensure that hr is a function by conjoining the formula $\Box \text{IsFcnOn}(hr, \text{Clock})$ to the specification. Another way is to define the state function $hrfcn$ by (10.3) on this page and let $N(k)$ equal

$hrFcn' = [hrFcn \text{ EXCEPT } ![k] = (hr[k] \% 12) + 1]$

As we’ve seen before, a specification is just a mathematical formula, and there are often many equivalent ways to write a formula. Which one you choose is usually a matter of taste.
10.3 The FIFO

Let’s now specify the FIFO, described in Chapter 4, as the composition of its three components—the Sender, the Buffer, and the Receiver. We start with the internal specification, in which the variable q occurs—that is, q is not hidden. First, we decide what part of the state describes each component. The variables in and out are channels. Recall that the Channel module (page 30) specifies a channel $chan$ to be a record with val, rdy, and ack components. The Send action, which sends a value, modifies the val and rdy components; the Rcv action, which receives a value, modifies the ack component. So, the components’ states are described by the following state functions:

- **Sender:** $(in.val, in.rdy)$
- **Buffer:** $(in.ack, q, out.val, out.rdy)$
- **Receiver:** $out.ack$

Unfortunately, we can’t reuse the definitions from the InnerFIFO module on page 38 for the following reason. The variable q, which is hidden in the final specification, is part of the Buffer component’s internal state. Therefore, it should not appear in the specifications of the Sender or Receiver component. The Sender and Receiver actions defined in the InnerFIFO module all mention q, so we can’t use them. We therefore won’t bother reusing that module. However, instead of starting completely from scratch, we can make use of the of the Send and Rcv actions from the Channel module on page 30 to describe the changes to in and out.

Let’s write a noninterleaving specification. The next-state actions of the components are then the same as the corresponding disjuncts of the Next action in module InnerFIFO, except that they do not mention the parts of the states belonging to the other components. These contain Send and Rcv actions, instantiated from the Channel module, which use the EXCEPT construct. As noted above, we can apply EXCEPT only to functions—and to records, which are functions. We therefore add to our specification the conjunct

$$\Box (\text{IsChannel}(in) \land \text{IsChannel}(out))$$

where $\text{IsChannel}(c)$ asserts that c is a channel—that is a record with val, ack, and rdy fields. Since a record with val, ack, and rdy fields is a function whose domain is \{“val”, “ack”, “rdy”\}, we can define $\text{IsChannel}(c)$ to equal $\text{IsFcnOn}(c, \{“val”, “ack”, “rdy”\})$. However, it’s just as easy to define $\text{IsChannel}(c)$ directly by

$$\text{IsChannel}(c) \triangleq c = [\text{ack} \mapsto c.ack, \text{val} \mapsto c.val, \text{rdy} \mapsto c.rdy]$$

In writing this specification, we face the same problem as in our original FIFO specification of introducing the variable q and then hiding it. In Chapter 4, we
solved this problem by introducing q in a separate InnerFIFO module, which is instantiated by the FIFO module that defines the final specification. We do essentially the same thing here, except that we introduce q in a submodule instead of in a completely separate module. All the symbols declared and defined at the point where the submodule appears can be used within it. The submodule itself can be instantiated in the containing module anywhere after it appears. (Submodules are used in the RealTimeHourClock and RTMemory specifications on pages 109 and 113 of Chapter 9.)

There is one small problem to be solved before we can write a composite specification of the FIFO—how to specify the initial predicates. It makes sense for the initial predicate of each component’s specification to specify the initial values of its part of the state. However the initial condition includes the requirements $\text{in.ack} = \text{in.rdy}$ and $\text{out.ack} = \text{out.rdy}$, each of which relates the initial states of two different components. (These requirements are stated in module InnerFIFO by the conjuncts InChan!Init and OutChan!Init of the initial predicate Init.) There are three ways of expressing a requirement that relates the initial states of multiple components:

- Assert it in the initial conditions of all the components. Although symmetric, this seems needlessly redundant.
- Arbitrarily assign the requirement to one of the components. This intuitively suggests that we are assigning to that component the responsibility of ensuring that the requirement is met.
- Assert the requirement as a conjunct separate from either of the component specifications. This intuitively suggests that it is an assumption about how the components are put together, rather than a requirement of either component.

When we write an open-system specification, as described in Section 10.7 below, the intuitive suggestions of the last two approaches can be turned into formal requirements. I’ve taken the last approach and added

$$\text{(in.ack} = \text{in.rdy}) \land (\text{out.ack} = \text{out.rdy})$$

as a separate condition. The complete specification is in module CompositeFIFO of Figure 10.1 on the next page. Formula Spec of this module is a noninterleaving specification; for example, it allows a single step that is both an InChan!Send step (the sender sends a value) and an OutChan!Recv step (the receiver acknowledges a value). Hence, it is not equivalent to the interleaving specification Spec of the FIFO module on page 41, which does not allow such a step.
10.3. THE FIFO

MODULE CompositeFIFO

EXTENDS Naturals, Sequences

CONSTANT Message

VARIABLES in, out

InChan △ INSTANCE Channel WITH Data ← Message, chan ← in
OutChan △ INSTANCE Channel WITH Data ← Message, chan ← out

SenderInit △ (in.rdy ∈ Boolean) ∧ (in.val ∈ Message)
Sender △ SenderInit ∧ □[∃ msg ∈ Message : InChan!Send(msg)](in.val, in.rdy)

SenderInit △ INSTANCE Channel WITH Data ← Message, chan ← in
OutChan △ INSTANCE Channel WITH Data ← Message, chan ← out

Sender △ SenderInit ∧ □[∃ msg ∈ Message : InChan!Send(msg)](in.val, in.rdy)

The Sender’s specification.

MODULE InnerBuf

VARIABLE q

BufferInit △ ∧ in.ack ∈ Boolean
∧ q = ()
∧ (out.rdy ∈ Boolean) ∧ (out.val ∈ Message)

BufRcv △ ∧ InChan!Rcv
∧ q’ = Append(q, in.val)
∧ UNCHANGED (out.val, out.rdy)

BufSend △ ∧ q ≠ ()
∧ OutChan!Send(Head(q))
∧ q’ = Tail(q)
∧ UNCHANGED in.ack

InnerBuffer △ BufferInit ∧ □[BufRcv ∨ BufSend](in.ack, q, out.val, out.rdy)

Buf(q) △ INSTANCE InnerBuf

Buffer △ ∃ q : Buf(q)!InnerBuffer

RecevierInit △ out.ack ∈ Boolean
Recevier △ RecevierInit ∧ □[OutChan!Rcv](in.val, in.rdy)

IsChannel(c) △ c = [ack ← c.ack, val ← c.val, rdy ← c.rdy]

Spec △ ∧ □(IsChannel(in) ∧ IsChannel(out))
∧ (in.ack = in.rdy) ∧ (out.ack = out.rdy)
∧ Sender ∧ Buffer ∧ Recevier

The Buffer’s internal specification, with q visible.

The buffer’s external specification
with q hidden.

The Receiver’s specification.

Figure 10.1: A noninterleaving composite specification of the FIFO.
10.4 Composition with Shared State

Thus far, we have been considering disjoint-state compositions—ones in which the components are represented by disjoint parts of the state, and a component’s next-state action describes changes only to its part of the state.\(^2\) We now consider the case when this may not be possible.

10.4.1 Explicit State Changes

We first examine the situation in which some part of the state cannot be partitioned among the different components, but the state change that each component performs is completely described by the specification. As an example, let’s again consider a Sender and a Receiver that communicate with a FIFO buffer. In the system we studied in Chapter 4, sending or receiving a value required two steps. For example, the Sender executes a \textit{Send} step to send a value, and it must then wait until the buffer executes a \textit{Rcv} step before it can send another value. We simplify the system by replacing the Buffer component with a variable \textit{buf} whose value is the sequence of values sent by the Sender but not yet received by the Receiver. This replaces the three-component system pictured on page 35 with this two-component one:

![System Diagram](Note: The diagram is not displayed here as it is not rendered in the text. It shows a Sender and a Receiver connected by a variable \textit{buf}.

The Sender sends a value by appending it to the end of \textit{buf}; the Receiver receives a value by removing it from the head of \textit{buf}.

In general, the Sender performs some computation to produce the values that it sends, and the Receiver does some computation on the values that it receives. The system state consists of \textit{buf} and two tuples \(s\) and \(r\) of variables that describe the Sender and Receiver states. In a monolithic specification, the system’s next-state action is a disjunction \(Sndr \lor Rcvr\), where \(Sndr\) and \(Rcvr\) describe steps taken by the Sender and Receiver, respectively. These actions are

\(^2\)In an interleaving composition, a component specification may assert that the state of other components is \textit{not} changed.
defined by
\[
\begin{align*}
Sndr & \triangleq \forall \wedge buf' = Append(buf, \ldots) \wedge SComm \\
& \wedge \text{UNCHANGED } r \\
& \lor \wedge SCompute \\
& \wedge \text{UNCHANGED } \langle buf, r \rangle \\
Rcvr & \triangleq \forall \wedge \text{buf' } = \langle \rangle \\
& \wedge \text{UNCHANGED } s \\
& \lor \wedge RCompute \\
& \wedge \text{UNCHANGED } \langle buf, s \rangle \\
\end{align*}
\]
for some actions \(SComm, SCompute, RComm,\) and \(RCompute\). For simplicity, we assume that neither \(Sndr\) nor \(Rcvr\) allows stuttering actions, so \(SCompute\) changes \(s\) and \(RCompute\) changes \(r\). We now write the specification as the composition of separate specifications of the Sender and Receiver.

Splitting the initial predicate is straightforward. The initial conditions on \(s\) belong to the Sender’s initial predicate; those on \(r\) belong to the Receiver’s initial predicate; and the initial condition \(buf = \langle \rangle\) can be assigned arbitrarily to either of them.

Now let’s consider the next-state actions \(NS\) and \(NR\) of the Sender and Receiver components. The trick is to define them by
\[
\begin{align*}
NS & \triangleq Sndr \lor (\sigma \land (s' = s)) \\
NR & \triangleq Rcvr \lor (\rho \land (r' = r))
\end{align*}
\]
where \(\sigma\) and \(\rho\) are actions containing only the variable \(buf\). Think of \(\sigma\) as describing possible changes to \(buf\) that are not caused by the Sender, and \(\rho\) as describing possible changes to \(buf\) that are not caused by the Receiver. Thus, \(NS\) permits any step that is either a \(Sndr\) step or one that leaves \(s\) unchanged and is a change to \(buf\) that can’t be “blamed” on the Sender.

Suppose \(\sigma\) and \(\rho\) satisfy the following three conditions:
\begin{itemize}
 \item \(\forall d : (buf' = Append(buf, d)) \Rightarrow \rho\)
 A step that appends a value to \(buf\) is not caused by the Receiver.
 \item \((buf \neq \langle \rangle) \land (buf' = \text{Tail}(buf)) \Rightarrow \sigma\)
 A step that removes a value from the head of \(buf\) is not caused by the Sender.
 \item \((\sigma \land \rho) \Rightarrow (buf' = buf)\)
 A step that is caused by neither the Sender nor the Receiver cannot change \(buf\).
\end{itemize}

Using the relation\(^3\)
\[
(buf' = Append(buf, \ldots)) \land (buf \neq \langle \rangle) \land (buf' = \text{Tail}(buf)) \equiv \text{FALSE}
\]
\(^3\)This relation is valid only if \(buf\) is a sequence. A rigorous calculation requires the use of an invariant to assert that \(buf\) is indeed a sequence.
a computation like the one by which we derived (10.1) shows

\[\square[NS](buf,s) \land \square[NR](buf,r) \equiv \square[Sn\text{dr} \lor R\text{cvr}](buf,s,r) \]

Thus, NS and NR are suitable next-state relations for the components, if we choose \(\sigma\) and \(\rho\) to satisfy the three conditions above. There is considerable freedom in that choice. The strongest possible choices of \(\sigma\) and \(\rho\) are ones that describe exactly the changes permitted by the other component:

\[
\begin{align*}
\sigma & \triangleq (buf \neq \langle \rangle) \land (buf' = \text{Tail}(buf)) \\
\rho & \triangleq \exists d : buf' = \text{Append}(buf, d)
\end{align*}
\]

We can weaken these definitions any way we want, so long as we maintain the condition that \(\sigma \land \rho\) implies that \(buf\) is unchanged. For example, we can define \(\sigma\) as above and let \(\rho\) equal \(-\sigma\). The choice is a matter of taste.

I’ve been describing an interleaving specification of the Sender/Receiver system. Now let’s consider a noninterleaving specification—one that allows steps in which both the Sender and the Receiver are computing. In other words, we want the specification to allow \(S\text{Compute} \land R\text{Compute}\) steps that leave \(buf\) unchanged. Let \(SS\text{ndr}\) be the action that is the same as \(Sn\text{dr}\) except it doesn’t mention \(r\), and let \(RR\text{cvr}\) be defined analogously. Then we have:

\[
\begin{align*}
Sn\text{dr} & \equiv SS\text{ndr} \land (r' = r) \\
R\text{cvr} & \equiv RR\text{cvr} \land (s' = s)
\end{align*}
\]

A monolithic noninterleaving specification has the next-state relation

\[Sn\text{dr} \lor R\text{cvr} \lor (SS\text{ndr} \land SR\text{cvr} \land (buf' = buf)) \]

It is the conjunction of component specifications having the next-state relations \(NS\) and \(NR\) defined by

\[
\begin{align*}
NS & \triangleq SS\text{ndr} \lor (\sigma \land (s' = s)) \\
NR & \triangleq RR\text{cvr} \lor (\rho \land (r' = r))
\end{align*}
\]

where \(\sigma\) and \(\rho\) are as above.

This two-process situation generalizes to the composition of any set \(C\) of components that share a variable or tuple of variables \(w\). The interleaving case generalizes to the following rule, in which \(N_k\) is the next-state action of component \(k\), the action \(\mu_k\) describes all changes to \(w\) that are attributed to some component other than \(k\), the tuple \(v_k\) describes the private state of \(k\), and \(v\) is the tuple formed by all the \(v_k\).

Shared-State Composition Rule The four conditions

1. \((\forall k \in C : v_k' = v_k) \equiv (v' = v)\)

 \(v\) is unchanged iff the private state \(v_k\) of every component is unchanged.

2. \(\forall i, k \in C : N_k \land (i \neq k) \Rightarrow (v_i' = v_i)\)

 The next-state action of any component \(k\) leaves the private state \(v_i\) of all other components \(i\) unchanged.
3. \(\forall i, k \in C : N_k \land (w' \neq w) \land (i \neq k) \Rightarrow \mu_i \)

A step of any component \(k \) that changes \(w \) is a \(\mu_i \) step, for any other component \(i \).

4. \((\forall k \in C : \mu_k) \Rightarrow (w' = w) \)

A step that is caused by no component does not change \(w \).

implies

\[
(\forall k \in C : I_k \land \Box[N_k \lor (\mu_k \land (v_{k'} = v_k))])_{(w, v_k)}
\]

\[
\equiv (\forall k \in C : I_k) \land \Box[\exists k \in C : N_k]_{(w, v)}
\]

Assumption 2 asserts that we have an interleaving specification. If we drop that assumption, then the right-hand side of the conclusion may not be a sensible specification, since a disjunct \(N_k \) may allow steps in which a variable of some other component assumes arbitrary values. However, if each \(N_k \) correctly determines the new values of component \(k \)'s private state \(v_k \), then the left-hand side will be a reasonable specification, though possibly a noninterleaving one (and not necessarily equivalent to the right-hand side).

10.4.2 Composition with Joint Actions

Consider the linearizable memory of Chapter 5. As shown in the picture on page 45, it is a system consisting of a collection of processors, a memory, and an interface represented by the variable \(\text{memInt} \). We take it to be a two-component system, where the set of processors forms one component, called the environment, and the memory is the other component. Let’s neglect hiding for now and consider only the internal specification, with all variables visible. We want to write the specification in the form

\[
(10.5) (IE \land \Box[NE]_{vE}) \land (IM \land \Box[NM]_{vM})
\]

where \(E \) refers to the environment component (the processors) and \(M \) to the memory component. The tuple \(vE \) of variables includes \(\text{memInt} \) and the variables of the environment component; the tuple \(vM \) includes \(\text{memInt} \) and the variables of the memory component. We must choose the formulas \(IE \), \(NE \), etc. so that (10.5), with internal variables hidden, is equivalent to the memory specification \(\text{Spec} \) of module \(\text{Memory} \) on page 53.

In the memory specification, communication between the environment and the memory is described by an action of the form

\[
\text{Send}(p, d, \text{memInt}, \text{memInt}') \quad \text{or} \quad \text{Reply}(p, d, \text{memInt}, \text{memInt}')
\]

where \(\text{Send} \) and \(\text{Reply} \) are unspecified operators declared in the \(\text{MemoryInterface} \) module (page 48). The specification says nothing about the actual value of
memInt. So, not only do we not know how to split memInt into two parts that are each changed by only one of the components, we don’t even know exactly how memInt changes.

The trick to writing the specification as a composition is to put the Send and Reply actions in the next-state relations of both components. We represent the sending of a value over memInt as a joint action performed by both the memory and the environment. The next-state relations have the following form:

\[NM \triangleq \exists p \in \text{Proc} : \text{MReq}(p) \lor \text{MRsp}(p) \lor \text{MInternal}(p) \]
\[NE \triangleq \exists p \in \text{Proc} : \text{EReq}(p) \lor \text{ERsp}(p) \]

where an MReq\((p)\) \& EReq\((p)\) step represents the sending of a request by processor \(p\) (part of the environment) to the memory, an MRsp\((p)\) \& ERsp\((p)\) step represents the sending of a reply by the memory to processor \(p\), and an MInternal\((p)\) step is an internal step of the memory component that performs the request. (There are no internal steps of the environment.)

The sending of a reply is controlled by the memory, which chooses what value is sent and when it is sent. The enabling condition and the value sent are therefore specified by the MRsp\((p)\) action. Let’s take the internal variables of the memory component to be the same variables \(\text{mem}, \text{ctl},\) and \(\text{buf}\) as in the internal monolithic memory specification of module InternalMemory on pages 52 and 53. We can then let MRsp\((p)\) be the same as the action \(\text{Rsp}(p)\) defined in that module. The ERsp\((p)\) action should always be enabled, and it should allow any legal response to be sent. A legal response is an element of \(\text{Val}\) or the special value \(\text{NoVal}\), so we can define ERsp\((p)\) to equal:

\[\land \exists \text{rsp} \in \text{Val} \cup \{\text{NoVal}\} : \text{Reply}(p, \text{rsp}, \text{memInt}, \text{memInt}') \land \ldots \]

where the “…” describes the new values of the environment’s internal variables.

The sending of a request is controlled by the environment, which chooses what value is sent and when it is sent. Hence, the enabling condition should be part of the EReq\((p)\) action. In the monolithic specification of the InternalMemory module, that enabling condition was \(\text{ctl}[p] = \text{rdy}\). However, if \(\text{ctl}\) is an internal variable of the memory, it can’t also appear in the environment specification. We therefore have to add a new variable whose value indicates whether a processor is allowed to send a new request. Let’s use a Boolean variable \(\text{rdy}\), where \(\text{rdy}[p]\) is true iff processor \(p\) can send a request. The value of \(\text{rdy}[p]\) is set false when \(p\) sends a request and is set true again when the corresponding response to \(p\) is sent. We can therefore define EReq\((p)\), and

\[4\text{The bound on the } \exists \text{ isn’t necessary. We can let the processor accept any value, not just a legal one, by taking } \exists \text{rsp} : \text{Reply}(p, \text{rsp}, \text{memInt}, \text{memInt}') \text{ as the first conjunct. However, it’s generally better to use bounded quantifiers when possible.}\]
complete the definition of \(\text{ERsp}(p) \), as follows:

\[
\text{EReq}(p) \triangleq \land \ rdy[p] \\
\quad \land \ \exists \ req \in \text{MReq} : \text{Send}(p, \ req, \ \text{memInt}, \ \text{memInt'}) \\
\quad \land \ rdy' = [\ rdy \ \text{EXCEPT} \ ![p] = \text{FALSE}] \\
\text{ERsp}(p) \triangleq \land \ \exists \ \text{rsp} \in \text{Val} \cup \{\text{NoVal}\} : \text{Reply}(p, \ \text{rsp}, \ \text{memInt}, \ \text{memInt'}) \\
\quad \land \ rdy' = [\ rdy \ \text{EXCEPT} \ ![p] = \text{TRUE}]
\]

The memory’s \(\text{MReq}(p) \) action is the same as the \(\text{Req}(p) \) action of the \text{InternalMemory} module, except without the enabling condition \(\text{ctl}[p] = \text{rdy} \).

Finally, the memory’s internal action \(\text{MInternal}(p) \) is the same as the \(\text{Do}(p) \) action of the \text{InternalMemory} module.

The rest of the specification is easy. The tuples \(\nu E \) and \(\nu M \) are \(\langle \text{memInt}, \ rdy \rangle \) and \(\langle \text{memInt}, \ \text{mem}, \ \text{ctl}, \ \text{buf} \rangle \), respectively. Defining the initial predicates \(IE \) and \(IM \) is straightforward, except for the decision of where to put the initial condition \(\text{memInt} \in \text{InitMemInt} \) for \(\text{memInt} \). We can put it in either \(IE \) or \(IM \), in both, or else in a separate conjunct that belongs to neither component’s specification. Let’s put it in \(IM \), which then equals the initial predicate \(IInit \) from the \text{InternalMemory} module. The final environment specification is obtained by hiding \(rdy \) in its internal specification; the final memory component specification is obtained by hiding \(\text{mem}, \ \text{ctl}, \) and \(\text{buf} \) in its internal specification. The complete specification appears in Figure 10.2 on the next page. I have not bothered to define \(IM \), \(\text{MRsp}(p) \), or \(\text{MInternal}(p) \), since they equal \(IInit \), \(\text{Rsp}(p) \), and \(\text{Do}(p) \) from the \text{InternalMemory} module, respectively.

What we’ve just done for the environment-memory system generalizes naturally to joint-action specifications of any two-component system in which part of the state cannot be considered to belong to either component. It also generalizes to systems in which any number of components share some part of the state. For example, suppose we want to write a composite specification of the linerizable memory system in which each processor is a separate component. The specification of the memory component would be the same as before. The next-state relation of processor \(p \) now be

\[
\text{EReq}(p) \lor \text{ERsp}(p) \lor \text{OtherProc}(p)
\]

where \(\text{EReq}(p) \) and \(\text{ERsp}(p) \) are the same as above, and an \(\text{OtherProc}(p) \) step represents the sending of a request by, or a response to, some processor other than \(q \). Action \(\text{OtherProc}(p) \) represents \(p \)’s participation in the joint action by which another processor \(q \) communicates with the memory component. It is defined to equal:

\[
\exists q \in \text{Proc} \setminus \{p\} : \lor \exists \ req \in \text{MReq} : \text{Send}(p, \ req, \ \text{memInt}, \ \text{memInt'}) \\
\quad \lor \exists \ \text{rsp} \in \text{Val} \cup \{\text{NoVal}\} : \text{Reply}(q, \ \text{rsp}, \ \text{memInt}, \ \text{memInt'})
\]

This example is rather silly because each processor must participate in communication actions that concern only other components. It would be better to
change the interface to make memInt an array, with communication between processor p and the memory represented by a change to memInt[p]. A sensible example would require that a joint action represent a true interaction between all the components—for example, a barrier synchronization operation in which the components wait until they are all ready and then perform a synchronization step together.
10.5 A Brief Review

The basic idea of composing specifications is simple: a composite specification is the conjunction of formulas, each of which can be considered to be the specification of a separate component. I have presented several techniques for writing a specification as a composition. Before going further, let’s put these techniques in perspective.

10.5.1 A Taxonomy of Composition

I have introduced three different ways of categorizing composite specifications:

Interleaving versus noninterleaving. An interleaving specification is one in which each (nonstuttering) step can be attributed to exactly one component. A noninterleaving specification allows steps that represent simultaneous operations of two or more different components.

Disjoint-state versus shared-state. A disjoint-state specification is one in which the state can be partitioned, with each part belonging to a separate component. A part of the state can be a variable \(v \), or a “piece” of that variable such as \(v.c \) or \(v[c] \) for some fixed \(c \). Any change to a component’s part of the state is attributed to that component. In a shared-state specification, some part of the state can be changed by steps attributed to more than one component.

Joint-action versus separate-action. A joint-action specification is a noninterleaving one in which some step attributed to one component must occur simultaneously with a step attributed to another component. A separate-action specification is simply one that is not a joint-action specification.

These categories are orthogonal, except that a joint-action specification must be noninterleaving.

10.5.2 Interleaving Reconsidered

Should we write interleaving or noninterleaving specifications? We might try to answer this question by asking, can different components really take simultaneous steps? However, this question makes no sense. A step is a mathematical abstraction; real components perform operations that take a finite amount of time. Operations performed by two different components could overlap in time. We are free to represent this physical situation either with a single simultaneous step of the two components, or with two separate steps. In the latter case, the specification usually allows the two steps to occur in either order. (If the two
operations must occur simultaneously, then we have written a joint-action specification.) It’s up to you whether to write an interleaving or a noninterleaving specification. You should choose whichever is more convenient.

The choice is not completely arbitrary if you want one specification to implement another. A noninterleaving specification will not, in general, implement an interleaving one because the noninterleaving specification will allow simultaneous actions that the interleaving specification prohibits. So, if you want to write a low-level specification that implements a high-level interleaving specification, then you’ll have to use an interleaving specification. As we’ve seen, it’s easy to turn a noninterleaving specification into an interleaving one by conjoining an interleaving assumption.

10.5.3 Joint Actions Reconsidered

The reason for writing a composite specification is to separate the specifications of the different components. The mixing of actions from different components in a joint-action specification destroys this separation. So, why should we write such a specification?

Joint-action specifications arise most often in highly abstract descriptions of inter-component communication. In writing a composite specification of the linearizable memory, we were led to use joint actions because of the abstract nature of the interface. In real systems, communication occurs when one component changes the state and another component later observes that change. The interface described by the MemoryInterface module abstracts away those two steps, replacing them with a single one that represents instantaneous communication—a fiction that does not exist in the real world. Since each component must remember that the communication has occurred, the single communication step has to change the private state of both components. That’s why we couldn’t use the approach of Section 10.4.1, which requires that any change to the shared interface change the nonshared state of just one component.

The abstract memory interface simplifies the specification, allowing communication to be represented as one step instead of two. But this simplification comes at the cost of blurring the distinction between the two components. If we blur this distinction, it may not make sense to write the specification as the conjunction of separate component specifications. As the memory system example illustrates, decomposing the system into separate components communicating with joint actions may require the introduction of extra variables. There may occasionally be a good reason for adding this kind of complexity to a specification, but it should not be done as a matter of course.
10.6 Liveness and Hiding

10.6.1 Liveness and Machine Closure

Thus far, the discussion of composition has neglected liveness. In composite specifications, it is usually easy to specifying liveness by placing fairness conditions on the actions of individual components. For example, to specify an array of clocks that all keep ticking forever, we would modify the specification \(\text{ClockArray} \) of (10.2) on page 127 to equal:

\[
\forall k \in \text{Clock} : (hr[k] \in 1 \ldots 12) \land \Box[\text{HCN}(hr[k])]_{hr[k]} \land \text{WF}_{hr[k]}(\text{HCN}(hr[k]))
\]

When writing a weak or strong fairness formula for an action \(A \) of component \(c \), there arises the question of what the subscript should be. The obvious choices are (i) the tuple \(v \) describing the entire specification state, and (ii) the tuple \(v_c \) describing that component’s state.\(^5\) The choice matters only if the safety part of the specification allows the system to reach some state in which an \(A \) step could leave \(v_c \) unchanged while changing \(v \). In practice, this is seldom the case. If it is, we probably don’t want the fairness condition to be satisfied by a step that leaves the component’s state unchanged, so we would use the subscript \(v_c \).

Fairness conditions for composite specifications do raise one important question: if each component specification is machine closed, is the composite specification necessarily machine closed? Suppose we write the specification as \(\forall k \in C : S_k \land L_k \), where each pair \(S_k, L_k \) is machine closed. Let \(S \) be the conjunction of the \(S_k \) and \(L \) the conjunction of the \(L_k \), so the specification equals \(S \land L \). The conjunction of safety properties is a safety property,\(^6\) so \(S \) is a safety property. Hence, we can ask if the pair \(S, L \) is machine closed.

In general, \(S, L \) need not be machine closed. But, for an interleaving composition, it usually is. Liveness properties are usually expressed as the conjunction of weak and strong fairness properties of actions. As stated on page 101, a specification is machine closed if its liveness property is the conjunction of fairness properties for subactions of the next-state action. In an interleaving composition, each \(S_k \) usually has the form \(I_k \land \Box[N_k]_{v_k} \) where the \(v_k \) satisfy the hypothesis of the Composition Rule (page 126), and each \(N_k \) implies \(v'_i = v_i \), for all \(i \) in \(C \setminus \{k\} \). In this case, the Composition Rule implies that a subaction of \(N_k \) is also a subaction of the next-state relation of \(S \). Hence, if we write an interleaving composition in the usual way, and we write machine-closed component specifications in the usual way, then the composite specification is machine closed.

\(^5\)For a shared-state composition, the tuples \(v_c \) for different components need not be disjoint.

\(^6\)Recall that a safety property is one that is violated by a behavior if it is violated at some particular point in the behavior. A behavior violates a conjunction of safety properties \(S_k \) if it violates some particular \(S_k \), and that \(S_k \) is violated at some specific point.
It is not so easy to obtain a machine-closed noninterleaving composition—especially with a joint-action composition. We have actually seen an example of a joint-action specification in which each component is machine closed but the composition is not. In Chapter 9, we wrote a real-time specification by conjoining one or more \(RTBound \) formulas and an \(RTnow \) formula to an untimed specification. A pathological example was the following, which is formula (9.2) on page 119:

\[
HC \land RTBound(\text{hr}' = \text{hr} - 1, \text{hr}, 0, 3600) \land RTNow(\text{hr})
\]

We can view this formula as the conjunction of three component specifications:

1. \(HC \) specifies a clock, represented by the variable \(\text{hr} \).
2. \(RTBound(\text{hr}' = \text{hr} - 1, \text{hr}, 0, 3600) \) specifies a timer, represented by the hidden (existentially quantified) timer variable.
3. \(RTNow(\text{hr}) \) specifies the behavior of time, represented by the variable \(\text{now} \).

It’s a joint-action composition, with two kinds of joint actions:

- Joint actions of the first and second components that change both \(\text{hr} \) and the timer.
- Joint actions of the second and third components that change both the timer and \(\text{now} \).

The first two specifications are trivially machine closed because they assert no liveness condition, so their liveness property is \text{true}. The third specification’s safety property asserts that \(\text{now} \) is a real number that is changed only by steps that increment it and leave \(\text{hr} \) unchanged; its liveness property \(NZ \) asserts that \(\text{now} \) increases without bound. Any finite behavior satisfying the safety property can easily be extended to an infinite behavior satisfying the entire specification, so the third specification is also machine closed. However, as we observed in Section 9.4, the composite specification is nonZeno, meaning that it’s not machine closed.

10.6.2 Hiding

Suppose we can write a specification \(S \) as the composition of two component specifications \(S_1 \) and \(S_2 \). Can we write \(\exists h : S \), the specification \(S \) with variable \(h \) hidden, as a composition—that is, as the conjunction of two separate component specifications? If \(h \) represents state that is accessed by both components, then the answer is no. If the two components communicate through some part of the state, then that part of the state cannot be made internal to the separate components.
The simplest situation in which \(h \) doesn’t represent shared state is when it occurs in only one of the component specifications—say, \(S_2 \). If \(h \) doesn’t occur in \(S_1 \), then the equivalence

\[
(\exists h : S_1 \land S_2) \equiv S_1 \land (\exists h : S_2)
\]

provides the desired decomposition.

Now suppose that \(h \) occurs in both component specifications, but does not represent state accessed by both components. This can be the case only if different “parts” of \(h \) occur in the two component specifications. For example, \(h \) might be a record with components \(h.c_1 \) and \(h.c_2 \), where \(S_1 \) mentions only \(h.c_1 \) and \(S_2 \) mentions only \(h.c_2 \). In this case, we have

\[
(\exists h : S_1 \land S_2) \equiv (\exists h_1 : T_1) \land (\exists h_2 : T_2)
\]

Where \(T_1 \) is obtained from \(S_1 \) by substituting the variable \(h_1 \) for the expression \(h.c_1 \), and \(T_2 \) is defined similarly. Of course we can use any variables in place of \(h_1 \) and \(h_2 \); in particular, we can replace them both by the same variable.

We can generalize this result as follows to the composition of any finite number\(^7\) of components:

Compositional Hiding Rule If the variable \(h \) does not occur in the
formula \(T_i \), and \(S_i \) is obtained from \(T_i \) by substituting \(h[i] \) for \(q \), then

\[
(\exists h : \forall i \in C : S_i) \equiv (\forall i \in C : \exists q : T_i)
\]

for any finite set \(C \).

The assumption that \(h \) does not occur in \(T_i \) means that the variable \(h \) occurs in formula \(S_i \) only in the expression \(h[i] \). This in turn implies that the composition \(\forall i \in C : S_i \) does not determine the value of \(h \), just of its components \(h[i] \) for \(i \in C \). As noted in Section 10.2, we can make the composite specification determine the value of \(h \) by conjoining the formula \(\Box \text{IsFcnOn}(h, C) \) to it, where \(\text{IsFcnOn} \) is defined on page 128. After \(h \) is hidden, it makes no difference whether or not its value is determined. The hypotheses of the Compositional Hiding Rule imply:

\[
(\exists h : \Box \text{IsFcnOn}(h, C) \land \forall i \in C : S_i) \equiv (\forall i \in C : \exists q : T_i)
\]

Now consider the common case in which \(\forall i \in C : S_i \) is an interleaving composition, where each specification \(S_i \) describes changes to \(h[i] \) and asserts that steps of component \(i \) leave \(h[j] \) unchanged for \(j \neq i \). We cannot apply the Compositional Hiding Rule because \(S_i \) must mention other components of \(h \) besides \(h[i] \). For example, it probably contains an expression of the form

(10.6) \(h' = [h \text{ except } ![i] = \text{exp}] \)

\(^7\)The Compositional Hiding Rule is not true in general if \(C \) is an infinite set; but the examples in which it doesn’t hold are pathological and don’t arise in practice.
which mentions all of \(h \). However, we can transform \(S_i \) into a specification \(\widehat{S}_i \) that describes only the changes to \(h[i] \) and makes no assertions about other components. For example, we can replace (10.6) with \(h'[i] = \text{exp} \), and we can replace an assertion that \(h \) is unchanged by the assertion that \(h[i] \) is unchanged. The composition \(\forall i \in C : \widehat{S}_i \) will not be equivalent to \(\forall i \in C : S_i \). In particular, it need not be an interleaving composition, since it might allow steps that change two different components \(h[i] \) and \(h[j] \), while leaving all other variables unchanged. However, it can be shown that the two specifications are equivalent when \(h \) is hidden (assuming \(C \) is a finite set). So, we can apply the Composition Hiding Rule with \(S_i \) replaced by \(\widehat{S}_i \).

10.7 Open-System Specifications

A specification describes the interaction between a system and its environment. For example, the FIFO buffer specification of Chapter 4 specifies the interaction between the buffer (the system) and an environment consisting of the sender and receiver. So far, all the specifications we have written have been complete-system specifications, meaning that they are satisfied by a behavior that represents the correct operation of both the system and its environment. When we write such a specification as the composition of an environment specification \(E \) and a system specification \(M \), it has the form \(E \land M \).

An open-system specification is one that can serve as a contract between a user of the system and its implementor. A behavior satisfies an open-system specification iff the system acts correctly, even if the environment misbehaves. An obvious choice of such a specification is the formula \(M \) that describes the correct behavior of the system component by itself. However, such a specification would be unimplementable. A system cannot behave as expected in the face of arbitrary behavior of its environment. It would be impossible to build a buffer that satisfies the buffer component’s specification regardless of what the sender and receiver did. For example, if the sender sends a value before the previous value has been acknowledged, then the buffer could read the value while it is changing, causing unpredictable results.

A contract between a user and an implementor should require the system to act correctly only if the environment does. If \(M \) describes correct behavior of the system and \(E \) describes correct behavior of the environment, such a specification should require that \(M \) be true if \(E \) is. This suggests that we take as our open-system specification the formula \(E \Rightarrow M \), which is true if the system behaves correctly or the environment behaves incorrectly. However, \(E \Rightarrow M \) is too weak a specification for the following reason. Consider again the example of a FIFO buffer, where \(M \) describes the buffer and \(E \) the sender and receiver. Suppose now that the buffer sends a new value before the receiver has acknowledged the previous one. This could cause the receiver to act incorrectly, possibly modifying
the output channel in some way not allowed by the receiver’s specification. This situation is described by a behavior in which both E and M are false—a behavior that satisfies the specification $E \Rightarrow M$. However, the buffer should not be considered to act correctly in this case, since it was the buffer’s error that caused the receiver to act incorrectly. Hence, this behavior should not satisfy the buffer’s specification.

An open-system specifications should assert that the system behaves correctly at least as long as the environment does. To express this, we introduce a new temporal operator \Rightarrow, where $E \Rightarrow M$ asserts that M remains true at least one step longer than E does, remaining true forever if E does. Somewhat more precisely, $E \Rightarrow M$ asserts that:

- E implies M, and
- If the safety property of E is not violated by the first n states of a behavior, then the safety property of M is not violated by the first $n+1$ states, for any natural number n. (Recall that a safety property is one that, if violated, is violated at some definite point in the behavior.)

A more precise definition of \Rightarrow appears in Section 15.2.4 (page 288). If E describes the desired behavior of the environment and M describes the desired behavior of the system, then we take as our open-system specification the formula $E \Rightarrow M$.

Once we write separate specifications of the components, we can usually transform a complete-system specification into an open-system one by simply replacing a \wedge with a \Rightarrow. This requires first deciding whether each conjunct of the complete-system specification belongs to the specification of the environment, of the system, or of neither. As an example, consider the composite specification of the FIFO buffer in module CompositeFIFO on page 131. We take the system to consist of just the buffer, with the sender and receiver forming the environment. The closed-system specification $Spec$ has three main conjuncts. We consider them separately.

$Sender \wedge Buffer \wedge Receiver$

The conjuncts $Sender$ and $Receiver$ are obviously part of the environment specification and the conjunct $Buffer$ is part of the system specification.

$(in.ack = in.rdy) \wedge (ack.out = out.rdy)$

These two initial conjuncts can be assigned to either, depending on which component we want to blame if they are violated. Let’s assign to the component sending on a channel c the responsibility for establishing that $c.ack = c.rdy$ holds initially. We then assign $in.ack = in.rdy$ to the environment and $ack.out = out.rdy$ to the system.

$\Box(IsChannel(in) \wedge IsChannel(out))$

This formula is not naturally attributed to either the system or the environment. We regard it as a property inherent in our way of modeling
the system, which assumes that \textit{in} and \textit{out} are records with \textit{ack}, \textit{val}, and \textit{rdy} components. We therefore take the formula to be a separate conjunct of the complete specification, not belonging to either the system or the environment.

We then have the following open-system specification for the FIFO buffer:

\[
\begin{align*}
\land \Box (\text{IsChannel}(\text{in}) \land \text{IsChannel}(\text{out})) \\
\land ((\text{in.ack} = \text{in.rdy}) \land \text{Sender} \land \text{Receiver}) & \rightarrow ((\text{ack} = \text{out.rdy}) \land \text{Buffer})
\end{align*}
\]

As this example suggests, there is little difference between writing a composite complete-system specification and an open-system specification. Most of the specification doesn’t depend on which we choose. The two differ only at the very end, when we put the pieces together.

10.8 Interface Refinement

An interface refinement is a method of obtaining a lower-level specification by refining the variables of a higher-level specification. I start with two examples and then discuss interface refinement in general.

10.8.1 A Binary Hour Clock

In specifying an hour clock, we described its display with a variable \textit{hr} whose value (in a behavior satisfying the specification) is an integer from 1 to 12. Suppose we want to specify a binary hour clock. This is an hour clock for use in a computer, where the display consists of a four-bit register that displays the hour as one of the twelve values 0001, 0010, . . ., 1100. We can easily specify such a clock from scratch. But suppose we want to describe it informally to someone who already knows what an hour clock is. We would simply say that a binary clock is the same as an hour clock, except that the value of the display is represented in binary. We now formalize that description.

We begin by describing what it means for a four-bit value to represent a number. There are several reasonable ways to represent a four-bit value mathematically. We could use a four-element sequence, which in TLA$^+$ is a function whose domain is \{0, 1\} (where \kappa in the formula denotes the function $f_0;1$). We can also write $f_0;1$ as 0::1.

We can also write $\{0,1\}$ as 0..1.
we can define $\text{BitArrayVal}(b)$ to be the numerical value of such a function b by:

$$
\text{BitArrayVal}(b) \triangleq \text{LET } n \triangleq \text{CHOOSE } i \in \text{Nat} : \text{DOMAIN } b = 0 \ldots (i-1) \\
\quad \quel
EXTENDS Naturals

VARIABLE bits

H(hr) ≜ INSTANCE HourClock

BitArrayVal(b) ≜ LET n ≜ \(\text{choose i} \in \text{Nat} : \text{domain} \ b = 0 \ldots (i - 1) \)
\[
\text{val}[i \in 0 \ldots n - 1] ≜ \text{Defines val}[i] \text{ to equal } b[0] \cdot 2^0 + \ldots + b[i] \cdot 2^i.
\]
\text{IN} val[n - 1]

HourVal(b) ≜ \text{IF } b \in [(0 \ldots 3) \rightarrow \{0, 1\}] \text{ THEN BitArrayVal(b) }
\text{ELSE } 99

IR(b, h) ≜ \square(h = HourVal(b))

BHC ≜ \exists hr : IR(bits, hr) \land H(hr)!HC

Figure 10.3: A specification of a binary hour clock.

Using the definition of HourVal given above, we can define IR simply to equal \(\square(h = HourVal(b)) \).

If HC is defined as in module HourClock, then (10.7) can’t appear in a TLA⁺ specification. For HC to be defined in the context of the formula, the variable hr must be declared in that context. If hr is already declared, then it can’t be used as the bound variable of the quantifier \(\exists \). As usual, this problem is solved with parametrized instantiation. The complete TLA⁺ specification BHC of the binary hour clock appears in module BinaryHourClock of Figure 10.3 on this page.

10.8.2 Refining a Channel

As our second example of interface refinement, consider a system that interacts with its environment by sending numbers from 1 through 12 over a channel. We refine it to a lower-level system that is the same, except it sends a number as a sequence of four bits. Each bit is sent separately, starting with the leftmost (most significant) one. For example, to send the number 3, the lower-level system sends the sequence of bits 0, 1, 0, 1. We specify both channels with the Channel module of Figure 3.2 on page 30, so each value that is sent must be acknowledged before the next one can be sent.

Suppose HSpec is the higher-level system’s specification, and its channel is represented by the variable h. Let l be the variable representing the lower-level channel. We write the lower-level system’s specification as

\[(10.8) \exists h : IR \land HSpec \]
where \(IR \) specifies the sequence of values sent over \(h \) as a function of the values sent over \(l \). The sending of the fourth bit on \(l \) is interpreted as the sending of the complete number on \(h \); the next acknowledgement on \(l \) is interpreted as the sending of the acknowledgement on \(h \); and any other step is interpreted as a step that doesn’t change \(h \).

To define \(IR \), we instantiate module \(\text{Channel} \) for each of the channels:

\[
H \triangleq \text{instance Channel with } chan \leftarrow h, \ Data \leftarrow \text{Nat}
\]

\[
L \triangleq \text{instance Channel with } chan \leftarrow l, \ Data \leftarrow -1 \ldots 9
\]

Sending a value \(d \) over channel \(l \) is thus represented by an \(L!\text{Send}(d) \) step, and acknowledging receipt of a value on channel \(h \) is represented by an \(H!\text{Rcv} \) step.

The following behavior represents sending and acknowledging a 3, where I have omitted all steps that don’t change \(l \):

\[
\begin{align*}
&L!\text{Send}(0) \quad L!\text{Rcv} \quad L!\text{Send}(1) \quad L!\text{Rcv} \quad L!\text{Send}(0) \\
&L!\text{Rcv} \quad L!\text{Send}(1) \quad L!\text{Rcv} \\
&s_0 \quad s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad s_7 \quad s_8 \quad \cdots
\end{align*}
\]

This behavior will satisfy \(IR \) iff \(s_6 \rightarrow s_7 \) is an \(H!\text{Send}(3) \) step, \(s_7 \rightarrow s_8 \) is an \(H!\text{Rcv} \) step, and all the other steps leave \(h \) unchanged.

We want to make sure that (10.8) is not satisfied unless \(l \) represents a correct lower-level channel—for example, (10.8) should be false if \(l \) is set to some bizarre value. We will therefore define \(IR \) so that, if the sequence of values assumed by \(l \) does not represent a channel over which bits are sent and acknowledged, then the sequence of values of \(h \) does not represent a legal behavior of a channel over which numbers from 1 to 12 are sent. Formula \(H\text{Spec} \), and hence (10.8), will then be false for such a behavior.

Formula \(IR \) will have the standard form for a TLA specification, with an initial condition and a next-state relation. However, it specifies \(h \) as a function of \(l \); it does not constrain \(l \). Therefore, the initial condition does not specify the initial value of \(l \), and the next-state relation does not specify the value of \(l' \).

Data is the set of values that can be sent over the channel.
This module defines an interface refinement from a higher-level channel \(h \), over which numbers in \(1 \ldots 12 \) are sent, to a lowerer-level \(l \) in which a number is sent as a sequence of four bits, each of which is separately acknowledged. (See the Channel module in Figure 3.2 on page 30.) Formula \(IR \) is true iff the sequence of values assumed by \(h \) represents the higher-level view of the sequence of values sent on \(l \). If the sequence of values assumed by \(l \) doesn’t represent the sending and acknowledging of bits, then \(h \) assumes an illegal value.

EXTENDS Naturals, Sequences

VARIABLES \(h, l \)

\[
\begin{align*}
\text{ErrorVal} & \triangleq \text{An illegal value for } h. \\
\text{Init} & \triangleq \begin{cases}
\forall v : v \notin \{\text{val} : 1 \ldots 12, \text{rdy} : \{0, 1\}, \text{ack} : \{0, 1\}\} & \\
\text{IF } L!\text{Init} \text{ THEN } H!\text{Init} & \\
\text{ELSE } h = \text{ErrorVal} &
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{SendBit} & \triangleq \begin{cases}
\exists b \in \{0, 1\} : & \\
\text{IF } \text{Len}(\text{bitsSent}) < 3 & \\
\text{THEN } \forall \text{bitsSent}' = (b) \circ \text{bitsSent} & \\
\text{ELSE } \forall \text{bitsSent}' = () & \\
\text{AND UNCHANGED } h & \\
H!\text{Send}(\text{BitSeqToNat}[\langle b \rangle \circ \text{bitsSent}]) &
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{BitsRcv} & \triangleq \begin{cases}
\forall \text{L!Rcv} & \\
\text{AND } \forall \text{bitsSent} = () \text{ THEN } H!\text{Rcv} & \\
\text{ELSE UNCHANGED } h & \\
\text{AND UNCHANGED } \text{bitsSent} &
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{Error} & \triangleq \begin{cases}
\forall l' \neq l & \\
\neg (\exists b \in \{0, 1\} : \text{L!Send}(b) \lor \text{L!Rcv}) & \\
\text{AND } h' = \text{ErrorVal} &
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{Next} & \triangleq \text{SendBit} \lor \text{RcvBit} \lor \text{Error} \\
\text{InnerIR} & \triangleq \text{Init} \land \Box[\text{Next}]_{(l, h, \text{bitsSent})}
\end{align*}
\]

\[
\begin{align*}
I(\text{bitsSent}) & \triangleq \text{INSTANCE Inner} \\
\text{IR} & \triangleq \exists \text{bitsSent} : I(\text{bitsSent})!\text{InnerIR}
\end{align*}
\]

Figure 10.4: Refining a channel.
bits, then $\text{BitSeqToNat}[s]$ is its numeric value interpreted as a binary number whose low-order bit is at the head of s.

There follows a submodule that defines the internal specification—the one with the internal variable bitsSent visible. The internal specification’s initial predicate Init asserts that if l has a legal initial value, then h can have any legal initial value; otherwise h has an illegal value. Initially bitsSent is the empty sequence ($\langle \rangle$). The internal specification’s next-state action is the disjunction of three actions:

- **SendBit** A *SendBit* step is one in which a bit is sent on l. If bitsSent has fewer than three elements, so fewer than three bits have already been sent, then the bit is prepended to the head of bitsSent and h is left unchanged. Otherwise, the value represented by the four bits sent so far, including the current bit, is sent on h and bitsSent is reset to $\langle \rangle$.

- **BitsRcv** A *BitsRcv* step is one in which an acknowledgement is sent on l. It represents the sending of an acknowledgement on h iff this is an acknowledgement of the fourth bit, which is true iff bitsSent is the empty sequence.

- **Error** An *Error* step is one in which an illegal change to l occurs. It sets h to an illegal value.

The inner specification InnerIR has the usual form. (There is no liveness requirement.) The outer module then instantiates the inner submodule with bitsSent as a parameter, and it defines IR to equal InnerIR with bitsSent hidden.

Now suppose we have a module HigherSpec that defines a specification HSpec of a system that communicates by sending numbers from 1 through 12 over a channel hchan. We obtain, as follows, a lower-level specification LowerSpec in which the numbers are sent as sequences of bits on a channel lchan. We first declare lchan and all the variables and constants of the HigherSpec module except hchan. We then write:

$$\text{HS}(\text{hchan}) \triangleq \text{INSTANCE HigherSpec}$$

$$\text{IR}(h) \triangleq \text{INSTANCE ChannelRefinement with } l \leftarrow \text{lchan}$$

$$\text{LowerSpec} \triangleq \exists h : \text{IR}(h)!\text{Spec} \land \text{HS}(h)!\text{IR}$$

10.8.3 Interface Refinement in General

In the examples of the binary clock and of channel refinement, we defined a lower-level specification LSpec in terms of a higher-level one HSpec as:

$$\text{(10.9) } \text{LSpec} \triangleq \exists h : \text{IR} \land \text{HSpec}$$
where h is a free variable of $HSpec$ and IR is a relation between the h and the lower-level variable l of $LSpec$. We can view the internal specification $IR \land HSpec$ as the composition of two components, as shown here:

```
l  IR  h  HSpec
```

We can regard IR as the specification of a component that transforms the lower-level behavior of l into the higher-level behavior of h. Formula IR is called an interface refinement.

In both examples, the interface refinement was independent of the system specification. It depended only on the representation of the interface—that is, on how the interaction between the system and its environment was represented. In general, for an interface refinement IR to be independent of the system using the interface, it should ascribe a behavior of the higher-level interface variable h to any behavior of the lower-level variable l. In other words, for any sequence of values for l, there should be some sequence of values for h that satisfy IR. This is expressed mathematically by the requirement that the formula $\exists h : IR$ should be valid—that is, true for all behaviors.

So far, I have discussed refinement of a single interface variable h by a single variable l. This generalizes in the obvious way to the refinement of a collection of higher-level variables h_1, \ldots, h_n by the variables l_1, \ldots, l_m. The interface refinement IR specifies the values of the h_i in terms of the values of the l_j and perhaps of other variables as well. Formula (10.9) is replaced by

$$LSpec \triangleq \exists h_1, \ldots, h_n : IR \land HSpec$$

A particularly simple type of interface refinement is a data refinement, in which IR has the form $\Box P$, where P is a state predicate that expresses the values of the higher-level variables h_1, \ldots, h_n as functions of the values of the lower-level variables l_1, \ldots, l_m. The interface refinement in our binary clock specification is a data refinement, where P is the predicate $hr = HourVal(bits)$.

As another example, the two specifications of an asynchronous channel interface in Chapter 3 can each be obtained from the other by an interface refinement. The specification $Spec$ of the $Channel$ module (page 30) is equivalent to the specification obtained as a data refinement of the specification $Spec$ of the $AsynchInterface$ module (page 27) by letting P equal:

$$(10.10)chan = [val \rightarrow val, rdy \leftrightarrow rdy, ack \leftrightarrow ack]$$

This formula asserts that $chan$ is a record whose val component is the value of the variable val, whose rdy component is the value of the variable rdy, and whose ack component is the value of the variable ack. Conversely, specification $Spec$ of the $AsynchInterface$ module is equivalent to a data refinement of the specification
10.8. Interface Refinement

Spec of the Channel module. In this case, defining the state predicate P is a little tricky. The obvious choice is to let P be the formula $GoodVals$ defined by:

\[
\text{GoodVals} \triangleq \begin{align*}
& \land val = \text{chan}.val \\
& \land rdy = \text{chan}.rdy \\
& \land \text{ack} = \text{chan}.\text{ack}
\end{align*}
\]

However, this can assert that val, rdy, and ack have good values even if $chan$ has an illegal value—for example, if it is a record with more than three components. Instead, we let P equal

\[
\begin{align*}
\text{IF } & chan \in \{\text{val} : \text{Data}, \text{rdy} : \{0, 1\}, \text{ack} : \{0, 1\}\} \text{ THEN } \text{GoodVals} \\
\text{ELSE } & \text{BadVals}
\end{align*}
\]

where $BadVals$ asserts that val, rdy, and ack have some illegal values—that is, values that are impossible in a behavior satisfying formula $Spec$ of module $AsynchInterface$. (We don’t need such a trick when defining $chan$ as a function of val, rdy, and ack because our definition (10.10) assures that the value of $chan$ is legal iff the values of all three variables val, rdy, and ack are legal.)

Data refinement is the simplest form of interface refinement. In a more complicated interface refinement, the value of the higher-level variables cannot be expressed as a function of the current values of the lower-level variables. In the channel refinement example of Section 10.8.2, the number being sent on the higher-level channel depends on the values of bits that were previously sent on the lower-level channel, not just on the lower-level channel’s current state.

We often refine both a system and its interface at the same time. For example, we may implement a specification H of a system that communicates by sending numbers over a channel with a lower-level specification $LImpl$ of a system that sends individual bits. In this case, $LImpl$ is not itself obtained from $HSpec$ by an interface refinement. Rather, $LImpl$ implements some specification $LSpec$ that is obtained from $HSpec$ by an interface refinement IR. In that case, we say that $LImpl$ implements $HSpec$ under the interface refinement IR.

10.8.4 Open-System Specifications

So far, I have been discussing interface refinement for complete-system specifications. Let’s now consider what happens if the higher-level specification $HSpec$ is the kind of open-system specification discussed in Section 10.7 above. For simplicity, we consider the refinement of a single higher-level interface variable h by a single lower-level variable l. The generalization to more variables will be obvious.

Let’s suppose first that $HSpec$ is a safety property, with no liveness condition. As explained in Section 10.7, the specification attributes each change to h either to the system or to the environment. Any change to a lower-level interface
variable \(l \) that produces a change to \(h \) is therefore attributed to the system or the environment. A bad change to \(h \) that is attributed to the environment makes \(HSpec \) true; a bad change that is attributed to the system makes \(HSpec \) false. Thus, (10.9) defines \(LSpec \) to be an open-system specification. For this to be a sensible specification, the interface refinement \(IR \) must ensure that the way changes to \(l \) are attributed to the system or environment is sensible.

