
1 module GFXSpec

The extends statement imports the standard module FiniteSets, which defines a few useful

operators for reasoning about finite sets, including Cardinality.

7 extends FiniteSets

The constant statement declares Proc to be an unspecified constant. There’s no need (and no

way) to specify that Proc is a set because TLA+ is based on ZF set theory, so value is a set.

14 constant Proc
15

**

17 --algorithm GFXSpec
18 { variable result = [p ∈ Proc 7→ {}]
19 process (Pr ∈ Proc)
20 {A: with (P ∈ {Q ∈ subset Proc :
21 ∧ self ∈ Q
22 ∧ ∀ p ∈ Proc \ {self } :
23 ∨ Cardinality(result [p]) 6= Cardinality(Q)
24 ∨Q = result [p]
25 })
26 {result [self] := P}
27 }
28 }

**

The algorithm is automatically translated to the stuff between the BEGIN TRANSLATION and

END TRANSLATION comments.

34 BEGIN TRANSLATION

35 variables result , pc

37 vars
∆
= 〈result , pc〉

39 ProcSet
∆
= (Proc)

41 Init
∆
= Global variables

42 ∧ result = [p ∈ Proc 7→ {}]
43 ∧ pc = [self ∈ ProcSet 7→ “A”]

45 A(self)
∆
= ∧ pc[self] = “A”

46 ∧ ∃P ∈ {Q ∈ subset Proc :
47 ∧ self ∈ Q
48 ∧ ∀ p ∈ Proc \ {self } :
49 ∨ Cardinality(result [p]) 6= Cardinality(Q)
50 ∨Q = result [p]
51 } :
52 result ′ = [result except ! [self] = P]
53 ∧ pc′ = [pc except ! [self] = “Done”]

1

55 Pr(self)
∆
= A(self)

57 Next
∆
= (∃ self ∈ Proc : Pr(self))

58 ∨ Disjunct to prevent deadlock on termination

59 ((∀ self ∈ ProcSet : pc[self] = “Done”) ∧ unchanged vars)

61 Spec
∆
= Init ∧2[Next]vars

63 Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

65 END TRANSLATION

66

We can check the specification for trivial “type errors” with TLC by having it check that the

following predicates TypeOK and GFXCorrect are invariants.

72 TypeOK
∆
= result ∈ [Proc → subset Proc]

74 Done(i)
∆
= pc[i] = “Done”

76 GFXCorrect
∆
= ∀ i , j ∈ Proc :

77 ∧Done(i) ∧Done(j)
78 ∧ Cardinality(result [i]) = Cardinality(result [j])
79 ⇒ (result [i] = result [j])
80

\ * Modification History

\ * Last modified Fri Jul 20 14:07:01 PDT 2012 by lamport

\ * Created Fri Jul 06 03:18:28 PDT 2012 by lamport

2

