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1 Introduction

The original version of the TLA+ language was released at the beginning
of the millennium and described in the book Specifying Systems, published
in 2002. The current version, released around 2006, is Version 2. It is the
version supported by the latest versions of the TLA+ tools and described
in documentation written since then, including the video course and the
hyperbook. TLA+ now means TLA+ Version 2. In this document, it is
called TLA+2 for short. The original version of TLA+ is here called TLA+1.
This document explains the differences between TLA+2 and TLA+1.

Most of the additions to the language in TLA+2 are for writing proofs
that can be checked with TLAPS, the TLA+ proof system. The major
change that affects specifications is that you can now write recursive operator
definitions, as described in Section 2. Another change is the introduction of
lambda expressions, explained in Section 3.

Almost all legal TLA+1 specifications are legal TLA+2 specifications.
Two rather arcane changes have been made to instantiation; they are ex-
plained in Section 5. The only other change that affects TLA+1 specifica-
tions is that the following new keywords have been added in TLA+2, and
thus cannot be used as identifiers.

action have pick suffices
assumption hide proof take
axiom lambda proposition temporal
by lemma prove use
corollary new qed witness
def obvious recursive
define omitted state
defs only

2 Recursive Operator Definitions

The only recursive definitions allowed in TLA+1 were recursive function defi-
nitions. This restriction was inconvenient for the following reasons: (i) spec-
ifying the function’s domain was sometimes difficult, (ii) checking that the
function was applied to an element in the domain could significantly slow
down TLC, and (iii) there was no provision for mutual recursion. I did
not allow recursive operator definitions in TLA+1 because I didn’t know
how to assign a sensible meaning to them—for example, what should be the
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meaning of this silly definition?

F
∆
= choose v : v 6= F

Georges Gonthier and I have figured out how to define recursive operator
definitions so they have the expected meaning when you expect them to
be meaningful—namely, when the value can be computed by expanding the
definition a finite number of times. The precise definition is complicated
and I hope will eventually appear elsewhere.

In TLA+2, the use of a defined operator must come after either its defi-
nition or its declaration by a recursive statement. For example,

recursive fact( )

fact(n)
∆
= if n = 0 then 1 else n ∗ fact(n − 1)

defines fact(n) to equal n ! if n is a natural number. I have no idea what it
defines fact(−2) or fact(“abc”) to equal. (Without the recursive declara-
tion, fact could be used only after its definition, so its use in the right-hand
side of the definition would be illegal.)

The syntax of the recursive statement is the same as that of the con-
stant statement, allowing multiple declarations separated by commas. The
recursive statement can come anywhere before the first use of the opera-
tors it declares, so it’s easy to write mutually recursive definitions. However,
you should put a recursive statement as close as possible to the definitions
of the operators it declares. A tool might treat as recursive any definitions
that come between an operator’s recursive declaration and its definition.

A recursive statement can be used in a let expression to permit re-
cursive definitions local to the let. A symbol declared in a recursive
statement must later be defined to be an operator taking the correct num-
ber of arguments. Thus, recursive instantiations are not allowed; you cannot
write

recursive Ins(_)

Ins(n)
∆
= instance M with . . .

TLA+1 has the nice property that operator definitions are like macros. If F
is defined by

F (x )
∆
= . . .

then F (exp) is simply the expression obtained from the right-hand side of
the definition by replacing every instance of x with exp. In TLA+2, this
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is not true for recursively-defined operators. We do not know if fact(−2)
equals

if n = 0 then 1 else n ∗ fact(−3)

It can be proved that

fact(42)
∆
= if n = 0 then 1 else n ∗ fact(41)

However, because fact is defined recursively, this must be proved. The
method of proving it is fairly standard; I won’t discuss it here.

3 Lambda Expressions

TLA+ allows you to define higher-order operators—that is, ones that take
operators as arguments, such as

F (Op(_, _))
∆
= Op(1, 2)

The argument of F is an operator that takes two arguments. In TLA+1,
such an argument had to be the name of an operator. For example, we
might define

Id(a, b)
∆
= a + 2 ∗ b

and write F (Id). TLA+2 allows you to use F without having to define an
operator to use as its argument. Instead of defining Id in this way and
writing F (Id), you can write

F (lambda a, b : a + 2 ∗ b)

The lambda expression is the operator that Id is defined to equal.
A lambda expression can also be used in an instance statement to in-

stantiate an operator parameter. For example, with the definition of Id
given above, the following two statements are equivalent.

instance M with Op ← Id

instance M with Op ← lambda a, b : a + 2 ∗ b

Syntactically, a lambda expression consists of the keyword lambda followed
by a comma-separated list of identifiers, followed by “ : ”, followed by an
expression. A lambda expression can be used only as the argument of a
higher-order operator or to the right of a “←” in an instance statement.
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4 Theorems and Assumptions

4.1 Naming

There is no need for theorem or assumption names in a specification, since
the name would be equivalent to true. However, theorem and assumption
names are used in writing proofs. In TLA+2, you can name a theorem or
assumption by inserting an optional “identifier

∆
= ” right after theorem

or assume, as in

theorem Fermat
∆
= ¬∃n ∈ Nat \ (0 . . 2) : . . .

This is equivalent to

Fermat
∆
= ¬∃n ∈ Nat \ (0 . . 2) : . . .

theorem Fermat

A theorem cannot have parameters.
TLA+2 allows lemma and proposition as synonyms for theorem and

assumption as a synonym for assume. TLA+2 also allows axiom as almost
a synonym for assume and assumption; it differs only in that (in Toolbox
releases later than Version 1.1.2) TLC does not check assumptions labeled
axiom. This is useful when writing assumptions that TLC can’t check, for
use in a proof.

4.2 assume/prove

In TLA+2, a theorem can assert either a formula or an assume/prove. A
formula is a Boolean-valued expression. However, since TLA+ is untyped,
the silly statement “theorem 42” is a legal (but unprovable) theorem. (See
Section 16.1.3 of Specifying Systems.)

An assume/prove asserts a proof rule. Here is how it is used to assert a
well-known rule of elementary logic that we can prove P ⇒ Q by assuming
P and proving Q .

theorem DeductionRule
∆
= assume new P , new Q ,

assume P
prove Q

prove P ⇒ Q

Logicians often use “`” to express such a rule, writing this as (P ` Q) `
(P ⇒ Q). In TLA+, we need to declare identifiers like P and Q before they
can be used. Here is a standard proof rule of predicate logic; it asserts that
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we can prove ∀ x ∈ S : P(x ) by choosing a brand-new identifier x , assuming
x ∈ S , and proving P(x ).

theorem assume new P(_), new S ,

assume new x ∈ S
prove P(x )

prove ∀x ∈ S : P(x )

The third assumption of this rule,

assume new x ∈ S prove P(x )

is an abbreviation for

assume new x , x ∈ S
prove P(x )

Here are a couple of proof rules of TLA. The first asserts that a primed
constant equals itself.

theorem Constancy
∆
= assume constant C

prove C ′ = C

Here is a standard temporal-logic rule:

theorem assume temporal F , temporal G
prove 2(F ∧G) ≡ 2F ∧2G

These theorems assert a rule that is valid whenever expressions or operators
of the specified (or lower) level are substituted for the declared identifiers.
For example, Theorem Constancy implies (2+N )′ = (2+N ) if N is declared
to be a constant parameter of the module. See Section 17.2 of Specifying
Systems for an explanation of levels. (The action level is called transition-
level there.)