If \(HSpec \) contains liveness conditions, then interface refinement can be more subtle. Suppose \(IR \) is the interface refinement defined in the ChannelRefinement module of Figure 10.4 on page 150, and suppose that \(HSpec \) requires that the system eventually send some number on \(h \). Consider a behavior in which the system sends the first bit of a number on \(l \), but the environment never acknowledges it. Under the interface refinement \(IR \), this behavior is interpreted as one in which \(h \) never changes. Such a behavior fails to satisfy the liveness condition of \(HSpec \). Thus, if \(LSpec \) is defined by (10.9), then failure of the environment to do something can cause \(LSpec \) to be violated, through no fault of the system.

In this example, we want the environment to be at fault if it causes the system to halt by failing to acknowledge any of the first three bits of a number sent by the system. (The acknowledgement of the fourth bit is interpreted by \(IR \) as the acknowledgement of a value sent on \(h \), so blame for its absence is properly assigned to the environment.) Putting the environment at fault means making \(LSpec \) true. We can achieve this by modifying (10.9) to define \(LSpec \) as follows:

\[
(10.11) LSpec \triangleq Liveness \Rightarrow \exists h : IR \land HSpec
\]

where \(Liveness \) is a formula requiring that any bit sent on \(l \), other than the last bit of a number, must eventually be acknowledged. However, if illegal values are sent on \(l \), then we want the safety part of the specification to determine who is responsible. So, we want \(Liveness \) to be true in this case.

Here’s one way to define \(Liveness \). We use the definitions from the Inner submodule of module ChannelRefinement, where \(l \), \(h \), and \(bitsSent \) are visible. The action that acknowledges receipt of one of the first three bits of the number is \(BitsRcv \land (bitsSent \neq {}) \). Weak fairness of this action asserts that the required acknowledgements must eventually be sent. For the case of bad values, recall that \(InnerIR \) implies that sending a bad value on \(l \) causes \(h \) to equal \(ErrorVal \). We want \(Liveness \) to be true if this ever happens, which means if it eventually happens. We therefore add the following definition to the submodule Inner of the ChannelRefinement module:

\[
InnerLiveness \triangleq \lor \land InnerIR \\
\land WF(l, h, bitsSent)(BitsRcv \land (bitsSent \neq {})) \\
\lor \diamond (h = ErrorVal)
\]

To define \(Liveness \), we just have to hide \(h \) and \(bitsSent \) in \(InnerLiveness \). We
can do this, in a context in which \(l \) is declared, as follows:

\[
ICR(h) \triangleq \text{INSTANCE ChannelRefinement} \\
Liveness \triangleq \exists h, \text{bitsSent} : ICR(h)!I(\text{bitsSent})!\text{InnerLiveness}
\]

Now, suppose it is the environment that sends numbers over \(h \) and the system is supposed to acknowledge their receipt and then process them in some way. In this case, we want failure to acknowledge a bit to be a system error. So, \(LSpec \) should be false if \(Liveness \) is. The specification should then be

\[
LSpec \triangleq Liveness \land (\exists h : IR \land HSpec)
\]

Since \(h \) does not occur free in \(Liveness \), this definition is equivalent to

\[
LSpec \triangleq \exists h : Liveness \land IR \land HSpec
\]

which has the form (10.9) if the interface refinement \(IR \) of (10.9) is taken to be \(Liveness \land IR \). In other words, in this case, we make the liveness condition part of the interface refinement.

In general, if \(HSpec \) is an open-system specification that describes liveness as well as safety, then an interface refinement may have to take the form (10.11). Both \(Liveness \) and the liveness condition of \(IR \) may depend on which changes to the lower-level interface variable \(l \) are attributed to the system and which to the environment. For the channel refinement, this means that they will depend on whether the system or the environment is sending values on the channel.

10.9 Should You Compose?

When specifying a system, should we write a monolithic specification with a single next-state action, a closed-system composition that is the conjunction of specifications of individual components, or an open-system specification? The answer is that it usually makes little difference. For a real system, the definitions of the components’ actions will take hundreds or thousands of lines. The different forms of specification differ only in the few lines where we assemble the initial predicates and next-state actions into the final formula.

If you are writing a specification from scratch, it’s probably better to write a monolithic specification. It is usually easier to understand. Of course, there are exceptions. We write a real-time specification as the conjunction of an untimed specification and timing constraints; describing the changes to the system variables and the timers with a single next-state action usually makes the specification harder to understand.

Writing a composite specification may be sensible when you are starting from an existing specification. If you already have a specification of one component, you may want to write a separate specification of the other component and
compose the two specifications. If you have a higher-level specification, you may want to write a lower-level version as an interface refinement. However, these are rather rare situations. Moreover, it’s likely to be just as easy to modify the original specification or re-use it in another way. For example, instead of conjoining a new component to the specification of an existing one, you can simply include the definition of the existing component’s next-state action, with an \textsc{extends} or \textsc{instance} statement, as part of the new specification.

Composition provides a new way of writing a complete-system specification; it doesn’t change the specification. The choice between a composite specification and a monolithic one is therefore ultimately a matter of taste. Disjoint-state compositions are generally straightforward and present no problems. Shared-state compositions can be tricky and require care.

Open-system specifications introduce a mathematically different form of specification. A closed-system specification $E \land M$ and its open-system counterpart $E \rightharpoonup M$ are not equivalent. If we really want a specification to serve as a legal contract between a user and an implementor, then we have to write an open-system specification. We also need open-system specifications if we want to specify and reason about systems built by composing off-the-shelf components with pre-existing specifications. All we can assume about such a component is that it satisfies a contract between the system builder and the supplier, and such a contract can be formalized only as an open-system specification. However, you are unlikely to encounter off-the-shelf component specifications during the early part of the twenty-first century. In the near future, open-system specifications are likely to be of theoretical interest only.
Chapter 11

Advanced Examples

It would be nice to provide an assortment of typical examples that cover most of the specification problems that arise in practice. However, there is no such thing as a typical specification. Every real specification seems to pose its own problems. But we can partition all specifications into two classes, depending on whether or not they contain \texttt{VARIABLE} declarations.

A specification with no variables specifies data structures and operations on those structures. For example, the \textit{Sequences} module specifies sequences and various operations on them. When specifying a system, you may need some kind of data structure other than the ones provided by the standard modules like \textit{Sequences} and \textit{Bags}, which are described in Chapter 17. Section 11.1 gives examples of specifying such data structures.

A system specification contains variables that represent the system’s state. We can further divide system specifications into two classes—high-level specifications that describe what it means for a system to be correct, and lower-level specifications that describes what the system actually does. In the memory example of Chapter 5, the linearizable memory specification of Section 5.3 is a high-level specification of correctness, while the write-through cache specification of Section 5.6 describes how a particular algorithm works. This distinction is not precise; whether a specification is high- or low-level is a matter of perspective. But it can be a useful way of categorizing system specifications.

Lower-level system specifications tend to be relatively straightforward. Once the level of abstraction has been chosen, writing the specification is usually just a matter of getting the details right when describing what the system does. Specifying high-level correctness can be much more subtle. Section 11.2 considers a high level specification problem—formally specifying a multiprocessor memory.
11.1 Specifying Data Structures

Most of the data structures required for writing specifications are mathematically very simple and are easy to define in terms of sets, functions, and records. Section 11.1.2 describes the specification of one such structure—a graph. On rare occasions, a specification might require sophisticated mathematical concepts. The only ones I know of are hybrid system specifications, discussed in Section 9.5. There, we used a module for describing the solutions to differential equations. That module is specified in Section 11.1.3 below. But, before we get to the specifications of the data structures, we need to learn how to make local definitions.

11.1.1 Local Definitions

In the course of specifying a system, we write lots of auxiliary definitions. A system specification may consist of a single formula \(\text{Spec} \), but we define dozens of other identifiers in terms of which we define \(\text{Spec} \). These other identifiers often have fairly common names, and an identifier like \(\text{Next} \) may be defined in many specifications. The different definitions of \(\text{Next} \) don’t conflict with one another because, if a system specification is used as part of another specification, the identifiers it defines are usually renamed. For example, the \(\text{Channel} \) module is used in module \(\text{InnerFIFO} \) on page 38 with the statement:

\[
\text{InChan} \overset{\Delta}{=} \text{instance Channel with} \ldots
\]

The action \(\text{Next} \) of the \(\text{Channel} \) module is then instantiated as \(\text{InChan!Next} \), and its definition doesn’t conflict with the definition of \(\text{Next} \) in the \(\text{InnerFIFO} \) module.

A module that defines operations on a data structure is likely to be incorporated in another module with an \texttt{EXTENDS} statement, without any renaming. The module might define some auxiliary operators that are used only to define the operators in which we’re interested. For example, we need the \(\text{DifferentialEquations} \) module only to define the single operator \(\text{Integrate} \); but it builds up the definition of \(\text{Integrate} \) in terms of other operators with names like \(\text{Nhbd} \) and \(\text{IsDeriv} \). We don’t want these definitions to conflict with other uses of those identifiers in a module that extends \(\text{DifferentialEquations} \). So, we want the definitions of \(\text{Nhbd} \) and \(\text{IsDeriv} \) to be local to the \(\text{DifferentialEquations} \) module.

\(\text{TLA}^+ \) provides a \texttt{LOCAL} modifier for making definitions local to a module. If a module \(M \) contains the definition

\[
\text{LOCAL } \text{Foo}(x) \overset{\Delta}{=} \ldots
\]

then \(\text{Foo} \) can be used inside module \(M \) just like any ordinary defined identifier. However, a module that extends or instantiates \(M \) does not obtain the definition
of Foo. That is, the statement \texttt{extends M} in another module does not define Foo in that module. Similarly, the statement

\[
N \triangleq \text{instance } M
\]

does not define $N!Foo$. The \texttt{LOCAL} modifier can also be applied to an instantiation. The statement

\texttt{LOCAL instance Sequences}

in module M incorporates into M the definitions from the \texttt{Sequences} module. However, another module that extends or instantiates M does not obtain those definitions. The \texttt{LOCAL} modifier can be applied only to definitions and instance statements. It cannot be applied to a declaration or to an \texttt{EXTENDS} statement—that is, you \textit{cannot} write either of the following:

\texttt{LOCAL constant N} \hspace{1cm} \texttt{These are not legal statements.}

\texttt{LOCAL extends Sequences}

If a module has no \texttt{CONSTANT} or \texttt{VARIABLE} declarations, then extending it and instantiating it are equivalent. Thus, the two statements

\texttt{extends Sequences} \hspace{1cm} \texttt{instance Sequences}

are equivalent.

In a module that defines general mathematical operators, I like to make all definitions local except for the ones that we explicitly expect the module to make. For example, we expect the \texttt{Sequences} module to define operators on sequences, such as \texttt{Append}. We don’t expect it to define operators on numbers, such as $+$. The \texttt{Sequences} module uses $+$ and other operators defined in the \texttt{Naturals} module. But instead of extending \texttt{Naturals}, it defines those operators with the statement

\texttt{LOCAL instance Naturals}

The definitions of the operators from \texttt{Naturals} are therefore local to \texttt{Sequences}. A module that uses the \texttt{Sequences} module is then free to define $+$ to mean something other than addition of numbers.

11.1.2 Graphs

A graph is an example of the kind of simple data structure often used in specifications. We now write a \texttt{Graphs} module for use in writing system specifications.

We first decide how to represent a graph in terms of data structures that are already defined—either built-in TLA$^+$ operators or ones defined in existing modules. Our decision depends on what kind of graphs we want to represent.
Are we interested in directed graphs or undirected graphs? Finite or infinite graphs? Graphs with or without self-loops (edges from a node to itself)? If we are specifying graphs for a particular specification, the specification will tell us how to answer these questions. In the absence of such guidance, let’s handle arbitrary graphs. The best way I know of representing both directed and undirected graphs is to specify arbitrary directed graphs, and to define an undirected graph as a directed graph in which every edge has an opposite-pointing edge. Directed graphs have a pretty obvious representation: a directed graph consists of a set of nodes and a set of edges, where an edge from node m to node n is represented by the ordered pair (m, n).

In addition to deciding how to represent graphs, we must decide how to structure the *Graphs* module. The decision depends on how we expect the module to be used. For a specification that uses a single graph, it is most convenient to define operations on that specific graph. So, we want the *Graphs* module to have (constant) parameters `Node` and `Edge` that represent the sets of nodes and edges of a particular graph. A specification could use such a module with a statement

```
instance Graphs with Node ← . . . , Edge ← . . .
```

where the “. . .”s are the sets of nodes and edges of the particular graph appearing in the specification. On the other hand, a specification might use many different graphs. For example, it might include a formula that asserts the existence of a subgraph, satisfying certain properties, of some given graph G. Such a specification needs operators that take any graph as an argument—for example a Subgraph operator defined so `SubGraph(G)` is the set of all subgraphs of a graph G. In this case, the *Graphs* module would have no parameters; specifications would incorporate it with an EXTENDS statement. It is this kind of module that we write.

An operator like `SubGraph` takes a graph as an argument, so we have to decide how to represent a graph as a single value. A graph G consists of a set N of nodes and a set E of edges. A mathematician would represent G as the ordered pair (N, E). However, $G.node$ is more perspicuous than $G[1]$, so we represent G as a record with `node` field N and `edge` field E.

Having made these decisions, it’s easy to define any standard operator on graphs. We just have to decide what we should define. Here are some generally useful operators:

* `IsDirectedGraph(G)`

 True iff G is an arbitrary directed graph—that is, a record with `node` component N and `edge` component E such that E is a subset of $N \times N$. This operator is useful because a specification might want to assert that something is a directed graph. (To understand how to assert that G is a record with `node` and `edge` fields, see the definition of `IsChannel` in Section 10.3 on page 129.)
11.1. SPECIFYING DATA STRUCTURES

DirectedSubgraph(G)

The set of all subgraphs of a directed graph G. Alternatively, we could define $\text{IsDirectedSubgraph}(H, G)$ to be true iff H is a subgraph of G. However, it’s easy to express $\text{IsDirectedSubgraph}$ in terms of DirectedSubgraph:

$$\text{IsDirectedSubgraph}(H, G) \equiv H \in \text{DirectedSubgraph}(G)$$

On the other hand, expressing DirectedSubgraph in terms of $\text{IsDirectedSubgraph}$ is awkward:

$$\text{DirectedSubgraph}(G) \equiv \text{choose } S : \forall H : (H \in S) \equiv \text{IsDirectedSubgraph}(H, G)$$

Note that, as explained in Section 6.1, we can’t define a set of all directed graphs.

IsUndirectedGraph(G)

UndirectedSubgraph(G)

These are analogous to the operators for undirected graphs. As mentioned above, an undirected graph is a directed graph G such that for every edge $\langle m, n \rangle$ in G.edge, the inverse edge $\langle n, m \rangle$ is also in G.edge. Note that $\text{DirectedSubgraph}(G)$ contains directed graphs that are not undirected graphs.

Path(G)

The set of all paths in G, where a path is any sequence of nodes obtainable by following edges. This definition is useful because many properties of a graph can be expressed in terms of its set of paths. It is convenient to consider the one-element sequence $\langle n \rangle$ to be a path, for any node n.

AreConnectedIn(m, n, G)

True iff there is a path from node m to node n in G. The utility of this operator becomes evident when you try defining various common graph properties, like connectivity.

There are any number of other graph properties and classes of graphs that we might define. The Graph module defines two:

IsStronglyConnected(G)

True iff G is strongly connected, meaning that there is a path from any node to any other node. For an undirected graph, strongly connected is equivalent to the ordinary definition of connected.

IsTreeWithRoot(G, r)

True iff G is a tree with root r, where we represent a tree as a graph with an edge from each nonroot node to its parent. Thus, the parent of a nonroot node n equals:

choose $m \in G$.node : $\langle n, m \rangle \in G$.edge

The Graphs module appears on the next page. By now, you should be able work out for yourself the meanings of all the definitions.
MODULE Graphs

A module that defines operators on graphs. A directed graph is represented as a record whose *node* component is the set of nodes and *edge* component is the set of edges, where an edge is an ordered pair of edges.

LOCAL INSTANCE Naturals, Sequences

\[\text{IsDirectedGraph}(G) \stackrel{\Delta}{=} \text{True iff } G \text{ is a directed graph.} \]
\[\land G = [\text{node} \mapsto G.\text{node}, \text{edge} \mapsto G.\text{edge}] \]
\[\land G.\text{edge} \subseteq (G.\text{node} \times G.\text{node}) \]

\[\text{DirectedSubgraph}(G) \stackrel{\Delta}{=} \text{The set of all (directed) subgraphs of a directed graph.} \]
\[\{ H \in [\text{node} : \text{SUBSET } G.\text{node}, \text{edge} : \text{SUBSET } (G.\text{node} \times G.\text{node})] : \]
\[\text{IsDirectedGraph}(G) \land H.\text{edge} \subseteq G.\text{edge} \} \]

\[\text{IsUndirectedGraph}(G) \stackrel{\Delta}{=} \text{An undirected graph is a directed graph in which every edge has an oppositely directed one.} \]
\[\land \forall e \in G.\text{edge} : \{ e[2], e[1] \} \in G.\text{edge} \]

\[\text{UndirectedSubgraph}(G) \stackrel{\Delta}{=} \text{The set of (undirected) subgraphs of an undirected graph.} \]
\[\{ H \in \text{DirectedSubgraph}(G) : \text{IsUndirectedGraph}(H) \} \]

\[\text{Path}(G) \stackrel{\Delta}{=} \text{The set of paths in } G, \text{ where a path is represented as a sequence of nodes.} \]
\[\{ p \in \text{Seq}(G.\text{node}) : \land p \neq \langle \rangle \]
\[\land \forall i \in 1..(\text{Len}(p) - 1) : \{ p[i], p[i+1] \} \in G.\text{edge} \} \]

\[\text{AreConnectedIn}(m, n, G) \stackrel{\Delta}{=} \text{True iff there is a path from } m \text{ to } n \text{ in graph } G \]
\[\exists p \in \text{Path}(G) : (p[1] = m) \land (p[\text{Len}(p)] = n) \]

\[\text{IsStronglyConnected}(G) \stackrel{\Delta}{=} \text{True iff graph } G \text{ is strongly connected.} \]
\[\forall m, n \in G.\text{node} : (m \neq n) \Rightarrow \text{AreConnectedIn}(m, n, G) \]

\[\text{IsTreeWithRoot}(G, r) \stackrel{\Delta}{=} \text{True if } G \text{ is a tree with root } r, \text{ where edges point from child to parent.} \]
\[\land \forall n \in G.\text{node} : (\exists e \in G.\text{edge} : e[1] = n) \equiv (n \neq r) \]
\[\land \forall e, f \in G.\text{edge} : (e[2] = f[2]) \Rightarrow (e = f) \]
\[\land \forall n \in G.\text{node} : \text{AreConnectedIn}(n, r, G) \]

Figure 11.1: A module for specifying operators on graphs.
11.1.3 Solving Differential Equations

Section 9.5 on page 119 describes how to specify a hybrid system whose state includes a physical variable satisfying an ordinary differential equation. The specification uses an operator \texttt{Integrate} such that \texttt{Integrate}(D, t_0, t_1, (x_0, \ldots, x_{n-1})) is the value at time \(t_1 \) of the \(n \)-tuple
\[
\langle x, \, dx/dt, \ldots, \, d^{n-1}x/dt^{n-1} \rangle
\]
where \(x \) is a solution to the differential equation
\[
D[t, x, \, dx/dt, \ldots, \, d^n x/dt^n] = 0
\]
whose \(0^{\text{th}} \) through \((n-1)^{\text{st}} \) derivatives at time \(t_0 \) are \(x_0, \ldots, x_{n-1} \). I now explain how to define \texttt{Integrate}. It is an example of the kind of sophisticated mathematical operators that can be defined in TLA$^+$.

Let’s start by defining some mathematical notation that we will need for defining the derivative. As usual, we obtain from the \texttt{Reals} module the definitions of the set \texttt{Real} of real numbers and of the usual arithmetic operators. Let \texttt{PosReal} be the set of all positive reals:
\[
\text{PosReal} \triangleq \{ r \in \text{Real} : r > 0 \}
\]
and let \texttt{OpenInterval}(a, b) be the open interval from \(a \) to \(b \)—that is, the set of numbers greater than \(a \) and less than \(b \):
\[
\text{OpenInterval}(a, b) \triangleq \{ s \in \text{Real} : (a < s) \land (s < b) \}
\]
(Mathematicians usually write this set as \((a, b) \).) Let’s also define \texttt{Nbhd}(r, e) to be the open interval of width \(2e \) centered at \(r \), for \(e > 0 \):
\[
\text{Nbhd}(r, e) \triangleq \text{OpenInterval}(r - e, r + e)
\]
For the discussion, we need some notation for the derivative of a function. It’s rather difficult to make mathematical sense of the usual notation \(df/dt \) for the derivative of \(f \). (What exactly is \(t \)?) So, let’s use a mathematically simpler notation. For now, let’s use the fairly conventional mathematical notation of writing the \(n^{\text{th}} \) derivative of the function \(f \) as \(f^{(n)} \). Recall that \(f^{(0)} \), the \(0^{\text{th}} \) derivative of \(f \), equals \(f \).

We can now start trying to define \texttt{Integrate}. If \(a \) and \(b \) are numbers, \texttt{InitVals} is an \(n \)-tuple of numbers, and \(D \) is a function from \((n + 2)\)-tuples of numbers to numbers, then
\[
\text{Integrate}(D, a, b, \text{InitVals}) = \langle f^{(0)}[b], \ldots, f^{(n-1)}[b] \rangle
\]
where \(f \) is the function satisfying the following two conditions:

- \(D[r, f^{(0)}[r], f^{(1)}[r], \ldots, f^{(n)}[r]] = 0 \), for all \(r \) in some open interval containing \(a \) and \(b \).
To complete the definition of Integrate, we have to define the i^{th} derivative of a function. The derivative is used only in the subformula $g[i] = (g[0])^{(i)}$. We therefore don’t have to define the i^{th} derivative; we just have to define an operator that asserts that one function is the i^{th} derivative of another. We define the operator IsDeriv so that IsDeriv(i, df, f) is true iff df is the i^{th} derivative of f. More precisely, IsDeriv(i, df, f) asserts this if f is i times differentiable on an open interval. We don’t care what IsDeriv(i, df, f) means if f is not i times differentiable or its domain is not an open interval.
It’s easy to define the i^{th} derivative inductively in terms of the first derivative. So, we define $\text{IsFirstDeriv}(df, f)$ to be true iff df is the first derivative of f, assuming that f is a differentiable real-valued function whose domain is an open subset of the real numbers.\footnote{A subset S of the real numbers is open iff, for every $r \in S$, there exists an $\epsilon > 0$ such that the interval from $r - \epsilon$ to $r + \epsilon$ is contained in S.} Elementary calculus tells us that $df[r]$ is the derivative of f at r iff

$$df[r] = \lim_{s \to r} \frac{f[s] - f[r]}{s - r}$$

The classical “δ-ϵ” definition of the limit states that this is true iff, for every $\epsilon > 0$, there is a $\delta > 0$ such that $|s - r| < \delta$ implies:

$$\left| df[r] - \frac{f[s] - f[r]}{s - r} \right| < \epsilon$$

Stated formally, this condition is:

$$\forall \epsilon \in \text{PosReal} : \exists \delta \in \text{PosReal} : \forall s \in \text{Nbhd}(r, \delta) \setminus \{r\} : \left(df[r] - \frac{f[s] - f[r]}{s - r} \right) \in \text{Nbhd}(df[r], \epsilon)$$

We define $\text{IsFirstDeriv}(df, f)$ to be true iff the domains of df and f are equal, and this condition holds for all r in their domain.

The definitions of Integrate and all the other operators introduced above appear in the $\text{DifferentialEquations}$ module of Figure 11.2 on the next page. The LOCAL construct described in Section 11.1.1 above is used to make all these definitions local to the module, except for the definition of Integrate.

11.1.4 The Riemann Integral

To demonstrate how easy it is to formalize ordinary math, we give a specification of the Riemann integral—the definite integral of elementary calculus. Though sometimes written $\int_{a}^{b} f[x] \ dx$, it’s pretty hard (though by no means impossible) to make rigorous sense of the dx, so careful mathematicians usually write this integral as $\int_{a}^{b} f$. The specification is in Figure 11.3 on page 167.

11.2 Other Memory Specifications

Section 5.3 specifies a multiprocessor memory. The specification is unrealistically simple for three reasons: a processor can have only one outstanding request at a time, the basic correctness condition is too restrictive, and only simple read and
This module defines the operator \textit{Integrate} for specifying the solution to a differential equation. If \(a \) and \(b \) are reals with \(a \leq b \); \textit{InitVals} is an \(n \)-tuple of reals; and \(D \) is a function from \((n+1)\)-tuples of reals to reals; then this is the \(n \)-tuple of values
\[
\langle f[a], \frac{df}{dt}[a],\ldots, \frac{d^{n-1}f}{dt^{n-1}}[a]\rangle
\]
where \(f \) is the solution to the differential equation
\[
D[t,f,\frac{df}{dt},\ldots,\frac{d^{n}f}{dt^{n}}] = 0
\]
such that
\[
\langle f[a], \frac{df}{dt}[a],\ldots, \frac{d^{n-1}f}{dt^{n-1}}[a]\rangle = \text{InitVals}
\]

\begin{lstlisting}[language=Isabelle]
MODULE DifferentialEquations

Assuming \textit{domain} \(f \) is an open subset of \textit{Real}, this is true iff \(f \) is differentiable and \(g \) is its first derivative. Recall that the derivative of \(f \) at \(r \) is the number \(df[r] \) satisfying the following condition: for every \(\epsilon \) there exists a \(\delta \) such that \(0 < |s - r| < \delta \) implies \(|df[r] - (f[s] - f[r])/(s - r)| < \epsilon \).

LET \textit{IsD}[k \in 0 \ddots n, dg, gg \in \text{domain } f \rightarrow \text{Real}] \triangleq
\begin{align*}
\text{if } k = 0 \text{ then } dg &= g \\
\text{else }
&\exists gg \in \text{domain } f \rightarrow \text{Real} : \\
&\quad \land \textit{IsFirstDeriv}(dg, g) \\
&\quad \land \textit{IsD}[k - 1, dg, gg]
\end{align*}

IN \textit{IsD}[n, df, f]

\textbf{Integrate}(D, a, b, \text{InitVals}) \triangleq
\begin{align*}
\text{LET } n \triangleq &\text{Len(InitVals)} \\
&\quad \text{gg} \triangleq \text{choose } g : \\
&\quad \exists e \in \text{PosReal} : \\
&\quad \land g \in [0 \ddots n \rightarrow \text{OpenInterval}(a - e, b + e) \rightarrow \text{Real}] \\
&\quad \land \forall i \in 1 \ddots n : \\
&\quad \land \hspace{1em} \text{IsDeriv}(i, g[i], g[0]) \\
&\quad \land g[i - 1][a] = \text{InitVals}[i] \\
&\quad \land \forall r \in \text{OpenInterval}(a - e, b + e) : \\
&\quad \land D[\langle r \rangle \circ [i \in 1 \ddots (n + 1) \mapsto g[i - 1][r]]] = 0
\end{align*}
\end{lstlisting}

Figure 11.2: A module for specifying the solution to a differential equation.
11.2. OTHER MEMORY SPECIFICATIONS

This module defines \(\text{Integral}(f, a, b) \) to be the Riemann integral \(\int_a^b f \) of the continuous real-valued function \(f \).

To define the integral, we first define a partition \(p \) of the real interval from \(a \) to \(b \) (or \(b \) to \(a \), if \(a \geq b \)) to be a sequence with \(a = p[1] \leq \ldots \leq p[\text{Len}(p)] = b \) (or \(a = p[1] \geq \ldots \geq p[\text{Len}(p)] = b \) if \(a \geq b \)). The diameter of a partition \(p \) is the maximum of \(|p[i + 1] - p[i]| \). The integral \(\int_a^b f \) is the limit of

\[
\sum_{i=1}^{\text{Len}(p)-1} (p[i + 1] - p[i]) * (f[p[i + 1]] + f[p[i]])/2
\]

as the diameter of the partition \(p \) goes to zero.

EXTENDS Reals, Sequences

\(\text{Abs}(r) \triangleq \) IF \(r < 0 \) THEN \(-r \) ELSE \(r \) \(\text{Abs}(r) \) equals \(|r| \).

\(\text{Partition}(a, b, d) \triangleq \) The set of partitions of the interval from \(a \) to \(b \) with diameter less than \(d \).

\(\{ p \in \text{Seq}(\text{Real}) : \ \land \ \text{Len}[p] > 1 \\
\land (p[1] = a) \land (p[\text{Len}(p)] = b) \\
\land \forall i \in 1 \ldots (\text{Len}(p) - 1) : \ \land \ IF \ a \leq b \ THEN \ p[i] \leq p[i + 1] \\
\land \ ELSE \ p[i] \geq p[i + 1] \\
\land \ \text{Abs}(p[i + 1] - p[i]) < d \} \)

\(\text{PSum}(f, p) \triangleq \) Equals \(\sum_{i=1}^{\text{Len}(p)-1} (p[i + 1] - p[i]) * (f[p[i + 1]] + f[p[i]])/2 \).

LET \(\text{sumf}[n \in 1 \ldots \text{Len}(p)] \triangleq \) Equals \(\sum_{i=1}^{n} f[i] \).

\(\text{IF} \ n = 1 \ \text{THEN} \ 0 \ \text{ELSE} \ (p[n] - p[n - 1]) * ((f[p[n]] + f[p[n - 1]])/2) + \text{sumf}[n - 1] \)

IN \(\text{sumf}[\text{Len}(p)] \)

\(\text{Integral}(f, a, b) \triangleq \) Equals \(\int_a^b f \).

CHOOSE \(r \in \text{Real} : \forall e \in \{ s \in \text{Real} : s > 0 \} : \\
\exists d \in \{ s \in \text{Real} : s > 0 \} : \\
\forall p \in \text{Partition}(a, b, d) : \text{Abs}(r - \text{PSum}(f, p)) < e \)

Figure 11.3: A specification of the Riemann integral.

write operations are provided. (Real memories provide many other operations, such as partial-word writes and cache prefetches.) I will specify a memory that allows multiple outstanding requests and has a realistic, weaker correctness condition. To keep the specification short, I will still consider only the simple operations of reading and writing one word of memory.
11.2.1 The Interface

A modern processor performs multiple instructions concurrently. It can begin new memory operations before previous ones have been completed. The memory responds to a request as soon as it can; it need not respond to different requests in the order in that they were issued.

There are many different reasons why we might be specifying a multiprocessor memory. We could be specifying a computer architecture, or the semantics of a programming language. The purpose of the specification determines what kind of interface we should use. I will suppose that we are specifying the memory of an actual computer.

A processor issues a request to a memory system by setting some register. I assume that each processor has a set of registers through which it communicates with the memory. Each register has three fields: an \texttt{adr} field that holds an address, a \texttt{val} field that holds a word of memory, and an \texttt{op} field that indicates what kind of operation, if any, is in progress. The processor can issue a command using a register whose \texttt{op} field equals \texttt{"Free"}. It sets the \texttt{op} field to \texttt{"Rd"} or \texttt{"Wr"} to indicate the operation; it sets the \texttt{adr} field to the address of the memory word; and, for a write, it sets the \texttt{val} field to the value being written. (On a read, the processor can set the \texttt{val} field to any value.) The memory responds by setting the \texttt{op} field back to \texttt{"Free"} and, for a read, setting the \texttt{val} field to the value read. (The memory does not change the \texttt{val} field when responding to a write.)

Module \texttt{RegisterInterface} in Figure 11.4 on the next page contains some declarations and definitions for specifying the interface. It declares four constants: \texttt{Adr}, \texttt{Val}, and \texttt{Proc} are the same as in the memory interface of Section 5.1, and \texttt{Reg} is the set of registers—more precisely, the set of register identifiers. A processor has a separate register corresponding to each element of \texttt{Reg}. The variable \texttt{regFile} represents the processors’ registers, \texttt{regFile}[p][r] being register \texttt{r} of processor \texttt{p}. The module also defines the sets of all possible requests and register values, as well as a type invariant for \texttt{regFile}.

11.2.2 The Correctness Condition

Section 5.3 specifies what is called a linearizable memory. In a linearizable memory, a processor never has more than one outstanding request. The correctness condition for the memory can be stated as:

The result of any execution is the same as if the operations of all the processors were executed in some sequential order, and each operation is executed between the request and the response.

The second clause, which requires the system to act as if each operation were executed between its request and its response, is both too weak and too strong
11.2. OTHER MEMORY SPECIFICATIONS

-module RegisterInterface.

-constant Adr, Val, Proc, Reg, RegFile.

-VARIABLE regFile regFile[p][r] represents the contents of register r of processor p.

RdRequest = [adr: Adr, val: Val, op: "Rd"]
WrRequest = [adr: Adr, val: Val, op: "Wr"]
FreeRegValue = [adr: Adr, val: Val, op: "Free"]
Request = RdRequest \ WrRequest The set of all possible requests.
RegValue = Request \ FreeRegValue The set of all possible register values.
RegFileTypeInvariant = regFile \ Proc \ Reg \ RegValue

Figure 11.4: A module for specifying a register interface to a memory.

for our specification. It’s too weak because it says nothing about the execution order of two operations from the same processor unless one is issued after the other’s response. For example, suppose a processor p issues a write and then a read to the same address. We want the read to obtain either the value p just wrote, or a value written by another processor—even if p issues the read before receiving the response for the write. This isn’t guaranteed by the condition. The clause is too strong because it places unnecessary ordering constraints on operations issued by different processors. If operations A and B are issued by two different processors, then we don’t need to require that A precedes B in the execution order just because B was requested after A’s response.

We modify the second clause to require that the system act as if operations of each individual processor were executed in the order that they were issued:

The result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order in which the requests were issued.

In other words, we require that the values returned by the reads can be explained by some total ordering of the operation executions that is consistent with the order in which each processor issued its requests. There are a number of different ways of formalizing this definition, which differ in how bizarre the explanation may be. The differences can be described in terms of whether or not certain scenarios are permitted. So, let’s introduce some notation for writing scenarios.
Let $\text{Wr}_p(a, v)$ represent a write operation of value v to address a by processor p, and let $\text{Rd}_p(a, v)$ represent a read of a by p that returns the value v.

The first decision we must make is whether all operations in an infinite behavior must be ordered, or if the ordering must exist only at each finite point during the behavior. Consider a scenario in which each of two processes writes its own value to the same address and then keeps reading that value forever:

Process p: $\text{Wr}_p(a, v_1)$, $\text{Rd}_p(a, v_1)$, $\text{Rd}_p(a, v_1)$, $\text{Rd}_p(a, v_1)$, ...
Process q: $\text{Wr}_q(a, v_2)$, $\text{Rd}_q(a, v_2)$, $\text{Rd}_q(a, v_2)$, $\text{Rd}_q(a, v_2)$, ...

At each point in the execution, we can explain the values returned by the reads with a total order in which all the operations of either processor precede all the operations of the other. However, there is no way of explaining the entire infinite scenario with a single total order. In this scenario, neither processor ever sees the value written by the other. Since a multiprocessor memory is supposed to allow processors to communicate, we disallow this scenario.

The second decision we must make is whether the memory is allowed to predict the future. Consider this scenario:

Processor p: $\text{Wr}_p(a, v_1)$, $\text{Rd}_p(a, v_2)$
Processor q: $\text{Wr}_q(a, v_2)$

Here, q issues its write of v_2 after p has obtained the result of its read. The scenario is explained by the ordering $\text{Wr}_p(a, v_1)$, $\text{Wr}_q(a, v_2)$, $\text{Rd}_p(a, v_2)$. However, this is a bizarre explanation because, to return the value v_2 for p’s read, the memory had to predict that another processor would write v_2 some time in the future. Since a real memory can’t predict what requests will be issued in the future, such a behavior cannot be produced by a correct implementation. We can therefore rule out the scenario as unreasonable. Alternatively, since no correct implementation can produce it, there’s no need to outlaw the scenario.

If we don’t allow the memory to predict the future, then it must always be able to explain the values read in terms of the writes that have been issued so far. In this case, we have to decide whether the explanations must be stable. For example, suppose a scenario begins as follows:

Processor p: $\text{Wr}_p(a_1, v_1)$, $\text{Rd}_p(a_1, v_3)$
Processor q: $\text{Wr}_q(a_2, v_2)$, $\text{Wr}_r(a_1, v_3)$

At this point, the only explanation for p’s read $\text{Rd}_p(a_1, v_3)$ is that q’s write $\text{Wr}_q(a_1, v_3)$ preceded it, which implies that q’s other write $\text{Wr}_q(a_2, v_2)$ also preceded the read. Hence, if p now reads a_2, it must obtain the value v_2. But suppose the scenario continues as follows, with another processor r joining in:

Processor p: $\text{Wr}_p(a_1, v_1)$, $\text{Rd}_p(a_1, v_3)$, $\text{Rd}_p(a_2, v_0)$
Processor q: $\text{Wr}_q(a_2, v_2)$, $\text{Wr}_q(a_1, v_3)$
Processor r: $\text{Wr}_r(a_1, v_3)$
11.2. OTHER MEMORY SPECIFICATIONS

We can explain this scenario with the following ordering of the operations:

\[\text{Wr}_r(a_1, v_1), \text{Wr}_r(a_1, v_3), \text{Rd}_p(a_1, v_3), \text{Rd}_p(a_2, v_0), \text{Wr}_q(a_2, v_2), \text{Wr}_q(a_1, v_3) \]

In this explanation, processor \(r \) provided the value of \(a_1 \) read by \(p \), and \(p \) read the initial value \(v_0 \) of memory address \(a_2 \). The explanation of the value of \(a_1 \) read by \(p \) thus changes in mid-execution. Should we allow explanations to change in this way?

11.2.3 A Serial Memory

We first specify a memory that cannot predict the future and cannot change its explanations. There seems to be no standard name for such a memory; I'll call it serial.

The informal correctness condition is in terms of the sequence of all operations that have ever been issued. There is a general method of formalizing such a condition that works for specifying many different kinds of systems. We add an internal variable \(opQ \) that records the history of the execution. For each processor \(p \) the value of \(opQ[p] \) is a sequence, where \(opQ[p][i] \) describes the \(i \)th request issued by \(p \), the response to the request (if it has been issued), and any other information about the operation needed to express the correctness condition. We can also add one or more additional internal variables that record additional information not readily associated with the individual operations.

For a system with the kind of register interface we are using, the next-state relation has the form

\[
(11.1) \ \lor \exists \ proc \in \text{Proc}, \ reg \in \text{Reg} : \lor \exists \ req \in \text{Request} : \text{IssueRequest}(proc, req, reg) \\
\quad \lor \text{RespondToRequest}(proc, req) \\
\quad \lor \text{Internal}
\]

where the component actions do the following:

\(\text{IssueRequest}(proc, req, reg) \)

The action with which processor \(proc \) issues a request \(req \) in register \(reg \).

\(\text{RespondToRequest}(proc, req) \)

The action with which the system responds to a request in processor \(proc \)'s register \(reg \).

\(\text{Internal} \)

An action that changes only the internal state.

Liveness properties are asserted by fairness conditions on the \(\text{RespondToRequest} \) and \(\text{Internal} \) actions.

A general trick for writing the specification is to choose the internal state so the safety part of the correctness condition can be expressed by the formula \(\square P \)
for some state predicate P; and the liveness part can be expressed by fairness on the *Internal* action. We guarantee that P is always true by letting P' be a conjunct of each action. I’ll use this approach to specify the serial memory, taking for P a state predicate will be called *Serializable*.

We want to require that the value returned by each read is explainable as the value written by some operation already issued, or as the initial value of the memory. Moreover, we don’t want this explanation to change. We therefore add to the opQ entry for each completed read a *source* field that indicates where the value came from. This field is set by the *RespondToRequest* action.

We want all operations in an infinite behavior eventually to be ordered. This means that, for any two operations, the memory must eventually decide which one precedes the other—and it must stick to that decision. We introduce an internal variable $opOrder$ that describes the ordering of operations to which the memory has already committed itself. An *Internal* step changes only $opOrder$, and it can only enlarge the ordering.

The predicate *Serializable* used to specify the safety part of the correctness condition describes what it means for $opOrder$ to be a correct explanation. It asserts that there is some consistent total ordering of the operations that satisfies the following conditions:

- It extends $opOrder$.
- It orders all operations from the same processor in the order that they were issued.
- It orders operations so that the source of any read is the latest write to the same address that precedes the read, and is the initial value iff there is no such write.

We now translate this informal sketch of the specification into TLA*. We first choose the types of the variables opQ and $opOrder$. To describe the source field of a read and an order on operations, we define a set $opId$ of values that describe the operations that have been issued. An operation is specified by a pair $\langle p, i \rangle$ where p is a processor and i is a position in the sequence $opQ[p]$.

(The set of all such positions i is $\text{DOMAIN } opQ[p]$.) We let the corresponding element of $opId$ be the record with *proc* field p and *idx* field i, so we define:

$$opId \triangleq \{ oiv \in OpIdVal : oiv.idx \in \text{DOMAIN } opQ[oiv.proc]\}$$

For convenience, we define $opIdQ(oi)$ to be the value of the opQ entry denoted by an element oi of $opId$:

$$opIdQ(oi) \triangleq opQ[oi.proc][oi.idx]$$

The source of a value need not be an operation; it can also be the initial contents of the memory. The latter possibility is represented by letting the *source* field of the opQ entry have the special value *InitWr*. We then let opQ be an element of $\text{[Proc } \rightarrow \text{ Seq(opVal)]}$, where $opVal$ is the union of three sets:
11.2. OTHER MEMORY SPECIFICATIONS

[req : Request, reg : Reg]
Represents an active request in the register of the requesting processor indicated by the reg field.

[req : WrRequest, reg : {Done}]
Represents a completed write request, where Done is a special value that is not a register.

[req : RdRequest, reg : {Done}, source : opId ∪ {InitWr}]
Represents a completed read request whose value came from the operation indicated by the source field, or from the initial value of the memory location if the source field equals InitWr.

Observe that opId and opVal are state functions whose values depend upon the value of the variable opQ.

We need to specify the initial value of memory. A program generally cannot assume anything about the memory’s initial value, except that every address does contain a value in Val. So, the initial value value of memory can be any element of [Adr → Val]. We declare an “internal” constant InitMem, whose value is the initial memory value. In the final specification, InitMem will be hidden along with the internal variables opQ and opOrder. We hide a constant with ordinary existential quantification ∃. The requirement that InitMem is a function from addresses to values could be made part of the initial predicate, but it’s more natural to express it in the quantifier. The final specification will therefore have the form:

∃InitMem ∈ [Adr → Val] : ∃opQ, opOrder : ...

For later use, we define goodSource(oi) to be the set of plausible values for the source of a read operation oi in opId. By a plausible value, I mean either InitWr or a write to the same address that oi reads. It will be an invariant of the specification that the source of any completed read operation oi is an element of goodSource(oi). Moreover, if the source of oi is InitWr, then the request’s value must equal the value assigned to the address by InitMem. To express this formally, observe that only the opQ entries of completed reads have a source field. Since a record has a source field iff the string “source” is in its domain, we can write this invariant as:

\[
\forall oi ∈ opId :
\begin{align*}
\text{("source" ∈ domain opIdQ(oi))} & \Rightarrow \\
\land \text{opIdQ(oi).source ∈ goodSource(oi)} & \\
\land \text{(opIdQ(oi).source = InitWr)} & \Rightarrow \text{(opIdQ(oi).req.val = InitMem[opIdQ(oi).req.adr])}
\end{align*}
\]

We now choose the type of opOrder. We usually represent an ordering relation as an operator such as <, writing A < B to mean that A precedes B. However, the value of a variable cannot be an operator. So, we must represent an ordering
relation as a set or a function. Mathematicians usually describe a relation \(\prec \) on a set \(S \) as a set \(R \) of ordered pairs of elements in \(S \), with \(\langle A, B \rangle \in R \) iff \(A \prec B \). So, we let \(opOrder \) be a subset of \(opId \times opId \), where \(\langle oi, oj \rangle \in opOrder \) means that \(oi \) precedes \(oj \).

Our internal state is redundant because, if register \(r \) of processor \(p \) contains an uncompleted operation, then there is an \(opQ \) entry that points to the register and contains the same request. This redundancy means that the following relations among the variables are invariants of the specification:

- If an \(opQ \) entry’s \(reg \) field is not equal to \(Done \), then it denotes a register whose contents is the entry’s \(reg \) field.
- The number of \(opQ \) entries pointing to a register equals 1 if the register contains an active operation, otherwise it equals 0.

In the specification, we combine this condition, formula (11.2), and the type invariant into a single state predicate \(DataInvariant \).

Having chosen the types of the variables, we can now define the initial predicate \(Init \) and the predicate \(Serializable \). The definition of \(Init \) is easy. We define \(Serializable \) in terms of \(totalOpOrder \), the set of all total orderings of \(opId \). A relation \(\prec \) is a total ordering of \(opId \) iff it satisfies the following three conditions, for any \(oi, oj, \) and \(ok \) in \(opId \).

Totality: Either \(oi = oj \), \(oi \prec oj \), or \(oj \prec oi \).

Transitivity: \(oi \prec oj \) and \(oj \prec ok \) imply \(oi \prec ok \).

Irreflexivity: \(oi \not\prec oj \).

The predicate \(Serializable \) asserts that there is a total ordering of \(opId \) satisfying the three conditions on page 172. We can express this formally as the assertion that there exists an \(R \) in \(totalOpOrder \) satisfying:

\[
\begin{align*}
& \land opOrder \subseteq R \\
& \land \forall oi, oj \in opId : \\
& \quad (oi.proc = aj.proc) \land (oi.idx < aj.idx) \Rightarrow (\langle oi, oj \rangle \in R) \\
& \land \forall oi \in opId : \\
& \quad ("source" \in \text{DOMAIN } opIdQ(oi)) \\
& \quad \Rightarrow \neg (\exists oj \in \text{goodSource}(oi) : \\
& \quad \quad \land \langle aj, oj \rangle \in R) \\
& \land (opIdQ(oi).source \neq InitWr) \Rightarrow (\langle opIdQ(oi).source, oj \rangle \in R))
\end{align*}
\]

We allow each step to extend \(opOrder \) to any relation on \(opId \) that satisfies \(Serializable \). We do this by letting every subaction of the next-state action

\[\begin{align*}
& \land \forall oi, oj \in opId : \\
& \quad (oi.proc = aj.proc) \land (oi.idx < aj.idx) \Rightarrow (\langle oi, oj \rangle \in R) \\
& \land \forall oi \in opId : \\
& \quad ("source" \in \text{DOMAIN } opIdQ(oi)) \\
& \quad \Rightarrow \neg (\exists oj \in \text{goodSource}(oi) : \\
& \quad \quad \land \langle aj, oj \rangle \in R) \\
& \land (opIdQ(oi).source \neq InitWr) \Rightarrow (\langle opIdQ(oi).source, oj \rangle \in R))
\end{align*} \]
specify $opOrder'$ with the conjunct $UpdateOpOrder$, defined by:

$$
UpdateOpOrder \triangleq \begin{align*}
&\land \ opOrder' \subseteq (opId' \times opId') \\
&\land \ opOrder \subseteq opOrder' \\
&\land \ Serializable'
\end{align*}
$$

The next-state action has the generic form of formula (11.1) on page 171. We split the $RespondToRequest$ action into the disjunction of separate $RespondToWr$ and $RespondToRd$ actions that represent responding to writes and reads, respectively. $RespondToRd$ is the most complicated of the next-state action’s subactions, so let’s examine its definition. The definition has the form:

$$
RespondToRd(proc, reg) \triangleq \\
\begin{array}{l}
\text{let } req \triangleq \text{regFile[proc][reg]} \\
\quad \text{idx} \triangleq \text{choose } i \in \text{domain } opQ[proc] : \text{opQ[proc][i].reg = reg} \\
\text{in } \ldots
\end{array}
$$

This defines req to be the request in the register and idx to be an element in the domain of $opQ[proc]$ such that $opQ[proc][idx].reg$ equals req. If the register is not free, then there is exactly one such idx; and $opQ[proc][idx].req$, the idxth request issued by $proc$, equals req. (We don’t care what idx equals if the register is free.) The in expression begins with the enabling condition:

$$
\land \ req.op = “Rd”
$$

which asserts that the register is not free and it contains a read request. The next conjunct of the in expression is:

$$
\land \ \exists \ src \in \text{goodSource}([proc \mapsto proc, \ idx \mapsto idx]) : \\
\land \ \text{let } val \triangleq \text{if } src = \text{InitWr} \text{ then } \text{InitMem[req.adr]} \text{ else } \text{opIdQ(src).req.val} \\
\text{in } \ldots
$$

It asserts the existence of a value src, which will be the source of the value returned by the read; and it defines val to be that value. If the source is the initial value of memory, then the value is obtained from InitMem; otherwise, it is obtained from the source request’s val field. The inner in expression has two conjuncts that specify the values of $\text{regFile}'$ and opQ'. The first conjunct asserts that the register’s val field is set to val and its op field is set to “Free”, indicating that the register is made free.

$$
\land \ \text{regFile'} = \{ \text{regFile except } ![proc][req].val = val, \\
\quad ![proc][req].op = “Free” \}
$$

The second conjunct of the inner in expression describes the new value of opQ. Only the idxth element of opQ[proc] is changed. It is set to a record whose req
field is the same as the original request \(req \), except that its \(val \) field is equal to \(val \); whose \(reg \) field equals \(Done \); and whose \(source \) field equals \(src \).

\[
\land \; opQ' = \left[op \; \text{except} \; \text{!}[proc][idx] = \left[\begin{array}{l}
\begin{array}{l}
req \\
reg \\
source
\end{array}
\end{array}
\right] = \left[\begin{array}{l}
\begin{array}{l}
req \; \text{except} \; \text{!}.val = val, \\
Done, \\
src
\end{array}
\end{array}
\right]
\]

Finally, the outer \textsc{in} clause ends with the conjunct

\[
\land \; \text{UpdateOpOrder}
\]

that determines the value of \(opOrder' \). It also implicitly determines the possible choices of the source of the read—that is, the value of \(opQ'[proc][idx].source \). For some choices of this value allowed by the second outer conjunct, there will be no value of \(opOrder' \) satisfying \(\text{UpdateOpOrder} \). The conjunct \(\text{UpdateOpOrder} \) rules out those choices for the source.

The definitions of the other subactions of the next-state action—\textsc{IssueRequest}, \textsc{RespondToWr}, and \textsc{Internal}—are simpler and I won’t explain them.

Having finished the initial predicate and the next-state action, we must determine the liveness conditions. The first condition is that the memory must eventually respond to every operation. The response to a request in register \(reg \) of processor \(proc \) is produced by a \(\text{RespondToWr}(proc, \; reg) \) or \(\text{RespondToRd}(proc, \; reg) \) action. So, the obvious way to express this condition is:

\[
\forall \; proc \in \text{Proc}, \; reg \in \text{Reg} : \\
\text{WF}(\ldots)(\text{RespondToWr}(proc, \; reg) \lor \text{RespondToRd}(proc, \; reg))
\]

For this to imply that the response is eventually issued, \(\text{RespondToWr}(proc, \; reg) \) or \(\text{RespondToRd}(proc, \; reg) \) must be enabled if there is an uncompleted operation in \(proc \)'s register \(reg \). This isn’t completely obvious for a read request, because \(\text{RespondToRd}(proc, \; reg) \) is enabled only if there exist a source for the read and a value of \(opOrder' \) that satisfy \(\text{Serializable}' \). They do exist because \(\text{Serializable} \), which holds in the initial state, implies the existence of a correct total ordering of all the operations; this ordering can be used to choose a source and a relation \(opOrder' \) that satisfy \(\text{Serializable}' \).

The second liveness condition is that the memory must eventually commit to an ordering for every pair of operations. This is expressed as a fairness condition, for every pair of distinct operations \(oi \) and \(oj \) in \(opId \), an \textsc{Internal} action that makes \(oi \) either precede or follow \(oj \) in the ordering \(opOrder' \). A first attempt at this condition is

\[
(11.3) \; \forall \; oi, \; oj \in \text{opId} : (oi \neq oj) \Rightarrow \text{WF}(\ldots)(\land \text{Internal} \\
\land (\{oi, oj\} \in \text{opOrder}') \lor (\{oj, oi\} \in \text{opOrder}'))
\]
However, this isn’t correct. In general, a formula \(\forall x \in S : F \) is equivalent to \(\forall x : (x \in S) \Rightarrow F \). Hence, (11.3) is equivalent to the assertion that the following formula holds, for all constant values \(o_i \) and \(o_j \):

\[
(o_i \in \text{opId}) \land (o_j \in \text{opId}) \Rightarrow \\
\left((o_i \neq o_j) \Rightarrow \text{WF}_{\text{Internal}} \land ((o_i, o_j) \in \text{opOrder}') \lor ((o_j, o_i) \in \text{opOrder}') \right)
\]

In a temporal formula, a predicate with no temporal operators is an assertion about the initial state. Hence, (11.3) asserts that the fairness condition is true for all pairs of distinct values \(o_i \) and \(o_j \) in the initial value of \(\text{opId} \). But \(\text{opId} \) is initially empty, so this condition is vacuously true. Hence, (11.3) is trivially implied by the initial predicate. We must instead assert fairness for the action

\[
(11.4) \land (o_i \in \text{opId}) \land (o_j \in \text{opId}) \\
\land \text{Internal} \\
\land ((o_i, o_j) \in \text{opOrder}') \lor ((o_j, o_i) \in \text{opOrder}')
\]

for all distinct values \(o_i \) and \(o_j \). It suffices to assert this only for \(o_i \) and \(o_j \) of the right type. Since I prefer using bounded quantifiers whenever possible, I will write this condition as:

\[
\forall o_i, o_j \in [\text{proc} : \text{Proc}, \text{idx} : \text{Nat}] : \text{All operations are eventually ordered.} \\
(o_i \neq o_j) \Rightarrow \text{WF}_{\text{Internal}} \land (o_i \in \text{opId}) \land (o_j \in \text{opId}) \\
\land ((o_i, o_j) \in \text{opOrder}') \lor ((o_j, o_i) \in \text{opOrder}')
\]

For this formula to imply that any two operations are eventually ordered by \(\text{opOrder} \), action (11.4) must be enabled if \(o_i \) and \(o_j \) are unordered operations in \(\text{opId} \). It is, because \text{Serializable} is always enabled, so it is always possible to extend \(\text{opOrder} \) to a total ordering of all issued operations.

The complete inner specification, with \(\text{InitMem} \), \(\text{opQ} \), and \(\text{opOrder} \) visible, is in module \text{InnerSerial} on pages 179–181. I have made two minor modifications to allow the specification to be checked by the TLC model checker. (Chapter 13 describes TLC and explains why these changes are needed.) Instead of the definition of \(\text{opId} \) given on page 172, the specification uses the equivalent definition:

\[
\text{opId} \triangleq \text{union} \{ \text{proc} : p, \text{idx} : \text{domain} \text{opQ}[p] \}\]

In the definition of \(\text{UpdateOpOrder} \), the first conjunct is changed from

\[
\text{opOrder}' \subseteq \text{opId}' \times \text{opId}'
\]

to the equivalent

\[
\text{opOrder}' \in \text{subset} (\text{opId}' \times \text{opId}')
\]
For TLC’s benefit, I also ordered the conjuncts in each subaction so UpdateOpOrder follows the “assignment of a value to” opQ’. This resulted in the unchanged conjunct not being the last one in action Internal.

The complete specification is obtained by the customary use of a parametrized instantiation of InnerSerial to hide the constant InitMem and the variables opQ and opOrder:

\[
\text{module SerialMemory}
\]

\[
\text{extends RegisterInterface}
\]

\[
\text{Inner(InitMem, opQ, opOrder)} \triangleq \text{INSTANCE InnerSerial}
\]

\[
\text{Spec} \triangleq \exists \text{InitMem} \in [\text{Adr} \rightarrow \text{Val}]:
\]

\[
\exists \text{opQ, opOrder : Inner(InitMem, opQ, opOrder)}!\text{Spec}
\]

11.2.4 A Sequentially Consistent Memory

The serial memory specification does not allow the memory to predict future requests. We now remove this restriction and specify what is called a sequentially consistent memory. The freedom to predict the future can’t be used by any real implementation, so there’s little practical difference between a serial and a sequentially consistent memory. However, the sequentially consistent memory has a simpler specification. This specification is surprising and instructive.

The next-state action of the sequential memory specification has the same structure as that of the serial memory specification, with IssueRequest, RespondToRd, RespondToWr, and Internal actions. It also has an internal variable opQ and, as in the serial memory specification, the IssueRequest operation puts into opQ an entry with req (request) and req (register) fields. However, operations do not remain forever in opQ; an Internal step removes the operation from opQ.

The specification has an internal variable mem that represents the contents of a memory—that is, the value of mem is a function from Adr to Val. The value of mem is changed only by the Internal action, when it removes a write from opQ. Recall that the correctness condition has two requirements:

1. There is a sequential execution order of all the operations that explains the values returned by reads.

2. This execution order is consistent with the order in which operations are issued by each individual processor.

2The freedom to change explanations, which a sequentially consistent memory allows, could conceivably be used to permit a more efficient implementation, but it’s not easy to see how.
11.2. OTHER MEMORY SPECIFICATIONS

MODULE InnerSerial

EXTENDS RegisterInterface, Naturals, Sequences, FiniteSets

CONSTANT InitMem The initial contents of memory, which will be an element of [Proc → Adr].

VARIABLE opQ, \(opQ[p][i] \) is the \(i \)th operation issued by processor \(p \).

opOrder The ordering of operations, which is a subset of \(opId \times opId \). (\(opId \) is defined below).

\[\begin{align*}
opId & \triangleq \text{UNION } \{ [\text{proc} : p, \text{idx} : \text{DOMAIN } opQ[p]] : p \in \text{Proc} \} \quad \text{[proc \(\rightarrow p \), idx \(\rightarrow i \) represents operation \(i \) of processor \(p \).} \\
opIdQ(o) & \triangleq opQ[oi.proc][oi.idx] \\
InitWr & \triangleq \text{CHOOSE } v : v \notin [\text{proc} :
\text{Proc}, \text{idx} : \text{Nat}] \quad \text{The source for an initial memory value.} \\
Done & \triangleq \text{CHOOSE } v : v \notin \text{Reg} \quad \text{The reg field value for a completed operation.} \\
\text{opVal} & \triangleq \text{Possible values of } \text{opQ}[p][i]. \\
\text{req} : \text{Request, req : Reg} \quad \text{An active request using register reg.} \\
\text{req} : \text{WrRequest, req : Done} \quad \text{A completed write.} \\
\text{req} : \text{RdRequest, req : Done, source : opId \{ InitWr \}} \quad \text{A completed read of value from source.} \\
goodSource(o) & \triangleq \\
\{ \text{InitWr} \} \cup \{ a \in \text{opId} : \land \text{opIdQ}(a).\text{req}.\text{op} = "\text{Wr}" \\
\land \text{opIdQ}(a).\text{req}.\text{adr} = \text{opIdQ}(a).\text{req}.\text{adr} \}
\end{align*} \]

DataInvariant \(\triangleq \)

\[\begin{align*}
\land \text{RegFileTypeInvariant} \quad \text{Simple type invariants for RegFile,} \\
\land \text{opQ} \in [\text{Proc} \rightarrow \text{Seq}(\text{opVal})] \\
\land \text{opOrder} \subseteq (\text{opId} \times \text{opId}) \\
\land \forall o \in \text{opId} : \\
\land (\"\text{source}\" \in \text{DOMAIN } \text{opIdQ}(o)) \Rightarrow \\
\land \text{opIdQ}(o).\text{source} \in \text{goodSource}(o) \\
\land (\text{opIdQ}(o).\text{source} = \text{InitWr}) \Rightarrow (\text{opIdQ}(o).\text{req}.\text{val} = \text{InitMem}[\text{opIdQ}(o).\text{req}.\text{adr}]) \\
\land (\text{opIdQ}(o).\text{req} \neq \text{Done}) \Rightarrow \text{opQ correctly describes the register contents.} \\
(\text{opIdQ}(o).\text{req} = \text{RegFile}[o].\text{proc}[\text{opIdQ}(o).\text{req}]) \\
\land \forall p \in \text{Proc}, r \in \text{Reg} : \\
\land \text{Cardinality}\{ i \in \text{DOMAIN } \text{opQ}[p] : \text{opQ}[p][i].\text{reg} = r \} \quad \text{Only nonfree registers have corresponding opQ entries.} \\
\text{Cardinality}\{ i \in \text{DOMAIN } \text{opQ}[p] : \text{opQ}[p][i].\text{reg} = r \} = \\
\text{IF } \text{RegFile}[p][r].\text{op} = \text{"Free" THEN } 0 \text{ ELSE } 1 \\
\land \text{Init} \triangleq \\
\land \text{regFile} \in [\text{Proc} \rightarrow [\text{Reg} \rightarrow \text{FreeRegValue}]] \\
\land \text{opQ} = \{ p \in \text{Proc} \rightarrow \{ \} \\
\land \text{opOrder} = \{ \} \\
\text{Every register is free.} \\
\text{There are no operations in opQ.} \\
\text{The ordering relation opOrder is empty.}
\end{align*} \]

Figure 11.5: Module InnerSerial (beginning).
\[
\text{totalOpOrder} \triangleq \{ R \in \text{SUBSET} (\text{opId} \times \text{opId}) : \\
\land \forall \text{oi}, \text{oj} \in \text{opId} : (\text{oi} = \text{oj}) \lor ((\text{oi}, \text{oj}) \in R) \lor ((\text{oj}, \text{oi}) \in R) \\
\land \forall \text{oi}, \text{oj}, \text{ok} \in \text{opId} : ((\text{oi}, \text{oj}) \in R) \land ((\text{oj}, \text{ok}) \in R) \Rightarrow ((\text{oi}, \text{ok}) \in R) \\
\land \forall \text{oi} \in \text{opId} : \{ \text{oi, oi} \notin R \} \}
\]

\[
\text{Serializable} \triangleq \exists R \in \text{totalOpOrder} : \\
\land \text{opOrder} \subseteq R \\
\land \forall \text{oi}, \text{oj} \in \text{opId} : (\text{oi.proc} = \text{oj.proc}) \land (\text{oi.idx} < \text{oj.idx}) \Rightarrow ((\text{oi}, \text{oj}) \in R) \\
\land \forall \text{oi} \in \text{opId} : \{ \text{"source"} \in \text{DOMAIN} \text{opIdQ(oi)} \} \Rightarrow \\
\neg (\exists \text{oj} \in \text{goodSource(oi)} : \\
\land (\text{oj, oi}) \in R \\
\land (\text{opIdQ(oi).source} \neq \text{InitWr}) \Rightarrow ((\text{opIdQ(oi).source, oi}) \in R) \}
\]

\[
\text{UpdateOpOrder} \triangleq \land \text{opOrder}' \in \text{SUBSET} (\text{opId}' \times \text{opId}') \\
\land \text{opOrder} \subseteq \text{opOrder}' \\
\land \text{Serializable}'
\]

UpdateOpOrder An action that chooses the new value of \(\text{opOrder}\), allowing it to be any relation that equals or extends the current value of \(\text{opOrder}\) and satisfies \(\text{Serializable}\). This action is used in defining the subactions of the next-state action.

\[
\text{IssueRequest}(\text{proc}, \text{req}, \text{reg}) \triangleq \land \text{processor proc issues request req in register reg.} \\
\land \text{regFile}[\text{proc}][\text{reg}] = \text{"Free"} \quad \text{The register must be free.} \\
\land \text{regFile}' = [\text{regFile} \text{EXCEPT} \{\text{proc}[\text{reg}] = \text{req}\}] \quad \text{Put the request in the register.} \\
\land \text{opQ}' = [\text{opQ} \text{EXCEPT} \{\text{proc} = \text{Append(}@, \text{req-go req, reg-go reg))\}] \quad \text{Add request to opQ[proc].} \\
\land \text{UpdateOpOrder}
\]

\[
\text{RespondToWr}(\text{proc}, \text{reg}) \triangleq \land \text{The memory responds to a write request in processor proc's register reg.} \\
\land \text{regFile[proc][reg].op} = \text{"Wr"} \quad \text{The register must contain an active read request.} \\
\land \text{regFile}' = [\text{regFile} \text{EXCEPT} \{\text{proc}[\text{reg}.op} = \text{"Free"}\}] \quad \text{The register is freed.} \\
\land \text{LET} \text{idx} \triangleq \text{CHOOSE i \in \text{DOMAIN opQ[proc]} : opQ[proc][i].reg = \text{req}} \land \text{opQ'} = [\text{opQ \text{EXCEPT} \{\text{proc}[\text{idx}.reg} = \text{Done}\}] \land \text{The appropriate opQ entry is updated.} \\
\land \text{UpdateOpOrder} \quad \text{opOrder is updated.}
\]

Figure 11.6: Module InnerSerial (middle).
11.2. OTHER MEMORY SPECIFICATIONS

\[\text{RespondToRd}(\text{proc}, \text{reg}) \triangleq \text{The memory responds to a read request in processor } \text{proc}'s \text{ register } \text{reg}. \]

LET \[\text{req} \triangleq \text{regFile}[\text{proc}][\text{reg}] \] \[\text{proc}'s \text{ register } \text{reg} \text{ contains the request } \text{req}, \text{ which is in } \text{opQ}[\text{proc}][\text{idx}]. \]

IN \[\wedge \text{req.} \text{op} = "Rd" \] \[\text{The register must contain an active read request.} \]

LET \[\text{idx} \triangleq \text{choose } i \in \text{domain } \text{opQ}[\text{proc}] : \text{opQ}[\text{proc}][i].\text{reg} = \text{reg} \]

IN \[\wedge \exists \text{src } \in \text{goodSource}((\text{proc} \mapsto \text{proc}, \text{idx} \mapsto \text{idx})) : \text{The read obtains its value from a source } \text{src}. \]

LET \[\text{val} \triangleq \begin{cases} \text{InitWr } & \text{if } \text{src} = \text{InitWr} \text{ THEN } \text{InitMem}[\text{req.}\text{adr}] \text{ THEN } \text{opIdQ}(\text{src}).\text{req.}\text{val} \text{ THEN } \text{The value returned by the read.} \\ \text{ELSE } \text{opIdQ}(\text{src}).\text{req.}\text{val} \text{ THEN } \text{The register’s val field is set, and it is freed.} \end{cases} \]

IN \[\wedge \text{regFile}' = \text{regFile} \text{ EXCEPT } !\text{[proc][req].}\text{val} = \text{val}, \]

\[!\text{[proc][req].}\text{op} = "Free"] \]

LET \[\text{opQ}' = \text{opQ} \text{ EXCEPT } \text{opQ}[\text{proc}][\text{idx}].\text{is updated appropriately.} \]

\[!\text{[proc][idx]} = \begin{cases} \text{req} & \rightarrow \text{[req EXCEPT !.val = val]}, \\ \text{reg} & \rightarrow \text{Done}, \\ \text{source} & \rightarrow \text{src} \end{cases} \]

\[\wedge \text{UpdateOpOrder } \text{opOrder is updated.} \]

Internal \[\triangleq \wedge \text{UNCHANGED } \langle \text{regFile}, \text{opQ} \rangle \]

\[\wedge \text{UpdateOpOrder} \]

Next \[\triangleq \text{The next-state action.} \]

\[\forall \exists \text{proc } \in \text{Proc}, \text{reg } \in \text{Reg} : \forall \exists \text{req } \in \text{Request} : \text{IssueRequest}(\text{proc}, \text{req}, \text{reg}) \]

\[\forall \text{RespondToRd}(\text{proc}, \text{reg}) \]

\[\forall \text{RespondToWr}(\text{proc}, \text{reg}) \]

Spec \[\triangleq \text{The complete internal specification.} \]

\[\wedge \text{Init} \]

\[\wedge \square[\text{Next}]\langle \text{regFile}, \text{opQ}, \text{opOrder} \rangle \]

\[\wedge \forall \text{proc } \in \text{Proc}, \text{reg } \in \text{Reg} : \text{The memory eventually responds to every request.} \]

\[\text{WF}_{\langle \text{regFile}, \text{opQ}, \text{opOrder} \rangle}(\text{RespondToWr}(\text{proc}, \text{reg}) \vee \text{RespondToRd}(\text{proc}, \text{reg})) \]

\[\wedge \forall \text{oi}, \text{oj } \in [\text{proc} : \text{Proc}, \text{idx} : \text{Nat}] : \text{All operations are eventually ordered.} \]

\[(\text{oi } \neq \text{oj}) \Rightarrow \text{WF}_{\langle \text{regFile}, \text{opQ}, \text{opOrder} \rangle}(\wedge (\text{oi } \in \text{opId}) \wedge (\text{oj } \in \text{opId}) \wedge \text{Internal} \]

\[\wedge ((\text{oi}, \text{oj}) \in \text{opOrder'}) \vee ((\text{oj}, \text{oi}) \in \text{opOrder'}) \]

THEOREM \[\text{Spec } \Rightarrow \square(\text{DataInvariant } \wedge \text{Serializable}) \]

Figure 11.7: Module InnerSerial (end).
The order in which operations are removed from \(opQ \) is an explanatory execution order that satisfies requirement 1 if the Internal action satisfies these properties:

- Only completed operations are removed from \(opQ \).\(^3\)
- When a write of value \(val \) to address \(adr \) is removed from \(opQ \), the value of \(mem[adr] \) is set to \(val \).
- A read of address \(adr \) that returned a value \(val \) can be removed from \(opQ \) only if \(mem[adr] = val \).

Requirement 2 is satisfied if operations issued by processor \(p \) are added by the IssueRequest action to the tail of \(opQ[p] \), and are removed by the Internal action only from the head of \(opQ[p] \).

We have now determined what the IssueRequest and Internal actions should do. The RespondToWr action is obvious; it’s essentially the same as in the serial memory specification. The problem is the RespondToRd action. How can we define it so that the value returned by a read is one that \(mem \) will contain when the Internal action has to remove the read from \(opQ \)? The answer is surprisingly simple: we allow the read to return any value. If the read were to return a bad value—for example, one that is never written—then the Internal action would never be able to remove the read from \(opQ \). We rule out that possibility with a liveness condition requiring that every operation in \(opQ \) eventually is removed. This makes it easy to write the Internal action. The only remaining problem is expressing the liveness condition.

To guarantee that every operation is eventually removed from \(opQ \), it suffices to guarantee that, for every processor \(Proc \), the operation at the head of \(opQ[proc] \) is eventually removed. The desired liveness condition can therefore be expressed as:

\[
\forall \ proc \in Proc : WF(...) (\text{RemoveOp}(\proc))
\]

where \(\text{RemoveOp}(\proc) \) is an action that unconditionally removes the operation from the head of \(opQ[\proc] \). For convenience, we let the \(\text{RemoveOp}(\proc) \) action also update \(mem \). We then define a separate action \(\text{Internal}(\proc) \) for each processor \(\proc \). It conjoins to \(\text{RemoveOp}(\proc) \) the following enabling condition, which asserts that if the operation being removed is a read, then it has returned the correct value.

\[
(\text{Head}(opQ[\proc]).req.op = \text{“Rd”}) \Rightarrow \\
(mem[\text{Head}(opQ[\proc]).req.adr] = \text{Head}(opQ[\proc]).req.val)
\]

The complete internal specification, with the variables \(opQ \) and \(mem \) visible, appears in module InnerSequential on pages 184–185. At this point, you should

\(^3\)We could allow uncompleted writes to be removed, but that would complicate the specification.
have no trouble understanding it. You should also have no trouble writing a module that instantiates `InnerSequential` and hides the internal variables `opQ` and `mem` to produce the final specification, so I won’t bother doing it for you.

11.2.5 The Memory Specifications Considered

Almost every specification we write admits a direct implementation, based on the initial predicate and next-state action. Such an implementation may be completely impractical, but it is theoretically possible. It’s easy to implement the linearizable memory with a single central memory. A direct implementation of the serial memory would require maintaining queues of all operations issued thus far, and a computationally infeasible search for possible total orderings. But, in theory, it’s easy.

Our specification of a sequentially consistent memory cannot be directly implemented. A direct implementation would have to guess the correct value to return on a read, which is impossible. The specification is not directly implementable because it is not machine closed. As explained in Section 8.7.2 on page 100, a non-machine closed specification is one in which a direct implementation can “paint itself into a corner,” reaching a point at which it is no longer possible to satisfy the specification. Any finite scenario of memory operations can be produced by a behavior satisfying the sequentially consistent memory’s initial predicate and next-state action—namely, a behavior that contains no `Internal` steps. However, not every finite scenario can be extended to one that is explainable by a sequential execution. For example, no scenario that begins as follows is possible in a two-processor system:

Processor p: $Wr_p(a_1, v_1)$, $Rd_p(a_1, v_2)$, $Wr_p(a_2, v_2)$
Processor q: $Wr_q(a_2, v_1)$, $Rd_q(a_2, v_2)$, $Wr_q(a_1, v_2)$

Here’s why:

- $Wr_q(a_1, v_2)$, $Rd_p(a_1, v_2)$: This is the only explanation of the value read by p.
- $Wr_q(a_1, v_2)$, $Rd_q(a_2, v_2)$: By the order in which operations are issued.
- $Wr_q(a_1, v_2)$, $Wr_q(a_2, v_2)$: This is the only explanation of the value read by q.
- $Wr_q(a_1, v_2)$, $Wr_q(a_2, v_2)$: By the order in which operations are issued.

Hence q’s write of a_1 must precede itself, which is impossible.

As mentioned in Section 8.7.2, a specification is machine closed if the liveness property is the conjunction of fairness properties for actions that imply the next-state action. The sequential memory specification asserts weak fairness of $RemoveOp(proc)$, for processors $proc$, and $RemoveOp(proc)$ does not imply the next-state action. (The next-state action does not allow a $RemoveOp(proc)$ step that removes from $opQ[proc]$ a read that has returned the wrong value.)
Chapter 11. Advanced Examples

module InnerSequential extends RegisterInterface, Naturals, Sequences, FiniteSets

VARIABLE opQ, $opQ[p][i]$ is the i^{th} operation issued by processor p.

mem An internal memory.

$Done \triangleq$ CHOOSE v : $v \notin \text{Reg}$ The reg field value for a completed operation.

$DataInvariant \triangleq$
\begin{align*}
& \land \text{RegFileTypeInvariant} \\
& \land opQ \in [\text{Proc} \rightarrow \text{Seq}([\text{req} : \text{Request}, \text{reg} : \text{Reg} \cup \{\text{Done}\}] \rightarrow \text{opOrder})] \\
& \land mem \in [\text{Adr} \rightarrow \text{Val}] \\
& \land \forall p \in \text{Proc}, r \in \text{Reg} : \text{Only nonfree registers have corresponding opQ entries.} \\
& \quad \text{Cardinality}([i \in \text{domain} opQ[p] : opQ[p][i].\text{reg} = r]) = \\
& \quad \text{IF } \text{regFile}[p][r].\text{op} = \text{"Free" THEN } 0 \text{ ELSE } 1 \\
\end{align*}

$Init \triangleq$ The initial predicate.
\begin{align*}
& \land \text{regFile} \in [\text{Proc} \rightarrow [\text{Reg} \rightarrow \text{FreeRegValue}]] \text{ Every register is free.} \\
& \land opQ = [p \in \text{Proc} \mapsto ()] \text{ There are no operations in opQ.} \\
& \land mem \in [\text{Adr} \rightarrow \text{Val}] \text{ The internal memory can have any initial contents.}
\end{align*}

$IssueRequest(proc, req, reg) \triangleq$ Processor $proc$ issues request req in register reg.
\begin{align*}
& \land \text{regFile}[proc][\text{reg}].\text{op} = \text{"Free"} \\
& \land \text{regFile'} = [\text{regFile} \text{ EXCEPT } ![\text{proc}][\text{reg} = \text{req}]} \\
& \land opQ' = [\text{opQ EXCEPT } ![\text{proc} = \text{Append}(\emptyset, [\text{req} \mapsto \text{req}, \text{reg} \mapsto \text{reg}])]} \\
& \land \text{UNCHANGED mem}
\end{align*}

$RespondToRd(proc, reg) \triangleq$ The memory responds to a read request in processor $proc$’s register reg.
\begin{align*}
& \land \text{regFile}[proc][\text{reg}].\text{op} = \text{"Rd"} \text{ proc’s register reg contains the request req, which is in $opQ[proc][idx]$.} \\
& \land \exists \text{val} \in \text{Val} : \text{val is the value returned.} \\
& \quad \land \text{regFile'} = [\text{regFile EXCEPT } ![\text{proc}][\text{reg} = \text{val}]} \\
& \quad \land \text{opQ'} = \text{LET } \text{idx} \triangleq \text{opQ[proc][idx]} \text{ contains the request in register reg.} \\
& \text{CHOOSE } i \in \text{domain} opQ[proc] : opQ[proc][i].\text{reg} = \text{reg} \\
& \text{IN } [\text{opQ EXCEPT } ![\text{proc}][\text{idx}].\text{reg} = \text{val}, \text{val and its reg field to Done.} \\
& \land \text{UNCHANGED mem}
\end{align*}

Figure 11.8: Module InnerSequential (beginning).
11.2. OTHER MEMORY SPECIFICATIONS

\[\text{RespondToWr}(\text{proc}, \text{reg}) \triangleq \text{The memory responds to a write request in processor proc’s register reg.}\]

\[\text{regFile}[\text{proc}][\text{reg}].op = \text{“Wr”}\] The register must contain an active read request.

\[\text{regFile'} = \text{[regFile EXCEPT ![\text{proc}][\text{reg}].op = “Free”]}\] The register is freed.

\[\text{LET } \text{idx} \triangleq \text{CHOOSE } i \in \text{DOMAIN } \text{opQ}[\text{proc}] : \text{opQ}[\text{proc}][i].\text{reg} = \text{reg}\] The appropriate opQ entry is updated.

\[\text{in } \text{opQ'} = \text{[opQ EXCEPT ![\text{proc}][\text{idx}].\text{reg} = \text{Done}]}\]

\[\text{UNCHANGED mem}\]

\[\text{RemoveOp}(\text{proc}) \triangleq \text{Unconditionally remove the operation at the head of opQ[proc] and update mem.}\]

\[\text{opQ[proc]} \neq \langle \rangle\] opQ[x] must be nonempty.

\[\text{Head}(\text{opQ[proc]}).\text{reg} = \text{Done}\] The operation must have been completed.

\[\text{mem'} = \text{IF } \text{Head}(\text{opQ[proc]}).\text{req} = \text{“Rd”}\]

\[\text{THEN } \text{mem}\]

\[\text{ELSE } \text{[mem EXCEPT ![\text{Head}(\text{opQ[proc]}).\text{req.adr}] = \text{Head}(\text{opQ[proc]}).\text{req.val}]}\]

\[\text{OpQ'} = \text{[opQ EXCEPT ![\text{proc}]} = \text{Tail(0)}]\] Remove the operation from opQ[proc].

\[\text{UNCHANGED regFile}\]

\[\text{No register is changed.}\]

\[\text{Internal}(\text{proc}) \triangleq \text{RemoveOp}(\text{proc})\]

\[\text{RemoveOp}(\text{proc})\]

\[\text{(Head(\text{opQ[proc]}).\text{req} = “Rd”) } \Rightarrow \]

\[\text{(mem[Head(\text{opQ[proc]}).\text{req.adr}] = Head(\text{opQ[proc]}).\text{req.val})}\]

\[\text{Next} \triangleq \text{The next-state action.}\]

\[\exists \text{proc} \in \text{Proc} : \exists \text{reg} \in \text{Reg} : \exists \text{req} \in \text{Request} : \text{IssueRequest(proc, req, reg)}\]

\[\text{\lor \text{RespondToRd}(proc, reg)}\]

\[\text{\lor \text{RespondToWr}(proc, reg)}\]

\[\text{\lor \text{Internal(proc)}}\]

\[\text{Spec} \triangleq \text{Init}\]

\[\text{\land \Box[Next](\text{regFile, opQ, mem})}\]

\[\text{\land \forall \text{proc} \in \text{Proc}, \text{reg} \in \text{Reg} : \text{The memory eventually responds to every request.}}\]

\[\text{WF(\text{regFile, opQ, mem}) (RespondToWr(proc, reg) \lor RespondToRd(proc, reg))}\]

\[\text{\land \forall \text{proc} \in \text{Proc} : \text{Every operation is eventually removed from opQ.}}\]

\[\text{WF(\text{regFile, opQ, mem}) (RemoveOp(proc))}\]

\[\text{THEOREM Spec} \Rightarrow \Box(\text{DataInvariant})\]

Figure 11.9: Module InnerSequential (end).
Very high-level system specifications, such as our memory specifications are subtle. It’s easy to get them wrong. The approach we used in the serial memory specification—namely, writing conditions on the history of all operations—is dangerous. It’s easy to forget some conditions. A non-machine closed specification can occasionally be the simplest way to express what you want to say.
Part III

The Tools
Chapter 12

The Java Front End

The Java Front End is a parser for TLA+ written in Java by Jean-Charles Grégoire. It provides a front end for other tools, such as TLC (see Chapter 13). It can also be run by itself to find syntax errors in a specification. You should obtain directions for running the Java Front End’s parser on your particular system when you obtain the software.

12.1 Finding an Error

When the parser reports an error, finding what caused it can be tricky. The errors that the parser detects fall into two separate classes, which are usually called syntactic and semantic errors. A syntax error is one that makes the specification grammatically incorrect, meaning that it violates the BNF grammar, or the precedence and alignment rules, described in Chapter 14. A semantic error is one that violates the legality conditions mentioned in Chapter 16. The term semantic error is misleading, because it suggests an error that makes a specification have the wrong meaning. All errors found by the parser are ones that make the specification illegal—that is, not syntactically well-formed—and hence make it have no meaning at all.

The parser reads the file sequentially, starting from the beginning, and it reports a syntax error if and when it reaches a point at which it becomes impossible for any continuation to produce a grammatically correct specification. For example, if you leave out a colon and type $\forall x \ P(x)$ instead of $\forall x : P(x)$, the parser will print something like:

```
Encountered "P" at line 7, column 11.
Was expecting one of:
  "," ...
  <OpSymbol> ...
```
The “was expecting” list describes every possible symbol that could lead to a grammatically correct specification. Knowing what the parser was expecting can sometimes help find the error.

The parser may detect a grammatical error far from the actual mistake. For example, suppose you type \[instead of \{ to produce \[x \in \ldots : P(x) \], where “…” is a very long expression. The parser will discover the error only when it sees the colon, well past the erroneous \[. If you can’t find the source of an error, try the “divide and conquer” method: keep removing different parts of the module until you isolate the source of the problem.

A typical semantic error is an undefined symbol that arises because you mistype an identifier. For example, if you define an operator \textit{Cat} but spell it \textit{cat} somewhere by mistake, the parser may report

\begin{verbatim}
unresolved identifier cat at [line: 87, col: 6] to [87,8].
\end{verbatim}

The source of a semantic error is usually easy to find.

The parser stops when it encounters the first syntactic error. It can detect multiple semantic errors in a single run.

The current version of the parser has the following limitations, which should be corrected in future versions:

- It does not detect certain semantic errors. In particular, it does not do any level checking. (See Section 16.2 on page 295.)
- It does not properly handle strings with “escape sequences” such as \\". (See Section 15.1.10.)
- It does not properly handle parametrized instantiation. (See Section 4.2.2 on page 39.)
- It does not handle the symbol \(\otimes \). You must type \texttt{\textbackslash otimes} to represent \(\otimes \).
- It produces meaningless warnings of the form

\begin{verbatim}
numbers are used but NUMERAL isn’t defined
\end{verbatim}

This warning is a remnant of a minor change to TLA+.

- It does not handle numbers written in binary, octal, or hexadecimal notation. (See Section 15.1.11.)
Chapter 13

The TLC Model Checker

This is a description of how we expect Version 2.0 of TLC to behave. Version 1.0 of TLC does not completely implement this description; Section 13.4 on page 221 describes its limitations. Section 13.5 on page 223 describes improvements that we may make to later versions.

13.1 Introduction to TLC

TLC is a program for finding errors in TLA+ specifications. A syntactically correct specification can have two kinds of errors: it may contain “silliness” or it may not capture the intention of its author. As explained in Section 6.2, a silly expression is one whose meaning is not determined by the semantics of TLA+—for example, $3 + (1, 2)$. A specification is incorrect if whether or not some particular behavior satisfies it depends on the meaning of a silly expression. Intention isn’t a well-defined concept, and there may be a fine line between errors and unintended features.

Experience has shown that one of the most effective ways of finding both kinds of errors is by trying to verify invariance properties of a specification. TLC tries to find errors by looking for counterexamples to invariance properties—that is, to assertions of the form

$\text{(13.1) } Init \land \Box [\text{Next}]_v \Rightarrow \Box Inv$

where Inv is a state predicate. One example of an invariance property is the absence of deadlock, in which Inv equals Enabled Next. A counterexample to this instance of (13.1) shows the possibility of deadlock—the ability of the system to reach a state in which no further progress is possible. (Of course, for some systems, deadlock may just mean successful termination.) As explained in Sections 13.3.4 and 13.3.5 below, TLC can also be used to check other properties besides invariance.
I will illustrate the use of TLC with a simple example: a specification of the alternating bit protocol for sending data over a lossy FIFO transmission line. The protocol might be described as a system that looks like this:

The sender receives data values from the environment over communication channel \(\text{in} \), and the receiver then sends the values to the environment on channel \(\text{out} \). The protocol uses two lossy FIFO transmission lines: the sender sends data and control information on \(\text{msgQ} \), and the receiver sends acknowledgements on \(\text{ackQ} \). The variable \(\text{lastSent} \) records the last message the sender received from the environment. The variables \(\text{sBit} \), \(\text{sAck} \), and \(\text{rBit} \) are one-bit values used to control the sending of messages between the sender and receiver.

The protocol is supposed to implement a FIFO transmission line—in fact, a bounded FIFO of length 1. Correctness of the protocol means that its specification implements (implies) formula \(\text{Spec} \) of module \(\text{BoundedFIFO} \) (Figure 4.2 on page 43), with 1 substituted for \(N \). TLC is most easily used to check invariance properties, so we want to express correctness as an invariance property.

Intuitively, correctness of the protocol means that every value sent by the environment on channel \(\text{in} \), except possibly for the last one sent, has been received by the environment on channel \(\text{out} \). To express this condition as an invariant, we add two variables, \(\text{sent} \) and \(\text{rcvd} \), that record the sequences of messages sent over channels \(\text{in} \) and \(\text{out} \), respectively. Correctness of the algorithm is then expressed in the form (13.1) with

\[
\text{Inv} \triangleq \land \text{Len}(\text{rcvd}) \in \{\text{Len}(\text{sent}) - 1, \text{Len}(\text{sent})\}
\land \forall i \in 1 \ldots \text{Len}(\text{rcvd}) : \text{rcvd}[i] = \text{sent}[i]
\]

Changes to the variables \(\text{sent} \) and \(\text{rcvd} \) record the communication over the channels \(\text{in} \) and \(\text{out} \). If our goal is to verify the correctness of the protocol, rather than to specify an entire system, there’s no need to represent the actual input and output channels. So, we eliminate the variables \(\text{in} \) and \(\text{out} \) from the specification. Since the last message sent by the environment is the last element of the sequence \(\text{sent} \), we don’t need the variable \(\text{lastSent} \). So, we can describe the protocol as a system that looks like this:
The complete protocol specification appears in module `AlternatingBit` in Figures 13.1 and 13.2 on the following two pages.

However, for now all you need to know are the declarations:

```
CONSTANT Data     The set of data values that can be sent.
VARIABLES msgQ, ackQ, sBit, sAck, rBit, sent, rcvd
```

and the types of the variables:

- `msgQ` is a sequence of elements in \(\{0, 1\} \times \text{Data} \).
- `ackQ` is a sequence of elements in \(\{0, 1\} \).
- `sBit`, `sAck`, and `rBit` are elements of \(\{0, 1\} \).
- `sent` and `rcvd` are sequences of elements in `Data`.

The input to TLC consists of a TLA\(^+\) module and a configuration file. The configuration file tells TLC the names of the initial predicate, the next-state relation, and the invariant to be checked. For example, the configuration file for the alternating bit protocol will contain the declaration

```
INIT ABInit
```

telling TLC to take `ABInit` as the formula `Init` in (13.1).

TLC works by generating behaviors that satisfy the specification. To do this for the alternating bit protocol, it needs to know what elements are in the set `Data` of data values. We can tell TLC to let `Data` equal the set containing two elements, named `d1` and `d2`, by putting the following declaration in the configuration file.

```
CONSTANT Data = \{d1, d2\}
```

(We can use any sequence of letters and digits containing at least one letter as the name of an element.)

There are two ways to use TLC. The default method is to have it try to check all reachable states—that is, all states that can occur in behaviors
This specification describes a protocol for using lossy FIFO transmission lines to transmit a sequence of values from a sender to a receiver. The sender sends a data value \(d\) by sending a sequence of \((b, d)\) messages on \(msgQ\), where \(b\) is a control bit. It knows that the message has been received when it receives the ack \(b\) from the receiver on \(ackQ\). It sends the next value with a different control bit. The receiver knows that a message on \(msgQ\) contains a new value when its control bit differs from the last one it has received. The receiver keeps sending the last control bit it received on \(ackQ\).

EXTENDS Naturals, Sequences

CONSTANTS

- **Data** - The set of data values that can be sent.

VARIABLES

- **msgQ**, The sequence of (control bit, data value) messages in transit to the receiver.
- **ackQ**, The sequence of one-bit acknowledgements in transit to the sender.
- **sBit**, The last control bit sent by sender; it is complemented when sending a new data value.
- **sAck**, The last acknowledgement bit received by the sender.
- **rBit**, The last control bit received by the receiver.
- **sent**, The sequence of values sent by the sender.
- **rcvd**, The sequence of values received by the receiver.

INIT

\[ABInit \triangleq \begin{align*}
&\wedge msgQ = \langle \rangle \quad \text{The initial condition:} \\
&\wedge ackQ = \langle \rangle \quad \text{Both message queues are empty.} \\
&\wedge sBit \in \{0, 1\} \quad \text{All the bits equal 0 or 1} \\
&\wedge sAck = sBit \quad \text{and are equal to each other.} \\
&\wedge rBit = sBit \\
&\wedge sent = \langle \rangle \quad \text{No values have been sent or received.} \\
&\wedge rcvd = \langle \rangle
\end{align*} \]

TypeInv

\[TypeInv \triangleq \begin{align*}
&\wedge msgQ \in Seq(\{0, 1\} \times Data) \quad \text{The type-correctness invariant.} \\
&\wedge ackQ \in Seq(\{0, 1\}) \\
&\wedge sBit \in \{0, 1\} \\
&\wedge sAck \in \{0, 1\} \\
&\wedge rBit \in \{0, 1\} \\
&\wedge sent \in Seq(Data) \\
&\wedge rcvd \in Seq(Data)
\end{align*} \]

SndNewValue(d)

\[SndNewValue(d) \triangleq \begin{align*}
&\wedge sAck = sBit \\
&\wedge sent' = Append(sent, d) \quad \text{Enabled iff } sAck \text{ equals } sBit. \\
&\wedge sBit' = 1 - sBit \quad \text{Append } d \text{ to } sent. \\
&\wedge msgQ' = Append(msgQ, (sBit', d)) \quad \text{Complement control bit } sBit \\
&\wedge UNCHANGED \langle ackQ, sAck, rBit, rcvd \rangle \quad \text{Send value on } msgQ \text{ with new control bit.}
\end{align*} \]

Figure 13.1: The Alternating Bit Protocol (beginning)
13.1. INTRODUCTION TO TLC

ReSndMsg \triangleq The sender resends the last message it sent on $msgQ$.

- $sAck \neq sBit$
- $msgQ' = Append(msgQ, (sBit, sent[Len(sent)]))$
- UNCHANGED $\langle ackQ, sBit, sAck, rBit, sent, rcvd \rangle$

RcvMsg \triangleq The receiver receives the message at the head of $msgQ$.

- $msgQ \neq \langle \rangle$
- $msgQ' = Tail(msgQ)$
- $rBit' = Head(msgQ)[1]$
- $rcvd' = IF rBit \neq rBit THEN Append(rcvd, Head(msgQ)[2])$
- ELSE $rcvd$

SndAck \triangleq The receiver sends $rBit$ on $ackQ$ at any time.

- $ackQ = Append(ackQ, rBit)$
- UNCHANGED $\langle msgQ, sBit, sAck, rBit, sent, rcvd \rangle$

RcvAck \triangleq The sender receives an ack on $ackQ$.

- $ackQ = \langle \rangle$
- $ackQ' = Tail(ackQ)$
- $sAck' = Head(ackQ)$
- UNCHANGED $\langle msgQ, sBit, rBit, sent, rcvd \rangle$

Lose(c) \triangleq The action of losing a message on transmission line c.

- $c \neq \langle \rangle$
- $\exists i \in 1..Len(c) :
 c' = \begin{cases}
 [j \in 1..(Len(c) - 1) \Rightarrow j \leq i \Rightarrow c[j]] & \text{IF control bit } \neq \text{last one received} \\
 \text{ELSE } c[j + 1] & \end{cases}$

LoseMsg \triangleq Lose($msgQ$) \& UNCHANGED $ackQ$

LoseAck \triangleq Lose($ackQ$) \& UNCHANGED $msgQ$

ABNext \triangleq $\forall d \in \text{Data} : SndNewValue(d)$
- $\lor ReSndMsg \lor RcvMsg \lor SndAck \lor RcvAck$
- $\lor LoseMsg \lor LoseAck$

vars \triangleq $\langle msgQ, ackQ, sBit, sAck, rBit, sent, rcvd \rangle$ The tuple of all variables.

Spec \triangleq $ABInit \land \square[ABNext]vars$ The complete specification.

Inv \triangleq $\land \text{Len(rcvd)} \in \{\text{Len(sent)} - 1, \text{Len(sent)}\}$
- $\land \forall i \in 1..\text{Len(rcvd)} : \text{rcvd}[i] = \text{sent}[i]$

THEOREM Spec $\Rightarrow \square$ Inv

Figure 13.2: The Alternating Bit Protocol (end)
Module \texttt{MCA}\texttt{lternatingBit}

\begin{verbatim}
EXTENDS AlternatingBit
CONSTANTS msgQLen, ackQLen, sentLen
SeqConstraint \(\triangleq \) \\
\(\land \text{Len}(\text{msgQ}) \leq \text{msgQLen} \) \\
\(\land \text{Len}(\text{ackQ}) \leq \text{ackQLen} \) \\
\(\land \text{Len}(\text{sent}) \leq \text{sentLen} \)
\end{verbatim}

A constraint on the lengths of sequences for use by TLC.

Figure 13.3: Module \texttt{MCA}\texttt{lternatingBit}.

satisfying the specification.\footnote{As explained in Section 2.3 (page 18), a state is an assignment of values to all possible variables. However, when discussing a particular specification, we usually consider a state to be an assignment of values to that specification’s variables. That’s what we’re doing in this chapter.} You can also use TLC in simulation mode, in which it randomly generates behaviors, without trying to check all reachable states. We now consider the default mode; simulation mode is described in Section 13.2.7 on page 205.

Exhaustively checking all possible reachable states is impossible for the alternating bit protocol because the sequences of messages and values can get arbitrarily long, so there are infinitely many reachable states. To bound the number of states, we define a state predicate called the \textit{constraint} that asserts bounds on the lengths of the sequences. For example, the following constraint asserts that \(\text{msgQ} \) and \(\text{ackQ} \) have lengths at most 2 and \(\text{sent} \) has length at most 3:

\(\land \text{Len}(\text{msgQ}) \leq 2 \) \\
\(\land \text{Len}(\text{ackQ}) \leq 2 \) \\
\(\land \text{Len}(\text{sent}) \leq 3 \)

Since the sequence \(\text{rcvd} \) of values received can never be longer than the sequence \(\text{sent} \) of values sent, there is no need to constrain its length.

Instead of specifying the bounds on the lengths of sequences in this way, I prefer to make them parameters and to assign them values in the configuration file. We usually don’t want to put into the specification itself declarations and definitions that are just for TLC’s benefit. So, let’s write a new module, called \texttt{MCA}\texttt{lternatingBit}, that \texttt{EXTENDS} the \texttt{AlternatingBit} module and can be used as input to TLC. That module appears in Figure 13.3 on this page. A possible configuration file for this module appears in Figure 13.4 on the next page. The \textit{INVARIANT} section tells TLC to check the invariant \textit{Inv} and the type-correctness invariant \textit{TypeInv}, both of which are defined in module \texttt{AlternatingBit}. Observe that the configuration file must specify values for all the constant parameters of the specification—in this case, the parameter \textit{Data} from the \texttt{AlternatingBit} module and the three parameters declared in module \texttt{MCA}\texttt{lternatingBit} itself.

The keywords \texttt{INVARIANT} and \texttt{INVARIANTS} are equivalent.
13.1. INTRODUCTION TO TLC

CONSTANTS Data = \{d1, d2\}
msgQLen = 2
ackQLen = 2
sentLen = 3
INIT ABInit
NEXT ABNext
INVARIANTS Inv
TypeInv
CONSTRAINT SeqConstraint

Figure 13.4: A configuration file for module MCAIternatingBit.

The constraint and the assignment of values to the constant parameters define what we call a model of the specification. Given the specification and a model, TLC uses essentially the following algorithm to compute a set \mathcal{R} of reachable states.

- Initialize \mathcal{R} to the set of states that satisfy the initial predicate, and initialize the set \mathcal{U} of unexplored states to the subset of those states that satisfy the constraint.

- While \mathcal{U} is nonempty, do the following for each state s in \mathcal{U}. Remove s from \mathcal{U} and compute all states t such that the step $s \rightarrow t$ satisfies the next-state action and t is not in \mathcal{R}. For each such t: add t to \mathcal{R} and, if t satisfies the constraint, add it to \mathcal{U}.

This computes \mathcal{R} to be the set of all states s for which there is some behavior σ satisfying the specification that contains s and such that every state preceding s in σ satisfies the constraint. TLC reports an error and stops if, during this computation, it adds to \mathcal{R} a state that fails to satisfy the invariant.

How long it takes TLC to check a specification depends on the specification and the size of the model. Run on a 600MHz work station, TLC finds about 1000 reachable states per second for a specification as simple as that of the alternating bit protocol. For some specifications, the rate at which TLC generates states varies (inversely) with the size of the model; it can also go down as the states it generates become more complicated. For some specifications run on larger models, TLC can find fewer than one reachable state per second.

You should always begin testing a specification with a very small model, which TLC can check quickly. A small model will catch most simple errors. For example, a typical “off-by-one error” will make the next state depend upon the value of an expression $f[e]$ when e is not in the domain of the function f, and TLC will report this as an error. When a very small model reveals no more errors, you can then run TLC with larger models to try to catch more subtle errors.
CHAPTER 13. THE TLC MODEL CHECKER

One way to figure out how large a model TLC can handle is to estimate the approximate number of reachable states as a function of the parameters. For the alternating bit protocol, a calculation based on knowledge of how the protocol works shows that there are about

\[(13.2) \, 3^D \ast \text{sentLen} + 1 \ast (\text{msgLen} + 1) \ast (\text{msgLen} + 2) \ast (\text{ackLen} + 1) \ast (\text{ackLen} + 2)\]

reachable states that satisfy the constraint, where \(D \) is the number of elements in \(\text{Data} \). For the model specified by the configuration file of Figure 13.4, this is about 6900 states. The estimate is somewhat high; TLC finds 2312 distinct states, 1158 of which satisfy the constraint. (Remember that TLC examines states reachable in one step from a state that satisfies the constraint.) However, what’s important is not the precise number of states, but how that number varies with the parameters. From (13.2), we see that the number of states depends only quadratically on \(\text{msgLen} \) and \(\text{ackLen} \), but exponentially on \(\text{sentLen} \). For example, letting \(\text{Data} \) have 3 instead of 2 elements and increasing \(\text{sentLen} \) from 3 to 4 can be expected to increase the number of states, and hence the running time, by a factor of \(81/8 \), or about 10. In fact, TLC then finds 22058 states, 10050 of which satisfy the constraint.

Calculating the number of reachable states can be hard. If you can’t do it, increase the model size very gradually. The number of reachable states is typically an exponential function of the model’s parameters; and the value of \(a^b \) grows very fast with increasing values of \(b \).

Many systems have errors that will show up only on models too large for TLC to check exhaustively. After TLC has exhaustively checked your specification on as large a model as it can, you can run it in simulation mode on larger models. Simulation can’t catch all errors, but it’s worth trying.

13.2 How TLC Works

A program like TLC can’t handle all the specifications that can be written in a language as expressive as TLA+. To explain what kinds of specifications TLC can and cannot handle, I will now sketch how TLC works. A more complete description is given in Section 13.6.

13.2.1 TLC Values

A state is an assignment of values to variables. TLA+ allows you to describe a wide variety of values—for example, the set of all sequences of prime numbers. TLC can compute only a restricted class of values. Those values are built up from the following four types of primitive values:

- **Booleans** The values true and false.
13.2. HOW TLC WORKS

Integers Values like 3 and −1.

Strings Values like “ab3”.

Model Values in the CONSTANT section of the configuration file. For example, the configuration file shown in Figure 13.4 on page 197 introduces the model values d1 and d2. Model values with different names are assumed to be different.

A TLC value is defined inductively to be either

1. a primitive value, or

2. a finite set of comparable TLC values (comparable is defined below), or

3. a function f whose domain D is a TLC value such that f[x] is a TLC value, for all x ∈ D.

For example, the first two rules imply that

(13.3) $\{\{“a”, “b”\}, \{“b”, “c”\}, \{“c”, “d”\}\}$

is a TLC value because rules 1 and 2 imply that \{“a”, “b”\}, \{“b”, “c”\}, and \{“c”, “d”\} are TLC values, and the second rule then implies that (13.3) is a TLC value. Since tuples and records are functions, rule 3 implies that a record or tuple whose components are TLC values is a TLC value. For example, \{1, “a”, 2, “b”\} is a TLC value.

To complete the definition of what a TLC value is, I must explain what comparable means in rule 2. The basic idea is that two values should be comparable if the semantics of TLA+ determines whether or not they are equal. For example, strings and numbers are not comparable because the semantics of TLA+ doesn’t tell us whether or not “abc” equals 42. TLC considers a model value to be comparable to, and unequal to, any other value. The precise rules for comparability are given in Section 13.6.1.

13.2.2 How TLC Evaluates Expressions

To check whether an invariant is true in a state, TLC must evaluate the invariant, meaning that it must compute the TLC value (true or false) of the invariant. It does this in a straightforward way, generally evaluating subexpressions “from left to right”. In particular:

- TLC evaluates $p \land q$ by first evaluating p and, if it equals true, then evaluating q.
- TLC evaluates $p \lor q$ by first evaluating p and, if it equals false, then evaluating q. It evaluates $p \Rightarrow q$ as $\neg p \lor q$.
TLC evaluates $\mathit{if ~ p ~ then ~ e_1 ~ else ~ e_2}$ by first evaluating p, then evaluating either e_1 or e_2.

TLC evaluates $\exists x \in S: p$ by enumerating the elements s_1, \ldots, s_n of S in some order and then evaluating p with s_i substituted for x, successively for $i = 1, \ldots, n$. TLC enumerates the elements of a set S in a very straightforward way, and it gives up and declares an error if it isn’t obvious from the form of the expression S that the set is finite. For example, it can enumerate the elements of the following three set expressions:

$$\{0, 1, 2, 3\} \quad 0..3 \quad \{i \in 0..5 : i < 4\}$$

It cannot enumerate the elements of

$$\{i \in \text{Nat} : i < 4\}$$

The rules for what sets TLC can enumerate, along with a complete specification of how TLC evaluates expressions, are given elsewhere in Section 13.6.3 below.

TLC evaluates the expressions $\forall x \in S: p$ and Choose $x \in S: p$ by first enumerating the elements of S, much the same way as it evaluates $\exists x \in S: p$. The semantics of TLA^+ states that Choose $x \in S: p$ is an arbitrary value if there is no x in S for which p is true. However, this case almost always arises because of a mistake, so TLC treats it as an error. Note that evaluating the expression

$$\text{IF} ~ n > 5 \text{ THEN } \text{Choose} ~ i \in 1\ldots n : i > 5 \text{ ELSE } 42$$

will not produce an error if $n \leq 5$ because TLC will not evaluate the Choose expression in that case.

TLC cannot evaluate “unbounded” quantifiers or Choose expressions—that is, expressions having one of the forms:

$$\exists x : p \quad \forall x : p \quad \text{Choose} ~ x : p$$

It cannot evaluate any expression whose value is not a TLC value; in particular, it can evaluate a set-valued expression only if it equals a finite set; it can evaluate a function-valued expression only if it equals a function with finite domain. TLC will evaluate expressions of the following forms only if it can tell syntactically that S is a finite set:

$$\exists x \in S : p \quad \forall x \in S : p \quad \text{Choose} ~ x \in S : p$$

$$\{x \in S: p\} \quad \{e : x \in S\} \quad [x \in S \mapsto e]$$

$$\text{Subset} ~ S \quad \text{Union} ~ S$$

TLC can often evaluate an expression even when it can’t evaluate all subexpressions. For example, it can evaluate

$$[n \in \text{Nat} \mapsto n \ast (n + 1)][3]$$

The rules explaining exactly what TLC can evaluate appear in Section 13.6, but you don’t have to know them to use TLC.
which equals the TLC value 12, even though it can’t evaluate
\[[n \in \text{Nat} \mapsto n \times (n + 1)] \]
which equals a function whose domain is the set \(\text{Nat} \). (A function can be a TLC value only if its domain is a finite set.)

13.2.3 Assignment and Replacement

As we saw in the alternating bit example, the configuration file must determine the value of each constant parameter. To assign a TLC value \(v \) to a constant parameter \(c \) of the specification, we write \(c = v \) in the `CONSTANT` section of the configuration file. The value \(v \) may be a primitive TLC value or a finite set of primitive TLC values written in the form \(\{v_1, \ldots, v_n\} \)—for example, \(\{1, -3, 2\} \). In \(v \), any sequence of characters like \(a1 \) or \(foo \) that is not a number, a quoted string, or \(\text{TRUE} \) or \(\text{FALSE} \) is taken to be a model value.

In the assignment \(c = v \), the symbol \(c \) need not be a constant parameter; it can also be a defined symbol. This assignment causes TLC to ignore the actual definition of \(c \) and to take \(v \) to be its value. Such an assignment is often used when TLC cannot compute the value of \(c \) from its definition. For example, TLC cannot compute the value of \(\text{NotAnS} \) from the definition:

\[
\text{NotAnS} \triangleq \text{choose } n \cdot n \notin S
\]

because it cannot evaluate the unbounded `choose` expression. You can override this definition by assigning \(\text{NotAnS} \) a value in the `CONSTANT` section of the configuration file. For example, the assignment

\[
\text{NotAnS} = \text{NS}
\]

causes TLC to assign to \(\text{NotAnS} \) the model value \(\text{NS} \). TLC ignores the actual definition of \(\text{NotAnS} \). If you used the name \(\text{NotAnS} \) in the specification, you’d probably want TLC’s error messages to call it \(\text{NotAnS} \) rather than \(\text{NS} \). So, you’d probably use the assignment

\[
\text{NotAnS} = \text{NotAnS}
\]

which assigns to the symbol \(\text{NotAnS} \) the model value \(\text{NotAnS} \). Remember that, in the assignment \(c = v \), the symbol \(c \) must be defined or declared in the TLA\(^+\) module, and \(v \) must be a primitive TLC value or a finite set of such values.

The `CONSTANT` section of the configuration file can also contain replacements of the form \(c \leftarrow d \), where \(c \) and \(d \) are symbols defined in the TLA\(^+\) module. This causes TLC to replace \(c \) by \(d \) when performing its calculations. One use of replacement is to give a value to an operator parameter. For example, suppose we wanted to use TLC to check the write-through cache specification of Section 5.6 (page 54). The `WriteThroughCache` module extends the `MemoryInterface` module, which contains the declaration

Note that \(d \) is a defined symbol in the replacement \(c \leftarrow d \), while \(v \) is a TLC value in the substitution \(c = v \).
To use TLC, we have to tell it how to evaluate the operators Send and Reply. We do this by first writing a module \textit{MCWriteThroughCache} that extends the \textit{WriteThroughCache} module and defines two operators:

\begin{align*}
\text{MCSend}(p, d, old, new) & \triangleq \ldots \\
\text{MCReply}(p, d, old, new) & \triangleq \ldots
\end{align*}

We then add to the \texttt{CONSTANT} section of the configuration file the replacements:

\begin{align*}
\text{Send} & \leftarrow \text{MCSend} \\
\text{Reply} & \leftarrow \text{MCReply}
\end{align*}

A replacement can also replace one defined symbol by another. In a specification, we usually write the simplest possible definitions. A simple definition is not always the easiest one for TLC to use. For example, suppose our specification requires an operator \textit{Sort} such that \textit{Sort}(S) is a sequence containing the elements of \textit{S} in increasing order, if \textit{S} is a finite set of numbers. Our specification in module \textit{SpecMod} might use the simple definition:

\begin{align*}
\text{Sort}(S) & \triangleq \text{choose } s \in [1 \ldots \text{Cardinality}(S) \rightarrow S] : \\
& \forall i, j \in \text{DOMAIN } s : (i < j) \Rightarrow (s[i] < s[j])
\end{align*}

To evaluate \textit{Sort}(S) for a set \textit{S} containing \textit{n} elements, TLC has to enumerate the \textit{n} elements in the set \([1 \ldots n \rightarrow S]\) of functions. This may be unacceptably slow. We could write a module \textit{MCSpecMod} that extends \textit{SpecMod} and defines \textit{FastSort} so it equals \textit{Sort}, when applied to finite sets of numbers, but can be evaluated more efficiently by TLC. We could then run TLC with a configuration file containing the replacement

\begin{align*}
\text{Sort} & \leftarrow \text{FastSort}
\end{align*}

The following definition of \textit{FastSort} requires TLC to perform only on the order of \textit{n}^2 operations to sort an \textit{n}-element set:

\begin{align*}
\text{FastSort}(S) & \triangleq \\
& \text{LET } \text{Insert}[s \in \text{Seq(Nat)}, e \in \text{Nat}] \triangleq \\
& \quad \text{IF } \text{Len}(s) = 0 \text{ THEN } \langle e \rangle \\
& \quad \text{ELSE IF } e < s[1] \text{ THEN } \langle e \rangle \circ (s) \\
& \quad \text{ELSE } \langle \text{Head}(s) \rangle \circ \text{Insert}[ext{Tail}(s), e] \\
& \text{MCS}[s \in \text{Seq(Nat)}, SS \in \text{SUBSET } S] \triangleq \\
& \quad \text{IF } SS = \{\} \text{ THEN } s \\
& \quad \text{ELSE LET } e \triangleq \text{choose } ee \in SS : \text{TRUE} \\
& \quad \text{IN } \text{MCS}[\text{Insert}[s, e], SS \setminus e]
\end{align*}

An even more efficient way to define \textit{FastSort} is described in Section 13.3.3, on page 214 below.
13.2.4 Overriding Modules

TLC cannot compute $2 + 2$ from the definition of $+$ contained in the standard Naturals module. Even if we did use a definition of $+$ from which TLC could compute sums, it would not do so very quickly. Arithmetic operators like $+$ are implemented directly in Java, the language in which TLC is written. This is achieved by a general mechanism of TLC that allows a module to be overridden by a Java class that implements the operators defined in the module. When TLC encounters an extends Naturals statement, it reads in the Java class that overrides the Naturals module rather than reading the module itself. There are Java classes to override the following standard modules: Naturals, Integers, Sequences, FiniteSets, and Bags. (The TLC module described below in Section 13.3.3 is also overridden by a Java class.) Instructions for implementing Java classes to override other modules will appear elsewhere.