The declaration new is equivalent to constant. If all the expressions
and identifiers that appear in a theorem have constant level, then the the-
orem is valid when expressions of any level are substituted for the declared
identifiers.

You can also use a variable declaration in an assume to state that
some identifier is a TLA+ variable. To illustrate the difference between a
variable and a state declaration, consider this valid TLA+ rule.

theorem assume variable x , variable y
prove enabled x ′ 6= y ′
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The theorem would not be valid if “variable” were replaced by “state”
because the resulting theorem would allow any state-level expressions to be
substituted for x and y . Substituting the variable z for both x and y would
then yield the conclusion enabled z ′ 6= z ′, which is false.

You have probably inferred most of the grammar of assume/prove
assertions:

• An assume/prove consists of the token assume, followed by a comma-
separated list of assumptions, followed by the token prove, followed
by an expression.

• An assumption is an expression, a declaration, or an assume/prove.

• A declaration may be:

– The same as a constant statement in the body of the mod-
ule that declares a single constant parameter, except that the
keyword constant may optionally be replaced by new, state,
action, or temporal.

– The token new or constant, followed by an identifier, the token
∈ , and an expression.

– The token variable followed by an identifier.

An optional new token may precede any of these declarations except
for one beginning with a new token. (The unnecessary “new” may
help some people understand the meaning of the declaration.)

Indentation is not significant. (In TLA+2 as in TLA+1, indentation matters
only in bulleted lists of conjuncts and disjuncts.)

The meaning of assume/prove assertions is subtle when they contain
temporal or action-level formulas. See Section 8.3 on page 35 for an expla-
nation.

5 Instantiation

Two minor changes to instantiation have been made in TLA+2 : (i) there
is a different syntax for instantiated in-, pre-, and postfix operators, and
(ii) operator instantiation has been restricted to allow instantiation only
with “Leibniz” operators, which are defined below.
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5.1 Instantiating *fix Operators

If module M defines an infix operator such as &&, then in TLA+1 the
statement

Foo
∆
= instance M with . . .

defines an infix operator Foo !&& that would be used in such strange ex-
pressions as

1 Foo !&& 2

TLA+2 eliminates this awkward syntax. Instead, the operator Foo !&& is a
“normal” nonfix operator and not an infix one, so you write this expression
as Foo !&&(1, 2). If this were a parameterized instantiation, so Foo took an
argument, then you would write something like Foo(42)!&&(1, 2).

The analogous change has been made to postfix operators and the prefix
operator unary “−”, which must be written as “-.” after a “ ! ”.

For the sake of uniformity, TLA+2 permits any infix or postfix operator
to be used as a nonfix operator. For example, +(1,2) is another way of
writing 1+2. (Prefix operators could always be written this way.) This
alternate syntax does not apply to the left-hand side of a definition. For
example, the only way to define the infix operator && is to write something
like

a && b
∆
= . . .

Because of a bug that is unlikely to be fixed, the current SANY parser does
not accept this alternate syntax for the infix operator “−”; it accepts only
2-1 and not -(2,1).

5.2 Leibniz Operators and Instantiation

Consider the following module.

module M
constants C , D , F ( )

theorem (C = D) ⇒ (F (C ) = F (D))

The perfectly reasonable theorem in this module is not valid in TLA+1 for
the following reason. The semantics of TLA+ requires that any instantiation
of a valid theorem be valid. Now consider
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variables x , y

Prime(p)
∆
= p ′

instance M with C ← x , D ← y , F ← Prime

This imports the theorem from module M as

theorem (x = y)⇒ (x ′ = y ′)

which is not valid. (Equality of the values of x and y in the current state
doesn’t imply that they are equal in the next state.)

In TLA+2, the theorem of module M is valid, which means that this
instance M statement is illegal. It is illegal because TLA+2 allows in-
stantiation of an operator parameter only by a Leibniz operator, and F is
non-Leibniz. An operator F of a single argument is defined to be Leibniz
iff e = f implies F (e) = F (f ), for any expressions e and f . (Logicians
generally use the term substitutive rather than Leibniz.) For an operator F
that takes k arguments, F is Leibniz iff the value of F (e1, . . . , ek ) remains
unchanged if any of the expressions e i is replaced by an equal expression.
Constant parameters are assumed to be Leibniz, so one constant parameter
can be instantiated by another.

In TLA+, all built-in and definable constant operators are Leibniz. The
only built-in TLA+ operators that are not Leibniz are the action operators
and the temporal operators, listed in Tables 3 and 4 of Specifying Systems.
In a non-constant module, a constant parameter can be instantiated only
by a constant operator. Thus, the restriction added in TLA+2 is automati-
cally satisfied except when substituting non-constant operators in a constant
module. However, a non-constant operator can be Leibniz—for example, the
Leibniz operator G defined by

G(a)
∆
= x ′ = [x except ![a] = y ′]

For a defined operator to be non-Leibniz, one of its parameters must appear
in the definition within an argument of a non-Leibniz operator like ′ (prime).

6 Naming Subexpressions

When writing proofs, it is often necessary to refer to subexpressions of a for-
mula. In theory, one could use definitions to name all these subexpressions.
For example, if

Foo(y)
∆
= (x + y) + z
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and we need to mention the subexpression (x + 13) of Foo(13), we could
write

Newname(y)
∆
= (x + y)

Foo(y)
∆
= NewName(y) + z

This doesn’t work in practice because it results in a mass of non-locally
defined names, and because we may not know which subformulas need to
be mentioned when we define the formula.

TLA+2 provides a method of naming subexpressions of a definition. If F
is defined by F (a, b)

∆
= . . . , then any subexpression of the formula obtained

by substituting expressions A for a and B for b in the right-hand side of this
definition has a name beginning “F (A,B) !”. (Although this is a new use of
the symbol “!”, it is a natural extension of its use with module instantiation.)

You can use subexpression names in any expression. When writing a
specification, you can define operators in terms of subexpressions of the
definitions of other operators. Don’t! Subexpression names should be used
only in proofs. In a specification, you should use definitions to give names
to the subexpressions that you want to re-use in this way.

6.1 Labels and Labeled Subexpression Names

Any subexpression of a definition can be labeled. The syntax of a labeled
expression is

label :: expression

(The symbol “::” is typed “::”.) The label applies to the largest possible
expression that follows it. In other words, the end of the labeled expression
is the same as the end of the expression that you would get by replacing the
“label ::” with “∀ x : ”. However, the expression is illegal if removing the
label would change the way the expression is parsed. For example,

a + lab :: b ∗ c

is legal because it is parsed as a + (lab :: (b ∗ c)), which is how it would be
parsed if the label lab were not there. However,

a ∗ lab :: b + c

is illegal because it would be parsed as a ∗ (lab :: (b + c)) and removing the
label causes the expression to be parsed as (a ∗ b) + c.
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Label parameters are required if labels occur within the scope of bound
identifiers. Here is an example.

F (a)
∆
= ∀ b : l1(b) :: (a > 0)⇒

∧ . . .
∧ l2 :: ∃ c : ∧ . . .