13.2.5 How TLC Computes States

When TLC evaluates the invariant, it is calculating the invariant’s value, which is either \textsc{true} or \textsc{false}. When TLC evaluates the initial predicate or the next-state action, it is computing a set of states—the set of initial states or the set of possible successor states (primed states) for a given (unprimed) state. I will describe how TLC does this for the next-state relation; the evaluation of the initial predicate is analogous.

Recall that a state is an assignment of values to variables. TLC begins computing the successors to a given state s by assigning to all unprimed variables their values in state s, and assigning no values to the primed variables. It then starts computing the next-state action.

TLC computes a set of successor states by simultaneously performing a set of computations, each trying to compute a single successor state. A computation splits into multiple separate computations when multiple possibilities are encountered. TLC begins a single computation to evaluate the next-state relation. The evaluation proceeds as described in Section 13.2.2 (page 199), except that when it evaluates a subformula $A \lor B$, it splits the computation into two separate computations—in one taking the subformula to be A and in the other taking the subformula to be B. Similarly, when it evaluates $\exists x \in S : p$, it splits the computation into multiple subcomputations, one for each element of S.

TLC reports an error if, in its evaluation, it encounters a primed variable that is not assigned a value—except that:

- It evaluates a conjunct of the form $x' = e$ when x' has no value by evaluating e and assigning to x' the value it obtains.
- It evaluates a conjunct of the form $x' \in S$ as if it were $\exists v \in S : x' = v$.

A computation that obtains the value false from evaluating the next-state action finds no state. A computation that obtains the value true finds the state determined by the values assigned to the primed variables. In the latter case, TLC reports an error if some primed variable has not been assigned a value.

Since TLC evaluates expressions from left to right, the order in which conjuncts appear can affect whether or not TLC can evaluate the next-state action. For example, it can evaluate:

\((x' = x + 1) \land (y' = x' + 1)\) but not \((y' = x' + 1) \land (x' = x + 1)\)

\((x' \in \{1, 2, 3\}) \land (x' \neq x)\) but not \((x' \neq x) \land (x' \in \{1, 2, 3\})\)

13.2.6 When TLC Computes What

When trying to figure out what caused an error, it helps to understand the exact order in which TLC performs its computations. TLC executes the following algorithm. This algorithm depends on whether or not TLC is checking for deadlock, which is determined by the switches with which TLC is run. (See Section 13.3.1.)

1. Precompute all constant definitions.
2. Compute all initial states.
3. For each initial state, evaluate the invariant on the state. If the invariant is satisfied, put the state in \(R\); otherwise, report an error and stop.
4. Set the queue \(U\) equal to all the initial states that satisfy the constraint, arranged in some arbitrary order.
5. If the queue \(U\) is empty, stop.
6. Remove the state \(s\) from the head of \(U\) and do the following:

 (a) If there is some state \(t\) such that \(s \rightarrow t\) satisfies the next-state relation, then go to step 6b. If not, then if TLC is checking for deadlock, stop and report an error; otherwise go to step 5.

 (b) Compute some states \(t\) such that \(s \rightarrow t\) satisfies the next-state relation. For each of these states \(t\) that is not in \(R\), do the following:

 i. If \(t\) does not satisfy the invariant, report an error and stop.
 ii. If \(t\) satisfies the constraint, add it to the end of the queue \(U\).

 (c) If there is any other state \(t\) such that \(s \rightarrow t\) satisfies the next-state relation, then go to step 6b. Otherwise, go to step 5.

TLC can use multiple threads, so step 6 may be performed concurrently by different threads for different states \(s\).
13.2.7 Random Simulation

I have described how TLC tries to find all reachable states that satisfy a model specified by the configuration file. TLC can also be used in simulation mode to generate randomly chosen behaviors that satisfy the specification and check that they satisfy the invariant. TLC generates a behavior by randomly choosing a state s_0 that satisfies the initial predicate, and then randomly choosing a sequence of states s_1, s_2, \ldots, such that each transition $s_i \rightarrow s_{i+1}$ satisfies the next-state action. You can specify a maximum behavior length. When TLC has generated a behavior with that many states, it starts the process again to generate another behavior. TLC continues until it either finds an error or you stop it.

In simulation mode, there is no need to specify a constraint. (TLC ignores it if you do.) You will probably first run TLC on models that are small enough so it can generate all reachable states within a reasonable length of time. When you have found all the errors you can in this way, you can then search for more errors by letting TLC generate random behaviors on larger models.

For some specifications, it can take TLC a long time to generate a transition when the state gets large. For example, suppose the next-state relation contains a disjunct of the form

\[
\land \ldots \\
\land T' \in \text{subset } S \times S \\
\land \text{Pred}(T')
\]

where S and T are set-valued variables and Pred is some Boolean-valued operator. To choose a possible next state, TLC may have to examine all the subsets of $S \times S$ to find a value of T' satisfying $\text{Pred}(T')$. If S has n elements, then there are 2^{n^2} such subsets. You will probably want to limit the length of behaviors generated by TLC to be small enough so that S cannot become too large.

TLC makes its random choices using a pseudorandom number generator. Pseudorandom number generation is controlled with a seed. Running a random simulation twice with the same seed produces identical results. You can either let TLC choose a random seed, or specify the seed with a switch, as described on the next page in Section 13.3.1. (TLC always prints the seed it is using.) If TLC finds an error, you can also get it to rerun just the error trace; see the description of the $aril$ switch on page 207.
13.3 How to Use TLC

13.3.1 Running TLC

Exactly how you run TLC depends upon what operating system you are using and how it is configured. You will probably type a command of the following form

\[
\text{program_name switches spec_file}
\]

where:

- \text{program_name} is specific to your system. It might be something like \text{java TLC}.
- \text{spec_file} is the name of the file containing the TLA+ specification. Each TLA+ module that appears in the specification must be in a separate file named \text{M.tla}, where \text{M} is the name of the module. The extension \text{.tla} may be omitted from \text{spec_file}.
- \text{switches} is a possibly empty sequence of switches. TLC accepts the following switches:
 - \text{-config config_file}
 Specifies that the configuration file is named \text{config_file}, which must be a file with extension \text{.cfg}. The extension \text{.cfg} may be omitted from \text{config_file}. If this switch is omitted, the configuration file is assumed to have the same name as \text{spec_file}, except with the extension \text{.cfg}.
 - \text{-deadlock}
 Tells TLC not to check for deadlock. TLC checks for deadlock unless this switch is present.
 - \text{-simulate}
 Tells TLC to generate randomly chosen behaviors, instead of generating all reachable states. (See Section 13.2.7 above.)
 - \text{-depth num}
 This switch tells TLC that, in simulation mode, it should generate behaviors of length at most \text{num}. If the switch is absent, then TLC will use a default value of 100. This switch is meaningful only when the \text{-simulate} switch is present.
 - \text{-seed num}
 In simulation mode, the behaviors generated by TLC are determined by the initial “seed” given to a pseudorandom number generator. This switch tells TLC to let the seed be \text{num}, which must be an integer from \(-2^{63}\) to \(2^{63} - 1\). Running TLC twice in simulation mode
with the same seed and aril (see the `aril` switch below) will produce identical results. If this switch is omitted, TLC chooses a random seed. This switch is meaningful only when the `-simulate` switch is present.

`-aril num`

The switch tells TLC that, in simulation mode, it should use `num` as the `aril`. The aril is a modifier of the initial seed. When TLC finds an error in simulation mode, it prints out both the initial seed and an aril number. Using this initial seed and aril will cause the first trace generated to be that error trace. Adding `Print` expressions will usually not change the order in which TLC generates traces. So, if the trace doesn’t tell you what went wrong, you can try running TLC again on just that trace to print out additional information.

`-recover run_id`

This switch tells TLC to start executing the specification not from the beginning, but where it left off at the last checkpoint. When TLC takes a checkpoint, it prints the run identifier. (That identifier is the same throughout an execution of TLC.) The value of `run_id` should be that run identifier.

`-cleanup`

TLC creates a number of files when it runs. When it completes, it erases all of them. If TLC finds an error, or if you stop it before it finishes, TLC can leave some large files around. The `-cleanup` option tells TLC to delete all files created by previous runs. Do not use this option if you are currently running another copy of TLC in the same directory; if you do, it can cause the other copy to fail.

`-workers num`

Step 6 of the TLC execution algorithm described on page 204 can be speeded up on a multiprocessor computer by the use of multiple threads. This switch tells TLC to use `num` threads. There is never any point to using more threads than there are actual processors on your computer. If the switch is omitted, TLC uses a single thread.

13.3.2 Debugging a Specification

When you write a specification, it usually contains errors. The purpose of running TLC is to find as many of those errors as possible. Hopefully, an error in the specification causes TLC to report an error. The challenge of debugging is to find the error in the specification that leads to the error that TLC reports. Before addressing that problem, let’s first understand TLC’s output when it finds no error.
TLC’s Normal Output

When you run TLC, the first thing it prints is the version number and creation date—something like:

TLC Version 1.0 of 26 May 1999

Always include this information when reporting any problems with TLC. Next, TLC describes the mode in which it’s being run. The possibilities are

Model-checking

in which it is exhaustively checking all reachable states, or

Running Random Simulation with seed 1901803014088851111.

in which it is doing random simulation using the indicated seed. (See section 13.2.7.) Let’s suppose it’s doing model checking. TLC next types something like:

Finished computing initial states:
4 states generated, with 2 of them distinct.

This indicates that, when evaluating the initial predicate, TLC generated 4 states, among which there were 2 distinct ones. TLC then types one or more messages like

Progress: 2846 states generated, 984 distinct states found.
856 states left on queue.

This message indicates that TLC has thus far generated and examined 2846 states, it has found 984 distinct ones, and the queue \mathcal{U} of unexplored states contains 856 states. (See Section 13.2.6 on page 204.) After running for a while, TLC generates these progress reports about once every five minutes. For most specifications, the number of states on the queue increases monotonically at the beginning of the execution and decreases monotonically at the end. The progress reports therefore provide a useful guide to how much longer the execution is likely to take.

When TLC successfully completes, it prints

Model checking completed. No error has been found.

It then prints something like:

Estimates of the probability that TLC did not check all reachable states because two distinct states had the same fingerprint:
 calculated (optimistic): .000003
 based on the actual fingerprints: .00007
13.3. HOW TO USE TLC

As explained in Section 13.6.4 on page 234, there is a chance that TLC did not examine the complete set of reachable states. TLC prints two different estimates of that probability. The first estimate is generally lower and more optimistic; the second is perhaps a more realistic one.

Finally, TLC prints something like

2846 transitions taken. 984 states discovered. 0 states left on queue.

with the grand totals.

While TLC is running, it may also print something like

-- Checkpointing run states/99-05-20-15-47-55 completed

This indicates that it has written a checkpoint that you can use to restart TLC in the event of a computer failure. (As explained in Section 13.3.6 on page 220, checkpoints have other uses as well.) The run identifier

is used with the -recover switch to restart TLC from where the checkpoint was taken. (If only part of this message was printed—for example, because your computer crashed while TLC was taking the checkpoint—there is an extremely small chance that all the checkpoints are corrupted and you must start TLC again from the beginning.)

Error Reports

The first problems you find in your specification will probably be syntax errors. TLC reports them with

ParseException in parseSpec:

followed by the error message generated by the parser. Chapter 12 explains how to interpret the parser’s error messages. (Note: TLC Version 1.0 does not use the parser’s full error detection mechanism; you should check your specification with the parser before running TLC on it.)

After parsing, TLC executes two basic phases: in the first, it computes the initial states and in the second it generates the successor states of states on the queue of unexplored states. You can tell which phase TLC is in by whether or not it has printed the “initial states computed” message.

TLC evaluates the invariant in both phases—on the initial states in the first phase, and on newly generated successor states in the second. TLC’s most straightforward error report occurs when the invariant is violated. Suppose we introduce an error into our alternating bit specification (Figures 13.1 and 13.2
on pages 194 and 195) by replacing the first conjunct of the invariant $TypeInv$ with

$$\land \text{msgQ } \in \text{Seq(Data)}$$

TLC quickly finds the error and types

Invariant $TypeInv$ is violated

It next prints a minimal-length\(^2\) behavior that leads to the state not satisfying the invariant:

The behavior up to this point is:

STATE 1:

\[
\begin{align*}
&\land \text{rBit } = \textrisk{0} \\
&\land \text{ackQ } = \textrisk{2} \\
&\land \text{rcvd } = \textrisk{2} \\
&\land \text{sent } = \textrisk{2} \\
&\land \text{sAck } = 0 \\
&\land \text{sBit } = 0 \\
&\land \text{msgQ } = \textrisk{2}
\end{align*}
\]

STATE 2:

\[
\begin{align*}
&\land \text{rBit } = 0 \\
&\land \text{ackQ } = \textrisk{2} \\
&\land \text{rcvd } = \textrisk{2} \\
&\land \text{sent } = \textrisk{2} \text{d1} \\
&\land \text{sAck } = 0 \\
&\land \text{sBit } = 0 \\
&\land \text{msgQ } = \textrisk{2} \text{1, d1}
\end{align*}
\]

Observe that TLC prints each state as a TLA\(^+\) predicate that determines the state. When printing a state, TLC describes functions using the operators `:> ` and `@@`, where

\[
(d_1 :> e_1 \@@ \ldots d_n :> e_n)
\]

is the function f with domain \{\(d_1, \ldots, d_n\)\} such that $f[d_i] = e_i$, for $i = 1,\ldots, n$. These operators are defined by the TLC module, described in Section 13.3.3 (page 13.3.3). For example, the sequence \{"ab", "cd"\}, which is a function with domain \{1, 2\}, can be written as

\[
(1 :> "ab" \@@ 2 :> "cd")
\]

\(^2\)When using multiple threads, it there is a slight chance that there exists a shorter behavior that also violates the invariant.
TLC generally prints values the way they appear in the specification, so a sequence will be printed as a sequence, rather than with this function notation.

The hardest errors to locate are usually the ones that TLC detects when evaluating an expression. They may occur when evaluating the initial predicate, the next-state action, or an invariant. These errors are detected when TLC is forced to evaluate an expression that it can’t handle, or one that is “silly” because its value is not specified by the semantics of TLA\(^+\). As an example of a silliness error, let’s return again to the alternating bit protocol and replace the then clause in the fourth conjunct of the definition of \(RcvMsg\) with

\[
\text{then } Append(rقود, \text{Head}(msgQ)[3])
\]

TLC discovers the error because the elements of \(msgQ\) are pairs, so 3 is not an element in the domain of \(\text{Head}(msgQ)\). TLC reports the error by printing:

\[
\text{Error: Applying tuple to an integer out of domain.}
\]

It then prints a behavior leading to the error. TLC finds the error when evaluating the next-state action to compute the successor states for some state \(s\), and \(s\) is the last state in that behavior. Had it found the error when evaluating the invariant, the behavior would end with the state in which TLC was evaluating the invariant. Finally, TLC prints the location of the error:

\[
\text{The error occurred when TLC was evaluating the nested expressions at the following positions:}
\]

\[
0. \text{ Line 44, column 6 to line 45, column 61 in AlternatingBit}
\]

This position identifies the entire conjunct

\[
\text{rcvd}' = \text{if } rBit' \neq rBit \text{ then } Append(rقود, \text{Head}(msgQ)[3])
\]

\[
\text{else } rقود
\]

TLC is not very precise when indicating the position of an error; usually it just narrows it down to a conjunct or disjunct of a formula. In general, it prints a tree of nested expressions—higher-level ones first. This can be helpful if the error occurs when evaluating the definition of an operator that is used in several places.

Debugging

Tracking down an error can be difficult—especially in TLC Version 1, which does not provide you with very much information. (Sometimes, it doesn’t even print the location of the error.) The \(TLC\) module provides some operators that can help in debugging.\(^3\)

\(^3\)Actually, it is the Java class that overrides the \(TLC\) module that provides the useful functionality of these operators.
The *TLC* module defines the operator *Print* so that *Print*(*out*, *val*) equals *val*. But, when *TLC* evaluates this expression, it prints the values of *out* and *val*. You can add *Print* expressions to a specification to help locate an error. For example, if your specification contains

\[
\begin{align*}
&\text{∧ *Print*("a", TRUE)} \\
&\text{∧ *P*} \\
&\text{∧ *Print*("b", TRUE)}
\end{align*}
\]

and *TLC* prints the "a" but not the "b" before reporting an error, then the error occurs while *TLC* is evaluating *P*. If you know where the error is but don’t know why it’s occurring, you can add *Print* expressions to give you more information about what values *TLC* has computed.

To understand what will be printed when, you must know how *TLC* evaluates expressions, which is explained in Section 13.2.2 on page 199. An expression is typically evaluated many times by *TLC*, so inserting a *Print* expression in the specification can produce a lot of output. You can limit the amount of output by putting the *Print* expression inside an *if*/then expression, so it is executed only in interesting cases.

Two other debugging operators defined in the *TLC* module are *Assert* and *JavaTime*. The expression *Assert*(val, *out*) equals TRUE if *val* equals TRUE. However, if *val* does not equal TRUE, then *Assert*(val, *out*) equals an illegal value, and evaluating it causes *TLC* to print the value of *out* and to halt. The expression *JavaTime* equals the current time at which *TLC* evaluates the expression. That time is given as the number of milliseconds elapsed since 00:00 Universal Time on 1 January 1970, modulo 2^{31}. If *TLC* is generating states slowly, using the *JavaTime* operator in conjunction with *Print* expressions can help you understand why. If *TLC* is spending too much time evaluating an operator, you may be able to replace the operator with an equivalent one that *TLC* can evaluate more efficiently. (See Section 13.2.3 on page 201.)

13.3.3 The *TLC* Module

The standard *TLC* module, in Figure 13.5 on the next page, contains operators that are handy when using *TLC*. The module on which you run *TLC* will normally extend the *TLC* module. The *TLC* module is overridden by its Java implementation.

Module *TLC* first defines three operators *Print*, *Assert*, and *JavaTime* that are of no use except when running *TLC*. They are explained in Section 13.3.2 on the preceding page. That section also describes the operators := and @@@, which are used for explicitly writing functions. These operators could be useful when writing specifications, even if you’re not using *TLC*.

The module next defines *BoundedSeq*(S, n) to be the set of sequences of elements of S of length at most n. *TLC* cannot evaluate *BoundedSeq*(S, n) from
13.3. HOW TO USE TLC

MODULE TLC

OPERATORS FOR DEBUGGING

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Print(out, val)</code></td>
<td>Causes TLC to print the values <code>out</code> and <code>val</code>.</td>
</tr>
<tr>
<td><code>Assert(val, out)</code></td>
<td>IF <code>val = TRUE</code> THEN TRUE ELSE <code>Print(out, TRUE)</code> & CHOOSE <code>v : v ≠ BOOLEAN</code></td>
</tr>
<tr>
<td><code>JavaTime</code></td>
<td>CHOOSE <code>n : n ∈ Nat</code> Causes TLC to print the current time, in milliseconds elapsed since 00:00 on 1 Jan 1970 UT, modulo 2^{31}.</td>
</tr>
</tbody>
</table>

OPERATORS FOR REPRESENTING FUNCTIONS

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>d :> e</code></td>
<td>$[x ∈ { d } \mapsto e]$</td>
</tr>
<tr>
<td><code>f @@ g</code></td>
<td>$[x ∈ (\text{DOMAIN } f) \cup (\text{DOMAIN } g) \mapsto$
\quad IF $x ∈ \text{DOMAIN } f$ THEN $f[x]$ ELSE $g[x]$]</td>
</tr>
</tbody>
</table>

LOCAL INSTANCE Naturals,Sequences

The keyword `local` means that definitions from the instantiated modules are not obtained by a module that extends TLC.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BoundedSeq(S, n)</code></td>
<td>${ s ∈ \text{Seq}(S) : \text{Len}(s) ≤ n }$ Sequences of length at most n having elements in S.</td>
</tr>
<tr>
<td><code>SortSeq(s, <)</code></td>
<td>The result of sorting sequence s according to the ordering <code><</code>.</td>
</tr>
</tbody>
</table>

OPERATORS FOR MODIFYING A SPECIFICATION

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FA[S ∈ \text{SUBSET DOMIN} f]</code></td>
<td>This defines $\text{FAApply}(f, +, 0)$ to equal $\sum_{i ∈ \text{DOMIN} f} f[i]$.</td>
</tr>
<tr>
<td><code>FA[\text{DOMAIN } f]</code></td>
<td>IF $S = { }$ THEN Identity ELSE LET $s ∈ \text{DOMIN } f$ & CHOOSE $s ∈ S$: TRUE
\text{IN } $\text{Op}(f[s], \text{FA}[S \setminus {s}]$</td>
</tr>
</tbody>
</table>
the definition in the module, since it would first have to evaluate the infinite set $\text{Seq}(S)$. TLC could evaluate it from the equivalent definition $\text{BoundedSeq}(S, n) \triangleq \text{union } \{[1 \ldots m \rightarrow S] : m \in 0 \ldots n\}$ but evaluation is faster with the overriding Java implementation.

The TLC module next defines the operator SortSeq. If s is a finite sequence and \prec is a total ordering relation on its elements, then $\text{SortSeq}(s, \prec)$ is the sequence obtained from s by sorting its elements according to \prec. For example, $\text{SortSeq}((3, 1, 3, 8), >)$ equals $(8, 3, 3, 1)$. The Java implementation of SortSeq allows TLC to evaluate it more efficiently than a user-defined sorting operator. For example, because the following definition of the operator FastSort, which makes use of SortSeq to do the actual sorting, TLC can evaluate it faster than the definition given above on page 202.

\[
\text{FastSort}(S) \triangleq \\
\text{let } \text{MakeSeq}[SS \in \text{BoundedSubSet}(S, \text{Cardinality}(S))] \triangleq \\
\text{if } SS = \text{then } \{\} \\
\text{else let } ss \triangleq \text{choose } ss \in SS : \text{true} \\
\text{in } \text{Append}(\text{MakeSeq}[SS \{ ss \}], ss) \\
\text{in } \text{SortSeq}(\text{MakeSeq}[S], \prec)
\]

The TLC module ends by defining the operator FApply. If f is a function with finite domain, and Op is an operator that takes two arguments, then $\text{FApply}(f, \text{Op}, \text{Id})$ equals $\text{Op}(f[d_1], \text{Op}(f[d_2], \text{Op}(\ldots \text{Op}(f[d_n], \text{Id}) \ldots))$ where d_1, \ldots, d_n are the elements in the domain of f, listed in some arbitrary order. Using FApply to avoid a recursive definition can speed up TLC. For example, the factorial function fact can be defined by

\[
\text{fact}(n) \triangleq \text{FApply}([i \in 1 \ldots n \rightarrow i], *, 1)
\]

TLC can compute factorials from this definition faster than from the standard recursive definition on page 54.

13.3.4 Checking Action Invariance

Section 5.7 on page 60 discusses two different kinds of invariants. A state predicate Inv that satisfies $\text{Spec} \Rightarrow \Box \text{Inv}$ is called an invariant of the specification Spec. This is the kind of invariance property that TLC checks. If Inv satisfies $\text{Inv} \land [\text{Next}]_v \Rightarrow \text{Inv}'$, then Inv is called an invariant of the action $[\text{Next}]_v$. It’s not hard to see that Inv is an invariant of action $[\text{Next}]_v$ if it satisfies $\text{Inv} \land \Box [\text{Next}]_v \Rightarrow \Box \text{Inv}$. We can therefore check if Inv is an invariant of an
13.3. HOW TO USE TLC

\[ABInv \triangleq \]
\[\land TypeInv \]
\[\land Inv \]
\[\land \text{IF } rBit = sBit \]
\[\text{THEN } \land \text{Len(sent) = Len(rcvd)} \]
\[\land (sent = \{\}) \Rightarrow (msgQ = \{\}) \land (sAck = sBit) \]
\[\land \forall i \in 1 \ldots \text{Len(msgQ)} : msgQ[i] = \{sBit, sent[\text{Len(sent)\}]\} \]
\[\text{ELSE } \land \text{Len(sent) \neq Len(rcvd)} \]
\[\land (msgQ \neq \{\}) \Rightarrow \exists i \leq 0 \ldots \text{Len(msgQ)} : \]
\[\land (i \neq 0) \Rightarrow (rcvd \neq \{\}) \]
\[\land \forall j \in 1 \ldots i : msgQ[j] = \{rBit, rcvd[\text{Len(rcvd)\}]\} \]
\[\land \forall j \in (i + 1) \ldots \text{Len(msgQ)} : \]
\[msgQ[j] = \{sBit, sent[\text{Len(sent)\}]\} \]
\[\land sAck \neq sBit \]
\[\land \text{IF } rBit = sAck \]
\[\text{THEN } \forall i \in 1 \ldots \text{Len(ackQ) : ackQ[i] = rBit} \]
\[\text{ELSE } \exists i \leq 0 \ldots \text{Len(ackQ)} : \land \forall j \in 1 \ldots i : \text{ackQ[j] = sAck} \]
\[\land \forall j \in (i + 1) \ldots \text{Len(ackQ)} : \text{ackQ[j] = rBit} \]

Figure 13.6: An invariant of the alternating bit protocol’s next-state action.

action Next by running TLC with Inv as both the initial condition and the invariant.

As an example, let’s return to the protocol of module AlternatingBit (pages 194–195). The predicate Inv is an invariant of the specification Spec, but not of the next-state action ABNext. To prove that next is an invariant of Spec, we must find an invariant of ABNext that is true in an initial state and implies Inv. Such an invariant ABInv is defined in Figure 13.6 on this page. Don’t worry about the details of this invariant; just observe that it is the conjunction of the type invariant TypeInv, the invariant Inv of the specification, and another formula.

Before checking that ABInv is an invariant of the next-state relation, we should first make sure that it’s an invariant of the specification. We add the definition of ABInv to module MCAlternatingBit, modify the configuration file to use ABInv as the invariant, and run TLC. After correcting the inevitable typing mistakes, we find that ABInv does appear to be an invariant of the specification. (Remember that TLC only checks ABInv on a finite model, it doesn’t prove invariance.) We now try running TLC again letting ABInv also be the initial predicate. TLC reports the error:

While computing initial states, TLC was trying to compute the values of a variable v from an expression v \in S, but S was not enumerable.
CHAPTER 13. THE TLC MODEL CHECKER

Recall that TLC computes the initial states by computing the conjuncts of the initial predicate in order. (See Section 13.2.5 on page 203). From the definition of TypeInv, we see that it first tries to compute the possible values of msgQ by evaluating

\[msgQ \in \text{Seq}(\{0,1\} \times \text{Data}) \]

Since \(\text{Seq}(\{0,1\} \times \text{Data}) \) is an infinite set, containing sequences of any length, this yields an infinite number of possible values of msgQ, so TLC gives up. (Remember that TLC first computes all states satisfying the initial condition, then it throws away those that don’t satisfy the constraint.) So, we must modify ABInv to specify only a finite set of initial values. We add to the MCAlternatingBit module a predicate BTypeInv that is a bounded version of TypeInv. For example, it specifies the initial value of msgQ by

\[msgQ \in \text{BoundedSeq}(\{0,1\} \times \text{Data}, \text{msgQLen}) \]

where the operator \(\text{BoundedSeq} \), defined in the TLC module, is explained on pages 212–214, and msgQLen is the parameter of MCAlternatingBit used in the constraint to bound the length of msgQ. We then define BdedABInv to be the same as ABInv, except with TypeInv replaced by BTypeInv, and run TLC with BdedABInv as the initial condition and ABInv as the invariant, using the same constraint as before. (Do you see why we can’t use BdedABInv as the invariant? If not, review Section 13.2.6.)

When computing the initial states, TLC examines every state satisfying BTypeInv, throwing away those that don’t satisfy the rest of BdedABInv. Since \(\text{BoundedSeq}(S, n) \) has more than \(\text{Cardinality}(S)^n \) elements, the number of initial states that TLC examines is greater than

\[S \times 2^{\text{msgQLen} + \text{ackQLen}} \times D^{\text{msgQLen} + 2 \times \text{sentLen}} \]

where \(D \) is the cardinality of Data. (I am taking sentLen to be the bound on the length of the queues sent and rcvd.) This number grows much faster than the number of reachable states, estimated by formula (13.2) on page 198. Typically, TLC can check an invariant of an action only on a very small model—much smaller than the models on which it can check an invariant of a specification.

We can use BdedABInv as the initial predicate only because its first conjunct is the type invariant BTypeInv. If we interchange its first two conjuncts, then TLC will try to evaluate Inv before evaluating BTypeInv. Evaluating the first conjunct

\[\text{Len}(\text{rcvd}) \in \{\text{Len}(\text{sent}) - 1, \text{Len}(\text{sent})\} \]

of Inv causes TLC to produce the error message
The identifier rcvd is not assigned a value in the current context...

When using TLC to check that a predicate P is an invariant of an action, evaluating P must specify the value of each variable v with a conjunct of the form $v \in S$ before that value is used.

13.3.5 Checking Implementation

In industrial applications, a TLA$^+$ specification is likely to be the only formal description of a system. Such a specification is correct if it means what we intended, which is not a formalizable concept. By formalizing some of our intentions as invariants, we can use TLC to help catch errors in the specification. Sometimes, a specification S_L is a lower-level view of a system for which we have a higher-level specification S_H. We usually regard S_H as the system’s specification and S_L as an implementation, and take correctness of S_L to mean that it implies S_H. This situation occurred in Chapter 5, with the implementation S_L being the specification of the write-through cache (formula $Spec$ of module $WriteThroughCache$) and the specification S_H being the specification of a linearizable memory (formula $Spec$ of the $Memory$ module).

We saw in Section 5.8 that this requires proving a formula of the form:

\[(13.4) \text{Init} \land \Box [\text{Next}] \Rightarrow \text{HInit} \land \Box [\text{HNext}]_{hv}\]

This formula is true iff the following two conditions hold:

1. Init implies HInit
2. In every behavior satisfying $\text{Init} \land \Box [\text{Next}]$, every step is an $[\text{HNext}]_{hv}$ step.

TLC allows you to check these conditions as follows. First, specify as usual in the configuration file that Init and Next are the initial predicate and next-state action. To check condition 1, specify HInit as the IMPLIED-INIT predicate by adding the following to the configuration file:

\[\text{IMPLIED-INIT } \text{HInit}\]

TLC will report an error if it finds an initial state (one satisfying Init) that does not satisfy HInit. To check condition 2, first define a new symbol, say $SqHNext$, in the TLA module:

\[SqHNext \triangleq [\text{HNext}]_{hv}\]

Then, specify $SqHNext$ as the IMPLIED-ACTION formula by adding the following to the configuration file:

\[^{4}\text{TLC does not yet support the IMPLIED-INIT field. Until it does, you can have it check condition 1 by running it with the initial predicate } \text{Init} \land \text{Assert}(\text{HInit}, \text{"HInit false"}).\]
MODULE ABSpec

EXTENDS Sequences

CONSTANT Data

VARIABLES sent, rcvd

Init ≜ \text{sent} = \langle \rangle \land \text{rcvd} = \langle \rangle

Send(d) ≜ \text{sent} = \text{rcvd} \land \text{sent}' = \text{Append} (\text{sent}, d) \land \text{UNCHANGED rcvd}

Rcv ≜ \text{sent} \neq \text{rcvd} \land \text{rcvd}' = \text{Append} (\text{rcvd}, \text{sent}[\text{Len} (\text{sent})]) \land \text{UNCHANGED sent}

Next ≜ \text{Rcv} \lor (\exists d \in \text{Data} : \text{Send}(d))

HSpec ≜ \text{Init} \land \Box [\text{Next}]_{(\text{sent}, \text{rcvd})} \land \text{WF}_{(\text{sent}, \text{rcvd})}(\text{Next})

Figure 13.7: A higher-level specification of the alternating bit protocol.

IMPLIED-ACTION SqHNext

TLC will report an error, and provide an error trace, if it encounters a legal step (a Next step from a reachable state) that is not a SqHNext step. Don’t forget the [\ldots]_hv; otherwise, TLC will report an error if a lower-level step leaves the higher-level variables unchanged.

As an example, let’s return again to the alternating bit protocol. Module ABSpec of Figure 13.7 on this page contains a high-level specification HSpec of the transmission protocol that is implemented by the alternating bit protocol. (In that specification, values are simply transferred directly from sent to rcvd.)

We check that the alternating bit protocol implies specification HSpec by running TLC on module MCABSpec in Figure 13.8 on the next page, using the initial predicate ABInit, the next-state relation ABNext, the IMPLIED-INIT Init, and the IMPLIED-ACTION SqNext. Note that module MCABSpec can extend both the ABSpec and AlternatingBit modules because there happen to be no name conflicts between the two modules; usually we would have to instantiate one of the modules with renaming.

13.3.6 Some Hints

Here are some suggestions for using TLC effectively.
13.3. HOW TO USE TLC

```tlaplus
module MCABSpec
  extends AlternatingBit, ABSpec
  constants msgQLen, ackQLen, sentLen
  SqNext \triangleq [Next](\langle sent, rcvd \rangle)
  SeqConstraint \triangleq 
    \land \text{Len}(msgQ) \leq \text{msgQLen} 
    \land \text{Len}(ackQ) \leq \text{ackQLen} 
    \land \text{Len}(sent) \leq \text{sentLen}
```

Figure 13.8: A module for checking the alternating bit protocol.

Start small

The specification of a real system probably has more reachable states than you expect. When you start testing it with TLC, use the smallest model you possibly can. Let every set parameter, such as a set of processes, have only one element. Let queues be of length one—or even of length zero, if possible. A specification that has not been tested probably has lots of trivial errors that can be found with any model. You will find them faster with a tiny model.

Be suspicious of success

The easiest way to build a system that satisfies an invariant is to have it do nothing. If TLC finds no states in which the invariant is false, that may be because it isn’t generating many states. TLA$^+$ specifications use liveness properties to rule out that possibility. TLC doesn’t check liveness properties, so you’ll have to use some tricks to look for errors that affect liveness. One trick is to check that progress is possible—namely, that TLC reaches the states that you expect it to. This can be done by using an invariant asserting that the expected states are not reached, and making sure that TLC reports that the invariant is violated. For example, we can check that the alternating bit protocol allows progress by using an invariant asserting that the length of the rcvd queue is less than `sentLen`. You can also check that states are reached by the judicious use of `Print` or `Assert` expressions. (See Section 13.3.2.)

Make model values parameters

When debugging a specification, you may want to refer to model values within TLA$^+$ expressions. You can do this by making the model values constant parameters. For example, we might add to module `MCAalternatingBit` the declaration

```
CONSTANTS d1, d2
```

and add to the `CONSTANT` section of the configuration file the assignments
\[d_1 = d_1 \quad d_2 = d_2 \]

which assign to the constant parameters \(d_1 \) and \(d_2 \) the model values \(d_1 \) and \(d_2 \), respectively.

Don't start over after every error

After you’ve eliminated the errors that are easy to find, TLC may have to run for a long time before finding an error. It often takes more than one try to correctly correct an error, and it can be frustrating to run TLC for an hour only to find that you made a silly mistake in the correction. If the error was discovered when taking a step from a correct state, then it’s a good idea to check your correction by starting TLC from that state. You can do this by using the state printed by TLC to define the initial predicate to be used by TLC.

Another way to avoid starting from scratch after an error is by using check-points. A checkpoint saves the set of reached states and the queue of unexplored states.\(^5\) It does not save any other information about the specification. You can restart a specification from a checkpoint even if you have changed the specification, as long as the specification’s variables and the values that they can assume haven’t changed. If TLC finds an error after running for a long time, you may want to continue it from the last checkpoint instead of having it recheck all the states it had already checked.

Check everything you can

A single invariant seldom expresses correctness of a specification. Write and let TLC check as many different invariance properties as you can. If you think that some predicate should be an invariant, let TLC test if it is. Discovering that the predicate is not an invariant may not signal an error, in the specification, but it will probably teach you something about your specification.

Try to check liveness

Although TLC can’t directly check liveness properties, you can sometimes check them indirectly by modifying the specification. A liveness property asserts that something must eventually happen. Sometimes, you can check such a property by checking that the property must hold after the system has taken a certain number of steps. For example, suppose you want to check that the specification

\[Spec \triangleq Init \land \Box [Next]_v \land WF_v(Next) \]

satisfies the property \(P \leadsto Q \) for some predicates \(P \) and \(Q \). In most cases, \(Spec \) implies \(P \leadsto Q \) iff it implies that, whenever \(P \) is true, \(Q \) must become true.\(^{10}\)

\(^5\)Some of the reached states may not be saved, so TLC may explore again some states that had been reached before the checkpoint.

The operator \(\leadsto \) (leads-to) is explained on page 90.
within N steps, where N is some function of the constant parameters. You can check this by adding a variable ctr that counts the number of steps taken since P became true, and is reset when Q becomes true. You can check that P always leads to Q within N steps by checking that ctr is never greater than N. More precisely, you can define a new specification whose initial predicate is

$$\text{Init} \land (ctr = \text{if } P \land \neg Q \text{ then } 0 \text{ else } -1)$$

and next-state action is

$$\land \text{Next}$$

$$\land ctr' = \text{if } \neg Q' \land (ctr \geq 0 \lor P') \text{ then } ctr + 1 \text{ else } -1$$

You can then use TLC to check that $ctr \leq N$ is an invariant of this specification.

Use symmetry to save time

For many specifications, TLC will take a long time to check all the reachable states for a nontrivial model. One way to have it use less time is to reduce the number of reachable states it must check. There is often some symmetry in the specification that makes certain states equivalent in terms of finding errors. Two states s and t are equivalent if a behavior starting from state s can produce an error iff one starting from state t can. If s and t are equivalent, there is no need to explore states reachable from both of them. For example, the alternating bit protocol does not depend on the actual values being sent. So, permuting all the data values in any state produces an equivalent state.

The constraint can often be used to keep TLC from exploring the successors of different equivalent states. For example, we can exploit the symmetry of the alternating bit protocol under permutation of data values as follows. We use a model in which $Data$ is a set of numbers and conjoin to the constraint the requirement that the elements of $sent$ are sorted:

$$\forall i,j \in 1 \ldots \text{Len}(sent) : (i \leq j) \Rightarrow (sent[i] \leq sent[j])$$

For the model size specified by the configuration file of Figure 13.4, this extra constraint reduces the number of reachable states from 2312 to 1482. When the number of elements in $Data$ is increased to 3 and $sentLen$ is increased to 4, it reduces the number of reachable states from 22058 to 6234.

13.4 What TLC Doesn’t Do

We would like TLC to generate all the behaviors that satisfy a specification. But no program can do this for an arbitrary specification. I have already mentioned various limitations of TLC. There are some other limitations that you may
stumble on. One of them is that the Java classes that override the *Naturals* and *Integers* modules will handle only numbers in the interval $-2^{31} \ldots (2^{31} - 1)$.

An easier goal would be for every behavior that TLC does generate to satisfy the (safety part) of the specification. However, for reasons of efficiency, TLC doesn’t always meet this goal. In particular, it doesn’t preserve the precise semantics of *choose*. As explained in Section 15.1, if S equals T, then *choose* $x \in S : P$ should equal *choose* $x \in T : P$. However, if the expressions don’t have a uniquely-defined value, then TLC guarantees this only if S and T are syntactically the same. For example, TLC might compute different values for the two expressions

\[
choose x \in \{1, 2, 3\} : x < 3 \quad \text{and} \quad *choose* x \in \{3, 2, 1\} : x < 3
\]

A similar violation of the semantics of TLA$^+$ exists with *case* expressions, whose semantics are defined (in Section 15.1.4) in terms of *choose*.

TLC Version 1 the following additional limitations, most of which should be fixed in version 2. Telling us which ones you find to be a nuisance will help ensure that they really are fixed in Version 2.

- TLC doesn’t handle specifications that use the instance statement.
- TLC doesn’t properly handle Cartesian products of more than two sets. Thus, instead of writing $S \times T \times U$, you have to write

\[
\{(s, t, u) : s \in S, t \in T, u \in U\}
\]

- You cannot put infix, prefix, or postfix operators in the CONSTANT section of the configuration file. Hence, neither of the following replacements may appear in the configuration file:

\[
++ <- \text{Foo} \quad \text{Bar} <- &
\]

- You cannot use an infix, prefix, or postfix operator as the argument of a higher-order operator. For example, if *IsPartialOrder* is the operator described on pages 70–71, you cannot write *IsPartialOrder*($<$, *Nat*). To get around this problem, you can define

\[
LessThan (a, b) \triangleq a < b
\]

and then write *IsPartialOrder*(*LessThan*, *Nat*).

- You cannot define an infix, prefix, or postfix operator in a LET expression.

- The Java class that overrides the *Sequences* module does not properly handle the *BoundedSeq* operator. You can define a replacement operator for it, using the definition on pages 212–214, that works properly.

- The Java class that overrides the standard *Bags* module does not implement the *SubBag* operator.
• TLC does not check that a symbol is defined before it is used. This means that TLC will accept illegal recursive operator definitions like

\[\text{Silly}(\text{foo}) \equiv \text{Silly}(\text{foo} + 1) \]

• The Java classes that override the Naturals and Integers modules produce incorrect results, rather than an error message, if a computation yields a number outside the interval \(-2^{31} \ldots (2^{31} - 1)\).

• TLC doesn’t implement the \(\cdot \) (action composition) operator.

• TLC treats strings as primitive values, and not as functions. It thus considers the legal TLA\(^+\) expression “abc”\(^2\) to be an error. It also handles only strings containing letters, numbers, spaces, and the following ASCII characters:

\< \> ? , . / ; [] { } | ~ ! @ # $ \% ^ * () - + =

• TLC allows constants to be replaced by nonconstants operators. Doing so may cause TLC to produce incorrect results. (Version 1 also allows nonconstants to be replaced; this might not be allowed in Version 2.)

13.5 Future Plans

The following additions and improvements to future versions of TLC are being considered. It is unlikely that they will all be implemented; recommendations of which ones are most important would be useful.

• Check liveness properties.

• Handle the type of compositional specifications, described in Section 10.2, that have conjuncts of the form \(\square \text{IsFcnOn}(f, S) \), and the next-state action specifies only the values of \(f[s] \) for \(s \in S \).

• Have the progress reports contain separate counts of generated states that do and don’t satisfy the constraint.

• Introduce subclasses of model values, where a model value is comparable only with model values in its own subclass. This requires also adding some way of handling the construct \(\text{choose} \ x : x \notin S \).

• Improve debugging information as follows:

 – Print out the context at the point of the error—including variable values, and the values of bound variables.

 – Identify the disjunct of the next-state action responsible for each step when printing a behavior.
More precisely identify the place within the specification where an error occurs.
When an invariant is found to be false, have TLC print out why it is false—that is, which conjunct or conjuncts are false.
- Add a debugging mode in which TLC won’t stop for an error, but will just keep going.
- Add some coverage analysis, indicating which parts of the next-state relation never evaluated to true.
- Add some support for using symmetry to reduce the state space searched.
- Have TLC check all assumptions.

13.6 The Fine Print: What TLC Really Does

We now describe in more detail what TLC does. This section is for the intellectually curious and mathematically sophisticated. Most users will not want to read it.

This section specifies the results produced by TLC, not the actual algorithms it uses to compute those results. Moreover, it specifies only what TLC guarantees to do. TLC may actually do better, producing a correct result when the specification allows it to report an error.

13.6.1 TLC Values

Section 13.2.1 (page 198) describes TLC values. That description was incomplete in two ways. First, it did not precisely define when values are comparable. The precise definition is that two TLC values are comparable iff the following rules imply that they are:

1. Two primitive values are comparable if they have the same value type.
 This rule implies that “abc” and “123” are comparable. But “abc” and 123 are not comparable.
2. A model value is comparable with any value. (It is equal only to itself.)
3. Two sets are comparable if they have different numbers of elements, or if they have the same numbers of elements and all the elements in one set are comparable with all the elements in the other.
 This rule implies that \{1\} and \{“a”, “b”\} are comparable and that \{1, 2\} and \{2, 3\} are comparable. However, \{1, 2\} and \{“a”, “b”\} are not comparable.
4. Two functions \(f \) and \(g \) are comparable if (i) their domains are comparable and (ii) if their domains are equal, then \(f[x] \) and \(g[x] \) are comparable for every element \(x \) in their domains.

This rule implies that \(\langle 1, 2 \rangle \) and \(\langle \text{“a”}, \text{“b”}, \text{“c”} \rangle \) are comparable, and that \(\langle 1, \text{“a”} \rangle \) and \(\langle 2, \text{“bc”} \rangle \) are comparable. However, \(\langle 1, 2 \rangle \) and \(\langle \text{“a”}, \text{“b”} \rangle \) are not comparable.

Section 13.2.1 also failed to mention that additional primitive value types can be introduced by Java classes that override modules. The primitive TLC value types are thus Booleans, integers, strings, model values, and any additional value types introduced by overriding.

13.6.2 Overridden Values

As explained in Section 13.2.4 above, an extended module may be overridden by a Java class. All the values and operators defined by the module are replaced by special overridden values. For example, the Java class that overrides the Naturals module replaces \(\text{Nat} \) and \(+\) by overridden values. An overridden module may not have parameters.

13.6.3 Expression Evaluation

TLC evaluates expressions when performing three different tasks:

- It evaluates the initial predicate to compute the set of initial states.
- It evaluates the next-state action to compute the set of states reachable from a given state by a step of that action.
- It evaluates an invariant when checking that a reachable state is correct.

The result of successfully evaluating an expression is a TLC value. Evaluation may fail, in which case TLC reports an error and halts.

TLC evaluates an expression in a context, which is an assignment of meanings to user-defined symbols, parameters, variables, and primed variables. A meaning is a TLA\(^+\) expression formed from the built-in operators of TLA\(^+\), TLC values, and overridden values. Variables and primed variables can be assigned only TLC values. For example, consider a module that has two variables \(x \) and \(y \). To compute the next states starting in a state with \(x = 2 \) and \(y = \{ \text{“a”} \} \), TLC evaluates the next-state relation in the context \(C \) in which the defined symbols have the meanings assigned to them by the module, the module’s parameters have the values assigned to them by the configuration file, \(x \) is assigned the value \(2 \), \(y \) is assigned the value \(\{ \text{“a”} \} \), and \(x’ \) and \(y’ \) have no meanings assigned to them. Suppose the next-state action has the form \((x’ = e) \land A \). TLC computes
the value \(e \) in context \(C \), and then evaluates \(A \) in the context \(C \) augmented with the assignment of the value of \(e \) to \(x \).

We now define the result \(V(e) \) of evaluating a TLA\(^+\) expression \(e \), which is a TLC value. If the expression \(e \) does not denote a TLC value, then its evaluation fails. We use an inductive definition that defines \(V(e) \) in terms of two other operations: one-step evaluation \(O(e) \) and set enumeration \(E(e) \) of an expression \(e \). While \(V(e) \) is a TLC value, \(O(e) \) is an arbitrary TLA\(^+\) expression and \(E(e) \) is a finite sequence of arbitrary TLA\(^+\) expressions. One-step evaluation and enumeration are explained below.

In TLA\(^+\), the \(.h \) in an expression \(e.h \) or in the \(!\) clause of an EXCEPT construct just means \([\cdot \cdot h\cdot \cdot]\). To evaluate an expression, TLC first replaces all such instances of \(.h \) by \([\cdot \cdot h\cdot \cdot]\).

The inductive rules for computing \(V(e) \) are given below. The rules are stated somewhat informally, using TLA\(^+\) notation and the operators from the standard Naturals and Sequences modules (see Chapter 17). Evaluation fails if the rules do not imply that \(V(e) \) is a TLC value. For example, evaluation of the nonsensical expression \(\{1, 2\}[3] \) fails because no rule applies to an expression of this form. Evaluation of \(e \) also fails if a rule implies that computing \(V(e) \) requires evaluating an expression whose evaluation fails.

Quantification

The rules for quantifiers use the operator \(\text{Perm} \), where \(\text{Perm}(s) \) is an arbitrary permutation of a sequence \(s \). It can be defined by\(^6\)

\[
\text{Perm}(s) \triangleq \text{let } P_i \triangleq \text{choose } f \in [1 \ldots \text{Len}(s) \rightarrow 1 \ldots \text{Len}(s)] : \forall n \in 1 \ldots \text{Len}(s) : \exists m \in 1 \ldots \text{Len}(s) : f[m] = n \\
\text{in } [i \in 1 \ldots \text{Len}(s) \rightarrow s[P_i[i]]]
\]

For example, \(\text{Perm}((1, 2, 3)) \) might equal \((2, 1, 3)\).

\[
V(\forall x \in S : p) = \text{let } s \triangleq \text{Perm}(E(S)) \text{ in } AV[n \in \text{Nat}] \triangleq \text{if } n = 0 \text{ then true else if } V(\text{let } x \triangleq s[n] \text{ in } p) \text{ then } AV[n - 1] \text{ else false }
\]

\[
V(\exists x \in S : p) = \text{let } s \triangleq \text{Perm}(E(S)) \text{ in } AV[\text{Len}(s)]
\]

\(^6\)This defines \(\text{Perm}(s) \) in terms of a permutation of the elements that depends only on the length of \(s \), not on \(s \) itself. A more precise definition would use the Choice operator described on page 269 to make \(\text{Perm}(s) \) depend on \(s \).
13.6. THE FINE PRINT: WHAT TLC REALLY DOES

\[\text{let } s \triangleq \text{Perm}(E(S))\]
\[EV[n \in \text{Nat}] \triangleq \begin{cases} \text{if } n = 0 \text{ then } \text{false} \\
\text{else if } \forall (\text{let } x \triangleq s[n] \text{ in } p) \\
\text{then } \text{true} \\
\text{else } EV[n - 1] \end{cases}\]
\[ext{in } EV[\text{Len}(s)]\]

One-Step Evaluable Expressions

The result \(O(e)\) of one-step evaluation is a TLA\(^+\) expression that is obtained by performing just the first step in the evaluation of \(e\). For example, suppose \(e\) is the expression

\[\text{if } x > 2 \text{ then } x + 2 \text{ else } x - 2\]

In a context in which \(x\) is assigned the value 3, \(O(e)\) is the expression \(x + 2\). This differs from the result \(V(e)\) of evaluating \(e\), which is the TLC value 5. TLC may be able to perform one-step evaluation even if it can't evaluate the expression. For example, one-step evaluation of

\[\text{if } x > 2 \text{ then } \{j \in \text{Nat} : j > i\} \text{ else } \{\}\]

in a context in which \(x\) equals 3 is the expression \(\{j \in \text{Nat} : j > 5\}\). TLC will fail if it tries to evaluate this expression because it denotes infinite set, which is not a TLC value.

An expression \(e\) is \textit{one-step evaluable} if \(O(e)\) is defined. The following kinds of expressions are one-step evaluable: LET, IF/THEN/ELSE, CASE, CHOOSE, and function application (expressions of the form \(f[e]\)). The rule for evaluating any one-step evaluable expression \(e\) is \(V(e) = V(O(e))\). In other words, a one-step evaluable expression is evaluated by evaluating the result of one-step evaluation.

Below are the rules for one-step evaluation for all of these except function application, whose rules are given later. (The operator \(\text{Perm}\), appearing in the rule for CHOOSE, is defined above.)

\[O(\text{let } x \triangleq v \text{ in } e)\] evaluated in the current context is equal to \(e\), with the evaluation proceeding in the context augmented by assigning \(v\) to \(x\).

\[O(\text{if } p \text{ then } e_1 \text{ else } e_2) = \begin{cases} \text{case } V(p) = \text{true} \rightarrow e_1 \\
\square V(p) = \text{false} \rightarrow e_2 \\
\text{other} \rightarrow \text{evaluation fails} \end{cases}\]
\[V(\text{case } p_1 \rightarrow e_1 \square \cdots \square p_n \rightarrow e_n) = \begin{cases} \text{let } j \triangleq V(\text{choose } i \in 1 \ldots n : p_i) \\
\text{in } V(e_j) \end{cases}\]
$\forall (\text{case } p_1 \rightarrow e_1 \square \cdots \square p_n \rightarrow e_n \square \text{other} \rightarrow e) =$

\[
\begin{align*}
\text{if } \forall (\exists i \in 1 \ldots n : p_i) & \text{ then } \forall (\text{case } p_1 \rightarrow e_1 \square \cdots \square p_n \rightarrow e_n) \\
\text{else } \forall (e)
\end{align*}
\]

$O(\text{choose } x \in S : p) =$

\[
\begin{align*}
\text{let } s & \triangleq \text{Perm}(E(S)) \\
CV[n \in \text{Nat}] & \triangleq \begin{cases}
\text{evaluation fails} & \text{if } n = 0 \\
\text{if } \forall (\text{let } x \triangleq s[n] \text{ in } p) \\
\text{else } CV[n - 1]
\end{cases}
\end{align*}
\]

\[
\text{in } CV[\text{Len}(s)]
\]

Enumerating Set-Valued Expressions

If e is an expression whose value is a set, then the result $E(e)$ of enumerating e is a finite sequence of TLA+ expressions obtained by enumerating the elements of e without evaluating them. The order of elements in the sequence doesn’t matter.\footnote{It would perhaps be better to define an enumeration to be a bag, but I won’t bother introducing notation for bags here.}

For example, if e is the expression \{1+1, 2, 3-1\}, then $E(e)$ is the sequence (1+1, 2, 3-1) of expressions. Note that the sets \{1, “a”\} and \{Nat, Int\} can be enumerated even though they cannot be evaluated. (The set \{1, “a”\} isn’t a TLC value because its elements are not comparable; the set \{Nat, Int\} isn’t a TLC value because its elements are not TLC values.)

A set-valued expression is evaluated by enumerating it, then evaluating each expression in the enumeration, and finally eliminating duplicate values. More precisely, for any set-valued expression S:

\[
\begin{align*}
\forall (S) & = \\
\text{let } n & \triangleq \text{Len}(E(S)) \\
s[i \in 0 \ldots n] & \triangleq \begin{cases}
\langle \rangle & \text{if } i = 0 \\
\text{if } \exists j \in 1 \ldots \text{Len}(s[i - 1]) : s[i - 1][j] = E(S)[i] \\
\text{then } s[i - 1] \\
\text{else } \text{Append}(s[i - 1], E(S)[i])
\end{cases}
\end{align*}
\]

\[
\text{in } \{s[n][1], \ldots, s[n][\text{Len}(s[n])]\}
\]

Below are the rules for enumerating set-valued expressions. They use the SelectSeq operator, which is defined in the Sequences module so that $\text{SelectSeq}(s, \text{Test})$ is the subsequence of the sequence s consisting of all elements e such that $\text{Test}(e)$ is true.

$E(S \cup T) = E(S) \circ E(T)$
13.6. THE FINE PRINT: WHAT TLC REALLY DOES

\[\mathcal{E}(S \cap T) = \text{LET } \text{InT}(s) \triangleq \forall(s \in T) \text{ IN } \text{SelectSeq}(\mathcal{E}(S), \text{InT}) \]

\[\mathcal{E}(S \setminus T) = \text{LET } \text{NotInT}(s) \triangleq \forall(s \notin T) \text{ IN } \text{SelectSeq}(\mathcal{E}(S), \text{NotInT}) \]

\[\mathcal{E}([e_1, \ldots, e_n]) = (e_1, \ldots, e_n) \]

\[\mathcal{E}([x \in S : p]) = \text{LET } \text{PTrue}(s) \triangleq \forall(\text{LET } x \triangleq s \text{ IN } p) \text{ IN } \text{SelectSeq}(\mathcal{E}(S), \text{PTrue}) \]

\[\mathcal{E}([e : x \in S]) = [i \in 1 \ldots \text{Len}(\mathcal{E}(S)) \mapsto \text{LET } x \triangleq \mathcal{E}(S)[i] \text{ IN } e] \]

\[\mathcal{E}(\text{SUBSET } S) \text{ is a sequence of length } 2^{\text{Len}(\mathcal{E}(S))} \text{ whose elements consist of all expressions of the form } \{\mathcal{E}(S)[i_1], \ldots, \mathcal{E}(S)[i_k]\} \text{ for all subsets } \{i_1, \ldots, i_k\} \text{ of } 1 \ldots \text{Len}(\mathcal{E}(S)) \]

\[\mathcal{E}(\text{UNION } S) = \mathcal{E}(\mathcal{E}(S)[1]) \circ \cdots \circ \mathcal{E}(\mathcal{E}(S)[\text{Len}(\mathcal{E}(S))]) \]

\[\mathcal{E}([S \rightarrow T]) \text{ is a sequence of length } \text{Len}(\mathcal{T})^{\text{Cardinality}(S)} \text{ whose elements consist of all expressions of the form } \]

\[(s_1 : \mathcal{E}(T)[i_1] \circ @ \cdots \circ @ s_n : \mathcal{E}(T)[i_n]) \]

for all possible choices of \(i_j\) in \(1 \ldots \text{Len}(\mathcal{E}(T))\), where \(\mathcal{V}(S) = \{s_1, \ldots, s_n\}\). The enumeration fails if \(S\) cannot be evaluated.

\[\mathcal{E}([h_1 : S_1, \ldots, h_n : S_n]) \text{ is a sequence of length } \text{Len}(\mathcal{E}(S_1)) \ast \cdots \ast \text{Len}(\mathcal{E}(S_n)) \text{ whose elements consist of all expressions of the form } \]

\[[h_1 \mapsto \mathcal{E}(S_1)[i_1], \ldots, h_1 \mapsto \mathcal{E}(S_n)[i_n]] \]

for all possible choices of \(i_j\) in \(1 \ldots \text{Len}(\mathcal{E}(S_j))\).

\[\mathcal{E}(S_1 \times \cdots \times S_n) \text{ is a sequence of length } \text{Len}(\mathcal{E}(S_1)) \ast \cdots \ast \text{Len}(\mathcal{E}(S_n)) \text{ whose elements consist of all expressions of the form } \]

\[(\mathcal{E}(S_1)[i_1], \ldots, \mathcal{E}(S_n)[i_n]) \]

for all possible choices of \(i_j\) in \(1 \ldots \text{Len}(\mathcal{E}(S_j))\).

\[\mathcal{E}(\text{DOMAIN } f) \text{ depends as follows on the form of the expression } f:\]

\[\mathcal{E}(\text{DOMAIN } [x \in S \mapsto e]) = \mathcal{E}(S) \]

\[\mathcal{E}(\text{DOMAIN } [g \text{ EXCEPT } \ldots]) = \mathcal{E}(\text{DOMAIN } g) \]

\[\mathcal{E}(\text{DOMAIN } (s_1 : t_1 \circ @ \cdots \circ @ s_n : t_n)) = \{s_1, \ldots, s_n\} \]

\[\mathcal{E}(\text{DOMAIN } (s_1, \ldots, s_n)) = \{1, \ldots, n\} \]

\[\mathcal{E}(\text{DOMAIN } [h_1 \mapsto e_1, \ldots, h_n \mapsto e_n]) = \{\text{“}h_1\text{”}, \ldots, \text{“}h_n\text{”}\}. \]
In addition, if \(f \) is a one-step evaluable expression, then \(\mathcal{E}({\text{domain}}f) = \mathcal{E}({\text{domain}}\mathcal{O}(f)) \).

In addition, if \(e \) is a one-step evaluable expression, then \(\mathcal{E}(e) = \mathcal{E}(\mathcal{O}(e)) \).

Boolean-Valued Expressions

Evaluation of Boolean expressions is defined by the following rules.

\[
\mathcal{V}(p \lor q) = \begin{cases} \mathcal{V}(p) & \text{if } \mathcal{V}(p) = \text{true} \\ \mathcal{V}(q) & \text{if } \mathcal{V}(q) = \text{true} \\ \text{false} & \text{otherwise} \end{cases}
\]

\[
\mathcal{V}(p \land q) = \begin{cases} \mathcal{V}(p) & \text{if } \mathcal{V}(p) = \text{true} \text{ and } \mathcal{V}(q) = \text{true} \\ \text{false} & \text{otherwise} \end{cases}
\]

\[
\mathcal{V}(\neg p) = \begin{cases} \text{false} & \text{if } \mathcal{V}(p) = \text{true} \\ \text{true} & \text{otherwise} \end{cases}
\]

\[
\mathcal{V}(p \Rightarrow q) = \begin{cases} \mathcal{V}(p) & \text{if } \mathcal{V}(p) = \text{true} \text{ and } \mathcal{V}(q) = \text{true} \\ \text{true} & \text{otherwise} \end{cases}
\]

\[
\mathcal{V}(p \equiv q) = \begin{cases} \mathcal{V}(p) & \text{if } \mathcal{V}(p) = \mathcal{V}(q) \\ \text{true} & \text{otherwise} \end{cases}
\]

Equality

An expression of the form \(v = w \) is evaluated by first evaluating \(v \) and \(w \). Evaluation of \(v = w \) fails if the evaluation of \(v \) or \(w \) fails, or if the resulting values are not comparable, according to the rules of Section 13.6.1 above. If they are comparable, then equality of TLC values is computed in the obvious way from the equality relation on primitive values—namely, by using the following rules. In these rules, the \(s_i \) are assumed to be all distinct, as are the \(t_j \).

\[
\mathcal{V}(\{s_1, \ldots, s_n\} = \{t_1, \ldots, t_m\}) =
\begin{cases}
\text{true} & \text{if } n = m \text{ and } \forall i \in 1 \ldots n : s_i = t_i \\
\text{false} & \text{otherwise}
\end{cases}
\]

\[
\mathcal{V}((s_1 :> d_1 @ @ \cdots @ @ s_n :> d_n) = (t_1 :> e_1 @ @ \cdots @ @ t_m :> e_m)) =
\begin{cases}
\text{true} & \text{if } \forall (s_1, \ldots, s_n) = \{t_1, \ldots, t_m\} \\
\text{false} & \text{otherwise}
\end{cases}
\]

\[
\mathcal{V}(\forall i \in 1 \ldots n : \text{let } j \overset{\Delta}{=} \mathcal{V}(\text{choose } k \in 1 \ldots m : s_i = t_k) \text{ in } \mathcal{V}(e_i = d_j)) =
\begin{cases}
\text{true} & \text{if } \forall i \in 1 \ldots n : \mathcal{V}(e_i = d_j) \\
\text{false} & \text{otherwise}
\end{cases}
\]

Set Membership

The value of an expression of the form \(v \in w \) depends as follows on the form of \(w \).
\[V(v \in S \cup T) = \begin{cases} V(v \in S) & \text{then true} \\ V(v \in T) & \text{else false} \end{cases} \]
\[V(v \in S \cap T) = \begin{cases} V(v \in S) & \text{then } V(v \in T) \\ \text{else false} \end{cases} \]
\[V(v \in S' \setminus T) = \begin{cases} V(v \in S) & \text{then } V(v \in T) \\ \text{else false} \end{cases} \]
\[V(v \in \{e_1, \ldots, e_n\}) = V(\exists s \in \{e_1, \ldots, e_n\} : v = s) \]
\[V(v \in \{x \in S : p\}) = \begin{cases} V(v \in S) & \text{then } V(\text{let } x \mapsto v \text{ in } p) \\ \text{else false} \end{cases} \]
\[V(v \in \{e : x \in S\}) = V(\exists s \in S : v = \text{let } x \mapsto s \text{ in } e) \]
\[V(v \in \text{subset } S) = V(\forall s \in v : s \in S) \]
\[V(v \in \text{union } S) = V(\forall s \in v : v \in s) \]
\[V(v \in \text{domain } f) = V(v \in V(\text{domain } f)), \text{ except in the following two cases:} \]
\[V(v \in [S \rightarrow T]) = \begin{cases} V(\text{domain } v = S) & \text{then } V(\forall s \in S : v[s] \in T) \\ \text{else } \text{false} \end{cases} \]
\[V(v \in [h_1 : S_1, \ldots, h_n : S_n]) = \begin{cases} V(\text{domain } v = \{"h_1", \ldots, "h_n"\}) \\ \text{then } V(\forall i \in 1 \ldots n : v["h_i"] \in S_i) \\ \text{else } \text{false} \end{cases} \]
\[V(v \in S_1 \times \ldots \times S_n) = \begin{cases} V(\text{domain } v = 1 \ldots n) \\ \text{then } V(\forall i \in 1 \ldots n : v[i] \in S_i) \\ \text{else } \text{false} \end{cases} \]

If \(w \) is one of a class of special set constants, then TLC evaluates \(v \in w \) by determining if \(V(v) \) is an element of the set represented by \(w \). For example, \(V(v \in \text{STRING}) \) equals true if \(V(v) \) is a string and it equals false if \(V(v) \) is a model value; otherwise, evaluation fails. The built-in special set constants are \text{STRING}, \text{BOOLEAN}. An overridden symbol can also be a special set constant. In particular, the standard Java classes that override the \text{Naturals} and \text{Integers} modules define \text{Nat} and \text{Int} to be special set constants.

Function Application

As stated above, an expression of the form \(v[w] \) is one-step evaluable. Here are the rules that define \(O(v[w]) \) for the possible function-valued expressions \(w \).
\(O([x \in S \mapsto e][w]) = \) IF \(w \in S \) THEN LET \(x \overset{\Delta}{=} w \) IN \(e \) ELSE evaluation fails

\(O([f \text{ except } ![e_1] \ldots [e_n] = d][w]) = \)
IF \(w \in \text{domain } f \)
THEN IF \(w = e_1 \)
THEN IF \(n = 1 \) THEN \(d \) ELSE \([f \text{ except } ![e_2] \ldots [e_n] = d] \)
ELSE \(f[w] \)
ELSE evaluation fails

\(O([h_1 \mapsto e_1, \ldots, h_n \mapsto e_n][w]) = \) LET \(j \overset{\Delta}{=} \text{choose } i \in 1 \ldots n : w = h_i \)
IN \(e_j \)

\(O([e_1, \ldots, e_n][w]) = \) IF \(u \in 1 \ldots n \) THEN \(e_u \)
ELSE evaluation fails ,

where \(u \) is the value obtained by evaluating \(w \).

\(O([s_1 \mapsto e_1 @ @ \ldots @ @ s_n \mapsto e_n][w]) = \)
IF \(\forall i \in 1 \ldots n : w = s_i \)
THEN LET \(j \overset{\Delta}{=} \text{choose } i \in 1 \ldots n : w = s_i \)
IN \(e_j \)
ELSE evaluation fails

If \(v \) is one-step evaluable, then \(O(v[w]) = O(O(v)[w]) \).

Functions and Records

\(\forall([x \in S \mapsto e]) = (s_1 \mapsto (\text{LET } x \overset{\Delta}{=} s_1 \text{ IN } e) @ @ \ldots @ @ s_n \mapsto (\text{LET } x \overset{\Delta}{=} s_n \text{ IN } e)) \),

where \(\forall(S) \) equals \(\{s_1, \ldots, s_n\} \).

\(\forall([f \text{ except } ![e_1] \ldots [e_n] = d]) = \)
\((\ldots @ @ s_i \mapsto (\text{IF } \forall(s_i = e_i) \)
THEN IF \(n = 1 \)
THEN \(\forall(\text{LET } x \overset{\Delta}{=} t_i \text{ IN } d) \)
ELSE \(\forall([t_i \text{ except } ![e_2] \ldots [e_n] = d]) \)
ELSE \(t_i \)
\(@ @ \ldots) \),

where \(\forall(f) \) equals \((\ldots @ @ s_i \mapsto t_i @ @ \ldots) \).

\(\forall([h_1 \mapsto e_1, \ldots, h_n \mapsto e_n]) = ("h_1" \mapsto \forall(e_1) @ @ \ldots @ @ "h_n" \mapsto \forall(e_n)) \)
\(\forall((e_1, \ldots, e_n)) = (1 \mapsto \forall(e_1) @ @ \ldots @ @ n \mapsto \forall(e_n)) \)
13.6. THE FINE PRINT: WHAT TLC REALLY DOES

Other Constant Operators

\[\forall (v \neq w) = \forall (\neg (v = w))\]
\[\forall (e \in S) = \forall (\neg (e \in S))\]
\[\forall (S \subseteq T) = \forall (\forall s \in S : s \in T)\]

Primitive Values and Overridden Operators

If \(v\) is a primitive or overridden value, then \(\forall (v) = v\).

If \(Op\) is an overridden operator, then \(\forall (Op(e_1, \ldots, e_n))\) equals \(Op(\forall (e_1), \ldots, \forall (e_n))\)
if this is a TLC value. If it isn’t, then evaluation fails. For example, if the concatenation operator \(\circ\) of the Sequences module is overridden, then \(\forall (s \circ t)\) equals \(\forall (s) \circ \forall (t)\), which is the function

\[
(1 :> \forall (s[1]) \& \cdots \& \forall (\text{Len}(s)) :> \forall (s[\text{Len}(s)]) \& \cdots \\
(1 + \forall (\text{Len}(s))) :> \forall (t[1]) \& \cdots \& \forall (\text{Len}(s) + \forall (\text{Len}(t)) :> \forall (t[\text{Len}(t)]))
\]

if \(\forall (s)\) and \(\forall (t)\) are sequences.

Action Expressions

\(\forall (e')\) in a context \(C\) equals \(\forall (e)\) in the context obtained from \(C\) by assigning to each unprimed variable \(x\) the value assigned by \(C\) to \(x'\), and assigning no value to any primed variable.

\[\forall ([A]_c) = \forall (A \lor e' = e)\]
\[\forall ((A)_c) = \forall (A \land e' \neq e)\]

\(\forall (\text{ENABLED } A)\) in a context \(C\) is computed by attempting to find a state \(t\) such that \(s \rightarrow t\) is an \(A\) step, where \(s\) is the state that assigns to each variable the value assigned to it by \(C\). The value of \(\forall (\text{ENABLED } A)\) is True if such a \(t\) exists, otherwise it is False.

\(\forall (A \cdot B)\) in a context \(C\) is computed by finding all states \(t\) such that \(s \rightarrow t\) is an \(A\) step, where \(s\) is the state that assigns to each variable the value assigned to it by \(C\), then finding all states \(u\) such that \(t \rightarrow u\) is a \(B\) step. Note that TLC evaluates an action only when either computing the next-state action to find successor states to a state \(s\), or when evaluating an ENABLED expression.

TLC Version 1 cannot evaluate an expression of the form \(A \cdot B\).
13.6.4 Fingerprinting

The description of TLC’s computation in Section 13.2.6 is inaccurate in one important respect. TLC does not actually keep the set of states \mathcal{R}. Instead, it keeps the set of fingerprints of those states. A fingerprint of a state is a 64-bit value generated by a “hashing” function. Ideally, the probability that two different states have the same fingerprint is 2^{-64}, which is a very small number.

Rather than checking if a state s is in \mathcal{R}, TLC checks if its fingerprint equals the fingerprint of a state already in \mathcal{R}. With very high probability, that will be true iff s is in \mathcal{R}. However, it is possible for a collision to occur, meaning that the fingerprint of s equals the fingerprint of some other state in \mathcal{R}. If this happens, TLC will not explore the successor states of s, and thus may not find all reachable states.

It is essentially impossible to do an accurate a posteriori calculation of the probability that TLC did not check all reachable states because of a fingerprint collision. If the probability that any two states have the same fingerprint is 2^{-64}, then a simple calculation shows that if TLC generated n states with m distinct fingerprints, then the probability of a collision is about $m \ast (n - m) \ast 2^{-64}$. However, the process of generating states is highly nonrandom, and no known fingerprinting scheme can guarantee that the probability of any two distinct states generated by TLC having the same fingerprint is actually 2^{-64}. So, this estimate is an optimistic one.

Another way to estimate the probability of collision is empirical. If there was a collision, then it is likely that there was also a “near miss”. One estimate of the probability that there was a collision is the maximum value of $1/|f_1 - f_2|$ over all pairs (f_1, f_2) of distinct fingerprints generated by TLC for the states that it found.

TLC prints out both probability estimates when it finishes. You can use these values to decide how much confidence to place in the completeness of TLC’s exploration of the reachable states. You may wish to supplement TLC’s model checking calculation with random simulation, which does not maintain the set \mathcal{R} and thus uses no fingerprinting.
Part IV

The TLA$^+$ Language
This part of the book describes TLA+ in detail. Chapter 14 explains the syntax; Chapters 15 and 16 explain the semantics; and Chapter 17 contains the standard modules. Almost all of the TLA+ language has already been described—mainly through examples. In fact, most of the language was described in Chapters 1–6. Here, we give a complete specification of the language.

A completely formal specification of TLA+ would consist of a formal definition of the set of legal (syntactically well-formed) modules, and a precisely-defined meaning operator that assigns to every legal module M its mathematical meaning $\llbracket M \rrbracket$. Such a specification would be quite long and of limited interest. Instead, I have tried to provide a fairly informal specification that is detailed enough to show mathematically sophisticated readers how they could write a completely formal one.

These chapters are heavy going, and only a few sophisticated readers will want to read them completely. However, I hope they can serve as a reference manual for anyone who reads or writes TLA+ specifications. If you have a question about the finer details of the syntax or the meaning of some part of the language, you should be able to find the answer here.

Figures 13.9–13.16 on the next page through page 243 provide a tiny reference manual. Figures 13.9–13.12 very briefly describe all the built-in operators of TLA+. Figure 13.13 lists all the user-definable operator symbols, and indicates which ones are already used by the standard modules. Figure 13.14 gives the precedence of the operators; it is explained in Section 14.2.1. Figure 13.15 lists all operators defined by the standard modules. Finally, Figure 13.16 shows how to type any symbol that doesn’t have an obvious ASCII equivalent.
Logic
\[\land \lor \neg \Rightarrow \equiv \]
TRUE FALSE BOOLEAN [the set \{TRUE, FALSE\}]
\[\forall x : p \quad \exists x : p \quad \forall x \in S : p \quad \exists x \in S : p \]

Choose \(x : p \) [An \(x \) satisfying \(p \)]

Choose \(x \in S : p \) [An \(x \) in \(S \) satisfying \(p \)]

Sets
\[\neq \in \notin \cup \cap \subseteq \setminus \text{[set difference]} \]
\[\{e_1, \ldots, e_n\} \text{[Set consisting of elements } e_i \}\]
\[\{x \in S : p\} \quad \text{(2) [Set of elements } x \text{ in } S \text{ satisfying } p\} \]
\[\{e : x \in S\} \quad \text{(1) [Set of elements } e \text{ such that } x \text{ in } S\} \]

SUBSET \(S \) [Set of subsets of \(S \)]

UNION \(S \) [Union of all elements of \(S \)]

Functions
\[f[e] \quad \text{[Function application]} \]
\[\text{DOMAIN } f \quad \text{[Domain of function } f\} \]
\[\{x \in S \mapsto e\} \quad \text{(1) [Function } f \text{ such that } f[x] = e \text{ for } x \in S\} \]
\[\{S \mapsto T\} \quad \text{[Set of functions } f \text{ with } f[x] \in T \text{ for } x \in S\} \]
\[\{f \text{ EXCEPT } !\{e_1\} = e_2\} \quad \text{(3) [Function } \tilde{f} \text{ equal to } f \text{ except } \tilde{f}[e_1] = e_2\} \]

Records
\[e.h \quad \text{[The } h\text{-component of record } e\} \]
\[\{h_1 \mapsto e_1, \ldots, h_n \mapsto e_n\} \quad \text{[The record whose } h_i \text{ component is } e_i\} \]
\[\{h_1 : S_1, \ldots, h_n : S_n\} \quad \text{[Set of all records with } h_i \text{ component in } S_i\} \]
\[\{r \text{ EXCEPT } !\cdot h = e\} \quad \text{(3) [Record } \tilde{r} \text{ equal to } r \text{ except } \tilde{r}.h = e\} \]

Tuples
\[e[i] \quad \text{[The } i\text{-th component of tuple } e\} \]
\[\langle e_1, \ldots, e_n\} \quad \text{[The } n\text{-tuple whose } i\text{-th component is } e_i\} \]
\[S_1 \times \ldots \times S_n \quad \text{[The set of all } n\text{-tuples with } i\text{-th component in } S_i\} \]

Strings and Numbers
\[\text{“}c_1 \ldots c_n\text{”} \quad \text{[A literal string of } n\text{ characters]} \]
\[\text{STRING} \quad \text{[The set of all strings]} \]
\[d_1 \ldots d_n \quad d_1 \ldots d_n . d_{n+1} \ldots d_m \quad \text{[Numbers (where the } d_i \text{ are digits)]} \]

(1) \(x \in S \) may be replaced by a comma-separated list of items \(v \in S \), where \(v \) is either a comma-separated list or a tuple of identifiers.

(2) \(x \) may be an identifier or tuple of identifiers.

(3) \(!\{e_1\} \) or \(!\cdot h\) may be replaced by a comma separated list of items \(!a_1 \ldots a_n\), where each \(a_i \) is \([e_i]\) or \(.a_i\).

Figure 13.9: The constant operators.
IF p THEN e_1 ELSE e_2

CASE $p_1 \rightarrow e_1 \sqcap \ldots \sqcap p_n \rightarrow e_n$

CASE $p_1 \rightarrow e_1 \sqcap \ldots \sqcap p_n \rightarrow e_n \sqcap \text{OTHER} \rightarrow e$

LET $d_1 \triangleq e_1 \ldots d_n \triangleq e_n$ IN e

\begin{align*}
&\land p_1 [\text{the conjunction } p_1 \land \ldots \land p_n] & \lor p_1 [\text{the disjunction } p_1 \lor \ldots \lor p_n] \\
&\vdots \\
&\land p_n & \lor p_n
\end{align*}

Figure 13.10: Miscellaneous constructs.

e'

$[A]_e$

$\langle A \rangle_e$

\text{ENABLED } A

\text{UNCHANGED } e

$A \cdot B$

Figure 13.11: Action operators.

$\square F$

$\Diamond F$

WF$_A$

SF$_A$

$F \leadsto G$

$F \Rightarrow G$

$\exists x : F$

$\forall x : F$

Figure 13.12: Temporal operators.
Infix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>Defined by</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+</code></td>
<td>Addition</td>
<td>Naturals</td>
</tr>
<tr>
<td><code>-</code></td>
<td>Subtraction</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>*</code></td>
<td>Multiplication</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>/</code></td>
<td>Division</td>
<td>Naturals</td>
</tr>
<tr>
<td><code>\</code></td>
<td>Modulo</td>
<td>Bags</td>
</tr>
<tr>
<td><code>^</code></td>
<td>Exponentiation</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>&</code></td>
<td>Logical AND</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>&&</code></td>
<td>Logical DOUBLE AND</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code><</code></td>
<td>Less than</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>></code></td>
<td>Greater than</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>=</code></td>
<td>Equality</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>Inequality</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code><></code></td>
<td>Not equal</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>::</code></td>
<td>Assignment</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>:::</code></td>
<td>Dangling</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>^+</code></td>
<td>Power Plus</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>^*</code></td>
<td>Power Star</td>
<td>Naturals, Integers, Reals</td>
</tr>
<tr>
<td><code>^#</code></td>
<td>Power Hash</td>
<td>Naturals, Integers, Reals</td>
</tr>
</tbody>
</table>

Postfix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>^+</code></td>
<td>Power Plus</td>
</tr>
<tr>
<td><code>^*</code></td>
<td>Power Star</td>
</tr>
<tr>
<td><code>^#</code></td>
<td>Power Hash</td>
</tr>
</tbody>
</table>

Prefix Operator

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-</code></td>
<td>Negation</td>
</tr>
</tbody>
</table>

(1) Defined by the Naturals, Integers, and Reals modules.
(2) Defined by the Reals module.
(3) Defined by the Sequences module.
(4) `x^y` is printed as `x^y`.
(5) Defined by the Bags module.
(6) Defined by the TLC module.
(7) `e^+` is printed as `e^+`, and similarly for `^*` and `^#`.
(8) Defined by the Integers and Reals modules.

Figure 13.13: User-definable operator symbols.
Prefix Operators

<table>
<thead>
<tr>
<th>Enabled</th>
<th>3-14</th>
<th>Subset</th>
<th>9-12</th>
<th>Union</th>
<th>9-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>unchanged</td>
<td>3-14</td>
<td>☐</td>
<td>4-14</td>
<td>Domain</td>
<td>9-12</td>
</tr>
<tr>
<td>~</td>
<td>4-4</td>
<td>☀</td>
<td>4-14</td>
<td>—</td>
<td>11-11</td>
</tr>
</tbody>
</table>

Infix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Precedence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>=></code></td>
<td>1-1</td>
<td><code>></code></td>
</tr>
<tr>
<td><code>↓=</code></td>
<td>2-2</td>
<td><code>∈</code></td>
</tr>
<tr>
<td><code>≡</code></td>
<td>2-2</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>→</code></td>
<td>2-2</td>
<td><code>∩</code></td>
</tr>
<tr>
<td><code>&</code></td>
<td>3-3 (a)</td>
<td><code>ι</code></td>
</tr>
<tr>
<td><code>∨</code></td>
<td>3-3 (a)</td>
<td><code>∪</code></td>
</tr>
<tr>
<td>@@</td>
<td>5-5 (a)</td>
<td><code>∩</code></td>
</tr>
<tr>
<td>; ></td>
<td>6-6</td>
<td><code>¿</code></td>
</tr>
<tr>
<td><</td>
<td>6-6</td>
<td><code>≠</code></td>
</tr>
<tr>
<td><code>≠</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>↓</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td>::=</td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>::=</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code><<</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>⇒</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>≈</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>→</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
<tr>
<td><code>≈</code></td>
<td>7-7</td>
<td><code>∪</code></td>
</tr>
</tbody>
</table>

Postfix Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>^+</code></td>
<td>14-14</td>
</tr>
<tr>
<td><code>^*</code></td>
<td>14-14</td>
</tr>
<tr>
<td><code>^#</code></td>
<td>14-14</td>
</tr>
<tr>
<td><code>.</code></td>
<td>14-14</td>
</tr>
</tbody>
</table>

(1) Action composition (\textbackslash dot).
(2) Record component (period).

Figure 13.14: The precedence ranges of operators. The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a).
Modules

Naturals, Integers, Reals

\[
\begin{align*}
+ & \quad (1) \\
- & \\
* & \quad (2) \\
/ & \quad (3) \\
\div & \\
& \\
\% & \\
\leq & \quad \geq \\
< & \quad >
\end{align*}
\]

(1) Only infix – is defined in Naturals.
(2) Defined only in Reals module.
(3) Exponentiation.

Module Sequences

- Head
- SelectSeq
- SubSeq
- Append
- Len
- Seq
- Tail

Module FiniteSets

- IsFiniteSet
- Cardinality

Module Bags

- BagIn
- CopiesIn
- SubBag
- BagOfAll
- EmptyBag
- BagToSet
- IsABag
- BagCardinality
- BagUnion
- SetToBag

Module RealTime

- RTBound
- RTnow
- now (declared to be a variable)

Module TLC

- Assert
- FApply
- Print
- BoundedSeq
- JavaTime
- SortSeq

Figure 13.15: Operators defined in the standard modules.
s is a sequence of characters. See Section 15.1.10 on page 281.

x and y are any expressions.

a sequence of four or more - or = characters.

Figure 13.16: The ASCII representations of typeset symbols.
Chapter 14

The Syntax of TLA$^+$

The term "syntax" has two different usages, which I will somewhat arbitrarily attribute to mathematicians and computer scientists. A computer scientist would say that $\langle a, a \rangle$ is a syntactically correct TLA$^+$ expression. A mathematician would say that the expression is syntactically correct iff it appears in a context in which a is defined or declared. A computer scientist would call this requirement a "semantic" rather than a syntactic condition. A mathematician would say that $\langle a, a \rangle$ is meaningless if a isn’t defined or declared, and one can’t talk about the semantics of a meaningless expression.

This chapter describes the syntax of TLA$^+$, in the computer scientist’s sense of syntax. (The "semantic" part of the syntax is specified in Chapters 15 and 16.) TLA$^+$ is designed to be easy for humans to read and write. In particular, its syntax for expressions tries to capture some of the richness of ordinary mathematical notation. This makes a precise specification of the syntax rather complicated. Such a specification has been written in TLA$^+$, but it is quite detailed and you probably don’t want to look at it unless you are writing a parser for the language. This chapter gives a less formal description of the syntax that should answer any questions likely to arise in practice. Section 14.1 specifies precisely a simple grammar that ignores some aspects of the syntax such as operator precedence, indentation rules for \land and \lor lists, and comments. These other aspects are explained informally in Section 14.2.1. Finally, Section 14.3 lists the correspondence between the typed and typeset versions of symbols, as well as all user-definable operator symbols.
14.1 The Simple Grammar

The simple grammar of TLA\(^+\) is described in BNF. Just for fun, this BNF grammar is specified in TLA\(^+\). Specifying a BNF grammar in TLA\(^+\) provides a nice little exercise in “mathematicizing” a simple concept. Moreover, it demonstrates the flexibility of ordinary mathematics, as formalized in TLA\(^+\). The syntax of TLA\(^+\) doesn’t permit us to write BNF grammars exactly the way you’re used to seeing them, but we can come reasonably close.

Section 14.1.1 explains how to specify a BNF grammar. The BNF grammar for TLA\(^+\) is specified in Section 14.1.2 as a TLA\(^+\) module, with comments that describe how to read the TLA\(^+\) specification as an ordinary BNF grammar. If you are familiar with BNF grammars and just want to learn the syntax of TLA\(^+\), you can skip directly to Section 14.1.2 (page 250).

14.1.1 BNF Grammars

Let’s start by reviewing BNF grammars. Consider the little language SE of simple expressions described by this BNF grammar:

\[
expr ::= \text{ident} \mid expr \ op \ expr \mid (expr) \mid \text{LET def IN expr}
\]

\[
def ::= \text{ident} === expr
\]

where \(op\) is some class of infix operators like +, and \text{ident} is some class of identifiers such as \(abc\) and \(x\). The language \(SE\) contains expressions like

\[abc + (\text{LET } x === y + abc \text{ IN } x \times x)\]

I will represent this expression as the sequence

\[
\langle \text{“abc”}, \text{“+”}, \text{“(”}, \text{“LET”}, \text{“x”}, \text{“==”}, \text{“y”}, \text{“+”}, \text{“abc”}, \text{“IN”}, \text{“x”}, \text{“*”}, \text{“x”}, \text{“)”} \rangle
\]

of strings. The strings such as “abc” and “+” appearing in this sequence are usually called lexemes. In general, a sequence of lexemes is called a sentence; and a set of sentences is called a language. So, we want to define the language \(SE\) to consist of the set of all such sentences described by the BNF grammar.\(^1\)

To represent a BNF grammar in TLA\(^+\), we must assign a mathematical meaning to nonterminal symbols like \text{def}, to terminal symbols like \text{op}, and to the grammar’s two productions. The method that I find simplest is to let the meaning of a nonterminal symbol be the language that it generates. Thus, the meaning of \text{expr} is the language \(SE\) itself. I define a grammar to be a function \(G\) such that, for any string “str”, the value of \(G[\text{“str”}]\) is the language generated by

\(^1\)BNF grammars are also used to specify how an expression is parsed—for example that \(a + b \times c\) is parsed as \(a + (b \times c)\) rather than \((a + b) \times c\). By considering the grammar to specify only a set of sentences, we are deliberately not capturing that use in our TLA\(^+\) representation of BNF grammars.
14.1. THE SIMPLE GRAMMAR

the nonterminal str. Thus, if \(G \) is the BNF grammar above, then \(G["expr"] \) is the complete language SE, and \(G["def"] \) is the language defined by the production for \(def \), which contains sentences like

\[
(\text{"y"}, \text{"=="}, \text{"qq"}, \text{"+"}, \text{"abc"})
\]

Instead of letting the domain of \(G \) consist of just the two strings “expr” and “def”, it turns out to be more convenient to let its domain be the entire set string of strings, and to let \(G[s] \) be the empty language (the empty set) for all strings \(s \) other than “expr” and “def”. So, a grammar is a function from the set of all strings to the set of sequences of strings. We can therefore define the set Grammar of all grammars by

\[
\text{Grammar} \triangleq [\text{string} \to \text{subset Seq(string)}]
\]

In describing the mathematical meaning of records, Section 5.2 explained that \(r.\text{ack} \) is an abbreviation for \(r["\text{ack}"] \). This is the case even if \(r \) isn’t a record. So, we can write \(G.\text{op} \) instead of \(G[\text{op}"] \). (A grammar isn’t a record because its domain is the set of all strings rather than a finite set of strings.)

A terminal like ident can appear anywhere to the right of a “::=” that a nonterminal like expr can, so a terminal should also be a set of sentences. A terminal is a set of sentences each containing a single lexeme. I will call such a sentence a token. Thus, the terminal ident is a set containing tokens such as \(\text{"abc"}, \text{"x"}, \text{"qq"} \). Any terminal appearing in the BNF grammar must be represented by a set of tokens, so the \(== \) in the grammar for SE is the set \(\{\text{"=="}\} \). Let’s define the operator \(tok \) by

\[
tok(s) \triangleq \{\{s\}\}
\]

so we can write this set of tokens as \(tok(\text{"=="}) \).

A production expresses a relation between the values of \(G.str \) for some grammar \(G \) and some strings “str”. For example, the production

\[
def \ ::= \ \text{ident} == expr
\]

asserts that a sentence \(s \) is in \(G.def \) iff it has the form \(i \circ \langle \text{"=="} \rangle \circ e \) for some token \(i \) in ident and some sentence \(e \) in \(G.expr \). In mathematics, a formula about \(G \) must mention \(G \) (perhaps indirectly by using a symbol defined in terms of \(G \)). So, we can try writing this production in TLA+ as

\[
G.def \ ::= \ \text{ident} \ \text{tok(\"==") \ G.expr}
\]

In the expression to the right of the “::=", adjacency is expressing some operation. Just as we have to make multiplication explicit by writing \(2 \times x \) instead of \(2x \), we must express this operation by an explicit operator. Let’s use & so we can write the production as

(14.1) \[
G.def \ ::= \ \text{ident \ & \ tok(\"==") \ & \ G.expr}
\]
This expresses the desired relation between the sets $G.\text{def}$ and $G.\text{expr}$ of sentences if ::= is defined to be equality and & is defined so that $L \& M$ is the set of all sentences obtained by concatenating a sentence in L with a sentence in M:

$$L \& M \triangleq \{ s \circ t : s \in L, t \in M \}$$

The production

$$\text{expr} ::= \text{ident} | \text{expr op expr} | (\text{expr}) | \text{LET def IN expr}$$

can similarly be expressed as

$$(14.2) \text{G.expr} ::= \text{ident} | \text{G.expr \& op \& G.expr} | \text{tok(“”) \& G.expr \& tok(“”)} | \text{tok(“LET”) \& G.def \& tok(“IN”) \& G.expr}$$

This expresses the desired relation if | (which means or in the BNF grammar) is defined to be set union (\cup).

We can also define the following operators that are sometimes used in BNF grammars:

- **Nil** is defined so that Nil \& S equals S for any set S of sentences:

 $$\text{Nil} \triangleq \{ () \}$$

- **L^+** equals $L | L \& L | L \& L \& L | \ldots$:

 $$L^+ \triangleq \text{LET LL}[n \in \text{Nat}] \triangleq \text{IF n} = 0 \text{ THEN } L \text{ ELSE } LL[n - 1] \text{ | } LL[n - 1] \& L \text{ IN UNION } \{ LL[n] : n \in \text{Nat} \}$$

- **L^*** equals $\text{Nil} | L | L \& L | L \& L \& L | \ldots$:

 $$L^* \triangleq \text{Nil} | L^+$$

The BNF grammar for SE consists of two productions, expressed by the TLA$^+$ formulas (14.1) and (14.2). The entire grammar is the single formula that is the conjunction of these two formulas. We must turn this formula into a mathematical definition of a grammar GSE, which is a function from strings to languages. The formula is an assertion about a grammar G. We define GSE to be the smallest grammar G satisfying the conjunction of (14.1) and (14.2), where grammar G_1 smaller than G_2 means that $G_1[s] \subseteq G_2[s]$ for every string s. To express this in TLA$^+$, we define an operator LeastGrammar so that $\text{LeastGrammar}(P)$ is the smallest grammar G satisfying $P(G)$:

$$\text{LeastGrammar}(P(_)) \triangleq \text{CHOOSE G \in Grammar : } P(G) \land \forall H \in \text{Grammar : } P(H) \Rightarrow (\forall s \in \text{STRING} : G[s] \subseteq H[s])$$
Letting $P(G)$ be the conjunction of (14.1) and (14.2), we can define the grammar GSE to be $\text{LeastGrammar}(P)$. We can then define the language SE to equal $GSE.expr$. The smallest grammar G satisfying a formula P must have $G[s]$ equal to the empty language for any string s that doesn’t appear in P. Thus, $GSE[s]$ equals the empty language \emptyset for any string s other than “expr” and “def”.

To complete our specification of GSE, we must define the sets idents and op of tokens. We can define the set op of operators by enumerating them—for example:

$$\text{op} \triangleq \text{tok}(\text{“+”}) \mid \text{tok}(\text{“-”}) \mid \text{tok}(\text{“*”}) \mid \text{tok}(\text{“/”})$$

To express this a little more compactly, let’s define $\text{Tok}(S)$ to be the set of tokens formed from elements in the set S of lexemes:

$$\text{Tok}(S) \triangleq \{(s) : s \in S\}$$

We can then write

$$\text{op} \triangleq \text{Tok}(\{\text{“+”}, \text{“-”}, \text{“*”}, \text{“/”}\})$$

Let’s define idents to be the set of tokens whose lexemes are words made entirely of lower-case letters, such as “abc”, “qq”, and “x”. To learn how to do that, we must first understand what strings in TLA^+ really are. In TLA^+, a string is a sequence of characters. (We don’t care, and the semantics of TLA^+ doesn’t specify, what a character is.) We can therefore apply the usual string operators on them. For example, $\text{Tail}($“abc”$)$ equals “bc”, and “abc” \circ “de” equals “abcde”.

The operators like $\&$ that we just defined for expressing BNF were applied to sets of sentences, where a sentence is a sequence of lexemes. These operators can be applied just as well to sets of sequences of any kind—including sets of strings. For example, $\{\text{“one”}, \text{“two”}\} \& \{\text{“s”}\}$ equals $\{\text{“ones”}, \text{“twos”}\}$, and $\{\text{“ab”}\}^+$ is the set consisting of all the strings “ab”, “abab”, “ababab”, etc. So, we can define idents to equal $\text{Tok}(\text{Letter}^+)$, where Letter is the set of all lexemes consisting of a single lower-case letter:

$$\text{Letter} \triangleq \{\text{“a”}, \text{“b”}, \ldots, \text{“z”}\}$$

Writing this definition out in full (without the “…”) is tedious. We can make this a little easier as follows. We first define the operator $\text{OneOf}(s)$ to be the set of all one-character strings made from the characters of the string s:

$$\text{OneOf}(s) \triangleq \{[j \in \{1\} \mapsto s[i]] : i \in \text{domain } s\}$$

We can then define

$$\text{Letter} \triangleq \text{OneOf(“abcdefhijklmnopqrstuvwxyz”)}$$
The complete definition of the grammar GSE appears in Figure 14.1 on this page.

All the operators we’ve defined here for specifying grammars are grouped into module BNFGrammars, which appears in Figure 14.2 on the next page.

14.1.2 The BNF Grammar of TLA⁺

The following TLA⁺ module specifies the simple BNF grammar of TLA⁺. It makes use of the operators explained in Section 14.1.1 above, which are in the BNFGrammars module. However, if you are already familiar with BNF grammars, you should be able to read it without having read the previous section.

```
MODULE TLAPlusGrammar
EXTENDS Naturals, Sequences, BNFGrammars
```

This module defines a simple grammar for TLA⁺ that ignores many aspects of the language, such as operator precedence and indentation rules. I use the term sentence to mean a sequence of lexemes, where a lexeme is just a string. The BNFGrammars module defines the following standard conventions for writing sets of sentences: $L | M$ means an L or an M, L^* means the concatenation of zero or more Ls, and L^+ means the concatenation of one or more Ls. The concatenation of an L and an M is denoted by $L & M$ rather than the customary juxtaposition LM. Nil is the null sentence, so $Nil & L$ equals L for any L.

A token is a one-lexeme sentence. There are two operators for defining sets of tokens: if s is a lexeme, then $tok(s)$ is the set containing the single token (s); and if S is a set of lexemes, then $Tok(S)$ is the set containing all tokens (s) for $s \in S$. In comments, I will not distinguish between the token (s) and the string s.

We begin by defining two useful operators. First, a CommaList is defined to be an L or a sequence of Ls separated by commas.

```
CommaList(L) \triangleq L & (tok(“,”) & L)^*
```

Next, if c is a character, then we define AtLeast4(“c”) to be the set of tokens consisting of 4 or more c’s.

```
AtLeast4(s) \triangleq Tok(\{s \circ s \circ s\} & \{s\}^+)
```
A sentence is a sequence of strings. (In standard terminology, the term “lexeme” is used instead of “string”.) A token is a sentence of length one—that is, a one-element sequence whose single element is a string. A language is a set of sentences.

MODULE BNFGrammars

A sentence is a sequence of strings. (In standard terminology, the term “lexeme” is used instead of “string”.) A token is a sentence of length one—that is, a one-element sequence whose single element is a string. A language is a set of sentences.

LOCAL INSTANCE *Naturals, Sequences*

OPERATORS FOR DEFINING SETS OF TOKENS

\[\text{OneOf}(s) = \{[j \in \{1\} \mapsto s[i]] : i \in \text{DOMAIN } s\} \]

If \(s \) is a string, then \(\text{OneOf}(s) \) is the set of strings formed from the individual characters of \(s \). For example, \(\text{OneOf}(\text{"abc"}) = \{\text{"a"}, \text{"b"}, \text{"c"}\} \).

\[\text{tok}(s) = \{\{s\}\} \]

If \(s \) is a string, then \(\text{tok}(s) \) is the set containing only the token made from \(s \).

\[\text{Tok}(S) = \{\{s : s \in S\}\} \]

If \(S \) is a set of strings, then \(\text{Tok}(S) \) is the set of tokens made from elements of \(S \).

OPERATORS FOR DEFINING LANGUAGES

\[\text{Nil} = \{(\}\) The language containing only the “empty” sentence.

\[L & M = \{s \circ t : s \in L, t \in M\} \] All concatenations of sentences in \(L \) and \(M \).

\[L \mid M = L \cup M \]

\[L^+ = L \mid L \& L \mid L \& L \& L \mid \ldots \]

LET

\[LL[n \in \text{Nat}] = \text{IF } n = 0 \text{ THEN } L \]

\[\text{ELSE } LL[n - 1] \mid LL[n - 1] \& L \]

IN

\[\text{UNION } \{LL[n] : n \in \text{Nat}\} \]

\[L^* = \text{Nil} \mid L^+ \]

\[L ::= M = L = M \]

Grammar

\[\text{[STRING} \rightarrow \text{SUBSET } \text{Seq(STRING)}\]

LeastGrammar

\[P(\bot) \]

CHOOSE

\[G \in \text{Grammar} \]

\[\land P(G) \]

\[\land \forall H \in \text{Grammar} : P(H) \Rightarrow \forall s \in \text{STRING} : G[s] \subseteq H[s] \]

Figure 14.2: The module BNFGrammars
We now define some sets of lexemes. First is ReservedWord, the set of words that can’t be used as identifiers. (Note that BOOLEAN, TRUE, FALSE, and STRING are identifiers that are predefined.)

\[
\text{ReservedWord} \triangleq \{ \text{ASSUME}, \text{DOMAIN}, \text{INSTANCE}, \text{THEOREM}, \text{ASSUMPTION}, \text{ELSE}, \text{LET}, \text{UNCHANGED}, \text{AXIOM}, \text{ENABLED}, \text{MODULE}, \text{UNION}, \text{CASE}, \text{EXCEPT}, \text{OTHER}, \text{VARIABLES}, \text{CHOICE}, \text{EXTENDS}, \text{SF}, \text{VARIABLES}, \text{CONSTANT}, \text{IF}, \text{SUBSET}, \text{WF}, \text{CONSTANTS}, \text{IN}, \text{THEN}, \text{WITH} \}
\]

Here are three sets of characters—more precisely, sets of 1-character lexemes. They are the sets of letters, numbers, and characters that can appear in an identifier.

\[
\text{Letter} \triangleq \text{OneOf}(\text{abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ})
\]

\[
\text{Numeral} \triangleq \text{OneOf}(\text{0123456789})
\]

\[
\text{NameChar} \triangleq \text{Letter} \cup \text{Numeral} \cup \{ _ \}
\]

We now define some sets of tokens. A Name is a token composed of letters, numbers, and _ characters that contains at least one letter. It can be used as the name of a record component or a module. An Identifier is a Name that isn’t a reserved word.

\[
\text{Name} \triangleq \text{Tok}((\text{NameChar} \cup \text{Letter}) \cup \text{NameChar}^*)
\]

\[
\text{Identifier} \triangleq \text{Name} \setminus \text{Tok}(\text{ReservedWord})
\]

An IdentifierOrTuple is either an identifier or a tuple of identifiers. Note that () is typed as `<< >>`.

\[
\text{IdentifierOrTuple} \triangleq \text{Identifier} \mid \text{tok}(\text{<<}) \& \text{CommaList}((\text{Identifier})) \& \text{tok}(\text{>>})
\]

A Number is a token representing a number. You can write the integer 63 in the following ways: 63, 63.00, \text{\textbackslash}b111111 or \text{\textbackslash}B111111 (binary), \text{\textbackslash}o77 or \text{\textbackslash}O77 (octal), or \text{\textbackslash}h3f, \text{\textbackslash}H3f, \text{\textbackslash}h3F or \text{\textbackslash}H3F (hexadecimal).

\[
\text{NumberLexeme} \triangleq \text{Numeral}^+ \mid (\text{Numeral} \& \{ . \} \& \text{Numeral}^+ \mid \{ \text{\textbackslash}b, \text{\textbackslash}B \} \& \text{OneOf}(\text{\textbackslash}01)^+ \mid \{ \text{\textbackslash}o, \text{\textbackslash}O \} \& \text{OneOf}(\text{\textbackslash}01234567)^+ \mid \{ \text{\textbackslash}h, \text{\textbackslash}H \} \& \text{OneOf}(\text{\textbackslash}0123456789abcdefABCDEF)^+}
\]

\[
\text{Number} \triangleq \text{Tok}(\text{NumberLexeme})
\]

A String token represents a literal string. See Section 15.1.10 on page 281 to find out how special characters are typed in a string.

\[
\text{String} \triangleq \text{Tok}(\{ \text{\textbackslash}\n \} \& \text{STRING} \& \{ \text{\textbackslash}\n \})
\]
14.1. THE SIMPLE GRAMMAR

We next define the sets of tokens that represent prefix operators (like □), infix operators (like +), and postfix operators (like prime (′)). See Figure 13.16 on page 243 to find out what symbols these asil strings represent.

PrefixOp \triangleq Tok\{ “−”, “−” , “[]”, “< >”, “DOMAIN”, “ENABLED”, “SUBSET”, “UNCHANGED”, “UNION” \}

InfixOp \triangleq Tok\{ “!” , “#”, “#/#”, “$”, “$/$”, “%”, “%%”, “&”, “&&”, “(+)”, “(−)”, “(.)”, “(/)”, “(\X)”, “|”, “| “,” “| “,” “| “,” “,
\[\land \text{G.Unit} ::= \]
\[\quad \text{G.VariableDeclaration} \]
\[\quad \text{G.ConstantDeclaration} \]
\[\quad \text{G.OperatorDefinition} \]
\[\quad \text{G.Expression} \]
\[\quad \text{G.Module} \]
\[\quad \text{G.Assumption} \]
\[\quad \text{G.Theorem} \]
\[\land \text{G.VariableDeclaration} ::= \]
\[\quad \text{Tok}\{\text{"VARIABLE","VARIABLES"}\} \& \ \text{CommaList}(\text{Identifier}) \]
\[\land \text{G.ConstantDeclaration} ::= \]
\[\quad \text{Tok}\{\text{"CONSTANT","CONSTANTS"}\} \& \ \text{CommaList}(\text{G.OpDecl}) \]
\[\land \text{G.OpDecl} ::= \]
\[\quad \text{Identifier} \]
\[\quad \text{tok}(\text{""}) \& \ \text{CommaList}(\text{tok}(\text{""}) \& \ \text{tok}(\text{""})) \]
\[\quad \text{tok}(\text{""}) \& \ \text{tok}(\text{""}) \& \ \text{tok}(\text{""}) \& \ \text{PrefixOp} \& \ \text{tok}(\text{""}) \]
\[\quad \text{tok}(\text{""}) \& \ \text{InfixOp} \& \ \text{tok}(\text{""}) \]
\[\quad \text{tok}(\text{""}) \& \ \text{PostfixOp} \]
\[\land \text{G.OperatorDefinition} ::= \]
\[\quad \{ \]
\[\quad \text{G.NonFixLHS} \]
\[\quad \text{PrefixOp} \& \ \text{Identifier} \]
\[\quad \text{Identifier} \& \ \text{InfixOp} \& \ \text{Identifier} \]
\[\quad \text{Identifier} \& \ \text{PostfixOp} \]
\[\quad \& \ \text{tok}(\text{""}) \]
\[\quad \& \ \text{G.Expression} \]
\[\land \text{G.NonFixLHS} ::= \]
\[\quad \text{Identifier} \]
\[\land \text{G.FunctionDefinition} ::= \]
\[\quad \text{Identifier} \]
\[\land \text{tok}(\text{""}) \& \ \text{CommaList}(\text{G.QuantifierBound}) \& \ \text{tok}(\text{""}) \]
\[\land \text{tok}(\text{""}) \& \ \text{G.Expression} \]
14.1. THE SIMPLE GRAMMAR

G. QuantifierBound ::= (IdentifierOrTuple | CommaList(Identifier))
& tok("in")
& G.Expression

G. Instance ::= tok("INSTANCE")
& Name
& (Nil | tok("WITH") & CommaList(G.Substitution))

G. Substitution ::= (Identifier | PrefixOp | InfixOp | PostfixOp)
& tok("<-")
& G.Argument

G. Argument ::= G.Expression
| G.GeneralPrefixOp
| G.GeneralInfixOp
| G.GeneralPostfixOp

G. InstancePrefix ::= (Identifier
& (Nil
| tok("(") & CommaList(G.Expression) & tok(")")
& tok("!")
)*

G. GeneralIdentifier ::= G.InstancePrefix & Identifier
G. GeneralPrefixOp ::= G.InstancePrefix & PrefixOp
G. GeneralInfixOp ::= G.InstancePrefix & InfixOp
G. GeneralPostfixOp ::= G.InstancePrefix & PostfixOp

G. ModuleDefinition ::= G.NonFixLHS & tok("==") & G.Instance

G. Assumption ::= Tok({"ASSUME", "ASSUMPTION", "AXIOM"}) & G.Expression

G. Theorem ::= tok("THEOREM") & G.Expression

The comments give examples of each of the different types of expression.

G. Expression ::= G.GeneralIdentifier A(x + 7)!B!1Id
| G.GeneralIdentifier & tok("(") A!Op(x + 1, y)
& CommaList(G.Argument) & tok(")")
| G.GeneralPrefixOp & G.Expression SUBSET S(foo
G.Expression & G.GeneralInfixOp & G.Expression	$a + b$	
G.Expression & G.GeneralPostfixO	$x[1]$	
tok("(") & G.Expression & tok(")")	$(x + 1)$	
Tok({"\A", "\E"}) & CommaList(G.QuantifierBound) & tok(";") & G.Expression	$\forall x \in S, \langle y, z \rangle \in T : F(x, y, z)$	
Tok({"\A", "\E", "\AA", "\EE"}) & CommaList(Identifier) & tok(";") & G.Expression	$\exists x, y : x + y > 0$	
tok("CHOOSE") & IdentifierOrTuple & (Nil	tok("\in") & G.Expression) & tok(";") & G.Expression	$\text{choose } (x, y) \in S : F(x, y)$
tok("(") & (Nil	CommaList(G.Expression)) & tok(")")	$\{1, 2, 2 + 2\}$
tok("{") & IdentifierOrTuple & tok("\in") & G.Expression & tok(";") & G.Expression & tok("}")	$\{x \in \text{Nat} : x > 0\}$	
tok("{") & G.Expression & tok(";") & CommaList(G.QuantifierBound) & tok("}")	$\{F(x, y, z) : x, y \in S, z \in T\}$	
G.Expression & tok("[") & CommaList(G.Expression) & tok("]")	$f[i + 1, j]$	
tok("[") & CommaList(G.QuantifierBound) & tok("\rightarrow") & G.Expression & tok("]")	$[i, j] \in S, \langle p, q \rangle \in T \rightarrow F(i, j, p, q)]$	
tok("[") & G.Expression & tok("\rightarrow") & G.Expression & tok("]")	$[(S \cup T) \rightarrow U]$	
tok("[") & CommaList(Name & tok("\rightarrow") & G.Expression) & tok("]")	$[a \rightarrow x + 1, b \rightarrow y]$	
14.1. THE SIMPLE GRAMMAR

\[\text{tok}("\text{\textbar}") \& \text{CommaList(Name \& \text{tok}(\:"\") \& G.Expression) [a:Nat, b:S]} \]
\& \text{tok("\text{"\")}

\[\text{tok}("\text{\textbar}") [f \text{EXCEPT} ![1,x].r = 4, ![2,y] = e] \]
\& \text{G.Expression}
\& \text{tok("EXCEPT")}
\& \text{CommaList(tok("!")}
\& (\text{tok("." \& Name}
\& \text{tok("\text{\textbar}") \& CommaList(G.Expression) \& tok("\text{"\")})}^+
\& \text{tok("=" \& G.Expression)}
\& \text{tok("\text{"\")}

\[\text{tok("<<") \& \text{CommaList(G.Expression) \& tok(">>")} (1,2,3) \]
\& \text{G.Expression \& (Tok(\{"\text{X", "\text{times"}\}) \& G.Expression)^+ Nat \times Nat \times Real}
\& \text{tok("\text{\textbar}") \& G.Expression \& tok("\text{\textbar}") \& G.Expression [Next]_{(x,y)}
\& \text{tok("<<") \& G.Expression \& tok(">>") \& G.Expression (Send)_{yars}
\& \text{Tok(\{"\text{WF_", "SF_\text{\textbar}\}) \& G.Expression \& tok("\text{\textbar}") \& G.Expression \& \text{tok("\text{\textbar}"})\]}^+ \]
\& \text{IF"} \& G.Expression \& \text{tok("THEN") [IF p THEN A ELSE B}
\& G.Expression \& \text{tok("ELSE") \& G.Expression}

\[\text{tok("CASE")}
\& (\text{LET CaseArm} \triangleq \text{G.Expression \& tok("->") \& G.Expression}
\& \text{IN CaseArm \& (tok("\text{\textbar}") \& CaseArm)^+})
\& (\text{Nil}
\& (\text{tok("\text{\textbar}") \& tok("OTHER") \& tok("->") \& G.Expression)})
\& \text{tok("LET")}
\& (\text{L.OperatorDefinition \& L.FunctionDefinition \& L.ModuleDefinition})^+
\& \text{tok("IN")}
\& \text{G.Expression}
\& \text{tok("\text{\textbar}") \& G.Expression)^+ [LET x \triangleq y + 1}
\& \text{\& x = 1}
\& \text{\& y = 2}
\& \text{tok("\text{\textbar}") \& G.Expression)^+ \}^+ \}^+ \]
\& \text{\& x = 1}
\& \text{\& y = 2}
14.2 The Complete Grammar

We now complete our explanation of the syntax of TLA\(^+\) by giving the details that are not described by the BNF grammar in the previous section. Section 14.2.1 gives the precedence rules, Section 14.2.2 gives the alignment rules for conjunction and disjunction lists, and Section 14.2.3 describes comments. Section 14.2.4 briefly discusses the syntax of temporal formulas. Finally, for completeness, Section 14.2.5 explains the handling of two anomalous cases that you’re unlikely ever to encounter.