∧ ∃ d : l3(c, d) :: a − b > c − d

For this example, F (A)! l1(B)! l2! l3(C ,D) names the expression A − B >
C − D . Note how the parameters of each label are the bound identifiers
introduced between it and the next outer-most label. Those identifiers can
appear in any order. For example, if the label l3(c, d) were replaced by
l3(d , c), then F (A)! l1(B)! l2! l3(C ,D) would name the expression A−B >
D − C .

In this example, a reference to the subexpression labeled by l3(c, d)
from outside the definition of F , must specify the values of all the bound
identifiers a, b, c, and d . That’s why labels must include the bound identi-
fiers as parameters. Also observe that to name a labeled subexpression, we
have to name all the labeled subexpressions within which it lies. We’re not
even allowed to eliminate the label l2, even though it is superfluous in this
example.

Label names do not conflict with operator names. In this example, any
one of the label names l1, l2, or l3 could be replaced by F . The rule for name
conflict is the obvious one needed to guarantee that there’s no ambiguity
in a subexpression name (where we are not allowed to use the number of
parameters to disambiguate). Thus, we cannot label the first conjunct of
the ∃ c expression with l3(c), but we could label it with l1(c) or l2(c).

For subexpressions of the definition of an infix, postfix, or prefix operator,
we use the “nonfix” form. For example, a subexpression of the definition of
&& would have the form &&(A,B) ! . . . .

We can also name subexpressions of definitions in instantiated modules.
For example, if we have

Ins(x )
∆
= instance M with . . .

and ν is the name of any subexpression of a definition in module M , then
Ins(exp)!ν is the name of the subexpression of the instantiated definition
obtained when exp is substituted for x .

We call a subexpression name having one of the forms described here a
labeled subexpression name. We include in this category the trivial case in
which there is no label name, only the name of a defined operator—possibly
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in an instantiated module. The precise definition is contained in the “fine
print” below. You probably don’t want to read it.

The Fine Print

Here is the general definition explained above with examples. We say that label
lab1 is the containing label of lab2 iff (i) lab2 lies within the expression labeled by
lab1 and (ii) if lab2 lies within the expression labeled by any other label, then lab1
also lies within that expression.

We use the notation that f (e1, . . . , ek ) denotes f when k = 0. A label lab has
the form id(p1, . . . , pk ) where id and the pi are identifiers, the pi are all distinct,
and {p1, . . . , pk} is the set of all bound identifiers pi such that:

• Label lab lies within the scope of pi .

• If lab has a containing label labc, then the expression that introduces pi lies
within the expression labeled by labc.

We call id the name of the label. Two labels that either have no containing label
or have the same containing label must have different names.

A simple labeled subexpression name of a module M has the form
prefix ! labexp1 ! . . . ! labexpn , where prefix has the form Op(e1, . . . , ek [0]), each labexpi

has the form id i(e1, . . . , ek [i]), Op and the id i are identifiers, and the ej are ex-
pressions. It must satisfy:

• The definition

Op(p1, . . . , pk [0])
∆
= . . .

occurs at the top level (not inside a let or inner module) of M .

• id1 must be the name of a label lab1 in the definition of Op that has no
containing label.

• If i > 1, then id i must be the identifier of a label labi whose containing label
is labi−1.

• k [i ] must equal the number of parameters in labi , for each i > 0.

This labeled subexpression name denotes the expression obtained from the expres-
sion labeled with labn by substituting for each parameter of Op and of each labi

the corresponding argument of prefix and labexpi , respectively.
A labeled subexpression name of a module M is either a simple labeled subex-

pression name of M or else has the form Id(e1, . . . , ek ) ! λ where there is a state-
ment

Id(e1, . . . , ek )
∆
= instance N . . .

at the outermost level of M and λ is a labeled subexpression name of module N .
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6.2 Positional Subexpression Names

Instead of using labels, we can name subexpressions of a definition by a se-
quence of positional selectors that indicate the position of the subexpression
in the parse tree. Consider this example

F (a)
∆
= ∧ . . .
∧ . . .
∧ Len(x [a]) > 0
∧ . . .

Here are how some of the subexpressions of this definition are named, where
A is an arbitrary expression:

• F (A)!3 names Len(x [A]) > 0, the third conjunct of F (A)—that is,
of the right-hand side of the definition with A substituted for a. We
think of this conjunct list as the application of a conjunction operator
that takes four arguments, the third being Len(x [A]) > 0.

• F (A)!3!1 names Len(x [A]), the first argument of > , the top-level
operator of the expression F (A)!3

• F (A)!3!1!1 names x [A], the first (and only) argument of the top-level
operator of the expression F (A)!3!1.

• The naming of subexpressions of x [A] is based on the realization that
this expression represents the application of a function-application op-
erator to the two arguments x and A. Thus, F (A)!3!1!1!1 names x
and F (A)!3!1!1!2 names A

The positional selector “!〈” is always synonymous with !1, and “! 〉” is
synonymous with !2 when selecting the second argument of an operator
that takes two arguments. Thus, instead of F (A)!3!1!1!2 , we could write
F (A)!3!〈 !〈 ! 〉 or F (A)!3!〈 !1! 〉 or F (A)!3!1!〈 !2 or . . . . As usual, “〈” is
typed “<<” and “〉” is typed “>>”.

The use of positional selectors to pick an argument of an operator is self-
evident for most operators that do not introduce bound identifiers. Here are
the cases that are not obvious.

• In [f except ![a] = g , ![b].c = h] we select f with !1, g with !2,
and h with !3. No other subexpressions of the except construct can
be named.
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• r .fld is an application of a record-field selector operator to the two
arguments r and “fld”, so !1 selects r . (You can also use !2 to select
“fld”, but there’s no reason to name a simple string constant with a
subexpression name.)

• In [fld1 7→ val1, . . . , fldn 7→ valn ] and [fld1 : val1, . . . , fldn : valn ]
the selector ! i names the subexpression val i for i ∈ 1 . . n. The field
names fld i cannot be selected. (There is no point naming fld i , since
it’s just a string constant.)

• In if p then e else f the selector !1 names p, the selector !2
names e, and the selector !3 names f .

• In case p1 → e1 2 . . . 2 pn → en the selector !i !1 names pi and
!i !2 names e i . If pn is the token other, then it cannot be named.

• In WFe(A) and SFe(A) the selector !1 names e and !2 names A.

• In [A]e and 〈A〉e the selector !1 names A and !2 names e.

• In let . . . in e the selector !1 names e. This is rather subtle
because we are naming an expression that contains operators defined
in the let clause that are not defined in the context in which the
subexpression name appears. Consider this example

F
∆
= let G

∆
= 1 in G + 1

G
∆
= 22

H
∆
= F !1

The F !1 in the definition of H names the expression G + 1 in which
G has the meaning it acquires in the let definition. Thus, H is equal
to 2, not to 23.

We will see below how to name subexpressions of let definitions, such
as the first (local) definition of G above.

I now describe selectors for subexpressions of constructs that introduce
bound identifiers. Consider this example:

R
∆
= ∃ x ∈ S , y ∈ T : x + y > 2

• R !(X ,Y ) names X + Y > 2, for any expressions X and Y .

• R !1 names S .
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• R !2 names T .

In general, for any construct that introduces bound identifiers:

• !(e1, . . . , en) selects the body (the expression in which the bound iden-
tifiers may appear) with each expression e i substituted for the i th

bound identifier.

• If the bound identifiers are given a range by an expression of the form
“ ∈ S”, then !i selects the i th such range S .

For example, in the expression

[x , y ∈ S , z ∈ T 7→ x + y + z ]

the selector !1 names S , the selector !2 names T , and the selector !(X ,Y ,Z )
names X + Y + Z .

Parentheses are “invisible” with respect to naming. For example, it
doesn’t matter if ν names the subexpression a + b or the subexpression
((a + b)) ; in either case, ν !〈 names a.

We usually don’t need to name the entire expression to the right of a
“

∆
=” because the operator being defined names it. However, as observed

in Section 2, this is not true for recursively defined operators. If Op is
recursively defined by

Op(p1, . . . , pk )
∆
= exp

then “Op(P1, . . . ,Pk ) ! :” names exp with P i substituted for pi , for each i
in 1 . . k .

A positional subexpression name consists of a labeled subexpression name
(defined in Section 6.1 above) followed by a sequence of positional selectors.
For example, in

F (c)
∆
= a ∗ lab :: (b + c ∗ d)

F (7)! lab ! 〉 names 7 ∗ d . Remember that a labeled subexpression need not
contain labels—for example, F (7) is a labeled subexpression name.
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6.3 Subexpressions of let Definitions

If a positional subexpression name ν names a let/in expression and Op is
an operator defined in the let clause, then ν !Op(e1, . . . , en) is the name
of the expression Op(e1, . . . , en) interpreted in the context determined by
ν. For example, in

F (a)
∆
= ∧ . . .
∧ let G(b)

∆
= a + b

in . . .

F (A)!2!G(B) names the expression G(B), where the definition of G is
interpreted in a context in which A is substituted for a. This expression of
course equals A+B . (However, if G were recursively defined, F (A)!2!G(B)

might not be so simply related to the expression to the right of the “
∆
=” in

G ’s definition.) We can also name subexpressions of the definition of G . For
example, F (A)!2!G(B)! 〉 names B . The naming process can be continued
all the way down, naming subexpressions of let definitions contained within
let definitions contained within . . . .

If the let/in expression is labeled, then it can be named by a la-
beled subexpression name λ. In that case, λ !Op(e1, . . . , en) is a labeled
subexpression name that names a subexpression of the in clause with label
Op(p1, . . . , pn). To refer to the operator Op defined in the let clause, just
add a “! :” to the end of λ, writing λ! :!Op(e1, . . . , en) . In particular, if H is
defined to equal the let/in expression, then we write H ! :!Op(e1, . . . , en) ,
even if H is not recursively defined.

6.4 Subexpressions of an assume/prove

If we have

theorem Id
∆
= assume A1, . . . ,An prove G

then Id is not an expression and cannot be used as one. Subexpressions
of an assume/prove can be named with labels or positionally, where Id !i
names Ai if 1 ≤ i ≤ n, and Id !n +1 names G . However, the assumptions
can contain declarations like new C , so it is possible to name a subex-
pression of an assume/prove that contains identifiers declared within the
assume/prove. Such a name can be used only within the scope of those
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declarations. For example, consider

theorem T
∆
= assume x > 0, new C ∈ Nat , y > C

prove x + y > C
...

Foo
∆
= . . .

Then T !1 names the expression x > 0, which can be used in the definition of
Foo. However, T !3 names the expression y > C that contains the constant
C , and the definition Foo is not within the scope of the declaration of C , so
T !3 cannot be used within the definition of Foo. In fact, T !3 can be used
only within the proof of T . (Proofs are discussed in Section 7.)

6.5 Using Subexpression Names as Operators

Subexpression names can be used as operator names by replacing every part
of the form !id(e1, . . . , en) by !id , and every selector !(e1, . . . , en) by !@ .
For example, consider:

F (Op(_, _, _))
∆
= Op(1, 2, 3)

G
∆
= ∀ x : P ⊆ {〈x , y +z 〉 : y ∈ S , z ∈ T}

Then G !(X )! 〉 !(Y ,Z ) is the expression 〈X , Y+Z 〉 , so G !@! 〉 !@ is the
operator

lambda x , y , z : 〈x , y +z 〉

and F (G !@! 〉 !@) equals 〈1, 2+3〉 .

7 The Proof Syntax

This section describes the syntax of proofs and how proofs are checked by
TLAPS, the TLA+ proof checker.

7.1 The structure of a proof

A theorem is optionally followed by a proof. A proof is either a terminal
proof or a sequence of steps, some of which have proofs. Figure 1 shows a
possible proof structure, where the actual assertions made by the steps or by
the terminal proofs are elided. This example is a proof having level number
1 and consisting of three steps named 〈1〉1, 〈1〉2, and 〈1〉3. Step 〈1〉1 has a
level-2 proof that consists of three steps, one named 〈2〉4a, an unnamed step
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〈1〉1. . . .
proof
〈2〉4a. . . .

obvious
〈2〉 . . .

〈17〉 . . .
proof omitted

〈17〉1. . . .
〈17〉 . . .
〈17〉ab qed

〈2〉11 qed
by . . .

〈1〉2. . . .
by . . .

〈1〉3. qed

Figure 1: The structure of a simple proof.

(marked by the token “〈2〉”), and a qed step named 〈2〉11. Step 〈2〉4a has
a terminal proof. The unnamed level-2 proof step has a four-step proof with
level number 17. Only its first step has a proof—a terminal proof asserting
that the actual proof is omitted.

A proof may optionally begin with the token proof. Thus, the proof
token that begins the proof of step 〈1〉1 and that precedes the token omit-
ted could be removed, and a proof token could be added before step 〈1〉1,
before the “obvious” terminal proof, before the first level 〈17〉 step, and
before either of the by proofs. The formatting is for readability only; in-
dentation has no significance.

In general, a proof consists of the optional keyword proof followed by
either a terminal proof or else by a sequence of steps followed by a qed
step. A step or a qed step may have a proof, which is called a subproof
of the proof containing the step. A terminal proof consists of the keyword
obvious or omitted or else begins with the keyword by.

Each step begins with a step-starting token that consists of a step name
followed by an optional sequence of periods. A step name consists of

• < (printed as “〈”)

• a number called the step’s level number or a + or ∗ character. (The
meaning of + and ∗ is explained below.)
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• > (printed as “〉”)

• an optional string of letters and/or digits. If this string is present,
then the step is said to be named and its step name consists of the
entire token up to and including this string.

Since a step-starting token is a single token, it may not contain spaces. (Note
that a step-starting token is the one place in which “〈” and “〉” are typed
“<” and “>” rather than “<<” and “>>”.) All the steps of a proof have the
same level number, which is less than that of any of its subproofs. A step
with a greater level number than the preceding step begins the proof of that
preceding step, whether or not it is preceded by a proof token.

Named steps are referred to by their step names. The scope of a level k
step name (the part of a proof within which it can be used) consists of the
step’s proof (if it has one), all the level-k steps in the same proof that follow
it and in those steps’ proofs. A step name cannot be used within its scope
to label another step. However, the same step name can be used in different
subproofs of a proof. For example, step names 〈2〉4a and 〈17〉1 could be
used in a proof of step 〈1〉3.