14.2.1 Precedence and Associativity

The expression \(a + b \times c\) is interpreted as \(a + (b \times c)\) rather than \((a + b) \times c\). This convention is described by saying that the operator \(\times\) has higher precedence than the operator +. In general, operators with higher precedence are applied before operators of lower precedence. This applies to prefix operators (like \(\subseteq\)) and postfix operators (like \(\cdot\)) as well as to infix operators like + and \(*\). Thus, \(a + b'\) is interpreted as \(a + (b')\), rather than as \((a + b)'\), because \(\cdot\) has higher precedence than +. Application order can also be determined by associativity. The expression \(a - b - c\) is interpreted as \((a - b) - c\) because \(-\) is a left-associative infix operator.

In TLA\(^+\), the precedence of an operator is a range of numbers, like 7–13. The operator \(\$\) has higher precedence than the operator \(\Rightarrow\) because the precedence of \(\$\) is 7–12, and this entire range is greater than the precedence range of \(\Rightarrow\), which is 6–6. An expression is illegal (not syntactically well-formed) if the order of application of two operators is not determined because their precedence ranges overlap and they are not two instances of an associative infix operator. For example, the expression \(a + b \times c' \% d\) is illegal for the following reason. The precedence range of \(\cdot\) is higher than that of \(+\), and the precedence range of \(\times\) is higher than that of \(+\) and \(\%\), so this expression is interpreted as \(a + (b \times (c'))\) \(\% d\). However, the precedences of \(+\) (9–9) and \(\%\) (9–10) overlap, so the expression is illegal.

TLA\(^+\) embodies the philosophy that it’s better to require parentheses than
to allow expressions that could be easily be misinterpreted. Thus, * and / have overlapping precedence, making an expression like \(a/b * c \) illegal. (This also makes \(a * b/c \) illegal, even though \((a * b)/c \) and \(a *(b/c) \) happen to be equal when * and / have their usual definitions.) Unconventional operators like $ have wide precedence ranges for safety. But, even when the precedence rules imply that parentheses aren’t needed, it’s often a good idea to use them anyway if you think there’s any chance that a reader might not understand how an expression is parsed.

Figure 13.14 on page 241 gives the precedence ranges of all operators and tells which infix operators are left associative. (No TLA\(^+\) operators are right associative.) Below are some additional precedence rules not covered by the operator precedence ranges.

Function Application

Function application has higher precedence than any operator. Thus, \(a + b[c]' \) is interpreted as \(a + (b[c])' \). (This in turn is interpreted as \(a + ((b[c])') \), since the ‘ operator has higher precedence than +.)

Cartesian Products

In the Cartesian product construct, \(\times \) (typed as \(\text{\×} \) or \(\text{\×} \)) acts somewhat like an associative infix operator with precedence range 9–12. Thus, \(A \times B \subseteq C \) is interpreted as \((A \times B) \subseteq C \), rather than as \(A \times (B \subseteq C) \). However, \(\times \) is part of a special construct, not an infix operator. For example, the three sets \(A \times B \times C \), \((A \times B) \times C \), and \(A \times (B \times C) \) are all different:

\[
\begin{align*}
A \times B \times C &= \{(a, b, c) : a \in A, b \in B, c \in C\} \\
(A \times B) \times C &= \{\langle(a, b), c\rangle : a \in A, b \in B, c \in C\} \\
A \times (B \times C) &= \{\langle(a, b, c)\rangle : a \in A, b \in B, c \in C\}
\end{align*}
\]

The first is a set of triples; the last two are sets of pairs.

Undelimited Constructs

TLA\(^+\) has several expression-making constructs with no explicit right-hand terminator. They are: CHOOSE, IF/THEN/ELSE, CASE, LET/IN, and quantifier constructs. These constructs are treated as prefix operators with the lowest possible precedence, so an expression made with one of them extends as far as possible. More precisely, the expression is ended only by one of the following:

- The beginning of the next module unit. (Module units are produced by the Unit nonterminal in the BNF grammar of Section 14.1.2; they include definition and declaration statements.)
• A right delimiter whose matching left delimiter occurs before the beginning
of the construct. Delimiter pairs are (), [], { }, and ().
• Any of the following lexemes: THEN, ELSE, IN, comma (,), colon (:), →.
• The CASE separator □ (not the prefix temporal operator that is typed the
same) ends all of these constructs except a CASE statement without an
OTHER clause. That is, the □ acts as a delimiter except when it can be
part of a CASE statement.
• Any symbol not to the right of the ^ or _ prefixing a conjunction or dis-
junction list element containing the construct. (See Section 14.2.2 below.)

Here is how some expressions are interpreted under this rule:

\[
\begin{align*}
\text{IF } x > 0 \text{ THEN } y + 1 \\
\text{ELSE } y - 1
\end{align*}
\]

means

\[
\begin{align*}
\text{IF } x > 0 \text{ THEN } y + 1 \\
\text{ELSE } (y - 1 + 2)
\end{align*}
\]

\[
\forall x \in S : P(x)
\]

means

\[
\forall x \in S : (P(x) \lor Q)
\]

As these examples show, indentation is ignored—except in conjunction and dis-
junction lists, discussed below. The absence of a terminating lexeme (an END) for
an IF/THEN/ELSE or CASE construct usually makes an expression less cluttered,
but sometimes it does require you to add parentheses.

Subscripts

TLA uses subscript notation in the following constructs: \([A]_e\), \((A)_e\), \(WF_e(A)\),
and \(SF_e(A)\). In TLA\(^+\), these are written with a “\(_\)” character, as in \(<<A>>_e\).
This notation is, in principle, problematic. The expression \(<<A>>_x \land B\), which
we expect to mean \((\langle A\rangle_x) \land B\), could conceivably be interpreted as \(\langle A\rangle_{(x \land B)}\).
The precise rule for parsing these constructs isn’t important; you should put
parentheses around the subscript except in the following two cases.

• The subscript is a GeneralIdentifier in the BNF grammar.
• The subscript is an expression enclosed by one of the following matching
delimiter pairs: (), [], { }, or { }—for example, \((x, y)\) or \((x + y)\).

Although \([A]__f [x]\) is interpreted correctly as \([A]_{f[x]}\), it will be easier to read in
the ASCII text if you write it as \([A]__ (f [x])\).
14.2. Alignment

The most novel aspect of TLA\(^+\) syntax is the aligned conjunction and disjunction lists. If you write such a list in a straightforward manner, then it will mean what you expect it to. However, you might wind up doing something weird through a typing error. So, it’s a good idea to know what the exact syntax rules are for these lists. I give the rules here for conjunction lists; the rules for disjunction lists are the same.

A conjunction list is an expression that begins with \(\wedge\), which is typed as \(\wedge\). Let \(c\) be the column in which the \(\wedge\) occurs. (The first character in a line is in column 1.) The conjunction list consists of a sequence of conjuncts, each beginning with a \(^\wedge\). A conjunct is ended by any one of the following that occurs after the \(\wedge\):

1. Another \(\wedge\) whose \(\wedge\) character is in column \(c\) and is the first nonspace character on the line.

2. Any nonspace character in column \(c\) or a column to the left of column \(c\).

3. A right delimiter whose matching left delimiter occurs before the beginning of the conjunction list. Delimiter pairs are (), [], { }, and \{ \}.

4. The beginning of the next module unit. (Module units are produced by the \textit{Unit} nonterminal in the BNF grammar; they include definition and declaration statements.)

In case 1, the \(\wedge\) begins the next conjunct in the same conjunction list. In the other three cases, the end of the conjunct is the end of the entire conjunction list. In all cases, the character ending the conjunct does not belong to the conjunct. With these rules, indentation properly delimits expressions in a conjunction list—for example:

\[
\wedge \text{IF } e \text{ THEN } P \quad \wedge (\text{IF } e \text{ THEN } P \\
\wedge \text{ELSE } Q \quad \wedge \text{ELSE } Q \\
\wedge R \quad \wedge R
\]

It’s best to indent each conjunction completely to the right of its \(\wedge\) symbol. These examples illustrate precisely what happens if you don’t:

\[
\wedge x' = y \quad \wedge x' = y \\
\wedge y' = x \quad \wedge y' = x \\
\wedge y' = x \quad \wedge (y' = x) \\
\wedge (x' = y) \quad \wedge (x' = y) \\
\wedge (y' = x) \quad \wedge (y' = x)
\]

In the second example, the \(\wedge x'\) is interpreted as a conjunction list containing only one conjunct, and the second \(\wedge\) is interpreted as an infix operator.

You can’t use parentheses to circumvent the indentation rules. For example, this is illegal:
The rules imply that the first \land begins a conjunction list that is ended before the \ast. That conjunction list is therefore $\land (x')$, which has an unmatched left parenthesis.

The conjunction/disjunction list notation is quite robust. Even if you mess up the alignment by typing one space too few or too many—something that’s easy to do when the conjuncts are long—the formula is still likely to mean what you intended. Here’s an example of what happens if you misalign a conjunct:

$\land A$
$\land B$ means $\land C$

(The last two \land symbols are interpreted as infix operators.) While not interpreted the way you expected, this formula is equivalent to $A \land B \land C$, which is what you meant in the first place.

Most keyboards contain one key that is the source of a lot of trouble: the tab key (sometimes marked on the keyboard with a right arrow). On my computer screen, I can produce

$A ==$

$\land x' = 1$
$\land y' = 2$

by beginning the second line with eight space characters and the third with one tab character. In this case, it is unspecified whether or not the two \land characters occur in the same column. Tab characters are an anachronism left over from the days of typewriters and of computers with memory capacity measured in kilobytes. I strongly advise you never to use them. But, if you insist on using them, here are the rules:

- A tab character is considered to be equivalent to one or more space characters, so it occupies one or more columns.

- Identical sequences of space and tab characters that occur at the beginning of a line occupy the same number of columns.

There are no other guarantees if you use tab characters.

14.2.3 Comments

Comments are described in Section 3.5 on page 32. A comment may appear between any two lexemes in a specification. There are two types of comments:
• A delimited comment is a string of the form “(* s * “)”, where s is any string not containing the substring “*”).

• An end-of-line comment is a string of the form “\s LF “, where s is any string not containing an end-of-line character LF.

I like to write comments as shown here:

```
BufRcv == /
  InChan!Rcv
  /
  q' = Append(q, in.val) (* Receive message from channel *)
  /
  out (* in and append to tail of q. *)

(*************************************************************************)
``` 

Grammatically, this piece of specification has four distinct comments, the first and last consisting of the same string (***)...**). But a person reading it would regard them as a single comment, spread over four lines. This kind of commenting convention is not part of the TLA language, but it might be supported by tools such as a pretty-printer.

14.2.4 Temporal Formulas

The BNF grammar treats □ and ◇ simply as prefix operators. However, as explained in Section 8.1 (page 87), the syntax of temporal formulas places restrictions on their use. For example, □(x' = x + 1) is not a legal formula. It’s not hard to write a BNF grammar that specifies legal temporal formulas made from the temporal operators and ordinary Boolean operators like ¬ and ∧. However, such a BNF grammar won’t tell you which of these two expressions is legal:

```
let F(P, Q) ≝ P □ Q
in F(x = 1, x = y + 1)
```

The first is legal; the second isn’t because it represents the illegal formula

```
(x = 1) ∧ □(x' = y + 1)  This formula is illegal.
```

The precise rules for determining if a temporal formula is syntactically well-formed involve first replacing all defined operators by their definitions, using the procedure described in Section 16.4 below. I won’t bother specifying these rules.

In practice, temporal operators are not used very much in TLA specifications, and one rarely writes definitions of new ones such as

```
F(P, Q) ≝ P ∧ □Q
```

The syntactic rules for expressions involving such operators are of academic interest only.
14.2.5 Two Anomalies

There are two sources of ambiguity in the grammar of TLA\(^+\) that you are unlikely to encounter and that have \textit{ad hoc} resolutions. The least unlikely of these arises from the use of \(\neg\) as both an infix operator (as in \(2 + 2\)) and a prefix operator (as in \(2 + \neg 2\)). This poses no problem when \(\neg\) is used in an ordinary expression. However, there are two places in which an operator can appear by itself:

- As the argument of a higher-order operator, as in \(HOp(+, -)\).
- In an \textsc{Instance} substitution, such as

\[
\text{instance } M \text{ with } \text{Plus} \leftarrow +, \text{Minus} \leftarrow -
\]

In both these cases, the symbol \(\neg\) is interpreted as the infix operator. You must type \(\neg\) to denote the prefix operator. You also have to type \(\neg\) if you should ever want to define the prefix \(\neg\) operator, as in:

\[
\neg a \triangleq \text{UMinus}(a)
\]

Remember that, in ordinary expressions, you just type \(\neg\) as usual for both operators.

The second source of ambiguity in the TLA\(^+\) syntax is an unlikely expression of the form \(\{x \in S : y \in T\}\), which might be taken to mean either of the following:

\[
\begin{align*}
\text{let } p & \triangleq y \in T \text{ in } \{x \in S : p\} \\
\text{let } p & \triangleq x \in S \text{ in } \{p : y \in T\}
\end{align*}
\]

It is interpreted as the first formula.

14.3 What You Type

The grammar in Section 14.1.2 describes the \textsc{ascii} syntax for TLA\(^+\) specifications. Typeset versions of specifications appear in this book. For example, the grammar lists the infix operator \texttt{\textbackslash prec}, but that operator is printed in specifications as \(\prec\). Figure 13.16 on page 243 gives the correspondence between the \textsc{ascii} and typeset versions of all TLA\(^+\) symbols for which the correspondence may not be obvious.

Finally, Figure 13.13 on page 240 lists all the user-definable infix, postfix, and prefix operator symbols of TLA\(^+\). It also indicates which of them are defined by the standard modules. This is a good place to look when choosing notation for your specification.
Chapter 15

The Operators of TLA$^+$

This chapter describes the built-in operators of TLA$^+$. Most of these operators have been described in Part I. Here, you can find brief explanations of the operators, along with references to the longer descriptions in Part I. The explanations cover some subtle points that are not mentioned elsewhere. The chapter can serve as a reference manual for readers who have finished Part I or who are already familiar enough with the mathematical concepts that the brief explanations are all they need.

The chapter includes a formal semantics of the operators. The rigorous description of TLA$^+$ that a formal semantics provides is usually needed only by people building TLA$^+$ tools. If you’re not building a tool and don’t have a special fondness for formalism, you will probably want to skip all the subsections titled Formal Semantics. However, you may some day encounter an obscure question about the meaning of a TLA$^+$ operator that is answered only by the formal semantics.

This chapter also defines some of the “semantic” conditions on the syntax of TLA$^+$ that are omitted from the grammar of Chapter 14. For example, it tells you that $[a : \text{Nat}, a : \text{BOOLEAN}]$ is an illegal expression. Other semantic conditions on expressions arise from a combination of the definitions in this chapter and the conditions stated in Chapter 16. For example, this chapter defines $\exists x, x : p$ to equal $\exists x : (\exists x : p)$, and Chapter 16 tells you that the latter expression is illegal.

15.1 Constant Operators

We first define the constant operators of TLA$^+$. These are the operators of ordinary mathematics, having nothing to do with TLA or temporal logic. All the constant operators of TLA$^+$ are listed in Figure 13.9 on page 238 and Fig-
An operator combines one or more expressions into a “larger” expression. For example, the set union operator \(\cup \) combines two expressions \(e_1 \) and \(e_2 \) into the expression \(e_1 \cup e_2 \). Some operators don’t have such simple names as \(\cup \). For example, there’s no simple name for the operator that combines the \(n \) expressions \(e_1, \ldots, e_n \) to form the expression \(\{e_1, \ldots, e_n\} \). We could name it \(\{\cdot, \ldots, \cdot\} \) or \(\{_\ldots_\} \), but that would be awkward. Instead of explicitly mentioning the operator, I’ll refer to the construct \(\{e_1, \ldots, e_n\} \). The distinction between an operator like \(\cup \) and the nameless one used in the construct \(\{e_1, \ldots, e_n\} \) is purely syntactic, with no mathematical significance. In Chapter 16, I will abstract away from this syntactic difference and treat all operators uniformly. For now, I’ll stay closer to the syntax.

Formal Semantics

A formal semantics for a language is a translation from that language into some form of mathematics. We assign a mathematical expression \([e]\), called the *meaning* of \(e \), to certain terms \(e \) in the language. Since we presumably understand the mathematics, we know what \([e]\) means, and that tells us what \(e \) means.

Meaning is generally defined inductively. For example, the meaning \([e_1 \cup e_2]\) of the expression \(e_1 \cup e_2 \) would be defined in terms of the meanings \([e_1]\) and \([e_2]\) of its subexpressions. This definition is said to define the semantics of the operator \(\cup \).

Because much of TLA\(^+\) is a language for expressing ordinary mathematics, much of its semantics is trivial. For example, the semantics of \(\cup \) can be defined by

\[
[e_1 \cup e_2] \triangleq [e_1] \cup [e_2]
\]

In this definition, the \(\cup \) to the left of the \(\triangleq \) is the TLA\(^+\) symbol, while the one to the right is the set-union operator of ordinary mathematics. I could make the distinction between the two uses of the symbol \(\cup \) more obvious by writing

\[
[e_1 \cup_{\text{TLA}} e_2] \triangleq [e_1] \cup [e_2]
\]

But, that wouldn’t make the definition any less trivial.

Instead of trying to maintain a distinction between the TLA\(^+\) operator \(\cup \) and the operator of set theory that’s written the same, I simply use TLA\(^+\) as the language of mathematics in which to define the semantics of TLA\(^+\). That is, I take as primitive certain TLA\(^+\) operators that, like \(\cup \), correspond to well-known mathematical operators. I describe the formal semantics of the constant operators of TLA\(^+\) by defining them in terms of these primitive operators. I also describe the semantics of some of the primitive operators by stating the axioms that they satisfy.
15.1. CONSTANT OPERATORS

15.1.1 Boolean Operators

The truth values of logic are written in TLA+ as true and false. The built-in constant BOOLEAN is the set consisting of those two values:

\[
\text{BOOLEAN} \triangleq \{\text{true}, \text{false}\}
\]

TLA+ provides the usual operators of propositional logic:

\[
\wedge \quad \vee \quad \lnot \quad \Rightarrow \quad (\text{implication}) \quad \equiv \quad \text{true} \quad \text{false}
\]

They are explained in Section 1.1. Conjunctions and disjunctions can be written as aligned lists:

\[
\wedge p_1 \ldots \wedge p_n \quad \vee p_1 \ldots \vee p_n
\]

The standard quantified formulas of predicate logic are written in TLA+ as:

\[
\forall x : P \quad \exists x : P
\]

I call these the unbounded quantifier constructions. The bounded versions are written as:

\[
\forall x \in S : p \quad \exists x \in S : p
\]

The meanings of these expressions are described in Section 1.3. TLA+ allows some common abbreviations—for example:

\[
\forall x, y : p \triangleq \forall x : (\forall y : p) \quad \exists x, y \in S, z \in T : p \triangleq \exists x \in S : (\exists y \in S : (\exists z \in T : p))
\]

TLA+ also allows bounded quantification over tuples, such as

\[
\forall (x, y) \in S : p
\]

This formula is true iff, for any pair \((a, b)\) in \(S\), the formula obtained from \(p\) by substituting \(a\) for \(x\) and \(b\) for \(y\) is true.

Formal Semantics

Propositional and predicate logic, along with set theory, form the foundation of ordinary mathematics. In defining the semantics of TLA+, we therefore take as primitives the operators of propositional logic and the simple unbounded quantifier constructs \(\exists x : p\) and \(\forall x : p\), where \(x\) is an identifier. Among the Boolean operators described above, this leaves only the general forms of the quantifiers, given by the BNF grammar of Chapter 14, whose meanings must
be defined. This is done by defining those general forms in terms of the simple forms.

The unbounded operators have the general forms:
\[\forall x_1, \ldots, x_n : p \quad \exists x_1, \ldots, x_n : p \]
where each \(x_i \) is an identifier. They are defined in terms of quantification over a single variable by:
\[\forall x_1, \ldots, x_n : p \triangleq \forall x_1 : (\forall x_2 : (\ldots \forall x_n : p) \ldots) \]
and similarly for \(\exists \). The bounded operators have the general forms:
\[\forall y_1 \in S_1, \ldots, y_n \in S_n : p \quad \exists y_1 \in S_1, \ldots, y_n \in S_n : p \]
where each \(y_i \) has the form \(x_1, \ldots, x_k \) or \(\langle x_1, \ldots, x_k \rangle \), and each \(x_j \) is an identifier. The general forms of \(\forall \) are defined inductively by
\[\forall x_1, \ldots, x_k \in S : p \quad \triangleq \forall x_1, \ldots, x_k : (x_1 \in S) \land \ldots \land (x_k \in S) \Rightarrow p \]
\[\forall y_1 \in S_1, \ldots, y_n \in S_n : p \quad \triangleq \forall y_1 \in S_1 : \ldots \forall : y_n \in S_n : p \]
\[\forall \langle x_1, \ldots, x_k \rangle \in S : p \quad \triangleq \forall x_1, \ldots, x_k : \langle x_1, \ldots, x_k \rangle \in S \Rightarrow p \]
where the \(y_i \) are as before. In these expressions, \(S \) and the \(S_i \) lie outside the scope of the quantifier’s bound identifiers. The definitions for \(\exists \) are similar. In particular:
\[\exists \langle x_1, \ldots, x_k \rangle \in S : p \triangleq \exists x_1, \ldots, x_k : \langle x_1, \ldots, x_k \rangle \in S \land p \]
See Section 15.1.9 for further details about tuples.

15.1.2 The Choose Operator

A simple unbounded choose expression has the form
\[\text{choose } x : p \]
As explained in Section 6.6, the value of this expression is some arbitrary value \(v \) such that \(p \) is true if \(v \) is substituted for \(x \), if such a \(v \) exists. If no such \(v \) exists, then the expression has a completely arbitrary value.

The bounded form of the choose expression is:
\[\text{choose } x \in S : p \]
It is defined in terms of the unbounded form by
\[(15.1) \quad \text{choose } x \in S : p \triangleq \text{choose } x : (x \in S) \land p \]
15.1. CONSTANT OPERATORS

It is equal to some arbitrary value \(v \) in \(S \) such that \(p \), with \(v \) substituted for \(x \), is true—if such a \(v \) exists. If no such \(v \) exists, the \texttt{choose} expression has a completely arbitrary value.

A \texttt{choose} expression can also be used to choose a tuple. For example

\[
\texttt{choose } \langle x, y \rangle \in S : p
\]
equals some pair \(\langle v, w \rangle \) in \(S \) such that \(p \), with \(v \) substituted for \(x \) and \(w \) substituted for \(y \), is true—if such a pair exists. If no such pair exists, it has an arbitrary value, which need not be a pair.

The unbounded \texttt{choose} operator satisfies the following two rules:

\[(15.2) \ (\exists x : P(x)) \equiv P(\texttt{choose } x : P(x))
\]
\[(\forall x : P(x) = Q(x)) \Rightarrow ((\texttt{choose } x : P(x)) = \texttt{choose } x : Q(x))\]

for any operators \(P \) and \(Q \). We know nothing about the value chosen by \texttt{choose} except what we can deduce from these rules.

The second rule allows us to deduce the equality of certain \texttt{choose} expressions that we might expect to be different. In particular, for any operator \(P \), if there exists no \(x \) satisfying \(P(x) \), then \texttt{choose } \(x : P(x) \) equals the unique value \texttt{choose } \(x : \texttt{false} \). For example, the \texttt{Reals} module defines division by

\[
\frac{a}{b} \triangleq \texttt{choose } c \in \texttt{Real} : a = b \times c
\]

For any nonzero number \(a \), there exists no number \(c \) such that \(a = 0 \times c \). Hence, \(a/0 \) equals \texttt{choose } \(c : \texttt{false} \), for any nonzero \(a \). We can therefore deduce that \(1/0 \) equals \(2/0 \).

We would expect to be unable to deduce anything about the nonsensical expression \(1/0 \). It’s a bit disquieting to prove that it equals \(2/0 \). If this upsets you, here’s a way to define division that will make you happier. First define an operator \(\texttt{Choice} \) so that \(\texttt{Choice}(v, P) \) equals \texttt{choose } \(x : P(x) \) if there exists an \(x \) satisfying \(P(x) \), and otherwise equals some arbitrary value that depends on \(v \). There are many ways to define \(\texttt{Choice} \); here’s one:

\[
\texttt{Choice}(v, P(x)) \triangleq \begin{cases}
 \texttt{choose } x : P(x) & \text{if } \exists x : P(x) \\
 \texttt{choose } x : x.a = v & \text{else}
\end{cases}
\]

You can then define division by

\[
\frac{a}{b} \triangleq \text{let } \begin{array}{l}
 P(c) \triangleq (c \in \texttt{Real}) \land (a = b \times c) \\
 \texttt{Choice}(a, P)
\end{array}
\]

You can use \(\texttt{Choice} \) instead of \texttt{choose} whenever this kind of problem arises—if you consider \(1/0 \) equaling \(2/0 \) to be a problem. But there is seldom any practical reason for worrying about it.
CHAPTER 15. THE OPERATORS OF TLA+

Formal Semantics

We take the construct \(\text{choose} \, x : p \), where \(x \) is an identifier, to be primitive. This form of the \text{choose} operator is known to mathematicians as Hilbert’s \(\varepsilon \). Its meaning is defined mathematically by the rules (15.2). Leisenring [3] presents a detailed mathematical exposition of Hilbert’s \(\varepsilon \).

An unbounded \text{choose} of a tuple is defined in terms of the simple unbounded \text{choose} construct by

\[
\text{choose} \, (x_1, \ldots, x_n) : p \triangleq \text{choose} \, y : (\exists x_1, \ldots, x_n : (y = (x_1, \ldots, x_n)) \land p)
\]

where \(y \) is an identifier that is different from the \(x_i \) and does not occur in \(p \). The bounded \text{choose} construct is defined in terms of unbounded \text{choose} by (15.1), where \(x \) can be either an identifier or a tuple.

15.1.3 The Three Interpretations of Boolean Operators

The meaning of a Boolean operator when applied to Boolean values is a standard part of traditional mathematics. Everyone agrees that \(\text{true} \land \text{false} \) equals \text{false}. However, because TLA+ is untyped, an expression like \(2 \land \langle 5 \rangle \) is legal. We must therefore decide what it means. There are three ways of doing this, which I call the conservative, moderate, and liberal interpretations.

In the conservative interpretation, the value of an expression like \(2 \land \langle 5 \rangle \) is completely unspecified. It could equal \(\sqrt{2} \). It need not equal \(\langle 5 \rangle \land 2 \). Hence, the ordinary laws of logic, such as the commutativity of \(\land \), are valid only for Boolean values.

In the liberal interpretation, the value of \(2 \land \langle 5 \rangle \) is specified to be a Boolean. It is not specified whether it equals \text{true} or \text{false}. However, all the ordinary laws of logic, such as the commutativity of \(\land \), are valid. Hence, \(2 \land \langle 5 \rangle \) equals \(\langle 5 \rangle \land 2 \). More precisely, any tautology of propositional or predicate logic, such as

\[
(\forall x : p) \equiv \neg(\exists x : \neg p)
\]

is valid, even if \(p \) is not necessarily a Boolean for all values of \(x \).\(^1\) It is easy to show that the liberal approach is sound.\(^2\) For example, one way of defining operators that satisfy the liberal interpretation is to consider any non-Boolean value to be equivalent to \text{false}.

The conservative and liberal interpretations are equivalent for most specifications, except for ones that use Boolean-valued functions. In practice, the

\(^1\) Equality (\(= \)) is not an operator of propositional or predicate logic; this tautology need not be valid for non-Boolean values if \(= \) is replaced by \(\equiv \).

\(^2\) A sound logic in one in which \text{false} is not provable.
conservative interpretation doesn’t permit you to use \(f[x] \) as a Boolean expression even if \(f \) is defined to be a Boolean-valued function. For example, suppose we define the function \(tnat \) by

\[
 tnat \triangleq \quad [n \in \text{Nat} \mapsto \text{true}]
\]

so \(tnat[n] \) equals true for all \(n \) in \(\text{Nat} \). The formula

(15.3) \(\forall n \in \text{Nat} : tnat[n] \)

equals true in the liberal interpretation, but not in the conservative interpretation. Formula (15.3) is equivalent to

\[
 \forall n : (n \in \text{Nat}) \Rightarrow tnat[n]
\]

which asserts that \((n \in \text{Nat}) \Rightarrow tnat[n] \) is true for all \(n \), including, for example, \(n = 1/2 \). For (15.3) to equal true, the formula \((1/2 \in \text{Nat}) \Rightarrow tnat[1/2] \), which equals false \(\Rightarrow tnat[1/2] \), must equal true. But the value of \(tnat[1/2] \) is not specified; it might equal \(\sqrt{2} \). The formula false \(\Rightarrow \sqrt{2} \) equals true in the liberal interpretation; its value is unspecified in the conservative interpretation. Hence, the value of (15.3) is unspecified in the conservative interpretation. If we are using the conservative interpretation, instead of (15.3), we should write

\[
 \forall n \in \text{Nat} : (tnat[n] = \text{true})
\]

This formula equals true in both interpretations.

The conservative interpretation is philosophically more satisfying, since it makes no assumptions about a silly expression like \(2 \land (5) \). However, as we have just seen, it would be nice if the not-so-silly formula false \(\Rightarrow \sqrt{2} \) equaled true. We therefore introduce the moderate interpretation, which lies between the conservative and liberal interpretations. It assumes only that expressions involving false and true have their expected values—for example, false \(\Rightarrow \sqrt{2} \) equals true, and false \(\land 2 \) equals false. In the moderate interpretation, (15.3) equals true, but the value of \((5) \land 2 \) is still completely unspecified.

The laws of logic still do not hold unconditionally in the moderate interpretation. The formulas \(p \land q \) and \(q \land p \) are equivalent only if \(p \) and \(q \) are both Booleans, or if one of them equals false. When using the moderate interpretation, we still have to check that all the relevant values are Booleans before applying any of the ordinary rules of logic in a proof. This can be burdensome in practice.

The semantics of TLA+ asserts that the rules of the moderate interpretation are valid. The liberal interpretation is neither required nor forbidden. You should write specifications that make sense under the moderate interpretation. However, you (and the implementer of a tool) are free to use the liberal interpretation if you wish.
15.1.4 Conditional Constructs

TLA+ provides two conditional constructs for forming expressions that are inspired by constructs from programming languages: \texttt{IF/\texttt{THEN}/ELSE} and \texttt{CASE}.

The \texttt{IF/\texttt{THEN}/ELSE} construct was introduced on page 16 of Section 2.2. Its general form is:

\texttt{IF } p \texttt{ THEN } e_1 \texttt{ ELSE } e_2

It equals e_1 if p is true, and e_2 if p is false.

An expression can sometimes be simplified by using a \texttt{CASE} construct instead of nested \texttt{IF/\texttt{THEN}/ELSE} constructs. The \texttt{CASE} construct has two general forms:

\begin{align*}
\texttt{CASE } & p_1 \rightarrow e_1 \land \ldots \land p_n \rightarrow e_n \\
\texttt{CASE } & p_1 \rightarrow e_1 \land \ldots \land p_n \rightarrow e_n \land \texttt{OTHER } \rightarrow e
\end{align*}

If some p_i is true, then the value of these expressions is some e_i such that p_i is true. For example, the expression

\texttt{CASE } n \geq 0 \rightarrow e_1 \land n < 0 \rightarrow e_2

equals e_1 if $n > 0$ is true, equals e_2 if $n < 0$ is true, and equals either e_1 or e_2 if $n = 0$ is true. In the latter case, the semantics of TLA+ does not specify whether the expression equals e_1 or e_2. The \texttt{CASE} expressions (15.4) are generally used when the p_i are mutually disjoint, so at most one p_i can be true.

The two expressions (15.4) differ when p_i is false for all i. In that case, the value of the first is unspecified, while the value of the second is e, the \texttt{OTHER} expression. If you use a \texttt{CASE} expression without an \texttt{OTHER} clause, the value of the expression should matter only when $\exists i \in 1 \ldots n : p_i$ is true.

Formal Semantics

The \texttt{IF/\texttt{THEN}/ELSE} and \texttt{CASE} constructs are defined as follows in terms of \texttt{CHOOSE}:

\begin{align*}
\texttt{IF } p \texttt{ THEN } e_1 \texttt{ ELSE } e_2 & \overset{\Delta}{=} \text{CHOOSE } v : (p \Rightarrow v = e_1) \land (\neg p \Rightarrow v = e_2) \\
\texttt{CASE } & p_1 \rightarrow e_1 \land \ldots \land p_n \rightarrow e_n \overset{\Delta}{=} \text{CHOOSE } v : (p_1 \land (v = e_1)) \lor \ldots \lor (p_n \land (v = e_n)) \\
\texttt{CASE } & p_1 \rightarrow e_1 \land \ldots \land p_n \rightarrow e_n \land \texttt{OTHER } \rightarrow e \overset{\Delta}{=} \text{CASE } p_1 \rightarrow e_1 \land \ldots \land p_n \rightarrow e_n \land \neg(p_1 \lor \ldots \lor p_n) \rightarrow e
\end{align*}

15.1.5 \texttt{LET}

The \texttt{LET/IN} construct was introduced on page 59 of Section 5.6. The expression

\texttt{LET } d \overset{\Delta}{=} f \texttt{ IN } e
15.1. CONSTANT OPERATORS

equals \(e \) in the context of the definition \(d \triangleq f \). For example

\[
\text{LET } \text{sq}(i) \triangleq i \ast i \text{ IN } \text{sq}(1) + \text{sq}(2) + \text{sq}(3)
\]

equals \(1 \ast 1 + 2 \ast 2 + 3 \ast 3 \), which equals 14. The general form of the construct is:

\[
\text{LET } \Delta_1 \ldots \Delta_n \text{ IN } e
\]

where each \(\Delta_i \) has the syntactic form of any TLA\(^+\) definition. Its value is \(e \) in the context of the definitions \(\Delta_i \). More precisely, it equals

\[
\text{LET } \Delta_1 \text{ IN } (\text{LET } \Delta_2 \text{ IN } (\ldots \text{LET } \Delta_n \text{ IN } e \ldots))
\]

Hence, the symbol defined in \(\Delta_1 \) can be used in the definitions \(\Delta_2, \ldots, \Delta_n \).

Formal Semantics

The formal semantics of the LET construct is defined in Section 16.4 (page 299) below.

15.1.6 The Operators of Set Theory

TLA\(^+\) provides the following operators on sets:

\[
\in \quad \notin \quad \cup \quad \cap \quad \subseteq \quad \setminus \quad \text{UNION} \quad \text{SUBSET}
\]

and the following set constructors:

\[
\{e_1, \ldots, e_n\} \quad \{x \in S : p\} \quad \{e : x \in S\}
\]

They are all described in Section 1.2 (page 11) and Section 6.1 (page 65). Equality is also an operator of set theory, since it formally mean equality of sets. TLA\(^+\) provides the usual operators = and \(\neq \).

The set construct \(\{x \in S : p\} \) can also be used with \(x \) a tuple of identifiers. For example,

\[
\{\langle a, b \rangle \in \text{Nat} \times \text{Nat} : a > b\}
\]

is the set of all pairs of natural numbers whose first component is greater than its second—pairs such as \(\langle 3, 1 \rangle \). In the set construct \(\{e : x \in S\} \), the clause \(x \in S \) can be generalized in exactly the same way as in a bounded quantifier such as \(\forall x \in S : p \). For example,

\[
\{\langle a, b, c \rangle : a, b \in \text{Nat}, c \in \text{Real}\}
\]

is the set of all triples whose first two components are natural numbers and whose third component is a real number.
CHAPTER 15. THE OPERATORS OF TLA⁺

Formal Semantics

TLA⁺ is based on Zermelo-Fränkel set theory, in which every value is a set. In set theory, ∈ is taken as a primitive, undefined operator. We could define all the other operators of set theory in terms of ∈, using predicate logic and the \texttt{choose} operator. For example, set union could be defined by

\[S \cup T \triangleq \text{choose } U : \forall x : (x \in U) \equiv (x \in S) \lor (x \in T) \]

(To reason about \texttt{\cup}, we would need axioms from which we can deduce the existence of the chosen set \texttt{U}.) Another approach we could take is to let certain of the operators be primitives, and define the rest in terms of them. For example, \texttt{\{f} can be defined in terms of \texttt{union} and the construct \{\texttt{e1, ..., en}\} by:

\[S \cup T \triangleq \text{union} \{S, T\} \]

I do not try to distinguish a small set of primitive operators, and I treat \texttt{\cup} and \texttt{union} as equally primitive. Operators that I take to be primitive are defined mathematically in terms of the rules that they satisfy. For example, \texttt{S \cup T} is defined by:

\[\forall x : (x \in (S \cup T)) \equiv (x \in S) \lor (x \in T) \]

However, there is no such defining rule for the primitive operator \texttt{∈}. I take only the simple forms of the constructs \{\texttt{x \in S}: p\} and \{\texttt{e : x \in S}\} as primitive, and I define the more general forms in terms of them.

\[e_1 = e_2 \triangleq \forall x : (x \in S) \equiv (x \in T). \]
\[e_1 \neq e_2 \triangleq \neg(e_1 = e_2). \]
\[e \notin S \triangleq \neg(e \in S). \]
\[S \cup T \text{ is defined by } \forall x : (x \in (S \cup T)) \equiv (x \in S) \lor (x \in T). \]
\[S \cap T \text{ is defined by } \forall x : (x \in (S \cap T)) \equiv (x \in S) \land (x \in T). \]
\[S \subseteq T \triangleq \forall x : (x \in S) \Rightarrow (x \in T). \]
\[S \setminus T \text{ is defined by } \forall x : (x \in (S \setminus T)) \equiv (x \in S) \land (x \notin T). \]
\[\text{subset } S \text{ is defined by } \forall T : (T \in \text{subset } S) \equiv (T \subseteq S) \]
\[\text{union } S \text{ is defined by } \forall x : (x \in \text{union } S) \equiv (\exists T \in S : x \in T). \]
\[\{e_1, \ldots, e_n\} \triangleq \{e_1\} \cup \ldots \cup \{e_n\}, \]
where \{\texttt{e}\} is defined by:

\[\forall x : (x \in \{e\}) \equiv (x = e) \]

For \(n = 0 \), this construct is the empty set \{\}, defined by:

\[\forall x : x \notin \{\} \]
15.1. CONSTANT OPERATORS

\{x \in S : p\}

where \(x\) is a bound identifier or a tuple of bound identifiers. The expression \(S\) is outside the scope of the bound identifier(s). For \(x\) an identifier, this is a primitive expression that is defined mathematically by

\[
\forall y : (y \in \{x \in S : p\}) \equiv (y \in S) \land \widehat{p}
\]

where the identifier \(y\) does not occur in \(S\) or \(p\), and \(\widehat{p}\) is \(p\) with \(y\) substituted for \(x\). For \(x\) a tuple, the expression is defined by

\[
\{\langle x_1, \ldots, x_n \rangle \in S : p\} \triangleq \\
\{y \in S : (\exists x_1, \ldots, x_n : (y = \langle x_1, \ldots, x_n \rangle) \land p)\}
\]

where \(y\) is an identifier different from the \(x_i\) that does not occur in \(S\) or \(p\). See Section 15.1.9 for further details about tuples.

\{e : y_1 \in S_1, \ldots, y_n \in S_n\}

where each \(y_i\) has the form \(x_1, \ldots, x_k\) or \(\langle x_1, \ldots, x_k \rangle\), and each \(x_j\) is an identifier that is bound in the expression. The expressions \(S_i\) lie outside the scope of the bound identifiers. The simple form \(\{e : x \in S\}\), for \(x\) an identifier, is taken to be primitive and is defined by:

\[
\forall y : (y \in \{e : x \in S\}) \equiv (\exists x \in S : e = y)
\]

The general form is defined inductively in terms of the simple form by:

\[
\{e : y_1 \in S_1, \ldots, y_n \in S_n\} \triangleq \\
\text{UNION} \{ \{e : y_1 \in S_1, \ldots, y_{n-1} \in S_{n-1}\} : y_n \in S_n \} \\
\{e : x_1, \ldots, x_n \in S\} \triangleq \{e : x_1 \in S, \ldots, x_n \in S\} \\
\{e : \langle x_1, \ldots, x_n \rangle \in S\} \triangleq \\
\{\langle\text{LET} z \triangleq \text{CHOOSE} \langle x_1, \ldots, x_n \rangle : y = \langle x_1, \ldots, x_n \rangle \\n\hspace{1cm} x_1 \triangleq z[1] \\
\hspace{2cm} \vdots \\
\hspace{2cm} x_n \triangleq z[n] \ \text{IN} \ e \rangle : y \in S\}
\]

where the \(x_i\) are identifiers, and \(y\) and \(z\) are identifiers distinct from the \(x_i\) that do not occur in \(e\) or \(S\). See section 15.1.9 for further details about tuples.

15.1.7 Functions

Functions are described in Section 5.2 (page 48); the difference between functions and operators is discussed in Section 6.4 (page 69). In TLA\(^+\), we write \(f[v]\) for
the value of the function \(f \) applied to \(v \). A function \(f \) has a domain \(\text{domain} \, f \), and the value of \(f[v] \) is specified only if \(v \) is an element of \(\text{domain} \, f \). We let \([S \to T] \) denote the set of all functions \(f \) such that \(\text{domain} \, f = S \) and \(f[v] \in T \) for all \(v \in S \).

Functions can be described explicitly with the construct

\[(x \in S \mapsto e)\]

(15.5) This is the function \(f \) with domain \(S \) such that \(f[v] \) equals the value obtained by substituting \(v \) for \(x \) in \(e \), for any \(v \in S \). For example,

\[n \in \text{Nat} \mapsto 1/n + 1\]

is the function \(f \) with domain \(\text{Nat} \) such that \(f[0] = 1 \), \(f[1] = 1/2 \), \(f[2] = 1/3 \), etc. We can define an identifier \(fcn \) to equal the function (15.5) by writing

\[(fcn[x \in S] = e)\]

(15.6) The identifier \(fcn \) can appear in the expression \(e \), in which case this is a recursive function definition. Recursive function definitions were introduced in Section 5.5 (page 53) and discussed in Section 6.3 (page 67).

The \textsc{except} construct describes a function that is “almost the same as” another function. For example,

\[(f \text{ except } ![u] = a, ![v] = b)\]

(15.7) is the function \(\tilde{f} \) that is the same as \(f \), except that \(\tilde{f}[u] = a \) and \(\tilde{f}[v] = b \). More precisely, (15.7) equals

\[x \in \text{domain} \, f \mapsto \text{if } x = v \text{ then } b \text{ else if } x = u \text{ then } a \text{ else } f[x] \]

Hence, if neither \(u \) nor \(v \) is in the domain of \(f \), then (15.7) equals \(f \). If \(u = v \), then (15.7) equals \(f \text{ except } ![v] = b \).

An exception clause can have the general form \![v_1] \cdots [v_n] = e \). For example,

\[(f \text{ except } ![u][v] = a)\]

(15.8) is the function \(\tilde{f} \) that is the same as \(f \), except that \(\tilde{f}[u][v] \) equals \(a \). That is, \(\tilde{f} \) is the same as \(f \), except that \(\tilde{f}[u] \) is the function that is the same as \(f[u] \), except that \(\tilde{f}[u][v] = a \). The symbol \(@ \) occurring in an exception clause stands for the “original value”. For example, an @ in the expression \(a \) of (15.8) denotes \(f[u][v] \).

In TLA+, a function of multiple arguments is one whose domain is a set of tuples; and \(f[v_1, \ldots, v_n] \) is an abbreviation for \(f[(v_1, \ldots, v_n)] \). The \(x \in S \) clause (15.5) and (15.6) can be generalized in the same way as in a bounded quantifier—for example here are two different ways of writing the same function:

\[m, n \in \text{Nat}, r \in \text{Real} \mapsto e\]

\[\langle m, n, r \rangle \in \text{Nat} \times \text{Nat} \times \text{Real} \mapsto e\]
This is a function whose domain is a set of triples. It is not the same as the function
\[(m, n) \in \text{Nat}, r \in \text{Real} \rightarrow e \]
whose domain is the set (Nat x Nat) x Real of pairs like \(\langle 1, 3 \rangle, 1/3 \), whose first element is a pair.

Formal Semantics

Mathematicians traditionally define a function to be a set of pairs. In TLA+, pairs (and all tuples) are functions. We take as primitives the constructs:

\[
\begin{align*}
 &f[e] \\
 &\text{domain } f \\
 &[S \rightarrow T] \\
 &[x \in S \mapsto e]
\end{align*}
\]

where \(x \) is an identifier. These constructs are defined mathematically by the rules they satisfy. The other constructs, and the general forms of the construct \([x \in S \mapsto e]\), are defined in terms of them. These definitions use the operator \(\text{IsAFcn} \), which is defined as follows so that \(\text{IsAFcn}(f) \) is true iff \(f \) is a function:

\[
\text{IsAFcn}(f) \triangleq f = [x \in \text{domain } f \mapsto f[x]]
\]

The first rule, which is not naturally associated with any one construct, is that two functions are equal iff they have the same domain and assign the same value to each element in their domain:

\[
\forall f, g : \text{IsAFcn}(f) \land \text{IsAFcn}(g) \Rightarrow
\]

\[
((f = g) \equiv \forall x \in \text{domain } f : f[x] = g[x])
\]

The rest of the semantics of functions is given below. There is no separate defining rule for the domain operator.

\[
f[e_1, \ldots, e_n]
\]

where the \(e_i \) are expressions. For \(n = 1 \), this is a primitive expression. For \(n > 1 \), it is defined by

\[
f[e_1, \ldots, e_n] = f[\langle e_1, \ldots, e_n \rangle]
\]

The tuple \(\langle e_1, \ldots, e_n \rangle \) is defined in Section 15.1.9.

\[
[y_1 \in S_1, \ldots, y_n \in S_n \mapsto e]
\]

where each \(y_i \) has the form \(x_1, \ldots, x_k \) or \((x_1, \ldots, x_k) \), and each \(x_j \) is an identifier that is bound in the expression. The expressions \(S_i \) lie outside the scope of the bound identifiers. The simple form \([x \in S \mapsto e]\), for \(x \) an identifier, is primitive and is defined by two rules:

\[
\text{domain } [x \in S \mapsto e] = S
\]

\[
\forall y \in S : [x \in S \mapsto e][y] = \text{LET } x \triangleq y \text{ IN } e
\]
where \(y \) is an identifier different from \(x \) that does not occur in \(S \) or \(e \).

The general form of the construct is defined inductively in terms of the simple form by:

\[
[x_1 \in S_1, \ldots, x_n \in S_n \mapsto e] \triangleq \left[\langle x_1, \ldots, x_n \rangle \in S_1 \times \ldots \times S_n \mapsto e \right]
\]

\[
[\ldots, x_1, \ldots, x_k \in S_i, \ldots \mapsto e] \triangleq \left[\ldots, x_1 \in S_i, \ldots, x_k \in S_i, \ldots \mapsto e \right]
\]

\[
[\ldots, \langle x_1, \ldots, x_k \rangle \in S_i, \ldots \mapsto e] \triangleq \left[\ldots, y \in S_i, \ldots \mapsto \begin{array}{l}
\text{let } z \triangleq \text{choose } \langle x_1, \ldots, x_k \rangle : y = \langle x_1, \ldots, x_k \rangle \\
\quad x_1 \triangleq z[1] \\
\quad \vdots \\
\quad x_k \triangleq z[k] \text{ in } e
\end{array}
\right]
\]

where \(y \) and \(z \) are identifiers that do not appear anywhere in the original expression. See Section 15.1.9 for details about tuples.

\([S \rightarrow T]\) is defined by

\[
\forall f : f \in [S \rightarrow T] \equiv \text{IsAFcn}(f) \land (S = \text{domain } f) \land (\forall x \in S : f[x] \in T)
\]

where \(x \) and \(f \) do not occur in \(S \) or \(T \), and \(\text{IsAFcn} \) is defined above.

\([f \text{ except ![}a_1 = e_1, \ldots, !a_n = e_n]\]

where each \(a_i \) has the form \([d_1] \ldots [d_k]\) and each \(d_j \) is an expression. For the simple case when \(n = 1 \) and \(a_1 \) is \([d]\), this is defined by\(^3\)

\[
[f \text{ except ![}d = e] \triangleq \begin{array}{l}
[y \in \text{domain } f \mapsto \text{if } y = d \text{ then } @ \triangleq f[d] \text{ in } e \\
\text{else } f[y]
\end{array}
\]

where \(y \) does not occur in \(f \), \(d \), or \(e \). The general form is defined inductively in terms of this simple case by:

\[
[f \text{ except ![}a_1 = e_1, \ldots, !a_n = e_n]\triangleq
[[f \text{ except ![}a_1 = e_1, \ldots, !a_{n-1} = e_{n-1}] \text{ except ![}a_n = e_n]]
\]

\[
[f \text{ except ![}d_1] \ldots [d_k] = e] \triangleq
[f \text{ except ![}d_1 = [\@ \text{ except ![}d_2] \ldots [d_k] = e]]
\]

\(f[y_1 \in S_1, \ldots, y_n \in S_n] \triangleq e\) is defined to be an abbreviation for:

\(f \triangleq \text{choose } f : f = [y_1 \in S_1, \ldots, y_n \in S_n \mapsto e]\)

\(^3\)Since \(@\) is not actually an identifier, \(\text{LET } @ \triangleq \ldots\) isn’t legal TLA\(^+\) syntax. However, its meaning should be clear.
15.1.8 Records

TLA+ borrows from programming languages the concept of a record. Records were introduced in Section 3.2 (page 28) and further explained in Section 5.2 (page 48). As in programming languages, \(r.h \) is the \(h \) component of record \(r \). Records can be written explicitly as

\[
[h_1 \mapsto e_1, \ldots, h_n \mapsto e_n]
\]

which equals the record with \(n \) components, whose \(h_i \) component equals \(e_i \), for \(i = 1, \ldots, n \). The expression

\[
[h_1 : S_1, \ldots, h_n : S_n]
\]

is the set of all such records with \(e_i \in S_i \), for \(i = 1, \ldots, n \). These expressions are legal only if the \(h_i \) are all different. For example, \([a : S, a : T]\) is illegal.

The EXCEPT construct, explained in Section 15.1.7 above, can be used for records as well as functions. For example,

\[
[r \text{ except } !.a = e]
\]

is the record \(\hat{r} \) that is the same as \(r \), except that \(\hat{r}.a = e \). An exception clause can mix function application and record components. For example,

\[
[f \text{ except } ![v].a = e]
\]

is the function \(\hat{f} \) that is the same as \(f \), except that \(\hat{f}[v].a = e \).

In TLA+, a record is a function whose domain is a finite set of strings, where \(r.h \) means \(r[“h”] \), for a record component \(h \). Thus, the following two expressions describe the same record:

\[
[fo \mapsto 7, ba \mapsto 8] \quad [x \in \{“fo”, “ba”\} \mapsto \text{if } x = “fo” \text{ then } 7 \text{ else } 8]
\]

The name of a record component is syntactically an identifier. In the ASCII version, it is a string of letters, digits, and the underscore character (_) that contains at least one letter. Strings are described below in Section 15.1.10.

Formal Semantics

The record constructs are defined in terms of function constructs.

\[
e.h \triangleq e[“h”]
\]

\[
[h_1 \mapsto e_1, \ldots, h_n \mapsto e_n] \triangleq [y \in \{“h_1”, \ldots, “h_n”\} \mapsto \text{case } (y = “h_1”) \rightarrow e_1 \square \ldots \square (y = “h_n”) \rightarrow e_n]
\]

where \(y \) does not occur in any of the expressions \(e_i \). The \(h_i \) must all be distinct.
\[h_1 : S_1, \ldots, h_n : S_n \] \triangleq \{ \langle h_1 \mapsto y_1, \ldots, h_n \mapsto y_n \rangle : y_1 \in S_1, \ldots, y_n \in S_n \}

where the \(y_i \) do not occur in any of the expressions \(S_j \). The \(h_i \) must all be distinct.

\[r \text{ except } !a_1 = e_1, \ldots, !a_n = e_n \]

where \(a_i \) has the form \(b_1 \ldots b_k \) and each \(b_j \) is either (i) \([d]\), where \(d \) is an expression, or (ii) \(.h \), where \(h \) is a record component. It is defined to equal the corresponding function EXCEPT construct in which each \(.h \) is replaced by \(["h"]\).

15.1.9 Tuples

An \(n \)-tuple is written in TLA\(^+\) as \(\langle e_1, \ldots, e_n \rangle \). As explained in Section 5.4. An \(n \)-tuple is defined to be a function whose domain is the set \(\{1, \ldots, n\} \), where \(\langle e_1, \ldots, e_n \rangle[i] = e_i \), for \(1 \leq i \leq n \). The Cartesian product \(S_1 \times \cdots \times S_n \) is the set of all \(n \)-tuples \(\langle e_1, \ldots, e_n \rangle \) such that \(e_i \in S_i \), for \(1 \leq i \leq n \).

In TLA\(^+\), \(\times \) is not an associative operator. For example,

\[
\begin{align*}
\langle 1, 2, 3 \rangle & \in \text{Nat} \times \text{Nat} \\
\{\langle 1, 2 \rangle, 3\} & \in (\text{Nat} \times \text{Nat}) \times \text{Nat} \\
\langle 1, \{2, 3\} \rangle & \in \text{Nat} \times (\text{Nat} \times \text{Nat})
\end{align*}
\]

and the tuples \(\langle 1, 2, 3 \rangle, \{\langle 1, 2 \rangle, 3\}, \) and \(\langle 1, \{2, 3\} \rangle \) are not equal. More precisely, the triple \(\langle 1, 2, 3 \rangle \) is unequal to either of the pairs \(\{\langle 1, 2 \rangle, 3\} \) or \(\langle 1, \{2, 3\} \rangle \) because a triple and a pair have unequal domains. The semantics of TLA\(^+\) does not specify if \(\langle 1, 2 \rangle \) equals 1 or if 3 equals \(\langle 2, 3 \rangle \), so we don’t know whether or not \(\{\langle 1, 2 \rangle, 3\} \) and \(\langle 1, \{2, 3\} \rangle \) are equal.

The 1-tuple \(\langle e \rangle \) is different from \(e \). That is, the semantics does not specify whether or not they are equal. There is no special notation for writing a set of 1-tuples. The easiest way to denote the set of all 1-tuples \(\langle e \rangle \) with \(e \in S \) is \(\{\langle e \rangle : e \in S\} \).

In the standard \textit{Sequences} module, described in Section 17.1 (page 313), an \(n \)-element sequence is represented as an \(n \)-tuple. The module defines several useful operators on sequences/tuples.