The level number of a step may be written implicitly with a “∗” or a
“+”. To explain the meaning of such a level number, let us define the current
level at a proof step to equal −1 for the first step of the entire proof, and
otherwise to equal the level of the latest preceding step that is neither a qed
step nor followed by a qed step of the same level. In the example above, the
current level at step 〈1〉1 is −1, the current level at step 〈2〉4a is 1, and the
current level at step 〈2〉11 is 2. Let L be the current level at a step whose
step-starting token begins with “〈∗〉” or “〈+〉”. Then

• a “+” is equivalent to the number L + 1, and

• a “∗” is equivalent to the number L + 1 if it immediately follows a
proof token or is at the beginning of the entire proof; otherwise it is
equivalent to the number L.

In the above example, 〈1〉1 can be replaced by either 〈+〉1 or 〈∗〉1; 〈2〉4a
can be replaced by 〈+〉4a or 〈∗〉4a; and either of the other two “〈2〉 . . .”
tokens could be replaced by “〈∗〉 . . .”. If the proof token before it were
missing, then 〈2〉4a could be replaced only by 〈+〉4a and not by 〈∗〉4a. In
all cases, it makes no difference if we use the “∗” or “+” or the equivalent
explicit level number.

A “∗” can also be used instead of a level number in a reference to a
proof step, in which case it stands for the current level. For example, you
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can write 〈∗〉4a instead of 〈2〉4a in the by statement that is the proof of
step 〈2〉11. Again, it makes no difference if you write “∗” or the equivalent
explicit level number.

TLAPS (the TLA+ prover) does not yet support references to
proof steps that use “∗” as level number.

7.2 use, hide, and by

7.2.1 use and hide

At any point in a module, there is a set of current declarations, a set of
current definitions, and a set of known facts. Outside a proof, the cur-
rent declarations come from constant or variable declarations within the
module and within modules it extends; the current definitions come from
definitions within the module and within extended or instantiated modules;
and the facts come from assumptions and theorems asserted thus far in the
module and in extended modules, and from assertions imported thus far by
instantiation. Each theorem in an instantiated module yields the assertion
that the instantiated theorem follows from the instantiation of the module’s
assumptions. For example, if module M contains the single assumption

assume A

and the theorem

theorem Thm
∆
= T

then the statement

Mod
∆
= instance M with . . .

imports a theorem named Mod !Thm that asserts

assume A
prove T

where A and T are the formulas obtained from A and T by performing the
substitutions specified by the instance statement’s with clause.

There are also subsets of the sets of current definitions and known facts
called the usable definitions and the usable facts. These are the definitions
that TLAPS expands and the facts that it tries to apply when trying to prove
something. (The definitions referred to here are “outer-level” definitions
and not let definitions, which are always expandable.) Here are the default
values of these subsets at points in a module outside a proof.
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• Only the definitions of theorem names are usable. (Section 4.1 explains
how theorems are named.)

• No theorems or assumptions are usable.

The defaults can be overridden by use and hide statements. Such state-
ments can appear anywhere in the body of the module—that is, at the “top
level”, not inside any other statements. A use or hide statement consists of
the keyword use or hide followed by an optional list of facts, optionally
followed by the keyword def or defs and a list of definition specifiers. (It
must include at least one fact or definition specifier.)

A fact is one of the following:

• The name of a theorem, assumption, or proof step.

• An arbitrary formula—but only in a use statement, not a hide state-
ment. The formula must be easily provable from the currently usable
facts and the preceding facts in the use statement. “Easily provable”
means that a proof tool should be able to find the proof without any
help from the user.

The parser also allows the following two kinds of “facts” in a use or hide
statement. However, they are not supported by TLAPS and are likely to be
removed from the language.

• module Name, indicating that all known facts obtained from the
module Name are to be added or removed from the set of usable facts.
The module name must appear in an extends or instance statement
or else be the name of the current module.

• An identifier Id that appears in a statement of the form

Id
∆
= instance M . . .

It adds or removes from the set of usable facts all facts imported from
module M . The instance statement cannot have parameters—that
is, it can’t be of the form Id(x )

∆
= . . . .

Theorems in certain special standard modules will direct TLAPS to use
decision procedures or proof tactics. For example, there will be a theorem
named SimpleArithmetic that causes TLAPS to apply a certain decision
procedure for arithmetic when trying to prove something.

A definition specifier is the name of a defined operator—for example,
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• F if the module contains the definition F (x , y)
∆
= . . . .

• Ins !F if the current module contains Ins(a)
∆
= instance M . . . and

F is defined in M .

The SANY parser also accepts the following two kinds of definition specifiers.
However, they are not supported by TLAPS and will probably be eliminated
from the language.

• module Name, indicating that all definitions from the module Name
are to be added or removed from the set of usable definitions. The
module name must appear in an extends or instance statement or
else be the name of the current module.

• An identifier Id that appears in a statement

Id(p1, . . . , pk )
∆
= instance M . . .

(possibly with k = 0). It indicates that all the definitions imported
from the instantiation are to be added or removed.

7.2.2 by

A terminal by proof has the same syntax as a use statement, except that it
starts instead with the keyword by. As explained below, at any point in a
proof there will be sets of known and usable facts and of current and usable
definitions. There will also be a current goal. A by proof asserts that this
goal follows easily from the set of usable facts together with the set of facts
specified in the by statement, using only those definitions contained in the
set of usable definitions or specified by the statement. “Easily” means that
a proof tool should be able to find the proof without any help from the user.

In addition to names of theorems, assumptions, and steps, a fact in a by
statement can be an arbitrary formula. Such a fact must follow easily from
the set of usable facts together with the previous facts in the by statement.
For example, suppose the set of currently usable facts includes the fact
e ∈ S . You might write

〈3〉1. ∀x ∈ S : P(x )

〈3〉2. P(e + 1)
by 〈3〉1, P(e)

The fact P(e), which follows from e ∈ S and 〈3〉1, makes the proof easier
to understand (and easier for a prover to check) by alerting the reader that
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to prove P(e + 1) from usable facts and the fact 〈3〉1, he (or it) should first
note that P(e) follows from these facts. Arbitrary expressions can also be
used as facts in a use, but not in a hide.

A by only proof begins with the keywords by only. Unlike in an
ordinary by proof, the current goal must follow easily from just the specified
facts and the currently known domain formulas, without using any other
usable facts. TLAPS uses all currently usable definitions plus the ones
specified by the def clause.

TLAPS also allows the use in a by or by only proof or in a use state-
ment of a fact that is trivially equivalent to a known (but not necessarily
usable) fact. For example, if a module contains

theorem Elementary
∆
= 1 + 1 = 2

then the facts Elementary and 1 + 1 = 2 can be used interchangably any-
where within the scope of the definition of Elementary .

7.2.3 obvious and omitted

The terminal proof obvious asserts that the current goal follows easily from
the set of known facts and the definitions contained in the set of usable
definitions.

The terminal “proof” omitted means that the user is asserting the
validity of the step without providing a proof. It asserts that the user has
deliberately chosen not to provide a proof, and has not omitted it either
accidentally or temporarily while writing other parts of the proof.

A proof is incomplete if it contains a statement with no proof. Incom-
plete proofs will be the norm while a user is developing the proof. TLAPS
attempts to check a step only if the step has a proof other than the terminal
“proof” omitted.

7.3 The Current State

At each point in a proof there is a current state that consists of:

• The set of current declarations.

• The set of current definitions and a subset consisting of the usable
definitions.

• A set of currently known facts and a subset consisting of the usable
facts.
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• A current goal, which is a formula.