Formal Semantics

Tuples and Cartesian produces are defined in terms of functions (defined in Section 15.1.7) and the set \(\text{Nat} \) of natural numbers (defined in Section 15.1.11).

\[\langle e_1, \ldots, e_n \rangle \triangleq \{ i \in \text{Nat} : (0 < j) \land (j \leq n) \mapsto e_i \} \]

where \(i \) does not occur in any of the expressions \(e_j \).

\[S_1 \times \cdots \times S_n \triangleq \{ \langle y_1, \ldots, y_n \rangle : y_1 \in S_1, \ldots, y_n \in S_n \} \]

where the identifiers \(y_i \) do not occur in any of the expressions \(S_j \).
15.1. CONSTANT OPERATORS

15.1.10 Strings

TLA+ defines a string to be a tuple of characters. (Tuples are defined in Section 15.1.9 above.) Thus, “abc” equals

\langle “abc”[1], “abc”[2], “abc”[3] \rangle

The semantics of TLA+ does not specify what a character is. However, it does specify that different characters (those having different computer representations) are different. Thus “a”[1], “b”[1], and “A”[1] (the characters a, b, and A) are all different. The built-in operator STRING is defined to be the set of all strings.

Although TLA+ doesn’t specify what a character is, it’s easy to define operators that assign values to characters. For example, here’s the definition of an operator Ascii that assigns to every lower-case letter its ASCII representation.\(^4\)

\[\text{Ascii}(\text{char}) \triangleq 96 + \text{choose } i \in 1 \ldots 26 : \]

\[“\text{abcdefghijkmnopqrstuvwxyz}”[i] = \text{char} \]

This defines Ascii(“a”[1]) to equal 97, the ASCII code for the letter a, and Ascii(“z”[1]) to equal 122, the ASCII code for z. Section 14.1.2 on page 250 illustrates how a specification can make use of the fact that strings are tuples.

Exactly what characters may appear in a string is system-dependent. A Japanese version of TLA+ might not allow the character a. The standard ASCII version contains the following characters:

\[a b c d e f g h i j k l m n o p q r s t u v w x y z \]

\[A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \]

\[0 1 2 3 4 5 6 7 8 9 \]

\[“@ # $ % ^ & * _ \{-\} \<\> | \/ . ? ; : ‘ ’ " \]

\[\langle \text{HT} \rangle \langle \text{LF} \rangle \langle \text{line feed} \rangle \langle \text{FF} \rangle \langle \text{form feed} \rangle \langle \text{CR} \rangle \langle \text{carriage return} \rangle \]

plus the space character. Since strings are delimited by a double-quote ("), some convention is needed for typing a string that contains a double-quote. Conventions are also needed to type characters like \langle \text{LF} \rangle within a string. In the ASCII version of TLA+, the following pairs of characters, beginning with a \ character, are used to represent these special characters:

\[\backslash n \ backslash \text{t} \ backslash \text{f} \ backslash \text{ \}

\[\backslash \ backslash \ backslash n \ backslash \text{f} \ backslash \text{ \}

With this convention, "a\"b\n" represents the string consisting of the following five characters: a \ n b \n. In the ASCII version of TLA+, a \ character can appear in a string expression only as the first character of one of these six two-character sequences.

\(^4\)This clever way of using \text{choose} to map from characters to numbers was pointed out to me by Georges Gonthier.
Formal Semantics

We assume a set Char of characters, which may depend on the version of TLA$^+$. (The identifier Char is not a pre-defined symbol of TLA$^+$.)

$$\text{STRING} \triangleq \text{Seq}(\text{Char})$$

where Seq is the operator defined in the Sequences module of Section 17.1 so that $\text{Seq}(S)$ is the set of all finite sequences of elements of S.

$$"c_1 \ldots c_n" \triangleq \langle c_1, \ldots, c_n \rangle$$

where each c_i is the (system-dependent) representation of a character in Char.

15.1.11 Numbers

TLA$^+$ defines a sequence of digits like 63 to be the usual natural number—that is, 63 equals $6 \times 10^2 + 3$. TLA$^+$ also allows the binary representation \texttt{\b11111}, the octal representation \texttt{\o77}, and the hexadecimal representation \texttt{\h3F} of that number. (Case is ignored in the prefixes and in the hexadecimal representation, so \texttt{\h3F} and \texttt{\h3f} are equivalent to \texttt{\h3F}.) Decimal numbers are also predefined in TLA$^+$; for example, 3.14159 equals 314159_{10}.

Numbers are pre-defined in TLA$^+$, so 63 is defined even in a module that does not extend or instantiate one of the standard numbers modules. However, sets of numbers like Nat and arithmetic operators like $+$ are not. You can write a module that defines $+$ any way you want, in which case $40 + 23$ need not equal 63. Of course, $40 + 23$ does equal 63 for $+$ defined by the standard numbers modules Naturals, Integers, and Reals, which are described in Section 17.4.

Formal Semantics

The set Nat of natural numbers, along with its zero element Zero and successor function Succ, is defined in module Peano on page 319. The meaning of a representation of a natural number is defined in the usual manner:

$$0 \triangleq \text{Zero} \quad 1 \triangleq \text{Succ(Zero)} \quad 2 \triangleq \text{Succ(Succ(Zero))} \quad \ldots$$

The module ProtoReals module on pages 320–321 defines the set Real of real numbers to be a superset of the set Nat, and defines the usual arithmetic operators on real numbers. The meaning of a decimal number is defined in terms of these operators by:

$$c_1 \ldots c_m \cdot d_1 \ldots d_n \triangleq c_1 \ldots c_m \cdot d_1 \ldots d_n/10^n$$
15.2 Nonconstant Operators

The nonconstant operators are what distinguish TLA\(^+\) from ordinary mathematics. There are two classes of nonconstant operators: action operators, listed in Figure 13.11 on page 239, and temporal operators, listed in Figure 13.12 on page 239.

Section 15.1 above talks about the meanings of the built-in constant operators of TLA\(^+\), without considering their arguments. We can do that for constant operators, since the meaning of \(\subseteq\) in the expression \(e_1 \subseteq e_2\) doesn’t depend on whether or not the expressions \(e_1\) and \(e_2\) contain or variables or primes. To understand the nonconstant operators, we need to consider their arguments. Thus, we can no longer talk about the meanings of the operators in isolation; we must describe the meanings of expressions built from those operators.

A basic expression is one that contains built-in TLA\(^+\) operators, declared constants, and declared variables. We now describe the meaning of all basic TLA\(^+\) expressions, including ones that contain nonconstant built-in operators. We start by considering basic constant expressions, ones containing only the constant operators we have already studied and declared constants.

15.2.1 The Meaning of a Basic Constant Expression

Section 15.1 above defines the meanings of the constant operators. This in turn defines the meaning of any expression built from these operators and declared constants. For example, if \(S\) and \(T\) are declared by

\[
\text{constants } S, T(_)
\]

then \(\exists x : S \subseteq T(x)\) is a formula that equals \textit{true} if there is some value \(v\) such that every element of \(S\) is an element of \(T(v)\), and otherwise equals \textit{false}. Whether \(\exists x : S \subseteq T(x)\) equals \textit{true} or \textit{false} depends on what actual values we assign to \(S\) and to \(T(v)\), for all \(v\); so that’s as far as we can go in assigning a meaning to the expression.

There are some basic constant expressions that are true regardless of the values we assign to their declared constants—for example, the expression

\[(S \subseteq T) \equiv (S \cap T = S)\]

Such an expression is said to be \textit{valid}.

Formal Semantics

Section 15.1 defines all the built-in constant operators in terms of a subset of them called the primitive operators. These definitions can be formulated as an
inductive set of rules that define the meaning \([c]\) of any basic constant expression \(c\). For example, from the definition
\[e \notin S \triangleq \neg(e \in S) \]
we get the rule
\[[e \notin S] = \neg([e] \in [S]) \]
These rules define the meaning of a basic constant expression to be an expression containing only primitive constant operators and declared constants.

If \(S\) and \(T\) are constants declared as above, then the meaning \([\exists x : S \subseteq T(x)]\) of the expression \(\exists x : S \subseteq T(x)\) is the expression itself. Logicians usually carry things further, assigning some meanings \([S]\) and \([T]\) to declared constants and defining \([\exists x : S \subseteq T(x)]\) to equal \(\exists x : [S] \subseteq [T](x)\). For simplicity, I have short-circuited that extra level of meaning.

I am taking as given the meaning of an expression containing only primitive constant operators and declared constants. In particular, I take as primitive the notion of validity for such expressions. Section 15.1 defines the meaning of any basic constant expression in terms of these expressions, so it defines what it means for a basic constant expression to be valid.

15.2.2 The Meaning of a State Function

A state is an assignment of values to variables. (In ZF set theory, on which the semantics of TLA+ is based, value is just another term for set.) States were discussed in Sections 2.1 and 2.3.

A state function is an expression that is built from declared variables, declared constants, and constant operators. (State functions can also contain enabled expressions, which are described below.) State functions are discussed on page 25 of Section 3.1. A state function assigns a constant expression to every state. If state function \(e\) assigns to state \(s\) the constant \(v\), then we say that \(v\) is the value of \(e\) in state \(s\). For example, if \(x\) is a declared variable, \(T\) is a declared constant, and \(s\) is a state that assigns to \(x\) the value 42; then the value of \(x \in T\) in state \(s\) is the constant expression \(42 \in T\). A state function is valid iff it has the value true in every state.

Formal Semantics

A state is an assignment of values to variables. Formally, a state \(s\) is a function whose domain is the set of all variable names, where \(s["x"]\) is the value that \(s\) assigns to variable \(x\). We write \(s[x]\) instead of \(s["x"]\).

A basic state function is an expression that is built from declared variables, declared constants, constant operators, and enabled expressions, which are
expressions of the form Enabled e. An enabled-free basic state function is, obviously, one with no enabled expressions. The meaning of a basic state function is a mapping from states to values. We let s[e] be the value that state function e assigns to a state s. Since a variable is a state function, we thus say both that state s assigns s[x] to variable x, and that the state function x assigns s[x] to state s. A basic state function e is defined to be valid iff s[e] is valid for all states s.

Using the meanings assigned to the constant operators in Section 15.1 above, we inductively define s[e] for any enabled-free state function e to be an expression built from the primitive TLA+ constant operators, declared constants, and the values assigned by s to each variable. For example, if x is a variable and S is a constant, then

\[s[x \notin S] = \neg(s[x] \in S) \]

It is easy to see that s[c] to equal \([c]\), for any constant expression c. (This expresses formally that a constant has the same value in all states.)

To define the meaning of all basic state function, not just enabled-free ones, we must define the meaning of an enabled expression. This is done below.

I described the meaning of a state function as a “mapping” on states. This mapping cannot be a function, because there is no set of all states. Since for any set S there is a state that assigns the value S to each variable, there are too many states to form a set. (See the discussion of Russell’s paradox on page 66.) To be strictly formal, I should explain what I’m doing as follows. I define an operator M such that, if s is a state and e is a syntactically correct basic state function, then \(M(s, e)\), which I write s[e], is the basic constant expression that is the meaning of e in state s.

Actually, this description of the semantics isn’t right either. A state is a mapping from variables to values (sets), not to constant expressions. Since there are an uncountable number of sets and only a countable number of finite sequences of strings, there are values that can’t be described by any expression. Suppose \(\xi\) is such a value, and let s be a state that assigns the value \(\xi\) to the variable x. Then \(s[x = \{1\}]\) equals \(\{\}\), which isn’t a constant expression because \(\xi\) isn’t an expression. So, to be really formal, I would have to define a semantic constant expression to be one made from primitive constant operators, declared constants, and arbitrary values. The meaning of a basic state function is a mapping from states to semantic constant expressions.

I won’t bother with these details, which are needed for a really formal definition of the semantics. I will instead define a semi-formal semantics for basic expression that I hope is easier to understand. Mathematically sophisticated readers who understand the less formal exposition should be able to fill in the missing formal details.
15.2.3 Action Operators

A transition function is an expression built from state functions using the priming operator \((\cdot) \) and the other action operators of TLA\(^+\) listed in Figure 13.11 on page 239. A transition function assigns a value to every step, where a step is a pair of states. In a transition function, an unprimed occurrence of a variable \(x \) represents the value of \(x \) in the first (old) state, and a primed occurrence of \(x \) represents its value in the second (new) state. For example, if state \(s \) assigns the value 4 to \(x \) and state \(t \) assigns the value 5 to \(x \), then transition function \(x' - x \) assigns to the step \(s \to t \) the value 5 - 4, which of course equals 1.

An action is a Boolean-valued transition function, such as \(x' > x \). We say that action \(A \) is true on step \(s \to t \), or that \(s \to t \) is an \(A \) step, if \(A \) assigns the value TRUE to \(s \to t \). An action is said to be valid iff it is true on any step.

The action operators of TLA\(^+\) other than \(\cdot \) have the following meanings, where \(A \) and \(B \) are actions.

\[
\begin{align*}
[A]_s & \text{ equals } A \lor (e' = e). \\
\langle A \rangle_e & \text{ equals } A \land (e' \neq e).
\end{align*}
\]

\(\text{Enabled } A \) is the state function that is true in state \(s \) iff there is some state \(t \) such that \(s \to t \) is an \(A \) step. TRUE.

\(\text{UNCHANGED } e \) equals \(e' = e \), for any state function \(e \).

\(A \cdot B \) is the action that is true on step \(s \to t \) iff there is a state \(u \) such that \(s \to u \) is an \(A \) step and \(u \to t \) is a \(B \) step.

Formal Semantics

A basic transition function is a basic expression that does not contain any temporal operators. The meaning of a basic transition function \(e \) is an assignment of a basic constant expression \(\langle s, t \rangle[e] \) to any pair of states \(\langle s, t \rangle \). (I use here the more conventional notation \(\langle s, t \rangle \) instead of \(s \to t \).) A transition function is valid iff \(\langle s, t \rangle[e] \) is valid, for all states \(s \) and \(t \).

If \(e \) is a basic state function, then we interpret \(e \) as a basic transition function by defining \(\langle s, t \rangle[e] \) to equal \(s[e] \). As indicated above, \(\text{UNCHANGED} \) and the constructs \([A]_s \) and \(\langle A \rangle_e \) are defined in terms of priming. To define the meanings of the remaining action operators, we first define existential quantification over all states. Let \(\text{IsAState} \) be an operator such that \(\text{IsAState}(s) \) is true iff \(s \) is a
15.2. NONCONSTANT OPERATORS

state—that is, a function whose domain is the set of all variable names. (It’s easy
to define \textit{IsAState} using the operator \textit{IsAFcn}, defined on page 277.) Existential
quantification over all states is then defined by

\[\exists_{\text{state}} s : p \triangleq \exists s : \text{IsAState}(s) \land p \]

for any formula \(p \). The meanings of all transition functions and all state functions
(including \textit{enabled} expressions) is then defined inductively by the definitions
already given and the following definitions of the remaining action operators:

\(e' \) is the transition function defined by \(\langle s, t \rangle[e'] = t[e] \) for any state
function \(e \).

\textbf{Enabled} \(A \) is the state function defined by

\[s[\text{Enabled} \ A] = \exists_{\text{state}} t : \langle s, t \rangle[A] \]

for any transition function \(A \).

\(A \cdot B \) is the transition function defined by

\[\langle s, t \rangle[A \cdot B] = \exists_{\text{state}} u : \langle s, u \rangle[A] \land \langle u, t \rangle[B] \]

for any transition functions \(A \) and \(B \).

The formal semantics talks about transition functions, not actions. Since TLA+
is typeless, there is no formal distinction between an action and an arbitrary
transition function. We could define an action \(A \) to be a transition function
such that \(\langle s, t \rangle[A] \) is a Boolean for all states \(s \) and \(t \). However, what we usually
mean by an action is a transition function \(A \) such that \(\langle s, t \rangle[A] \) is a Bool-
ean whenever \(s \) and \(t \) are reachable states of some specification. For example,
consider a specification with a variable \(b \) of type \texttt{boolean} might contain an
“action” \(b \land (y' = y) \). We can calculate the meaning of \textit{Enabled} \((b \land (y' = y) \)
as follows:

\[
\begin{align*}
\exists_{\text{state}} t & : \langle s, t \rangle[b \land (y' = y)] \\
& = \exists_{\text{state}} t : \langle s, t \rangle[b] \land (\langle s, t \rangle[y'] = \langle s, t \rangle[y]) \\
& = \exists_{\text{state}} t : s[b] \land (t[y] = s[y])
\end{align*}
\]

If \(s[b] \) is a Boolean, we can use the rules of ordinary logic to simplify the last
expression and obtain:

\[s[\text{Enabled} \ (b \land (y' = y))] = s[b] \]

However, if \(s \) is a state that assigns the value 2 to the variable \(b \) and the value
\(-7 \) to the variable \(y \), then

\[s[\text{Enabled} \ (b \land (y' = y))] = \exists_{\text{state}} t : 2 \land (t[y] = -7) \]

Types are explained on page 25.
The last expression may or may not equal 2. (See Section 15.1.3 on page 270.) If the specification we are writing makes sense, it can depend on the meaning of Enabled \(b \land (y' = y) \) only for states in which the value of \(b \) is a Boolean. We don’t care about its value on a state that assigns to \(b \) the value 2, just as we don’t care about the value of \(3/x \) in a state that assigns the value “abc” to \(x \). See the discussion of silly expressions in Section 6.2 (page 67).

15.2.4 Temporal Operators

As explained in Section 8.1, a temporal formula \(F \) is true or false on a behavior, where a behavior is a sequence of states. The syntax of temporal formulas is defined inductively to be all formulas having one of the forms shown in Figure 13.12 on page 239, where \(e \) is a state function, \(A \) is an action, and \(F \) and \(G \) are temporal formulas. All these temporal operators are explained in Chapter 8—except for \(\vdash \), which is explained in Chapter 10.7.

The formula \(\Box F \) is true for a behavior \(\sigma \) iff the temporal formula \(F \) is true for \(\sigma \) and all suffixes of \(\sigma \). To define the constructs \(\Box [A] \) and \(\Diamond \langle A \rangle \), we regard an action \(B \) to be a temporal formula that is true of a behavior \(\sigma \) iff the first two states of \(\sigma \) form a \(B \) step. Thus, \(\Box [A] \) is true of \(\sigma \) iff every successive pair of states of \(\sigma \) is a \([A] \) step. All the other temporal operators of TLA\(^+\), except \(\exists, \forall, \) and \(\vdash \), are defined as follows in terms of \(\Box \):

\[
\begin{align*}
\Diamond F & \triangleq \neg \Box \neg F \\
WF_e(A) & \triangleq \Box \Diamond \neg \text{Enabled } \langle A \rangle_e \lor \Box \Diamond \langle A \rangle_e \\
SF_e(A) & \triangleq \Box \Diamond \neg \text{Enabled } \langle A \rangle_e \lor \Box \Diamond \langle A \rangle_e \\
F \leadsto G & \triangleq \Box (F \Rightarrow \Diamond G) \neg F
\end{align*}
\]

The temporal existential quantifier \(\exists \) is a hiding operator, \(\exists x : F \) meaning formula \(F \) with the variable \(x \) hidden. To define this more precisely, we first define \(\sigma x \) to be the (possibly finite) sequence of states obtained by removing from \(\sigma \) all stuttering steps—that is, by removing any state that is the same as the previous one. We then define \(\sigma \sim_x \tau \) to be true iff \(\sigma x \) and \(\tau x \) are the same except for the values that their states assign to the variable \(x \). Finally, \(\exists x : F \) is defined to be true for a behavior \(\sigma \) iff \(F \) is true for some behavior \(\tau \) such that \(\sigma \sim_x \tau \).

The temporal universal quantifier \(\forall \) is defined in terms of \(\exists \) by

\[
\forall x : F \triangleq \neg (\exists x : \neg F)
\]

The formula \(F \leadsto G \) asserts that \(G \) does not become false before \(F \) does. More precisely, we define a formula \(H \) to be true for a finite prefix \(\rho \) of a behavior \(\sigma \) iff \(H \) is true for some (infinite) behavior that extends \(\rho \). (In particular, \(H \) is true of the empty prefix iff \(H \) satisfies some behavior.) Then \(F \leadsto G \) is defined to be true for a behavior \(\sigma \) iff (i) \(F \Rightarrow G \) is true for \(\sigma \) and (ii) for every finite
15.2. NONCONSTANT OPERATORS

prefix ρ of σ, if F is true for ρ then G is true for the prefix of σ that is one state longer than ρ.

Formal Semantics

Formally, a behavior is a function from the set \(\text{Nat} \) of natural numbers to states. (We think of σ as the sequence \(σ[0], σ[1], \ldots \) of states.) The meaning of a temporal formula is a predicate on behaviors—that is, a mapping from behaviors to Booleans. We write \(σ \models F \) for the value that the meaning of F assigns to the behavior σ. The temporal formula F is valid iff \(σ \models F \) is valid, for all behaviors σ.

Above, we have defined all the other temporal operators in terms of \(\Box \), \(\exists \), and \(\rightarrow \). Formally, since an action is not a temporal formula, the construct \(\Box[A]_e \) is not an instance of the temporal operator \(\Box \), so its meaning should be defined separately. The construct \(\Diamond(A)_e \), which is similarly not an instance of \(\Diamond \), is then defined to equal \(\neg\Box[\neg A]_e \).

To define the meaning of \(\Box \), we first define \(σ^n \) to be the behavior obtained by deleting the first \(n \) states of \(σ \):

\[
σ^n \triangleq [i \in \text{Nat} \mapsto σ[i + n]]
\]

We then define the meaning of \(\Box \) as follows, for any temporal formula \(F \), transition function \(A \) and state function \(e \):

\[
σ \models \Box F \triangleq \forall n \in \text{Nat} : σ^n \models F \\
σ \models \Box[A]_e \triangleq \forall n \in \text{Nat} : (σ[n], σ[n + 1])[[A]_e]
\]

To formalize the definition of \(\exists \) given above, we first define \(\exists \) by:

\[
\exists \sigma \triangleq \text{let } f[n \in \text{Nat}] \triangleq \text{if } n = 0 \text{ then } 0 \text{ else } \text{if } σ[n] = σ[n - 1] \text{ then } f[n - 1] \text{ else } f[n - 1] + 1 \\
S \triangleq \{f[n] : n \in \text{Nat}\} \\
\text{in } [n \in S \mapsto σ[\text{choose } i \in \text{Nat} : f[i] = n]]
\]

Next, let \(s_{x \rightarrow v} \) be the state that is the same as state \(s \) except that it assigns to the variable \(x \) the value \(v \). We then define \(s_{x \rightarrow v} \) by:

\[
σ \sim_x τ \triangleq [n \in \text{DOMAIN} \mapsto τ_{x \rightarrow σ[n][x]}]
\]

We next define existential quantification over behaviors. This is done much as we defined quantification over states on pages 286–287 above; we first define \(\text{IsABehavior} \) so that \(\text{IsABehavior}(σ) \) is true iff σ is a behavior, and we then define:

\[
\exists_{\text{behavior}} σ : F \triangleq \exists σ : \text{IsABehavior}(σ) \land F
\]
We can now define the meaning of \(\exists \) by:

\[
\sigma \models \exists x : F \triangleq \exists \text{behavior} \tau : (\sigma \sim x \tau) \land (\tau \models F)
\]

Finally, we define the meaning of \(\Rightarrow \) as follows:

\[
\sigma \models F \Rightarrow G \triangleq \\
\begin{align*}
\text{LET } \text{PrefixSat}(n, H) & \triangleq \exists \text{behavior} \tau : \land \forall i \in 0, \ldots, (n - 1) : \tau[i] = \sigma[i] \\
& \land \tau \models H \\
\text{IN } \land \sigma \models F \Rightarrow G \\
& \land \forall n \in \text{Nat} : \text{PrefixSat}(n, F) \Rightarrow \text{PrefixSat}(n + 1, G)
\end{align*}
\]
Chapter 16

The Meaning of a Module

Chapter 15 defines the meaning of the built-in TLA\(^+\) operators. In doing so, it defines the meaning of a basic expression—that is, of an expression containing only built-in operators, declared constants, and declared variables. We now define the meaning of a module in terms of basic expressions. Since a TLA\(^+\) specification consists of a collection of modules, this defines the semantics of TLA\(^+\).

We also complete the definition of the syntax of TLA\(^+\) by giving the remaining context-dependent syntactic conditions not described in Chapter 14. Here’s a list of some illegal expressions that satisfy the grammar of Chapter 14, and where in this chapter you can find the conditions that make them illegal.

- \(F(x)\), if \(F\) is defined by \(F(x, y) \triangleq x + y\) (Section 16.1)
- \((x' + 1)'\) (Section 16.2)
- \(x + 1\), if \(x\) is not defined or declared (Section 16.3)
- \(F \triangleq 0\), if \(F\) is already defined (Section 16.5)

This chapter is meant to be read in its entirety. To try to make it as readable as possible, I have made the exposition somewhat informal. Wherever I could, I have used examples in place of formal definitions. The examples assume that you understand the approximate meanings of the TLA\(^+\) constructs, as explained in Part I. I hope that mathematically sophisticated readers will see how to fill in the missing formalism.

16.1 Operators and Expressions

Because it uses conventional mathematical notation, TLA\(^+\) has a rather rich syntax, with several different ways of expressing the same basic type of math-
emathematical operation. For example, the following expressions are all formed by
applying an operator to a single argument e:

$$\text{Len}(e) - e \{e\} e'$$

This section develops a uniform way of writing all these expressions, as well as
more general kinds of expressions.

16.1.1 The Order and Arity of an Operator

An operator has an *arity* and an *order*. An operator’s arity of an operator
describes the number and order of its arguments. It’s the arity of the Len
operator that tells us that $\text{Len}(s)$ is a legal expression, while $\text{Len}(s, t)$ and
$\text{Len}(+)$ are not. All the operators of TLA^+, whether built-in or defined, fall into
three classes: 0th-, 1st-, and 2nd-order operators.\(^1\) Here is how these classes,
and their arities, are defined:

0. $E \triangleq x' + y$ defines E to be the 0th-order operator $x' + y$. A 0th-order
operator takes no arguments, so it is an ordinary expression. We represent
the arity of such an operator by the symbol \(_\) (underscore).

1. $F(x, y) \triangleq x \cup \{z, y\}$ defines F to be a 1st-order operator. For any expres-
sions e_1 and e_2, it defines $F(e_1, e_2)$ to be an expression. We represent the
arity of F by \(_, _\).

In general, a 1st-order operator takes expressions as arguments. Its arity
is the tuple \(_, \ldots, _\), with one \(_\) for each argument.

2. $G(f(_, _), x, y) \triangleq f(x, \{x, y\})$ defines G to be a 2nd-order operator. The
operator G takes three arguments: its first argument is a 1st-order op-
operator that takes two arguments; its last two arguments are expressions.
For any operator Op of arity \(_, _\), and any expressions e_1 and e_2,
this defines $G(\text{Op}, e_1, e_2)$ to be an expression. We say that G has arity
\(_, _\).

In general, the arguments of a 2nd-order operator may be expressions
or 1st-order operators. A 2nd-order operator has an arity of the form
\(_, \ldots, _\), where each a_i is either \(_\) or \(_, \ldots, _\). (We can consider
a 1st-order operator to be a degenerate case of a 2nd-order operator.)

It would be easy enough to define 3rd- and higher-order operators. TLA^+ does
not permit them because they are of little use and would make it harder to check
level-correctness, which is discussed in Section 16.2 below.

\(^1\)Even though it allows 2nd-order operators, TLA^+ is still what logicians call a first-order
logic because it permits quantification only over 0th-order operators. A higher-order logic
would allow us to write the formula $\exists x(_): \text{exp}$.\]
16.1. OPERATORS AND EXPRESSIONS

16.1.2 λ Expressions

When we define a 0th-order operator E by $E \triangleq \exp$, we can write what the operator E equals—it equals the expression \exp. We can explain the meaning of this definition by saying that it assigns the value \exp to the symbol E. To explain the meaning of an arbitrary TLA$^+$ definition, we need to be able to write what a 1st- or 2nd-order operator equals—for example, the operator F defined by:

$$F(x, y) \triangleq x \cup \{z, y\}$$

F equals an operator, and TLA$^+$ provides no way to write anything but 0th-order operators (ordinary expressions). We therefore generalize expressions to λ expressions, and we write the operator that F equals as the λ expression:

$$\lambda x, y : x \cup \{z, y\}$$

The symbols x and y in this λ expression are called λ parameters. We use λ expressions only to explain the meaning of TLA$^+$ specifications; we can’t write a λ expression in TLA$^+$.

We also allow 2nd-order λ expressions, where the operator G defined by

$$G(f(\underline{-}, \underline{-}), x, y) \triangleq f(y, \{x, z\})$$

is equal to the λ expression

(16.1) $\lambda f(\underline{-}, \underline{-}), x, y : f(y, \{x, z\})$

The general form of a λ expression is $\lambda p_1, \ldots, p_n : \exp$, where \exp is a λ expression, each parameter p_i is either an identifier id_i or has the form $id_i(\underline{-}, \ldots, \underline{-})$, and the id_i are all distinct. We call id_i the identifier of the λ parameter p_i. We consider the $n = 0$ case, the λ expression $\lambda : \exp$ with no parameters, to be the expression \exp. This makes a λ expression a generalization of an ordinary expressions.

A λ parameter identifier is a bound identifier, just like the identifier x in $\forall x : F$. As with any bound identifiers, renaming the λ parameter identifiers in a λ expression doesn’t change the meaning of the expression. For example, (16.1) is equivalent to

$$\lambda \ abc(\underline{-}, \underline{-}), \ qq, \ m : \ abc(m, \{qq, z\})$$

For obscure historical reasons, this kind of renaming is called α conversion.

If Op is the λ expression $\lambda p_1, \ldots, p_n : \exp$, then $Op(e_1, \ldots, e_n)$ equals the result of replacing the identifier of the λ parameter p_i in \exp with e_i, for all i in $1 \ldots n$. For example,

$$\lambda x, y : x \cup \{z, y\} \ (TT, w + z) = TT \cup \{z, (w + z)\}$$

This procedure for evaluating the application of a λ expression is called β reduction.
16.1.3 Simplifying Operator Application

To simplify the exposition, I assume that every operator application is written in the form $Op(e_1, \ldots, e_n)$. TLA+ provides a number of different syntactic forms for operator application, so I have to explain how they are translated into this simple form. Here are all the different forms of operator application and their translations.

- Simple constructs with a fixed number of arguments, including infix operators like $+$, prefix operators like Enabled, and constructs like WF, function application, and $\text{IfThenElse}(p, e_1, e_2)$. These operators and constructs pose no problem. We can write $+\left(a, b\right)$ instead of $a + b$, $\text{IfThenElse}(p, e_1, e_2)$ instead of $\text{if } p \text{ then } e_1 \text{ else } e_2$ and $\text{Apply}(f, e)$ instead of $f[e]$. An expression like $a + b + c$ is an abbreviation for $(a + b) + c$, so it can be written $+\left(+\left(a, b\right), c\right)$.

- Simple constructs with a variable number of arguments—for example, $\{e_1, \ldots, e_n\}$ and $[h_1 \mapsto e_1, \ldots, h_n \mapsto e_n]$. We can consider each of these constructs to be repeated application of simpler operators with a fixed number of arguments. For example,

$$\{e_1, \ldots, e_n\} = \{e_1\} \cup \ldots \cup \{e_n\}$$

$$[h_1 \mapsto e_1, \ldots, h_n \mapsto e_n] = [h_1 \mapsto e_1] @@ \ldots @@ [h_n \mapsto e_n]$$

where $@@$ is defined in the TLC module, on page 213. Of course, $\{e\}$ can be written $\text{Singleton}(e)$ and $[h \mapsto e]$ can be written $\text{Record}(\text{"\text{h}"}, e)$. Note that an arbitrary CASE expression can written in terms of CASE expressions of the form

$$\text{CASE } p \rightarrow e \square q \rightarrow f$$

using the relation:

$$\text{CASE } p_1 \rightarrow e_1 \square \ldots \square p_n \rightarrow e_n = \text{CASE } p_1 \rightarrow e_1 \square (p_2 \lor \ldots \lor p_n) \rightarrow (\text{CASE } p_2 \rightarrow e_2 \square \ldots \square p_n \rightarrow e_n)$$

- Constructs that introduce bound variables—for example,

$$\exists x \in S : x + z > y$$

We can rewrite this expression as

$$\text{ExistsIn}(S, \lambda x : x + z > y)$$

where ExistsIn is a 2nd-order operator of arity $\langle \lambda, \langle \cdot \rangle \rangle$. As explained in Section 15.1.1, all the variants of the \exists construct can be expressed using either $\exists x \in S : e$ or $\exists x : S$. All the other constructs that introduce bound variables, such as $\{x \in S : exp\}$, can similarly be expressed in the form...
16.2. LEVELS

Operator applications such as \(M(x)! Op(y, z) \) that arise from instantiation. We write this as \(M! Op(x, y, z) \).

• LET expressions. The meaning of a LET expression is explained in Section 16.4 below. For now, we consider only LET-free \(\lambda \) expressions—ones that contain no LET expressions.

For uniformity, I will call an operator symbol an identifier, even if it is a symbol like + that isn’t an identifier according to the syntax of Chapter 14.

16.1.4 Expressions

We can now inductively define an expression to be either a 0th-order operator, or to have the form \(Op(e_1, \ldots, e_n) \) where \(Op \) is an operator and each \(e_i \) is either an expression or a 1st-order operator. The expression must be arity-correct, meaning that \(Op \) must have arity \((a_1, \ldots, a_n) \), where each \(a_i \) is the arity of \(e_i \). In other words, \(e_i \) must be an expression if \(a_i \) equals \(\cdot \), otherwise it must be a 1st-order operator with arity \(a_i \). We require that \(Op \) not be a \(\lambda \) expression. (If it is, we can use \(\beta \) reduction to evaluate \(Op(e_1, \ldots, e_n) \) and eliminate the \(\lambda \) expression \(Op \).) Hence, a \(\lambda \) expression can appear in an expression only as an argument of a 2nd-order operator. This implies that only 1st-order \(\lambda \) expressions can appear in an expression.

We have eliminated all bound identifiers except the ones in \(\lambda \) expressions. We maintain the TLA\(^+\) requirement that an identifier that already has a meaning cannot be used as a bound identifier. Thus, in any \(\lambda \) expression \(\lambda p_1, \ldots, p_n : \text{exp} \), the identifiers of the parameters \(p_i \) cannot appear as parameter identifiers in any \(\lambda \) expression that occurs in \(\text{exp} \).

Remember that \(\lambda \) expressions are used only to explain the semantics of TLA\(^+\). They are not part of the language, and they can’t be used in a TLA\(^+\) specification.

16.2 Levels

TLA\(^+\) has a class of syntactic restrictions that come from the underlying logic TLA and have no counterpart in ordinary mathematics. The simplest of these is that “double-priming” is prohibited. For example, \((x' + y)' \) is not syntactically well-formed, and is therefore meaningless, because the operator \(' \) (priming) can
be applied only to a state function, not to a transition function like $x' + y$. This
class of restriction is expressed in terms of \textit{levels}.

In TLA, an expression has one of four basic levels, which are numbered 0, 1, 2, and 3. These levels are described below, using examples that assume x, y, and c are declared by

\begin{verbatim}
VARIABLES x, y CONSTANT c
\end{verbatim}

and symbols like $+$ have their usual meanings.

0. A \textit{constant}-level expression is a constant; it contains only constants and constant operators. Example: $c + 3$.

1. A \textit{state}-level expression is a state function; it may contain constants, constant operators, and unprimed variables. Example: $x + 2 \times c$.

2. A \textit{transition}-level expression is a transition function; it may contain anything except temporal operators. Example: $x' + y > c$.

3. A \textit{temporal}-level expression is a temporal formula; it may contain any TLA operator. Example: $\Box[x' > y + c]_{(x, y)}$.

Chapter 15 assigns meanings to all basic expressions—ones containing only the built-in operators of TLA$^+$ and declared constants and variables. The meaning assigned to an expression depends as follows on its level.

0. The meaning of a constant-level basic expression is a constant-level basic expression containing only primitive operators.

1. The meaning of a state-level basic expression is an assignment of a constant expression $s[e]$ to any state s.

2. The meaning of a transition-level basic expression e is an assignment of a constant expression $\langle s, t \rangle[e]$ to any transition $s \rightarrow t$.

3. The meaning of a temporal-level basic expression F is an assignment of a constant expression $\sigma \models F$ to any behavior σ.

An expression of any level can be considered to be an expression of a higher level, except that a transition-level expression is not a temporal-level expression.2 For example, if x is a declared variable, then the state-level expression $x > 2$ is the temporal-level formula such that $\sigma \models x$ is the value of $x > 2$ in the first state of σ, for any behavior σ.3

A set of simple rules inductively defines whether a basic expression is \textit{level-correct} and, if so, what its level is. Here are some of the rules:

2More precisely, a transition-level expression that is not a state-level expression is not a temporal-level expression.

3The expression $x + 2$ can be considered to be a temporal-level expression that, like the temporal-level expression $\Box(x + 2)$, is silly. (See the discussion of silliness in Section 6.2 on page 67.)
A declared constant is a level-correct expression of level 0.

A declared variable is a level-correct expression of level 1.

If Op is declared to be a 1st-order constant operator, then the expression $Op(e_1, \ldots, e_n)$ is level-correct iff each e_i is level correct, in which case its level is the maximum of the levels of the e_i.

$e_1 \in e_2$ is level correct iff e_1 and e_2 are, in which case its level is the maximum of the levels of e_1 and e_2.

e' is level-correct, and has level 2, iff e is level-correct and has level at most 1.

Enabled e is level-correct, and has level 1, iff e is level-correct and has level at most 2.

$\exists x: e$ is level-correct, and has level l, iff e is level-correct and has level l, when x is considered to be a declared constant.

$\exists x: e$ is level-correct, and has level 3, iff e is level-correct and has any level other than 2, when x is considered to be a declared variable.

There are additional rules for the other TLA$^+$ operators. They should be obvious.

A useful consequence of the rules is that level-correctness of a basic expression does not depend on the levels of the declared identifiers. In other words, an expression e is level-correct when c is declared to be a constant iff it is level-correct when c is declared to be a variable. Of course, the level of e may depend on the level of c.

We can abstract these rules by generalizing the concept of a level. So far, I have defined the level only of an expression. I now define the level of a 1st- or 2nd-order operator Op to be a rule for determining the level-correctness and level of an expression $Op(e_1, \ldots, e_n)$ as a function of the levels of the arguments e_i.

The level of a 1st-order operator is a rule, so the level of a 2nd-order operator Op is a rule that depends in part on rules—namely, on the levels of the arguments that are operators. This makes a rigorous general definition of levels for 2nd-order operators rather complicated. Fortunately, there’s a simpler, less general definition that handles all the operators of TLA$^+$. Even more fortunately, you don’t have to know it, so I won’t bother writing it down. All you need to know is that there exists a way of assigning a level to every built-in operator of TLA$^+$. The level-correctness and level of any basic expression is then determined by those levels and the levels of the declared identifiers that occur in the expression.

4If e is a constant expression, then e' equals e, so we could consider e' to have level 0. For simplicity, we consider e' to have level 2 even if e is a constant.
One important class of operator levels are the constant levels. Any expression built from constant-level operators and declared constants has constant level. The built-in constant operators of TLA+, listed in Figures 13.10 and 13.10 (pages 239 and 239) all have constant level. Any operator defined solely in terms of constant-level operators and declared constants has constant level.

We now extend the definition of level-correctness from expressions to \(\lambda \) expressions. We define the \(\lambda \) expression \(\lambda p_1, \ldots, p_n : \text{exp} \) to be level-correct iff \(\text{exp} \) is level-correct when the \(\lambda \) parameter identifiers are declared to be constants of the appropriate arity. For example, \(\lambda p, q(_): \text{exp} \) is level-correct iff \(\text{exp} \) is level-correct with the additional declaration:

\[
\text{CONSTANTS } p, q(_)
\]

This inductively defines level-correctness for \(\lambda \) expressions. The definition is reasonable because, as observed a couple of paragraphs ago, the level-correctness of \(\text{exp} \) doesn’t depend on whether we assign level 0 or 1 to the \(\lambda \) parameters. One can also define the level of an arbitrary \(\lambda \) expression, but that would require the general definition of the level of an operator, whose complexity we want to avoid.

16.3 Contexts

Syntactic correctness of a basic expression depends on the arities of the declared identifiers. The expression \(\text{Foo} = \{\} \) is syntactically correct if \(\text{Foo} \) is declared to be variable, and hence of arity \(_ \), but not if it’s declared to be a (1st-order) constant of arity \(_ \). The meaning of a basic expression also depends on the levels of the declared identifiers. We can’t determine those arities and levels just by looking at the expression itself; they are implied by the context in which the expression appears. A nonbasic expression contains defined as well as declared operators. Its syntactic correctness and meaning depend on the definitions of those operators, which also depends on the context. This section defines a precise notion of a context.

For uniformity, we can treat built-in operators the same as defined and declared operators. Just as the context can tell us that the identifier \(x \) is a declared variable, it can tell us that \(\in \) is declared to be a constant-level operator of arity \(_ _ \) and that \(\notin \) is defined to equal \(\lambda a, b : \neg(\in (a, b)) \). Assuming a standard context that specifies all the built-in operators simplifies the description of the semantics.

To define contexts, let’s first define declarations and definitions. A declaration assigns an arity and level to an operator name. A definition assigns a LET-free \(\lambda \) expression to an operator name. A module definition assigns the meaning of a module to a module name, where the meaning of a module is defined in
Section 16.5 below. A context consists of a set of declarations, definitions, and module definitions such that:

C1. An operator name is declared or defined at most once by the context. (This means that it can’t be both declared and defined.)

C2. No operator defined or declared by the context appears as the identifier of a λ parameter in any definition’s expression.

C3. Every operator name that appears in a definition’s expression is either λ parameter’s identifier or is declared (not defined) by the context.

C4. No module name is assigned meanings by two different module definitions.

Module and operator names are handled separately. The same string may be both a module name that is defined by a module definition and an operator name that is either declared or defined by an ordinary definition.

Here is an example of a context that declares the symbols ∪, a, b, and ∈, defines the symbols c and foo, and defines the module Naturals:

\[\begin{align*}
\text{(16.2)} \quad & \{ \text{ ∪:}\langle a, b \rangle, \; \text{ a: } a, \; \text{ b: } b, \; \text{ ∈: } \langle a, b \rangle, \; \text{ c } \triangleq \text{ ∪}(a, b), \\
& \quad \quad \quad \text{ foo } \triangleq \lambda p, q(\langle a \rangle): \in (p, \text{ ∪}(q(b), a)), \; \text{ Naturals } \equiv \ldots \} \end{align*}\]

I have not shown the levels assigned to the operators ∪, a, b, and ∈, or the meaning assigned to Naturals.

If C is a context, a C-basic λ expression is defined to be a λ expression that contains only symbols declared in C (in addition to λ parameters). For example, \(\lambda x : \in (x, \text{ ∪}(a, b))\) is a C-basic λ expression if C is the context (16.2). However, neither \(\text{ ∪}(a, b)\) nor \(\lambda x : c(x, b)\) is a C-basic λ expression because neither \(\text{ ∪}\) nor \(c\) is declared in C. (The symbol \(c\) is defined, not declared, in C.) A C-basic λ expression is syntactically correct if it is arity- and level-correct with the arities and levels assigned by C to the expression’s operators. Condition C3 states that if \(\text{ Op } \triangleq \text{ exp}\) is a definition in context C, then \(\text{ exp}\) is a C-basic λ expression. We add to C3 the requirement that it be syntactically correct.

We also allow a context to contain a special definition of the form \(\text{ Op } \triangleq ?\) that assigns to the name \(\text{ Op}\) an “illegal” value ? that is not a λ expression. This definition indicates that, in the context, it is illegal to use the operator name \(\text{ Op}\).

16.4 The Meaning of a λ Expression

I now define the meaning \(\mathcal{C}[e]\) of a λ expression \(e\) in a context C to be a C-basic λ expression. If \(e\) is an ordinary (nonbasic) expression, and C is the context that

\[\text{ The meaning of a module is defined in terms of contexts, so these definitions appear to be circular. In fact, the definitions of context and of the meaning of a module together form a single inductive definition.}\]
The expression \(e \) is obtained from \(exp \) by replacing all defined operator names with their definitions, and then applying \(\beta \) reduction whenever possible. Recall that \(\beta \) reduction replaces

\[
(\lambda \, p_1, \ldots, p_n : \exp)\, (e_1, \ldots, e_n)
\]

with the expression obtained from \(exp \) by replacing the identifier of \(p_i \) with \(e_i \), for each \(i \). The definition of \(\mathcal C[e] \) does not depend on the levels assigned by the declarations of \(\mathcal C \). So, we ignore levels in the definition. The inductive definition of \(\mathcal C[e] \) consists of the following rules:

- If \(e \) is an operator symbol, then \(\mathcal C[e] \) equals (i) \(e \) if \(e \) is declared in \(\mathcal C \), or (ii) the \(\lambda \) expression of \(e \)'s definition in \(\mathcal C \) if \(e \) is defined in \(\mathcal C \).
- If \(e \) is \(Op(e_1, \ldots, e_n) \), where \(Op \) is declared in \(\mathcal C \), then \(\mathcal C[e] \) equals the expression \(Op(\mathcal C[e_1], \ldots, \mathcal C[e_n]) \).
- If \(e \) is \(Op(e_1, \ldots, e_n) \), where \(Op \) is defined in \(\mathcal C \) to equal the \(\lambda \) expression \(d \), then \(\mathcal C[e] \) equals the \(\beta \) reduction of \(d(\mathcal C[e_1], \ldots, \mathcal C[e_n]) \), where \(d \) is obtained from \(d \) by \(\alpha \) reduction (replacement of \(\lambda \) parameters) so that no \(\lambda \) parameter’s identifier appears in both \(d \) and some \(\mathcal C[e_i] \).
- If \(e \) is \(\lambda p_1, \ldots, p_n : \exp \), then \(\mathcal C[e] \) equals \(\lambda p_1, \ldots, p_n : \mathcal D[\exp] \), where \(\mathcal D \) is the context obtained by adding to \(\mathcal C \) the declarations that, for each \(i \) in \(1 \ldots n \), assigns to the \(i \)th parameter’s identifier the arity determined by \(p_i \).
- If \(e \) is \(\text{LET } Op \triangleq d \text{ IN } \exp \), where \(d \) is a \(\lambda \) expression and \(\exp \) an expression, then \(\mathcal C[e] \) equals \(\mathcal D[\exp] \), where \(\mathcal D \) is the context obtained by adding to \(\mathcal C \) the definition that assigns \(\mathcal C[d] \) to \(Op \).

The last condition defines the meaning of any \text{LET} construct, because:

- The operator definition \(Op(p_1, \ldots, p_n) \triangleq d \) in a \text{LET} means:
 \[Op \triangleq \lambda p_1, \ldots, p_n : d \]
- A function definition \(Op[x \in S] \triangleq d \) in a \text{LET} means:
 \[Op \triangleq \text{CHOOSE } Op : Op = \{ x \in S \mapsto d \} \]
- The expression \text{LET } \text{LET } Op_1 \triangleq d_1 \ldots \text{LET } Op_n \triangleq d_n \text{ IN } \exp \text{ is defined to equal}
 \[\text{LET } Op_1 \triangleq d_1 \text{ IN } (\text{LET } \ldots \text{ IN } (\text{LET } Op_n \triangleq d_n \text{ IN } \exp) \ldots) \]

The \(\lambda \) expression \(e \) is defined to be legal (syntactically well-formed) in the context \(\mathcal C \) iff these rules define \(\mathcal C[e] \) to be a legal \(\mathcal C \)-basic expression.
16.5 The Meaning of a Module

The meaning of a module depends on a context. For an external module, which is not a submodule of another module, the context consists of declarations and definitions of all the built-in operators of TLA⁺, together with definitions of some set of modules. This set of modules is discussed in Section 16.7 below.

The meaning of a module in a context \(\mathcal{C} \) consists of six sets:

- **Dcl**: A set of declarations. They come from constant and variable declarations and declarations in extended modules (modules appearing in an extends statement).
- **GDef**: A set of global definitions. They come from ordinary (non-local) definitions and global definitions in extended and instantiated modules.
- **LDef**: A set of local definitions. They come from local definitions and local instantiations of modules. (Local definitions are not obtained by other modules that extend or instantiate the module.)
- **MDef**: A set of module definitions. They come from submodules of the module and of extended modules.
- **Ass**: A set of assumptions. They come from assume statements and from extended modules.
- **Thm**: A set of theorems. They come from theorem statements, from theorems in extended modules, and from the assumptions and theorems of instantiated modules, as explained below.

The \(\lambda \) expressions of definitions in **GDef** and **LDef**, as well as the expressions in **Ass** and **Thm**, are \((\mathcal{C} \cup \text{Dcl}) \)-basic \(\lambda \) expressions. In other words, the only operator symbols they contain (other than \(\lambda \) parameter identifiers) are ones declared in \(\mathcal{C} \) or in **Dcl**.

The meaning of a module in a context \(\mathcal{C} \) is defined by an algorithm for computing these six sets. The algorithm processes each statement in the module in turn, from beginning to end. The meaning of the module is the value of those sets when the end of the module is reached.

Initially, all six sets are empty. The rules for handling each possible type of statement are given below. In these rules, the current context \(\mathcal{C} \) is defined to be the union of \(\mathcal{C} \), **Dcl**, **GDef**, **LDef**, and **MDef**.

When the algorithm adds elements to the context \(\mathcal{C} \), it uses \(\alpha \) conversion to ensure that no defined or declared operator name appears as a \(\lambda \) parameter’s identifier in any \(\lambda \) expression in \(\mathcal{C} \). For example, if the definition \(\text{foo} \triangleq \lambda x : x + 1 \) is in **LDef**, then adding a declaration of \(x \) to **Dcl** requires \(\alpha \) conversion of this definition to rename the \(\lambda \) parameter identifier \(x \). This \(\alpha \) conversion is not explicitly mentioned.
16.5.1 Extends

An EXTENDS statement has the form

\text{EXTENDS } M_1, \ldots, M_n

where each \(M_i \) is a module name. This statement must be the first one in
the module. The statement sets the values of \(Dcl \), \(GDef \), \(MDef \), \(Ass \), and \(Thm \)
equal to the union of the corresponding values for the module meanings assigned
by \(\mathcal{C} \) to the module names \(M_i \).

This statement is legal iff the module names \(M_i \) are all defined in \(\mathcal{C} \), and
the resulting current context \(\mathcal{CC} \) does not assign more than one meaning to any
symbol. It is illegal for one of the modules \(M_i \) to define a symbol and another
to declare the same symbol. It is also illegal for the resulting value of \(\mathcal{CC} \) to
have two different declarations or two different definitions of the same operator
name.

Since \(\mathcal{CC} \) is a set, by definition it cannot have multiple copies of the same
definition or declaration. This means that an operator name can be declared or
defined in two different modules \(M_i \), as long as those declarations or definitions
are the same. Two declarations are the same iff they assign the same level and
arity. The semantics of TLA\(^+\) does not specify precisely what it means for two
definitions to be the same. A tool may or may not consider the two definitions

\[A \triangleq \lambda X : \cup(X, Z) \quad A \triangleq \lambda Y : \cup(Y, Z) \]

to be the same. It does guarantee that two definitions are the same if they come
from the same definition statement in the same module. For example, suppose
\(M1 \) and \(M2 \) both extend the \textit{Naturals} module. Then modules \textit{Naturals}, \(M1 \),
and \(M2 \) all define \(+\). However, all three definitions are the same, because they
all come from the statement that provides the definition for \textit{Naturals}. Hence,
the multiple definitions of \(+\) and other operators on natural numbers obtained
by the statement

\text{EXTENDS Naturals, } M1, M2

are legal.

16.5.2 Declarations

A declaration statement has one of the forms

\text{CONSTANT } c_1, \ldots, c_n \quad \text{VARIABLE } v_1, \ldots, v_n

each \(v_i \) is an identifier and each \(c_i \) is either an identifier or has the form
\(Op(\ldots, \ldots, \ldots) \) for some identifier \(Op \). This statement adds to the set \(Dcl \) the
obvious declarations. It is legal iff none of the declared identifiers is defined in
16.5. THE MEANING OF A MODULE

CC or is declared in CC with different arity or level. It is legal to redeclare an identifier that is declared in CC, if the new declaration is the same as the one in CC. For example, if module M extends module N, then both M and N can declare x to be a variable. However, it is illegal for M to declare x to be a variable and N to declare it to be a constant. It is also legal for x to be declared by two different VARIABLE declarations in the same module. However, redundant declarations might cause a tool to issue a warning.

16.5.3 Operator Definitions

A global operator definition\(^6\) has one of the two forms

\[\text{Op} \triangleq \text{exp} \quad \text{Op}(p_1, \ldots, p_n) \triangleq \text{exp} \]

where Op is an identifier, exp is an expression, and each \(p_i\) is either an identifier or has the form \(P(\ldots, \ldots)\), where \(P\) is an identifier. We consider the first form an instance of the second with \(n = 0\).

This statement if legal if the expression \(p_1; \ldots; p_n : \text{exp}\) is legal in the context CC. In particular, no \(\lambda\) parameter in this \(\lambda\) expression can be defined or declared in CC. The statement adds to GDef the definition that assigns to Op the \(\lambda\) expression \(\text{CC}[\lambda p_1, \ldots, p_n : \text{exp}]\).

A local operator definition has one of the two forms

\[\text{LOCAL Op} \triangleq \text{exp} \quad \text{LOCAL Op}(p_1, \ldots, p_n) \triangleq \text{exp} \]

It is the same as a global definition, except that it adds the definition to LDef instead of GDef.

16.5.4 Function Definitions

A global function definition has the form

\[\text{Op}[\text{fcnargs}] \triangleq \text{exp} \]

where \(\text{fcnargs}\) is a comma-separated list of elements, each having the form \(Id_1, \ldots, Id_n \in S\) or \((Id_1, \ldots, Id_n) \in S\). It is equivalent to the global operator definition

\[\text{Op} \triangleq \text{CHOOSE Op : Op} = [\text{fcnargs} \mapsto \text{exp}] \]

A local function definition, which has the form

\[\text{LOCAL Op}[\text{fcnargs}] \triangleq \text{exp} \]

is equivalent to the analogous local operator definition.

\(^6\)An operator definition statement should not be confused with a definition clause in a \textsc{let} expression. The meaning of a \textsc{let} expression is described in Section 16.4.
16.5.5 Instantiation

We consider first a global instantiation of the form:

\[
I(p_1, \ldots, p_m) \overset{\Delta}{=} \text{instance } N \text{ with } q_1 \leftarrow e_1, \ldots, q_n \leftarrow e_n
\]

(16.3)

For this to be legal, \(N \) must be a module name defined in \(CC \). Let \(NDcl, NDef, NAss, \) and \(NThm \) be the sets \(Dcl, GDef, Ass, \) and \(Thm \) in the meaning assigned to \(N \) by \(CC \). The \(q_i \) must be distinct identifiers declared by \(NDcl \). We add a \texttt{with} clause of the form \(Op \leftarrow Op \) for any identifier \(Op \) that is declared in \(NDcl \) but is not one of the \(q_i \), so the \(q_i \) constitute all the identifiers declared in \(NDcl \).

Neither \(I \) nor any of the identifiers of the definition parameters \(p_i \) may be defined or declared in \(CC \). Let \(D \) be the context obtained by adding to \(CC \) the obvious constant-level declaration for each \(p_i \). Then \(e_i \) must be syntactically well-formed in the context \(D \), and \(D[e_i] \) must have the same arity as \(q_i \), for each \(i \in 1 \ldots n \).

The instantiation must also satisfy the following level-correctness condition. Define module \(N \) to be a constant module if every declaration in \(NDcl \) has constant level, and every operator appearing in every definition in \(NDef \) has constant level. If \(N \) is not a constant module, then for each \(i \in 1 \ldots n \):

- If \(q_i \) is declared in \(NDcl \) to be a constant operator, then \(D[e_i] \) has constant level.
- If \(q_i \) is declared in \(NDcl \) to be a variable (a 0th-order operator of level 1), then \(D[e_i] \) has level 0 or 1.