Recall that at the start of a theorem, there are sets of current declarations,
current and usable definitions, and facts and usable facts described above.
The state at the start of the theorem’s proof is obtained by adding to these
sets the following:

• If the theorem asserts a formula, then the formula becomes the current
goal.

• If the theorem asserts an assume/prove, then the declarations in the
assumptions are added to the set of current declarations. The set of
formulas and assume/proves asserted in the assumptions is added to
the set of known facts; it is also added to the set of usable facts iff the
theorem has no name. The prove formula becomes the current goal.
(If an assumption is an assume/prove, then the declarations of the
inner assume are not added to the set of current declarations.)

Remember that the assumption new C ∈ S is an abbreviation for
the declaration new C and the assertion C ∈ S . An assertion of the
form C ∈ S obtained from a declaration is called a domain formula.
Domain formulas are always added to the set of usable facts as well as
to the set of known facts, even if the theorem is unnamed.

After the theorem’s proof (if any), the current state reverts to the state right
before the theorem, with the theorem added to the set of known facts iff it
is named. An unnamed theorem can never be used in a proof.

To explain the meaning of a step, we describe the relation between the
state of the proof at the (beginning of the) step and

• the state at the beginning of the statement’s proof (if it has one), and

• the state immediately after the statement and its proof (if it has one).

7.4 Steps That Take Proofs

In the following descriptions, σ will be used to denote an arbitrary step-
starting token.

7.4.1 Formulas and assume/prove

A step that asserts a formula or an assume/prove affects the state exactly
the same way as a theorem. It makes either the formula or the prove asser-
tion the current goal of the step’s proof. The formulas and assume/prove
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assertions from the assume clause are added to the set of usable facts iff
the step is unnamed. However, domain formulas obtained from new clauses
are always added to the set of usable facts.

After the step and its proof, the step’s assertion is added to the set of
usable facts iff the step is unnamed. (An unnamed step can never be referred
to in a by or use, so the step’s assertion must be put into the set of usable
facts for it ever to be used.)

7.4.2 case

A case step consists of the step-starting token followed by the keyword
case and a formula. The step “σ case F” is equivalent to

σ assume F prove G

where G is the current goal. (Since G is already the current goal, this means
that the current goal remains the same.)

7.4.3 @ Steps

A common method of proving an inequality is by proving a sequence of
inequalities. For example, to prove A ≤ D , we might prove A ≤ B ≤ C ≤ D .
Such a proof might appear inside a proof as follows (where the proofs of the
individual steps are omitted).

〈2〉3. A ≤ D

〈3〉1. A ≤ B

〈3〉2. B ≤ C

〈3〉3. C ≤ D

〈3〉4. qed
by 〈3〉1, 〈3〉2, 〈3〉3

It’s a nuisance to have to write B and C twice if they’re large formulas.
TLA+2 provides the following abbreviated way of writing this proof.

〈2〉3. A ≤ D

〈3〉1. A ≤ B

〈3〉2. @ ≤ C

〈3〉3. @ ≤ D

〈3〉4. qed
by 〈3〉1, 〈3〉2, 〈3〉3
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This style of reasoning can be used with any transitive operator or combi-
nation of operators, such as

A = B = C = D
A ⇒ B ⇒ C ⇒ D
A ⊆ B ⊆ C ⊆ D
A ≤ B < C ≤ D

However, the token @ followed by an infix operator followed by an expression
can be used in a step that follows any @ step or any formula step in which
the formula’s top-level operator is an infix operator. The “@” then refers to
the right-hand side of the preceding step’s formula. Although it’s bad style
and you shouldn’t do it, you could write

〈3〉4. A ≤ B

〈3〉5. @ > C

where the @ stands for B .

7.4.4 suffices

The step σ suffices A asserts that proving A proves the current goal,
where A can be a formula or an assume/prove. At the beginning of the
step’s proof, A is added to the set of known facts and to the set of usable
facts. (The proof must prove the current goal.) After the step and its proof:

• If A is a formula, then it is made the current goal.

• If A is an assume/prove, then:

– The declarations in its assumptions are added to the set of current
declarations and the domain formulas from those declarations are
added to the sets of known and usable facts.

– The assertions among its assumptions (the formulas and the as-
sume/proves) are added to the set of known facts. They are
added to the set of usable facts iff the step is not named.

– The prove formula is made the current goal.

7.4.5 pick

A pick step has the same syntax as one that asserts a ∃ formula, except
with the ∃ replaced by the token pick. For example, the step
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σ pick x ∈ S , y ∈ T : P(x , y)

asserts that there exist values x in S and y in T satisfying P(x , y), and then
declares x and y to be equal to an arbitrary pair of such values. The state
at the start of the step’s proof is the same as for the formula obtained by
replacing pick by ∃ . After the proof:

• constant declarations of the identifiers introduced by the step are
added to the set of declarations and the domain formulas of those
declarations are added to the sets of known and usable facts. (In this
example, the domain formulas are x ∈ S and y ∈ T .)

• The body of the pick (in this example, the formula P(x , y)) is added
to the set of known facts. It is added to the set of usable facts iff the
step is not named.

A pick step is effectively translated to two steps. For example, the step and
its proof

σ pick x ∈ S , y ∈ T : P(x , y)
proof Π

are translated to

ρ ∃ x ∈ S , y ∈ T : P(x , y)
proof Π

σ suffices assume new x ∈ S , new y ∈ T
P(x , y)

prove G

and σ contains a proof asserting that it follows from ρ, where ρ is a new step
name and G is the current goal. This translation is relevant to the meaning
of the step name σ. (See Section 7.6.2 on page 31.)

7.4.6 qed

The state at the beginning of a qed step’s proof is unchanged. After the
step and its proof, the state is determined by the rule for the step whose
proof the qed step ends.
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7.5 Steps That Do Not Take Proofs

7.5.1 Definitions

In a definition step, the step-starting token is followed by the optional token
define and a sequence of operator definitions, function definitions, and/or
module definitions, where a module definition is something like

Ins(x )
∆
= instance M with . . .

It has the same effect on the state as the corresponding (top-level) state-
ments. The definitions introduced by the step (which are the definitions of
the imported and renamed operators for a module definition) are added to
both the set of definitions and the set of usable definitions.

7.5.2 instance

An instance step consists of a step-starting token followed by an ordinary
instance statement (one that begins with the keyword instance). It has
the same effect on the state as the corresponding (top-level) statement.

7.5.3 use and hide

A use or hide step has the same syntax as the corresponding (top-level)
statement, except preceded by the step-starting token. It affects the sets of
usable facts and definitions the same way as the corresponding use or hide
statement. As explained in Section 7.6 below, a use or hide step can name
facts or definitions made in earlier steps.

There is also a use only step, in which the keyword use is followed by
the keyword only. It sets the usable facts to be only known domain facts
and facts specified by the step. It affects the set of usable definitions the
same way as an ordinary use step.

7.5.4 have

A have step consists of a step-starting token followed by have and a for-
mula. For the statement

σ have F

to be correct, the current goal must be syntactically of the form H⇒G
for some formulas H and G , and the formula H⇒F must be an obvious
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consequence of the known facts and usable definition. In that case, the step
is equivalent to

σ suffices assume F
prove G

plus a by only proof that permits using only the fact assume F prove B
(a fact that must therefore be easily provable with no assumptions). Thus,
this step means that we are going to prove the current goal by assuming F
and proving G .

7.5.5 take

A take step consists of a step-starting token followed by take followed by
anything that could come between “∀” and its matching “:”—for example

σ take x , y ∈ S , z ∈ T

This step is typically used when the current goal is

∀ x , y ∈ S , z ∈ T : G

for some formula G . It means that we are going to prove this goal by
declaring x , y , z to be constants, assuming x ∈ S , y ∈ S , and z ∈ T , and
proving G . More precisely this take statement is equivalent to

σ suffices assume new constant x ∈ S ,
new constant y ∈ S ,
new constant z ∈ T

prove G

followed by a proof that permits using only the domain formulas x ∈ S ,
y ∈ S , and z ∈ T .

In general, for the step σ take τ to be correct, the current goal should be
obviously equivalent to ∀ τ : G for some formula G . (Again, the meaning of
“obviously equivalent” is not specified.) In that case, G is made the current
goal, constant declarations of the bound identifiers in τ are added to the
current set of declarations, and any formulas of the form id ∈ e in τ are
added to the set of known facts and to the set of usable facts.
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7.5.6 witness

A witness step consists of a step-starting token, followed by witness,
followed by a comma-separated list of expressions. A witness step is
used to prove an existentially quantified formula by specifying instantia-
tions of its bound identifiers. There are two cases in which the statement
σ witness e1, . . . , ek is correct:

• The current goal is obviously equivalent to a formula ∃ id1, . . . , idk :
G . In this case, the witness step is equivalent to

σ suffices G
proof obvious

where G is the formula obtained by substituting each e j for id j in G ,
for j in 1 . . k .

• The current goal is obviously equivalent to a formula
∃ ι1 ∈ S1, . . . , ιk ∈ Sk : G where each ιj is an identifier, there is
some substitution of expressions for these identifiers that transforms
each ιj ∈ S j to e j , and each e j is easily provable from the current
set of usable facts. In this case, the formula obtained from G by the
aforementioned substitution of expressions for the identifiers in the ιj
is made the current goal, and the domain formulas e j are added to
the set of known facts and to the set of usable facts. (Adding a fact
that is easily provable to the set of usable facts might make additional
facts easily provable from that set.) For example, if the current goal
is

∃ x , y ∈ S , z ∈ T : G(x , y , z )

then the step

〈3〉4. witness expX ∈ S , expY ∈ S , expZ ∈ T
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is equivalent to

〈3〉4. suffices G(expX , expY , expZ )
〈4〉1. expX ∈ S

proof obvious
〈4〉2. expY ∈ S

proof obvious
〈4〉3. expZ ∈ T

proof obvious
〈4〉4. qed

by only 〈4〉1, 〈4〉2, 〈4〉3

7.6 Referring to Steps and Their Parts

Within a proof, steps and their parts can be named in three contexts: as
ordinary expressions, as facts in a by, use, or hide, and in the def clause
of one of those statements. We now consider these three possibilities.

7.6.1 Naming Subexpressions

Formulas The name of a step that asserts a formula names that formula.
For example, the step

〈2〉3. x + y = z

defines 〈2〉3 to equal x + y = z . The step name 〈2〉3 can be used like any
other defined symbol—for example:

〈2〉3 ∧ (z ∈ Nat) ⇒ (x + y − z = 0)

We can also use labels and/or positional selectors to name subexpressions
of 〈2〉3 the same way we name subexpressions of other defined symbols—for
example, 〈2〉3!〈 names the subexpression x + y . (See Section 6.)

assume/prove Steps The parts of an assume/prove step are named as
explained in Section 6.4, where the step number names the assume/prove.
Thus, in

〈3〉4. assume P , assume Q
prove R

prove S

〈3〉4!1 names P , 〈3〉4!2!〈 names Q and 〈3〉4!3 names S .
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As explained in Section 6.4, subexpressions of an assume/prove can
be used only within the scope of any identifier that could appear in that
subexpression (even if it that identifier doesn’t actually appear in it).

case, have, suffices, and witness Steps Expressions within a case,
have, suffices, or witness step are named as if case, have, suffices,
and witness were prefix operators—case, have, and suffices taking a
single argument and witness taking an arbitrary number of arguments.
Thus, in

〈2〉3. case x + y > 0

〈2〉4. witness y , x + 1

〈2〉3!1 equals x + y > 0 and 〈2〉3!1!〈 equals x + y , while 〈2〉4!2 equals
x + 1. The “argument” of suffices can be an assume/prove, whose
subexpressions are named as described above for an assume/prove step.

pick and take A subformula of a pick step is named as if the pick were
replaced by ∀. For example, in

〈3〉4. pick x ∈ S , y ∈ T : x + y > 0

〈3〉4!2 names T and 〈3〉4!(e, f ) names e + f > 0. The naming of a take
step is similar, except that there is no “body” to name, only the sets that
follow an “ ∈ ”.

Note that the symbols introduced in a pick step are not declared within
the proof of that step, but they are declared after the proof. However,
references to the body of the pick are made the same way in both places.

7.6.2 Naming Facts

Syntactically, any expression can be used as a fact. (A proof tool might
accept only a restricted set of expressions as facts.) Any named step that
makes an assertion can also be used as a fact. The only kinds of steps that
can not be used as facts are use, hide, definition, instance, and qed.

The scope of a step name includes the proof of the step. Thus, it is
legal to use a subexpression of a step named σ within that step’s proof—for
example, to name an assumption if σ is an assume/prove step.

When used by itself (and not in the name of one of its subexpressions),
a step name denotes the fact or facts that the step adds to the current set
of known facts. We now explain exactly what that means.
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We have described above how every step that makes an assertion is
equivalent to one of the form A or suffices A, where A is either a for-
mula or an assume/prove. If we consider a formula G to be equivalent to
assume true prove G , then any step σ is equivalent to a step of the form
σ A or σ suffices A for an assume/prove A.

• For the step σ A, within the proof’s step the step name σ denotes the
set of assumptions of A; outside the proof it denotes A.

• For the step σ suffices A, within the proof’s step the step name σ
denotes A; outside the proof it denotes the set of assumptions of A.

It is quite useful to have a step name σ refer to the known facts introduced
into the current context by the step, since those facts are not automatically
added to the set of usable facts. However, it has the unfortunate effect of
making a proof look circular when σ is used as a fact within the proof of
the step named σ. Readers and writers of TLA+ proofs should quickly get
used to this convention.

One may want to refer to a long formula G inside a step σ G . For ex-
ample, we can assume ¬G in a proof by contradiction of the step. However,
by these rules, σ names true within the proof of σ, so we cannot write ¬G
as ¬σ. We can write ¬G as ¬σ! : instead.

7.6.3 Naming Definitions

Only the names of defined operators may appear in the def clause of a by
proof or a use or hide step. These include the names of operators defined
in let clauses. The step name of a define step may also be used in a
def clause. If the step defines more than one operator, then the step name
applies to all of them—but not to any operators defined in let clauses
within those definitions.

Remember that an operator name does not contain any parameters or
any parentheses. For example, the expression Ins(42)!Foo(x , y) is an appli-
cation of the operator named Ins !Foo to the three arguments 42, x , and y .
Section 6.5 explains how to name operators defined in a let clause.