The reason for this condition is explained in Section 16.8 below.

For each definition \(Op \overset{\Delta}{=} \lambda r_1, \ldots, r_p : e \) in \(NDef \), the definition

\[
I(Op) \overset{\Delta}{=} \lambda \, r_1, \ldots, r_p : \tau
\]

(16.4)

is added to \(GDef \), where \(\tau \) is the expression obtained from \(e \) by substituting \(e_i \) for \(q_i \), for all \(i \in 1 \ldots n \). Before doing this substitution, \(\alpha \) conversion must be applied to ensure that \(CC \) is a correct context after the definition of \(I(Op) \) is added to \(GDef \). The precise definition of \(\tau \) is a bit subtle; it is given in Section 16.8 below. We require that the \(\lambda \) expression in (16.4) must be level-correct. (If \(N \) is a nonconstant module, then level-correctness of this \(\lambda \) expression is implied by the level condition on parameter instantiation described in the preceding paragraph.) Legality of the definition of \(Op \) in module \(N \) and of the \texttt{with} substitutions imply that the \(\lambda \) expression is arity-correct in the current context. Remember that \(I(Op(c_1, \ldots, c_m, d_1, \ldots, d_n)) \) is actually written in TLA\(^+\) as \(I(c_1, \ldots, c_m)!Op(d_1, \ldots, d_n) \).

Also added to \(GDef \) is the special definition \(I \overset{\Delta}{=} ? \). This prevents \(I \) from later being defined or declared as an operator name.
A global instance statement can also have the two forms:

\[I \overset{\triangleq}{=} \text{instance} \ N \text{ with } q_1 \leftarrow e_1, \ldots, q_n \leftarrow e_n \]

\[\text{instance} \ N \text{ with } q_1 \leftarrow e_1, \ldots, q_n \leftarrow e_n \]

The first is just the \(m = 0 \) case of (16.3): the second is similar to the first, except the definitions added to \(GDef \) do not have \(I! \) prepended to the operator names. In the second form, there is an obvious legality condition that adding the definitions to the current context does not introduce a name conflict. In all three forms of the statement, omitting the with clause is equivalent to the case \(n = 0 \) of these statements. (Remember that all the declared identifiers of module \(N \) are either explicitly or implicitly instantiated.)

A local instance statement consists of the keyword \texttt{local} followed by an instance statement of the form described above. It is handled in a similar fashion to a global instance statement, except that all definitions are added to \(LDef \) instead of \(GDef \).

16.5.6 Theorems and Assumptions

A theorem has one of the forms

\[
\text{THEOREM } \exp \quad \text{THEOREM } Op \overset{\triangleq}{=} \exp
\]

where \(\exp \) is an expression, which must be legal in the current context \(CC \). The first form adds the theorem \(CC[\exp] \) to the set \(Thm \). The second form is equivalent to the pair of statements:

\[
Op \overset{\triangleq}{=} \exp
\]

\[
\text{THEOREM } \exp
\]

An assumption has one of the forms

\[
\text{ASSUME } \exp \quad \text{ASSUME } Op \overset{\triangleq}{=} \exp
\]

The expression \(\exp \) must have constant level. An assumption is similar to a theorem except that \(CC[\exp] \) is added to the set \(Ass \).

16.5.7 Submodules

A module can contain a submodule, which is a complete module that begins with

\[
\underbrace{\text{MODULE } N}_{\text{---}}
\]

for some module name \(N \), and ends with
This is legal if the module name \(N \) is not defined in \(CC \) and the module is legal in the context \(CC \). In this case, the module definition that assigns to \(N \) the meaning of the submodule in context \(CC \) is added to \(MDef \).

A submodule can be used in an instance statement that appears later in the current module, or within a module that extends the current module.

16.6 Correctness of a Module

Section 16.5 above defines the meaning of a module to consist of the six sets \(Dcl \), \(GDef \), \(LDef \), \(MDef \), \(Ass \), and \(Thm \). Mathematically, we can view the meaning of a module to be the assertion that all the theorems in \(Thm \) are consequences of the assumptions in \(Ass \). More precisely, let \(A \) be the conjunction of all the assumptions in \(Ass \). The module asserts that, for every theorem \(T \) in \(Thm \), the formula \(A \Rightarrow T \) is valid.

An assumption or theorem of the module is a \((C \cup Dcl)\)-basic expression. For an outermost module (not a submodule), \(C \) declares only the built-in operators of TLA\(^+\), and \(Dcl \) declares the declared constants and variables of the module. Therefore, each formula \(A \Rightarrow T \) asserted by the module is a basic expression. We say that the module is semantically correct if each of these formulas \(A \Rightarrow T \) is valid in the context \(Dcl \). Chapter 15, defines what it means for a basic expression to be valid.

By defining the meaning of a theorem, we have defined the meaning of a TLA\(^+\) specification. Any mathematically meaningful question we can ask about a specification can be framed as the question of whether a certain formula is a valid theorem.

16.7 Finding Modules

For a module \(M \) to have a meaning in a context \(C \), every module \(N \) extended or instantiated by \(M \) must have its meaning defined in \(C \)—unless \(N \) is a submodule of \(M \) or of a module extended by \(M \). In practice, a tool (or a person) begins interpreting a module \(M \) in a context \(C_0 \) containing only declarations and definitions of the built-in TLA\(^+\) operator names. When the tool encounters an extends or instantiate statement that mentions a module named \(N \) not defined in the current context \(CC \) of \(M \), the tool finds the module named \(N \), interprets it in the context \(C_0 \), and then adds the module definition for \(N \) to \(C_0 \) and to \(CC \).

\footnote{In a temporal logic like TLA, the formula \(F \Rightarrow G \) is not in general equivalent to the assertion that \(G \) is a consequence of assumption \(F \). However, the two are equivalent if \(F \) is a constant formula, and TLA\(^+\) allows only constant assumptions.}

\(\)
The definition of the TLA⁺ language does not specify how a tool finds a module named \(N \). The tool will most likely look for the module in a file whose name is derived in some standard way from \(N \).

16.8 The Semantics of Instantiation

Section 16.5.5 above defines the meaning of an instance statement in terms of substitution. I now define precisely how that substitution is performed and explain the level-correctness rule for instantiating nonconstant modules.

Suppose module \(M \) contains the statement

\[
I \triangleq \text{instance } N \text{ with } q_1 \leftarrow e_1, \ldots, q_n \leftarrow e_n
\]

where the \(q_i \) are all the declared identifiers of module \(N \), and that \(N \) contains the definition

\[
F \triangleq e
\]

where no \(\lambda \) parameter identifier in \(e \) is defined or declared in the current context of \(M \). The instance statement then adds to the current context of \(M \) the definition

\[
I!F \triangleq \tau
\]

where \(\tau \) is obtained from \(e \) by substituting \(e_i \) for \(q_i \), for all \(i \) in \(1 \ldots n \).

A fundamental principle of mathematics is that substitution preserves validity; substituting in a valid formula yields a valid formula. So, we want to define \(\tau \) so that, if \(F \) is a valid formula in \(N \), then \(I!F \) is a valid formula in \(M \).

A simple example shows that the level rule for instantiating nonconstant modules is necessary to preserve the validity of \(F \). Suppose \(F \) is defined to equal \(\Box[c' = c]c \), where \(c \) is declared in \(N \) to be a constant. Then \(F \) is a temporal formula asserting that no step changes \(c \). It is valid because a constant has the same value in every state of a behavior. If we allowed an instantiation that substitutes a variable \(x \) for the constant \(c \), then \(I!F \) would be the formula \(\Box[x' = x]x \). This is not a valid formula because it is false for any behavior in which the value of \(x \) changes. Since \(x \) is a variable, such a behavior obviously exists. Preserving validity requires that we not allow substitution of a nonconstant for a declared constant when instantiating a nonconstant module. (Since \(\Box \) and ' are nonconstant operators, this definition of \(F \) can appear only in a nonconstant module.)

In ordinary mathematics, there is one tricky problem in making substitution preserve validity. Consider the formula

\[
(16.5) \ (n \in \text{Nat}) \Rightarrow (\exists m \in \text{Nat} : m \geq n)
\]
This formula is valid because it is true for any value of \(n \). Now, suppose we substitute \(m + 1 \) for \(n \). A naive substitution that simply replaces \(n \) by \(m + 1 \) would yield the formula

(16.6) \((m + 1 \in \text{Nat}) \Rightarrow (\exists m \in \text{Nat} : m \geq m + 1) \)

Since the formula \(\exists m \in \text{Nat} : m \geq m + 1 \) is equivalent to \(\text{false} \), \(I!F \) is obviously not valid. Mathematicians call this problem variable capture; \(m \) is “captured” by the quantifier \(\exists m \). Mathematicians avoid it by the rule that, when substituting for an identifier in a formula, one does not substitute for bound occurrences of the identifier. This rule requires that \(m \) be removed from (16.5) by \(\alpha \) conversion before \(m + 1 \) is substituted for \(n \).

Section 16.5.5 defines the meaning of the instance statement in a way that avoids variable capture. Indeed, formula (16.6) is illegal in TLA\(^+\) because the subexpression \(m + 1 \in \text{Nat} \) is allowed only in a context in which \(m \) is defined or declared, in which case \(m \) cannot be used as a bound identifier, so the subexpression \(\exists m \ldots \) is illegal. The \(\alpha \) conversion necessary to produce a syntactically well-formed expression makes this kind of variable capture impossible.

The problem of variable capture occurs in a more subtle form in certain nonconstant operators of TLA\(^+\), where it is not prevented by the syntactic rules. Most notable of these operators is Enabled. Suppose \(x \) and \(y \) are declared variables of module \(N \), and \(F \) is defined by

\[F \triangleq \text{Enabled}(x' = 0 \land y' = 1) \]

Then \(F \) is equivalent to \(\text{true} \), so it is valid in module \(N \). (For any state \(s \), there exists a state \(t \) in which \(x = 0 \) and \(y = 1 \).) Now suppose \(z \) is a declared variable of module \(M \), and let the instantiation be

\[I \triangleq \text{instance } N \text{ with } x \leftarrow z, \ y \leftarrow z \]

With naive substitution, \(I!F \) would equal

\[\text{Enabled}(z' = 0 \land z' = 1) \]

which is equivalent to \(\text{false} \). (For any state \(s \), there is no state \(t \) in which \(z = 0 \) and \(z = 1 \) are both true.) Hence, \(I!F \) would not be a theorem, so instantiation would not preserve validity.

Naive substitution in a formula of the form \(\text{Enabled} \ A \) does not preserve validity because the primed variables in \(A \) are really bound identifiers. The formula \(\text{Enabled} \ A \) asserts that there exist values of the primed variables such that \(A \) is true. Substituting \(z' \) for \(x' \) and \(y' \) in the \(\text{Enabled} \) formula is really substitution for a bound identifier. It isn’t ruled out by the syntactic rules of TLA\(^+\) because the quantification is implicit.

To preserve validity, we must define \(\overline{A} \) so it avoids capture of identifiers implicitly bound in \(\text{Enabled} \) expressions. Before performing the substitution,
we first replace the primed occurrences of variables in Enabled expressions with new variable symbols. That is, for each subexpression of e of the form Enabled A and each declared variable q of module N, we replace every primed occurrence of q in A with a new symbol, which I will write $\$q$, that does not appear in A. This new symbol is considered to be bound by the Enabled operator. For example, the module

```
MODULE N

VARIABLE u
G(v, A) ≡ Enabled (A \ (\{u, v\}' = \{u, v\}))
H ≡ (u' = u) \ (G(u, u' \neq u))
```

has as its global definitions the set:

```
{ G ≡ \lambda v, A : Enabled (A \ (\{u, v\}' = \{u, v\}))
H ≡ (u' = u) \ (Enabled ((u' \neq u) \ (\{u, u\}' = \{u, u\}))}
```

The statement

$I ≡ instance N with u ← x$

adds the following definitions to the current module:

```
I!G ≡ \lambda v, A : Enabled (A \ (\{$u, v\}' = \{u, v\}))
I!H ≡ (x' = x) \ (Enabled ((u' \neq x) \ (\{$u, u\}' = \{x, x\}))
```

Observe that even though H equals $G(u, u' \neq u)$ in module N, and the instantiation substitutes x for u, the instantiated formula $I!H$ does not equal $I!G(x, x' \neq x)$.

As another example, consider the module

```
MODULE N

VARIABLES u, v
A ≡ (u' = u) \ (v' \neq v)
B(d) ≡ Enabled d
C ≡ B(A)
```

The instantiation

$I ≡ instance N with u ← x, v ← x$
adds the following definitions to the current module

\begin{align*}
I!A & \triangleq (x' = x) \land (x' \neq x) \\
I!B & \triangleq \lambda d : \text{ENABLED} d \\
I!C & \triangleq \text{ENABLED} ((\$u' = x) \land (\$u' \neq x))
\end{align*}

Observe that \(I!C\) is not equivalent to \(I!B(I!A)\). In fact, \(I!C \equiv \text{TRUE}\) and \(I!B(I!A) \equiv \text{FALSE}\).

We say that instantiation \textit{distributes} over an operator \(Op\) if

\[Op(e_1, \ldots, e_n) = Op(t_1, \ldots, t_n) \]

for any expressions \(e_i\), where the overlining operator (\(\overline{\cdot}\)) denotes some arbitrary instantiation. Instantiation distributes over all constant operators—for example, +, \(\subseteq\), and \(\exists^8\). Instantiation also distributes over most of the nonconstant operators of TLA\(^+\), like priming ('\) and \(\Box\).

If an operator \(Op\) implicitly binds some identifiers in its arguments, then instantiation would not preserve validity if it distributed over \(Op\). Our rules for instantiating in an \texttt{ENABLED} expression imply that instantiation does not distribute over \texttt{ENABLED}. It also does not distribute over any operator defined in terms of \texttt{ENABLED}—in particular, the built-in operators WF and SF.

There are two other TLA\(^+\) operators that implicitly bind identifiers: the action composition operator \("\)\, introduced in Section 15.2.3, and the temporal operator \(\neg\neg\), introduced in Section 10.7. The rule for instantiating an expression \(A \cdot B\) is similar to that for \texttt{ENABLED} \(A\)—namely, bound occurrences of variables are replaced by a new symbol. In the expression \(A \cdot B\), primed occurrences of variables in \(A\) and unprimed occurrences in \(B\) are bound. We handle a formula of the form \(F \Rightarrow G\) by replacing it with an equivalent formula in which the quantification is made explicit.\(^9\) Most readers won’t care, but here’s how that equivalent formula is constructed. Let \(x\) be the tuple \((x_1, \ldots, x_n)\) of all declared variables; let \(b, \bar{x}_1, \ldots, \bar{x}_n\) be symbols distinct from the \(x_i\) and from any bound identifiers in \(F\) or \(G\); and let \(\bar{e}\) be the expression obtained from an expression \(e\) by substituting the variables \(\bar{x}_i\) for the corresponding variables \(x_i\). Then \(F \Rightarrow G\) is equivalent to

\[
(16.7) \quad \forall b : (\mathcal{\exists} \bar{x}_1, \ldots, \bar{x}_n : (b = \text{TRUE}) \land \Box[b' = \text{FALSE}]_b \\
\land (\exists \bar{x}_1, \ldots, \bar{x}_n : (b \Rightarrow (x = \bar{x})) \\
\Rightarrow (\exists \bar{x}_1, \ldots, \bar{x}_n : (b' = \bar{x}')_b, x, \bar{x}))
\]

\(^8\)Recall the explanation on pages 294–295 of how we consider \(\exists\) to be a second-order operator. Instantiation distributes over \(\exists\) because TLA\(^+\) does not permit variable capture when substituting in \(\lambda\) expressions.

\(^9\)Replacing \texttt{ENABLED} and \("\)\ expressions by equivalent formulas with explicit quantifiers before substituting would result in some surprising instantiations. For example, if \(N\) contains the definition \(E(A) \triangleq \text{ENABLED} A\), then instance \(I \triangleq N\) effectively obtains the definition \(I!E(A) \triangleq A\).
Here’s a complete statement of the rules for computing \(\tau \):

1. Remove all \(\Rightarrow \) operators by replacing each subformula of the form \(F \Rightarrow G \) with the equivalent formula (16.7).

2. Recursively perform the following replacements, starting from the innermost subexpressions of \(e \), for each declared variable \(x \) of \(N \).
 - For each subexpression of the form \(\text{Enabled} \ A \), replace each primed occurrence of \(x \) in \(A \) by a new symbol \(\$x \) that is different from any identifier and from any other symbol that occurs in \(A \).
 - For each subexpression of the form \(B \cdot C \), replace each primed occurrence of \(x \) in \(B \) and each unprimed occurrence of \(x \) in \(C \) by a new symbol \(\$x \) that is different from any identifier and from any other symbol that occurs in \(B \) or \(C \).

For example, applying these rules to the inner \(\text{Enabled} \) expression and to the “.” expression converts

\[
\text{Enabled} (\text{Enabled} (x' = x'') \land ((y' = x) \cdot (x' = y)))
\]

to

\[
\text{Enabled} (\text{Enabled} (\$x' = x'') \land ((\$y' = x) \cdot (x' = \$y)))
\]

and applying them again to the outer \(\text{Enabled} \) expression yields

\[
\text{Enabled} (\text{Enabled} (\$x' = \$xx') \land ((\$y' = x) \cdot (\$xx' = \$y)))
\]

where \(\$xx \) is some new symbol different from \(x, \$x, \) and \(\$y \).

3. Replace each occurrence of \(q_i \) with \(e_i \), for all \(i \) in \(1 \ldots n \).
Chapter 17

The Standard Modules

We provide several standard modules for use in TLA+ specifications. Some of the definitions they contain are subtle—for example, the definitions of the set of real numbers and its operators. Others, such as the definition of 1 \ldots n, are obvious. There are two reasons to use standard modules. First, specifications are easier to read when they use basic operators that we're already familiar with. Second, tools can have built-in knowledge of standard operators. For example, the TLC model checker (Chapter 13) has efficient implementations of some standard modules; and a theorem-prover might implement special decision procedures for some standard operators. The standard modules of TLA+ are described here, except for the \textit{RealTime} module, which appears in Chapter 9.

17.1 Module \textit{Sequences}

The \textit{Sequences} module was introduced in Section 4.1 on page 35. Most of the operators it defines have already been explained. The exceptions are:

\begin{description}
\item [\textit{SubSeq}(s, m, n)] The subsequence \(\langle s[m], s[m+1], \ldots, s[n] \rangle \) consisting of the \(m \)th through \(n \)th elements of \(s \). It is undefined if \(m < 1 \) or \(n > \text{Len}(s) \), except that it equals the empty sequence if \(m > n \).
\item [\textit{SelectSeq}(s, test)] The subsequence of \(s \) consisting of the elements \(s[i] \) such that \(\text{test}[s[i]] \) equals \text{TRUE}. For example:
\end{description}

\begin{align*}
\text{PosSubSeq}(s) & \triangleq \text{LET } \text{IsPos}(n) \triangleq n > 0 \\
\text{IN } \text{SelectSeq}(s, \text{IsPos})
\end{align*}

defines \(\text{PosSubSeq}((0, 3, -2, 5)) \) to equal \((3, 5) \).
The *Sequences* module uses operators on natural numbers, so we might expect it to extend the *Naturals* module. However, this would mean that any module that extends *Sequences* would then also extend *Naturals*. Just in case someone wants to use sequences without extending the *Naturals* module, the *Sequences* module contains the statement:

\[
\text{local instance } \text{Naturals}
\]

This statement introduces the definitions from the *Naturals* module, just as an ordinary instance statement would, but it does not export those definitions to another module that extends or instantiates the *Sequences* module. The local modifier can also precede an ordinary definition; it has the effect of making that definition usable within the current module, but not in a module that extends or instantiates it. (The local modifier cannot be used with parameter declarations.)

Everything else that appears in the *Sequences* module should be familiar. The module is in Figure 17.1 on the next page.

17.2 Module *FiniteSets*

As described in Section 6.1 on page 66, the *FiniteSets* module defines the two operators *IsFiniteSet* and *Cardinality*. The definition of *Cardinality* is discussed on pages 69–70. The module itself is in Figure 17.2 on the next page.

17.3 Module *Bags*

A *bag*, also called a multiset, is a set that can contain multiple copies of the same element. A bag can have infinitely many elements, but only finitely many copies of any single element. Bags are sometimes useful for representing data structures. For example, the state of a network in which messages can be delivered in any order may be represented as a bag of messages in transit. Multiple copies of an element in the bag represent multiple copies of the same message in transit.

The *Bags* module defines a bag to be a function whose range is a subset of the positive integers. An element e belongs to bag B iff e is in the domain of B, in which case bag B contains $B[e]$ copies of e. The module defines the following operators. In our customary style, we leave unspecified the value obtained by applying an operator on bags to something other than a bag.

\[
\begin{align*}
\text{IsABag}(B) & \quad \text{True iff } B \text{ is a bag.} \\
\text{BagToSet}(B) & \quad \text{The set of elements at least one copy of which are in the bag } B.
\end{align*}
\]
MODULE Sequences

Defines operators on finite sequences, where a sequence of length \(n \) is represented as a function whose domain is the set \(1 \ldots n \) (the set \(\{1, 2, \ldots, n\} \)). This is also how TLA+ defines an \(n \)-tuple, so tuples are sequences.

LOCAL INSTANCE Naturals
Imports the definitions from Naturals, but doesn’t export them.

\[
\begin{align*}
\text{Seq}(S) & \triangleq \text{UNION } \{[1 \ldots n \to S] : n \in \text{Nat}\} & \text{The set of all finite sequences of elements in } S. \\
\text{Len}(s) & \triangleq \text{CHOOSE } n \in \text{Nat} : \text{DOMAIN } s = 1 \ldots n & \text{The length of sequence } s.
\end{align*}
\]

\[
\begin{align*}
s \circ t & \triangleq \text{The sequence obtained by concatenating sequences } s \text{ and } t. \\
\& i \in 1 \ldots (\text{Len}(s) + \text{Len}(t)) \to \text{IF } i \leq \text{Len}(s) \text{ THEN } s[i] \\
\& \text{ELSE } t[i - \text{Len}(s)]
\end{align*}
\]

\[
\begin{align*}
\text{Append}(s, e) & \triangleq s \circ (e) & \text{The sequence obtained by appending element } e \text{ to the end of sequence } s.
\end{align*}
\]

\[
\begin{align*}
\text{Head}(s) & \triangleq s[1] & \text{The usual head (first) and tail (rest) operators.} \\
\text{Tail}(s) & \triangleq [i \in 1 \ldots (\text{Len}(s) - 1) \to s[i + 1]]
\end{align*}
\]

\[
\begin{align*}
\text{SubSeq}(s, m, n) & \triangleq [i \in 1 \ldots (1 + n - m) \to s[i + m - 1]] & \text{The sequence } \langle s[m], s[m+1], \ldots, s[n] \rangle.
\end{align*}
\]

\[
\begin{align*}
\text{SelectSeq}(s, \text{test}()) & \triangleq & \text{The subsequence of } s \text{ consisting of all elements } s[i] \text{ such that } \text{test}(s[i]) \text{ is true.}
\end{align*}
\]

\[
\begin{align*}
\text{LET } F[i \in 0 \ldots \text{Len}(s)] & \triangleq & \text{F[i] equals SelectSeq(SubSeq(s, 1, i), test).} \\
\& \text{IF } i = 0 \text{ THEN } \langle \rangle \\
\& \text{ELSE IF } \text{test}(s[i]) \text{ THEN } \text{Append}(F[i - 1], s[i]) \\
\& \text{ELSE } F[i - 1]
\end{align*}
\]

\[
\begin{align*}
\text{IN } & F[\text{Len}(s)]
\end{align*}
\]

Figure 17.1: The standard Sequences module.

MODULE FiniteSets

LOCAL INSTANCE Naturals, Sequences
Imports the definitions from Naturals and Sequences, but doesn’t export them.

\[
\begin{align*}
\text{IsFiniteSet}(S) & \triangleq \text{A set is finite iff there is a finite sequence containing all its elements.} \\
\exists \text{ seq } \in \text{Seq}(S) : \forall s \in S : \exists n \in 1 \ldots \text{Len}(\text{seq}) : \text{seq}[n] = s
\end{align*}
\]

\[
\begin{align*}
\text{Cardinality}(S) & \triangleq \text{Cardinality is defined only for finite sets.} \\
\text{LET } \text{CS}[T \in \text{SUBSET } S] & \triangleq \text{IF } T = \{\} \text{ THEN } 0 \\
\& \text{ELSE } 1 + \text{CS}[T \setminus \{\text{CHOOSE } x : x \in T\}]
\end{align*}
\]

\[
\begin{align*}
\text{IN } & \text{CS}[S]
\end{align*}
\]

Figure 17.2: The standard FiniteSets module.
SetToBag(S) The bag that contains one copy of every element in the set S.

BagIn(e, B) True iff bag B contains at least one copy of e. BagsIn is the ∈ operator for bags.

EmptyBag The bag containing no elements.

CopiesIn(e, B) The number of copies of e in bag B. If BagIn(e, B) is false, then CopiesIn(e, B) = 0.

B1 ⊕ B2 The union of bags B1 and B2. The operator ⊕ satisfies

\[\text{CopiesIn}(e, B_1 \oplus B_2) = \text{CopiesIn}(e, B_1) + \text{CopiesIn}(e, B_2) \]

for any e and any bags B1 and B2.

B1 ⊖ B2 The bag B1 with the elements of B2 removed—that is, with one copy of an element removed from B1 for each copy of the same element in B2. If B2 has at least as many copies of e as B1, then B1 ⊖ B2 has no copies of e.

BagUnion(S) The bag union of all elements of the set S of bags. For example, BagUnion({B1, B2, B3}) equals B1 + B2 + B3.

B1 ⊆ B2 True iff, for all e, bag B2 has at least as many copies of e as bag B1 does. Thus, ⊆ is the analog for bags of ⊆.

SubBag(B) The set of all subbags of bag B. SubBag is the bag analog of the subset operator.

BagOfAll(F, B) The bag analog of the construct \(\{ F(x) : x ∈ B \} \). It is the bag that contains, for each element e of bag B, one copy of F(e) for every copy of e in B. This defines a bag iff, for any value v, the set of e in B such that F(e) = v is finite.

BagCardinality(B) If B is a finite bag (one such that BagToSet(B) is a finite set), then this is its cardinality—the total number of copies of elements in B. Its value is unspecified if B is not a finite bag.

The module appears in Figure 17.3 on the next page. Note the local definition of Sum, which makes Sum defined within the Bags module but not in any module that extends or instantiates it.
17.3. MODULE BAGS

LOCAL INSTANCE Naturals Import definitions from Naturals, but don’t export them.

IsABag(B) ≡ B ∈ [DOMAIN B → {n ∈ Nat : n > 0}] True if B is a bag.

BagToSet(B) ≡ DOMAIN B The set of elements at least one copy of which is in B.

SetToBag(S) ≡ [e ∈ S → 1] The bag that contains one copy of every element of the set S.

BagIn(e, B) ≡ e ∈ BagToSet(B) The ∈ operator for bags.

EmptyBag ≡ SetToBag(∅)

B1 ⊕ B2 ≡ The union of bags B1 and B2.

B1 ⊔ B2 ≡ The bag B1 with the elements of B2 removed.

BagUnion(S) ≡ The bag union of all elements of the set S of bags.

BagOfAll(F(−), B) ≡ The bag analog of the set {F(x) : x ∈ B} for a set B.

BagCardinality(B) ≡ Sum(B) the total number of copies of elements in bag B.

CopiesIn(e, B) ≡ if BagIn(e, B) then B[e] else 0 The number of copies of e in B.

Figure 17.3: The standard Bags module.
17.4 The Numbers Modules

The usual sets of numbers and operators on them are defined in the three modules Naturals, Integers, and Reals. These modules are tricky because their definitions must be consistent. A module M might extend both the Naturals module and another module that extends the Reals module. The module M thereby obtains two definitions of an operator such as $+$, one from Naturals and one from Reals. These two definitions of $+$ must be the same. To make them the same, we have them both come from the definition of $+$ in a module ProtoReals, which is locally instantiated by both Naturals and Reals.

The Naturals module defines the following operators:

- $+$
- $*$
- `<`
- `<=`
- `Nat`
- `\divide` integer division
- `-` binary minus
- `^` exponentiation
- `>`
- `>=`
- `.`
- `%`

Except for \divide, these operators are all either standard or explained in Chapter 2. We define integer division \div and modulus $\%$ so that for any integer a and positive integer b:

$$a \% b \in 0 \ldots (b - 1) \quad a = b \times (a \div b) + (a \% b)$$

The Integers module extends the Naturals module and also defines the set Int of integers and unary minus ($-$). The Reals module extends Integers and introduces the set Real of real numbers and ordinary division ($/$). In mathematics, (unlike programming languages), integers are real numbers. Hence, Nat is a subset of Int, which is a subset of Real.

The Reals module also defines the special value Infinity. Infinity, which represents a mathematical ∞, satisfies the following two properties:

$$\forall r \in \text{Real} : -\text{Infinity} < r < \text{Infinity} \quad -(-\text{Infinity}) = \text{Infinity}$$

The precise details of the number modules are of no practical importance. When writing specifications, you can just assume that the operators they define have their usual meanings. If you want to prove something about a specification, you can reason about numbers however you want. Tools like model checkers and theorem provers that care about these operators will have their own ways of handling them. The modules are given here mainly for completeness. They can also serve as models if you want to define other basic mathematical structures. However, such definitions are rarely necessary for engineering specifications.

The set Nat of natural numbers, with its zero element and successor function is defined in the Peano module, which appears in Figure 17.4 on the next page. It simply defines the naturals to be a set satisfying Peano's axioms [7]. This definition is separated into its own module for the following reason. As explained in Section 15.1.9 (page 280) and Section 15.1.10 (page 281), the meanings of tuples and strings are defined in terms of the natural numbers. The Peano module,
17.4. THE NUMBERS MODULES

This module defines \textit{Nat} to be an arbitrary set satisfying Peano’s axioms with zero element \textit{Zero} and successor function \textit{Succ}. It does not use strings or tuples, which in TLA+ are defined in terms of natural numbers.

\[
\begin{align*}
\text{PeanoAxioms}(N, Z, Sc) & \triangleq \\
& \left(\forall n \in N : (\exists m \in N : n = Sc[m]) \equiv (n \neq Z) \right) \\
& \left(\forall S \in \text{subset} \; N : (Z \in S) \land (\forall n \in S : Sc[n] \in S) \Rightarrow (S = N) \right)
\end{align*}
\]

\text{assume } \exists N, Z, Sc : \text{PeanoAxioms}(N, Z, Sc) \quad \text{Asserts the existence of a set satisfying Peano’s axioms.}

\text{Succ} \triangleq \text{choose} \; Sc : \exists N, Z : \text{PeanoAxioms}(N, Z, Sc)

\text{Nat} \triangleq \text{domain} \; \text{Succ}

\text{Zero} \triangleq \text{choose} \; Z : \text{PeanoAxioms}(\text{Nat}, Z, \text{Succ})

Figure 17.4: The \textit{Peano} module.

which defines the natural numbers, does not use tuples or strings. Hence, there is no circularity.

Most of the definitions in the number modules come from module \textit{ProtoReals} in Figures 17.5 and 17.6 on the following two pages. To define the real numbers, it uses the well-known mathematical result that the reals are uniquely defined, up to isomorphism, as an ordered field in which every subset bounded from above has a least upper bound. The details will be of interest only to mathematically sophisticated readers who are curious about the formalization of ordinary mathematics. I hope that those readers will be as impressed as I am by how easy this formalization is—once you understand the mathematics.

Given the \textit{ProtoReals} module, the rest is easy. The \textit{Naturals}, \textit{Integers}, and \textit{Reals} modules appear in Figures 17.7–17.9 on page 322. Perhaps the most striking thing about them is the ugliness of an operator like \(R!+\), which is the version of \(+\) obtained by instantiating \textit{ProtoReals} under the name \(R\). It demonstrates that you should not use infix operators when writing a module that may be used with a named instantiation.
CHAPTER 17. THE STANDARD MODULES

MODULE ProtoReals

This module provides the basic definitions for the Naturals, Integers, and Reals module. It does this by defining the real numbers to be a complete ordered field containing the naturals.

EXTENDS Peano

IsModelOfReals(R, Plus, Times, Leq) =

Asserts that R satisfies the properties of the reals with $a + b = \text{Plus}[a, b]$, $a \ast b = \text{Times}[a, b]$, and $(a \leq b) = \langle(a, b) \in \text{Leq}\rangle$. (We will have to quantify over the arguments, so they must be values, not operators.)

LET IsAbelianGroup(G, Id, _+_) =

\begin{align*}
\land \ & \text{Id} \in G \forall a, b \in G : a + b \in G \\
\land \ & \forall a, b, c \in G : (a + b) + c = a + (b + c) \\
\land \ & \forall a \in G : \exists \text{minusa} \in G : a + \text{minusa} = \text{Id} \\
\land \ & \forall a, b \in G : a + b = b + a \\
\land \ & a + b \triangleq \text{Plus}[a, b] \\
\land \ & a \ast b \triangleq \text{Times}[a, b] \\
\land \ & a \leq b \triangleq \langle a, b \rangle \in \text{Leq} \\
\land \ & \text{RPos} \triangleq \{ r \in R \setminus \{\text{Zero}\} : \text{Zero} \leq r \}
\end{align*}

Dist(a, b) \triangleq \text{CHOOSE } r \in \text{RPos} \cup \{\text{Zero}\} : \land a = b + r \\
\land b = a + r \\
\land d(a, b) \text{ equals } |a - b|.

IN \land \text{Nat} \subseteq R \\
\land \forall n \in \text{Nat} : \text{Succ}[n] = n + \text{Succ}[\text{Zero}] \\
\land \text{IsAbelianGroup}(R, \text{Zero}, +) \\
\land \text{IsAbelianGroup}(R \setminus \{\text{Zero}\}, \text{Succ}[\text{Zero}], \ast) \\
\land \forall a, b, c \in R : a \ast (b + c) = (a \ast b) + (a \ast c) \\
\land \forall a, b \in R : \land (a \leq b) \lor (b \leq a) \\
\land (a \leq b) \land (b \leq a) \equiv (a = b) \\
\land \forall a, b, c \in R : \land (a \leq b) \land (b \leq c) \Rightarrow (a \leq c) \\
\land (a \leq b) \Rightarrow \langle a + c \rangle \leq (b + c) \\
\land (\text{Zero} \leq c) \Rightarrow (a \ast c) \leq (b \ast c)

\land \forall S \subseteq \text{SUBSET } R \\
\land \text{LET } \text{SBound}(a) \triangleq \forall s \in S : s \leq a \\
\land \text{IN } (\exists a \in R : \text{SBound}(a)) \Rightarrow \\
\land (\exists \text{sup} \in R : \land \text{SBound}(\text{sup}) \\
\land \forall a \in R : \text{SBound}(a) \Rightarrow (\text{sup} \leq a))

THEOREM \exists R, \text{Plus}, \text{Times}, \text{Leq} : \text{IsModelOfReals}(R, \text{Plus}, \text{Times}, \text{Leq})

Real \triangleq RM.R

Figure 17.5: The ProtoReals module (beginning).
We will define Infinity, $<$, and $-$ so $-\text{Infinity} < r < \text{Infinity}$, for any $r \in \text{Real}$, and $-(-\text{Infinity}) = \text{Infinity}$.

\begin{align*}
\text{Infinity} & \triangleq \text{CHOOSE } x : x \notin \text{Real} \\
\text{MinusInfinity} & \triangleq \text{CHOOSE } x : x \notin \text{Real} \cup \{\text{Infinity}\}
\end{align*}

Infinity and MinusInfinity (which will equal $-\text{Infinity}$) are chosen to be arbitrary values not in Real.

\begin{align*}
a + b & \triangleq \text{RM.Plus}[a, b] \\
a * b & \triangleq \text{RM.Times}[a, b] \\
a \leq b & \triangleq \text{CASE} \ (a \in \text{Real}) \land (b \in \text{Real}) \\
& \quad \land (a = \text{Infinity}) \land (b \in \text{Real} \cup \{\text{MinusInfinity}\}) \rightarrow \text{FALSE} \\
& \quad \land (a \in \text{Real} \cup \{\text{MinusInfinity}\}) \land (b = \text{Infinity}) \rightarrow \text{TRUE} \\
& \quad \land a = b \rightarrow \text{TRUE} \\
a - b & \triangleq \text{CASE} \ (a \in \text{Real}) \land (b \in \text{Real}) \rightarrow \text{CHOOSE } c \in \text{Real} : c + b = a \\
& \quad \land (a \in \text{Real}) \land (b = \text{Infinity}) \rightarrow \text{MinusInfinity} \\
& \quad \land (a \in \text{Real}) \land (b = \text{MinusInfinity}) \rightarrow \text{Infinity} \\
a / b & \triangleq \text{CHOOSE } c \in \text{Real} : a = b * c \\
\text{Int} & \triangleq \text{Nat} \cup \{\text{Zero} - n : n \in \text{Nat}\}
\end{align*}

We define a^b (exponentiation) for $a > 0$, $a \neq 0$ and $b \in \text{Int}$, or $a \leq 0$ and $b > 0$ by the four axioms:

\begin{align*}
a^1 & = a \\
a^{m+n} & = a^m * a^n \text{ if } a \neq 0 \text{ and } m, n \in \text{Int} \\
0^b & = 0 \text{ if } b > 0 \\
0^{b+c} & = 0^b \text{ if } a > 0
\end{align*}

plus the continuity condition that $0 < a$ and $0 < b \leq c$ imply $a^b \leq a^c$.

\begin{align*}
a^b & \triangleq \text{LET } \text{RPos} \triangleq \{r \in \text{Real} \setminus \{\text{Zero}\} : \text{Zero} \leq r\} \\
& \quad \text{exp} \triangleq \text{CHOOSE } f \in [(\text{RPos} \times \text{Real}) \cup ((\text{Real} \setminus \{\text{Zero}\}) \times \text{Int}) \cup \{\text{Zero}\} \times \text{RPos}] \rightarrow \text{Real} : \\
& \quad \land \forall r \in \text{Real} : \land f[r, \text{Succ}[\text{Zero}]] = r \\
& \quad \land \forall m, n \in \text{Int} : f[r, m + n] = f[r, m] * f[r, n] \\
& \quad \land \forall r \in \text{RPos} : \land f[\text{Zero}, r] = 0 \\
& \quad \land \forall s, t \in \text{Real} : f[r, s * t] = f[f[r, s], t] \\
& \quad \land \forall s, t \in \text{RPos} : (s \leq t) \Rightarrow (f[r, s] \leq f[r, t])
\end{align*}

Figure 17.6: The ProtoReals module (end).
CHAPTER 17. THE STANDARD MODULES

MODULE Naturals

LOCAL $R \triangleq \text{INSTANCE} \ ProtoReals$

Nat $\triangleq R!\text{Nat}$

$a + b \triangleq a \ R!+ b$ \hspace{1cm} R!+ is the operator + defined in module ProtoReals.

$a - b \triangleq a \ R!- b$

$a \ast b \triangleq a \ R!* b$

$a^b \triangleq a \ R!^* b$ \hspace{1cm} a^b is written in ASCII as a^b.

$a \leq b \triangleq a \ R!\leq b$

$a \geq b \triangleq b \leq a$

$a < b \triangleq (a \leq b) \land (a \neq b)$

$a > b \triangleq b < a$

$a .. b \triangleq \{ i \in \text{Nat} : (a \leq i) \land (i \leq b) \}$

$a \div b \triangleq \text{CHOOSE } n \in R!\text{Int} : \exists r \in 0 .. (b - 1) : a = b \ast n + r$

$a \% b \triangleq a - b * (a \div b)$

We define \div and $\%$ so that

\[a = b \ast (a \div b) + (a \% b) \]

for all integers a and b with $b > 0$.

Figure 17.7: The standard Naturals module.

MODULE Integers

EXTENDS Naturals \hspace{1cm} The Naturals module already defines operators like + to work on all real numbers.

LOCAL $R \triangleq \text{INSTANCE} \ ProtoReals$

Int $\triangleq R!\text{Int}$

$-, a \triangleq 0 - a$ \hspace{1cm} Unary $-$ is written $-$, when being defined or used as an operator argument.

Figure 17.8: The standard Integers module.

MODULE Reals

EXTENDS Integers \hspace{1cm} The Integers module already defines operators like + to work on all real numbers.

LOCAL $R \triangleq \text{INSTANCE} \ ProtoReals$

Real $\triangleq R!\text{Real}$

$a \div b \triangleq a \ R!/ b$ \hspace{1cm} R!/ is the operator / defined in module ProtoReals.

Infinity $\triangleq R!\text{Infinity}$

Figure 17.9: The standard Reals module.
Part V

Appendix
Appendix A

The ASCII Specifications

A.1 The Asynchronous Interface

--------------- MODULE AsynchInterface ---------------
EXTENDS Naturals
CONSTANT Data
VARIABLES val, rdy, ack

TypeInvariant == /
 val \in Data
 rdy \in \{0, 1\}
 ack \in \{0, 1\}

Init == /
 val \in Data
 rdy \in \{0, 1\}
 ack = rdy

Send == /
 rdy = ack
 val' \in Data
 rdy' = 1 - rdy
 UNCHANGED ack

Rcv == /
 rdy # ack
 ack' = 1 - ack
 UNCHANGED \langle val, rdy >>

Next == Send \/ Rcv

Spec == Init \[\[Next\]_{\langle val, rdy, ack >>}

THEOREM Spec => []TypeInvariant

THEOREM Spec => []TypeInvariant

A.2 A FIFO

A.3 A CACHING MEMORY

\[
\begin{array}{l}
/\ OutChan!TypeInvariant \\
/\ q \in \text{Seq}(Message) \\
\end{array}
\]

\[
SSend(msg) == /\ InChan!Send(msg) \\
/\ UNCHANGED \langle out, q \rangle
\]

\[
BufRcv == /\ InChan!Rcv \\
/\ q' = \text{Append}(q, \text{in.val}) \\
/\ UNCHANGED \text{out}
\]

\[
BufSend == /\ q \# \langle > \\
/\ OutChan!Send(\text{Head}(q)) \\
/\ q' = \text{Tail}(q) \\
/\ UNCHANGED \text{in}
\]

\[
RRcv == /\ OutChan!Rcv \\
/\ UNCHANGED \langle in, q \rangle
\]

\[
Next == \# /\ \text{E} \text{msg} \in \text{Message} : \text{SSend(msg)} \\
/\ BufRcv \\
/\ BufSend \\
/\ RRcv
\]

\[
Spec == \text{Init} /\ [] [\text{Next}].\langle in, out, q \rangle
\]

THEOREM Spec => []TypeInvariant

------------------------ MODULE FIFO -------------------------

CONSTANT Message
VARIABLES in, out
Inner(q) == INSTANCE InnerFIFO
Spec == \EE q : Inner(q)!Spec

A.3 A Caching Memory

------------------------ MODULE MemoryInterface -------------------------

VARIABLE memInt
CONSTANTS Send(_, _, _, _),
Reply(_, _, _, _),
APPENDIX A. THE ASCII SPECIFICATIONS

InitMemInt, Proc, Adr, Val

ASSUME \(\forall p, d, miOld, miNew:\)
\(\forall \ Send(p, d, miOld, miNew) \ in BOOLEAN\)
\(\forall \ Reply(p, d, miOld, miNew) \ in BOOLEAN\)

--

MReq == \[op : \{"Rd"\}, adr : Adr\]
\cup \[op : \{"Wr"\}, adr : Adr, val : Val\]

NoVal == CHOOSE v : v \notin Val

--

------------------ MODULE InternalMemory ---------------------

EXTENDS MemoryInterface

VARIABLES mem, ctl, buf

--

IInit == \(\forall \ mem \ in [Adr\rightarrow Val]\)
\(\forall \ ctl = [p \ in Proc \rightarrow "rdy"]\)
\(\forall \ buf = [p \ in Proc \rightarrow NoVal]\)
\(\forall \ memInt \ in InitMemInt\)

TypeInvariant ==
\(\forall \ mem \ in [Adr\rightarrow Val]\)
\(\forall \ ctl \ in [Proc -> \{"rdy", "busy","done"\}]\)
\(\forall \ buf \ in [Proc -> MReq \cup Val \cup \{NoVal\}]\)
A.3. A CACHING MEMORY

\[\text{Req}(p) == \begin{align*}
&/\ \text{ctl}[p] = \text{"rdy"} \\
&/\ \text{E req \in MReq :} \\
&\quad/\ \text{Send}(p, \text{req, memInt, memInt'}) \\
&\quad/\ \text{buf'} = [\text{buf EXCEPT ![p] = req}] \\
&\quad/\ \text{ctl'} = [\text{ctl EXCEPT ![p] = "busy"}] \\
&\quad/\ \text{UNCHANGED mem}
\end{align*}\]

\[\text{Do}(p) ==
\begin{align*}
&/\ \text{ctl}[p] = \text{"busy"} \\
&/\ \text{mem'} = \begin{cases}
&\text{IF buf}[p].\text{op} = \text{"Wr"} \\
&\quad\text{THEN [mem EXCEPT ![buf[p].adr] = buf[p].val]} \\
&\quad\text{ELSE mem}
\end{cases} \\
&/\ \text{buf'} = [\text{buf EXCEPT ![p] = IF buf}[p].\text{op} = \text{"Wr"} \\
&\quad\text{THEN NoVal} \\
&\quad\text{ELSE mem[buf[p].adr]}] \\
&/\ \text{ctl'} = [\text{ctl EXCEPT ![p] = "done"}] \\
&/\ \text{UNCHANGED memInt}
\end{align*}\]

\[\text{Rsp}(p) == \begin{align*}
&/\ \text{ctl}[p] = \text{"done"} \\
&/\ \text{Reply}(p, \text{buf}[p], \text{memInt, memInt'}) \\
&/\ \text{ctl'} = [\text{ctl EXCEPT ![p] = "rdy"}] \\
&/\ \text{UNCHANGED }<<\text{mem, buf}}>
\end{align*}\]

\[\text{INext} == \begin{align*}
&/\ \text{E p \in Proc: Req}(p) \vee \text{Do}(p) \vee \text{Rsp}(p)
\end{align*}\]

\[\text{ISpec} == \begin{align*}
&\begin{align*}
&/\ \text{II} &\begin{align*}
&/\ \text{[]}[\text{INext}]_<<\text{memInt, mem, ctl, buf}}>
\end{align*}
\end{align*}
\end{align*}\]

\[\begin{align*}
&\text{THEOREM ISpec} => \begin{align*}
&/\ \text{[]TypeInvariant}
\end{align*}
\end{align*}\]

------------------------ MODULE Memory ------------------------

EXTENDS MemoryInterface

Inner(mem, ctl, buf) == INSTANCE InternalMemory

Spec == \[\text{EE mem, ctl, buf : Inner(mem, ctl, buf)!ISpec}

===
APPENDIX A. THE ASCII SPECIFICATIONS

--- MODULE WriteThroughCache ---

EXTENDS Naturals, Sequences, MemoryInterface

VARIABLES mem, ctl, buf, cache, memQ

CONSTANT QLen

ASSUME (QLen ∈ Nat) /
(QLen > 0)

M ≔ INSTANCE InternalMemory

Init ≔ /
M!IInit

\ /
\ cache ∈ [p ∈ Proc |-> [a ∈ Adr |-> NoVal]]
\ /
\ memQ = << >>

TypeInvariant ≔

\ /
\ mem ∈ [Adr -> Val]
\ /
\ ctl ∈ [Proc -> \{"rdy", "busy", "waiting", "done"\}]
\ /
\ buf ∈ [Proc -> MReq \cup Val \cup \{NoVal\}]
\ /
\ cache ∈ [Proc -> [Adr -> Val \cup \{NoVal\}]]
\ /
\ memQ ∈ Seq(Proc \X MReq)

Coherence ≔ \A p, q ∈ Proc, a ∈ Adr :

(NoVal \notin \{cache[p][a], cache[q][a]\})

=> (cache[p][a]=cache[q][a])

Req(p) ≔ M!Req(p) /
UNCHANGED <<cache, memQ>>

Rsp(p) ≔ M!Rsp(p) /
UNCHANGED <<cache, memQ>>

RdMiss(p) ≔ /
ctl[p] = "busy"

/
(cache[p][buf[p].adr] # NoVal

/
Len(memQ) < QLen

/
memQ’ = Append(memQ, <<p, buf[p]>>)

/
ctl’ = [ctl EXCEPT ![p] = "waiting"]

/
UNCHANGED <<memInt, mem, cache, memQ>>

DoRd(p) ≔

ctl[p] ∈ \{"busy", "waiting"\}

/
buf[p].op = "Rd"

/
(cache[p][buf[p].adr] # NoVal

/
buf’ = [buf EXCEPT ![p] = cache[p][buf[p].adr]]

/
ctl’ = [ctl EXCEPT ![p] = "done"]

/
UNCHANGED <<memInt, mem, cache, memQ>>

DoWr(p) ≔

LET r ≔ buf[p]

IN /
(ctl[p] = "busy") /
(r.op = "Wr")
A.3. A CACHING MEMORY

\[\text{LET } f[i \in 0 .. \text{Len}(\text{memQ})] =\]
\[\begin{align*}
\text{IF } i=0 & \text{ THEN mem} \\
\text{ELSE } & \text{IF memQ[i][2].op = "Rd"} \\
& \text{THEN } f[i-1] \\
& \text{ELSE } [f[i-1] \text{ EXCEPT } ![\text{memQ[i][2].adr}] = \text{memQ[i][2].val}] \\
\end{align*}\]

\[\text{IN } f[\text{Len}(\text{memQ})]\]

\[\text{MemQWr} = \text{LET } r = \text{Head}(\text{memQ})[2]
\begin{align*}
\text{IN } & (\text{memQ} \neq []) \land (r.\text{op} = "Wr") \\
& \text{mem}' = [\text{mem} \text{ EXCEPT } ![r.\text{adr}] = r.\text{val}] \\
& \text{memQ}' = \text{Tail}(\text{memQ}) \\
& \text{UNCHANGED } <\text{memInt, mem, buf, ctl, cache}> \\
\end{align*}\]

\[\text{MemQRd} = \]
\[\text{LET } p = \text{Head}(\text{memQ})[1]
\begin{align*}
\text{r} = & \text{Head}(\text{memQ})[2] \\
\text{IN } & (\text{memQ} \neq []) \land (r.\text{op} = "Rd") \\
& \text{memQ}' = \text{Tail}(\text{memQ}) \\
& \text{cache}' = [\text{cache} \text{ EXCEPT } ![p][r.\text{adr}] = \text{vmem}[r.\text{adr}]] \\
& \text{UNCHANGED } <\text{memInt, mem, buf, ctl}> \\
\end{align*}\]

\[\text{Evict}(p, a) = \]
\[\begin{align*}
& (\text{ctl}[p] = "waiting") \Rightarrow (\text{buf}[p].\text{adr} \neq a) \\
& \text{cache}' = [\text{cache} \text{ EXCEPT } ![p][a] = \text{NoVal}] \\
& \text{UNCHANGED } <\text{memInt, mem, buf, ctl, memQ}> \\
\end{align*}\]

\[\text{Next} = \]
\[\begin{align*}
& \forall \ E \ p \in \text{Proc} : \forall \ \text{Req}(p) \lor \text{Rsp}(p) \\
& \lor \ \text{RdMiss}(p) \lor \text{DoRd}(p) \lor \text{DoWr}(p) \\
& \lor \ E \ a \ \text{in} \ \text{Adr} : \text{Evict}(p, a) \\
& \lor \ \text{MemQWr} \lor \ \text{MemQRd} \\
\end{align*}\]

\[\text{Spec} = \]
APPENDIX A. THE ASCII SPECIFICATIONS

Init /
[] [Next].<<memInt, mem, buf, ctl, cache, memQ>>

--
THEOREM Spec => [] (TypeInvariant \ Coherence)
--

LM == INSTANCE Memory
THEOREM Spec => LM!Spec

==

A.4 The Alternating Bit Protocol

----------------------------- MODULE AlternatingBit -----------------------------
EXTENDS Naturals, Sequences
CONSTANTS Data
VARIABLES msgQ, ackQ, sBit, sAck, rBit, sent, rcvd

ABInit == /
 msgQ = << >>
 ackQ = << >>
 sBit \in \{0, 1\}
 sAck = sBit
 rBit = sBit
 sent = << >>
 rcvd = << >>

TypeInv == /
 msgQ \in Seq(\{0,1\} \X Data)
 ackQ \in Seq(\{0,1\})
 sBit \in \{0, 1\}
 sAck \in \{0, 1\}
 rBit \in \{0, 1\}
 sent \in Seq(Data)
 rcvd \in Seq(Data)

SndNewValue(d) == /
 sAck = sBit
 sent' = Append(sent, d)
 sBit' = 1 - sBit
 msgQ' = Append(msgQ, <<sBit', d>>)
 UNCHANGED <<ackQ, sAck, rBit, rcvd>>

ReSndMsg ==
 sAck # sBit
 msgQ' = Append(msgQ, <<sBit, sent[Len(sent)]>>)
 UNCHANGED <<ackQ, sBit, sAck, rBit, sent, rcvd>>
A.4. THE ALTERNATING BIT PROTOCOL

RcvMsg ==
 /
 \ msgQ # <<<
 \ msgQ’ = Tail(msgQ)
 \ rBit’ = Head(msgQ)[1]
 \ rcvd’ = IF rBit’ # rBit THEN Append(rcvd, Head(msgQ)[2])
 ELSE rcvd
 \ UNCHANGED <<ackQ, sBit, sAck, sent>>

SndAck == /
 \ ackQ’ = Append(ackQ, rBit)
 \ UNCHANGED <<msgQ, sBit, sAck, rBit, sent, rcvd>>

RcvAck == /
 \ ackQ # << >>
 \ ackQ’ = Tail(ackQ)
 \ sAck’ = Head(ackQ)
 \ UNCHANGED <<msgQ, sBit, rBit, sent, rcvd>>

Lose(c) ==
 /
 c # <<<
 \ E i \in 1..Len(c) :
 c’ = [j \in 1..(Len(c)-1) |-> IF j \leq i THEN c[j]
 ELSE c[j+1]]
 \ UNCHANGED <<sBit, sAck, rBit, sent, rcvd>>

LoseMsg == Lose(msgQ) /
 \ UNCHANGED ackQ

LoseAck == Lose(ackQ) /
 \ UNCHANGED msgQ

ABNext == \ / \ E d \in Data : SndNewValue(d)
 \ / ReSndMsg \ / RcvMsg \ / SndAck \ / RcvAck
 \ / LoseMsg \ / LoseAck

vars == << msgQ, ackQ, sBit, sAck, rBit, sent, rcvd>>
--
Spec == ABInit /
 [][ABNext]_vars
--
Inv == /
 Len(rcvd) \in {Len(sent)-1, Len(sent)}
 \ / \ A i \in 1..Len(rcvd) : rcvd[i] = sent[i]

THEOREM Spec => []Inv
--

------------------ MODULE MCAIternatingBit ------------------
EXTENDS AlternatingBit
CONSTANTS msgQLen, ackQLen, sentLen

ASSUME \(\forall \text{msgQLen} \in \text{Nat} \)
\(\forall \text{ackQLen} \in \text{Nat} \)
\(\forall \text{sentLen} \in \text{Nat} \)

SeqConstraint == \(\forall \text{ Len(msgQ) \leq msgQLen } \)
\(\forall \text{ Len(ackQ) \leq ackQLen } \)
\(\forall \text{ Len(sent) \leq sentLen } \)

==
Bibliography