7.7 Referring to Instantiated Theorems

Suppose module M contains a theorem

theorem T
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and another module MI imports M with the statement

I
∆
= instance M with . . .

As explained in Section 17.5.5 of Specifying Systems, this imports the theo-
rem that we can write in TLA+2 as

assume A1, . . .Ak

prove T

where A1, . . . , Ak are the assumptions asserted by assume statements in
M , and Ai and T are the formulas obtained from Ai and T by performing
the substitutions specified by the with clause.

If the theorem is named, as in

theorem Thm
∆
= T

then I !Thm names the imported fact—the assume / prove above. How-
ever, the rules of Section 6.4 above for naming parts of an assume / prove
do not apply to this fact. The name I !Thm! : refers to the formula T . A
formula Ai can be referred to in module MI only if it has been assigned a
name in module M , in which case it is named I ! . . . as usual. Because TLC
cannot do anything with an assume / prove, it treats I !Thm (as well as
I !Thm! : ) as the name of T .

A proof of module MI that uses the imported theorem Thm generally
wants to use T . To do that, it must prove all its hypotheses Ai . Often,
the formulas Ai are simple consequences of the assumptions of module MI .
In that case, a proof can simply use I !Thm in a context in which those
assumptions of MI are usable facts.

7.8 Temporal Proofs

Temporal-logic reasoning has not yet been completely implemented in
TLAPS. Currently, TLAPS can perform only propositional temporal-logic
reasoning, meaning it can’t prove formulas that involve quantification over
temporal formulas. We expect that a complete implementation will require
no changes to anything described in this document. However, since tempo-
ral logic is different from ordinary logic, the reasoning involved in temporal
proofs is somewhat different from what mathematicians are used to. This is
explained in Section 8.3 on page 35.
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8 The Semantics of Proofs

8.1 The Meaning of Boolean Operators

As discussed in Section 16.1.3 of Specifying Systems, there are various ways
to define the meanings of the Boolean operators on non-Boolean arguments.
For example, we know that x ∧ y equals y ∧ x for any Booleans x and y .
However, is 5 ∧ 7 equal to 7 ∧ 5 ? TLAPS uses what is called in Specifying
Systems the liberal interpretation. In this interpretation, (5 ∧ 7) = (7 ∧ 5)
is true, and TLAPS will prove it.

The precise interpretation of the Boolean operators is in terms of an
operator ToBoolean such that ToBoolean(x ) is some Boolean that equals x
if x is a Boolean. More precisely, ToBoolean is assumed to satisfy

∧ ∀x : ToBoolean(x ) ∈ boolean

∧ ∀x ∈ boolean : ToBoolean(x ) = x

For example, we can define conjunction ∧ by

x ∧ y
∆
= ToBoolean(x ) ∧ ToBoolean(y)

where ∧ is ordinary conjunction on Booleans. The operator ToBoolean
exists only in the semantics and is not defined at the TLA+ level. However,
it follows from the assumptions about ToBoolean that it can be defined in
TLA+ by

ToBoolean(x )
∆
= (x ≡ true)

8.2 The Meaning of assume/prove

An assume/prove essentially asserts that its assumptions imply its prove
formula. For example,

assume A1, new x ∈ S , A2

prove B

asserts the formula

∀x : A1 ∧ (x ∈ S ) ∧ A2 ⇒ B

except that x cannot be a free identifier in A1 in the assume/prove.
If an assumption declares an operator, as in new op( , ), then trans-

lating the assume/prove to a formula would require quantification over
the operator op, which can’t be done in first-order logic. However, an as-
sume/prove (even with assumptions consisting of an assume/prove) can
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be translated to a formula in which quantification over operators occurs only
in outermost ∀ quantifiers. Since an assume/prove can appear only as the
statement of a theorem or a proof step (which is a theorem asserted in a
certain context), TLA+ remains essentially in the realm of first-order (tem-
poral) logic. It raises none of the issues associated with full second-order
logic.

8.3 Temporal Proofs

The meaning of temporal TLA+ formulas is explained in Chapter 8 of Spec-
ifying Systems. A temporal formula is a predicate on behaviors, which are
sequences of states. For a temporal formula F , the statement theorem F
asserts that F is true on all behaviors. As explained in Section 8.3 of that
book, TLA+ satisfies the following law:

Necessitation Rule For any formula F : if theorem F is true, then
theorem 2F is true.

(The book called it the Generalization Rule, but it’s called the Necessitation
Rule by logicians.) The Necessitation Rule is very different from:

theorem assume F
prove 2F

This statement is equivalent to

theorem F ⇒ 2F

which is not true for all formulas F .
The Necessitation Rule is important because many temporal proof rules

have assumptions of the form 2F . For example one commonly used rule is:

theorem BoxImplies
∆
=

assume temporal F , temporal G , 2F , 2(F ⇒ G)
prove 2G

We use it to prove that if P is an invariant of a specification Spec and P
implies Q , then Q is an invariant of Spec. In other words, we deduce

theorem QInvar
∆
= Spec ⇒ 2Q

from

theorem PInvar
∆
= Spec ⇒ 2P

theorem PimpliesQ
∆
= P ⇒ Q
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This deduction follows from BoxImplies because, by the Necessitation Rule,
theorem PImpliesQ implies the truth of theorem 2(P ⇒ Q).

We would like to use the Necessitation Rule inside a proof, to deduce
2F from a proof step that asserts F . However, that’s not sound. For
example, suppose we are proving that Inv is an invariant of a specification
Init ∧2[Next ]v . Our proof might begin

〈1〉1. suffices assume Init , 2[Next ]v
prove 2Inv

〈1〉2. Inv

We can’t apply the Necessitation Rule to deduce 2Inv from step 〈1〉2. The
proof of 〈1〉2 could have used the assumption Init , so all we know is that
Inv is true of the initial state. We can’t conclude that it’s true of all states
in a behavior satisfying the specification.

We need a generalization of the Necessitation Rule so it can be applied
to proof steps when it’s valid. For that, define a formula F to be a 2 formula
iff theorem F ≡ 2F is true—that iff, F is true on behavior β iff 2F is,
for any behavior β. Since 2F ⇒ F is true for any formula F , we can also
define F to be a 2 formula iff theorem F ⇒ 2F is true. For any formulas
F and G , the following formulas are all 2 formulas:

2F 32F 2F ∨2G 1 + 1 = 3

It follows from these that weak fairness (WF) and strong fairness (SF) for-
mulas are 2 formulas. We can now write:

Generalized Necessitation Rule A proof of a formula F using
only assumptions that are 2 formulas proves 2F .

The Necessitation Rule follows from this because a theorem in a module
must be proved using only assume statements and previously proved theo-
rems, and the formula of an assume statement must be a constant, so it is
a 2 formula.

Currently, TLAPS can only perform propositional temporal reasoning;
it cannot reason about quantified temporal formulas. Using PTL in a by
clause tells TLAPS to use a propositional temporal-logic prover. (PTL uses
the Generalized Necessitation Rule.) We plan eventually to add a back-end
prover that can handle temporal formulas with constant quantification—
that is, ones with the operators ∀ and ∃. We would also like to add a way
for TLAPS to apply the rule

theorem assume new temporal F ( ), new state e
prove F (e) ⇒ ∃∃∃∃∃∃ x : F (x )
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that justifies proofs by refinement mappings. There is little incentive to
implement more general reasoning about temporal quantification.
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