MODULE GFX |
EXTENDS Integers, FiniteSets, TLAPS

Module Integers defines the standard operators on integers like 4+ and the sets Int of integers
and Nat of natural numbers. (The TLAPS prover has built-in knowledge of integers and does
not use the definitions in the module.) Module TLAPS asserts some theorems and defines some

“tactics” for use in proofs.

[

CONSTANT Proc
ASSUME ProcFinite = IsFiniteSet(Proc)
We assume that Proc is a finite set, where the operator IsFiniteSet is defined in the FiniteSets

module.

NUnion(A) = unioN {Ali] : i € Nat}

!
I

Fokokkok

--algorithm GFX{
variables Al = [i € Nat — {}], result = [i € Proc — {}];
process (Pr € Proc)
variables known = {self }, notKnown = {};
{ a: known := known U NUnion(Al);
notKnown := {i € 0 .. (Cardinality(known)) : known # Al[i]} ;
if (notKnown # {})
{ b: with (¢ € notKnown) { Al[i] := known } ;
goto a

else { result[self] := known }

}

Kok ok

BEGIN TRANSLATION
VARIABLES Al, result, pc, known, notKnown

vars = (A1, result, pc, known, notKnown)

ProcSet = (Proc)

Init = Global variables
AN Al =[i € Nat — {}]
A result = [i € Proc — {}]
Process Pr
A known = [self € Proc — {self}]
A notKnown = [self € Proc — {}]
A pc = [self € ProcSet — "a"]
a(self) = A peself] = “a”
A known' = [known EXCEPT ![self] = known[self] U NUnion(A1l)]
A notKnown' = [notKnown EXCEPT ![self] = {i € 0 .. (Cardinality(known'[self])) : known'[self] 7

ATF notKnown'[self] # {}
THEN A pc’ = [pc EXCEPT ![self] = “b"]
A\ UNCHANGED result
ELSE A result’ = [result EXCEPT ![self] = known/[self]]
A pc’ = [pc EXCEPT ![self] = “Done"|
NATL = Al

b(self) = A pe[self] = “b”
A 3Ji € notKnown[self] :
Al" = [A1 EXCEPT ![i] = known/[self]]

w_n

A pc’ = [pc EXCEPT ![self] = “a"]
A UNCHANGED (result, known, notKnown)

Pr(self) = a(self) V b(self)
Next = (3self € Proc : Pr(self))

V Disjunct to prevent deadlock on termination
((V self € ProcSet : pc[self] = “Done”) A UNCHANGED vars)

Spec = Init A O[Next]yars
Termination = (¥ self € ProcSet : pe[self] = “Done”)

END TRANSLATION

A q
snapshot = UNION {Al[i] : i € Nat}
This definition was used in an earlier version of the algorithm, and since the proof of this version
was adapted from the proof of the earlier one, references to it are still present in the proof.

The type-correctness invariant.

TypeOK = A Al € [Nat — SUBSET Proc]
A result € [Proc — SUBSET Proc]
A pe € [Proc — {“a", “b", "Done" }]
A known € [Proc — SUBSET Proc]
A notKnown € [Proc — SUBSET Nat]
AY¥p € Proc: (pc[p] = "b") = (notKnown[p] # {})

Done(i) = result[i] # {}

The invariance of the following predicate captures the correctnes of the algorithm and is the key
to proving that it the algorithm implements/refines its spec.
GFXCorrect = Vi, j € Proc :

A Done(i) A Done(j)

A Cardinality(result[i]) = Cardinality(result[j])

= (result[i] = result[j])

We now define PA1 to be the set of all values that Al could assume if some subset of processes
that are ready to write wrote.

NotAProc = CHOOSE n: n ¢ Proc

An arbitrary value that is not a process.

ReadyToWrite(i, p) 2 A pelp] = “b"
A i € notKnown|p]

True iff process p could write known[p] to A1[4] in its next step.

WriterAssignment = {f € [Nat — Proc U {NotAProc}] :
Vi € Nat :
(f[é] € Proc) = A ReadyToWrite(i, fi])
AVj € Nat\{i}:
FU1# LT}

The set of functions f that assigns to each Nat 7 either a unique process that is ready to write
i, or NotA Proc.

PV(wa) = [i € Nat — 1F wali] = NotAProc THEN A1[i]
ELSE known|wali]]]

PA1 = {PV(wa) : wa € WriterAssignment}

We now complete the definition of the inductive invariant Inv.

InvB is an uninteresting part of the invariant that asserts properties which are easily seen to be
true by examining the code.

InvB = AVYi € Nat: (A1]i] # {}) = (Cardinality(A1[i]) > i)
AV p € Proc:
A (pelp] = "b") = Vi € notKnown|p] : i < Cardinality(known[p])
A p € known[p]

A (result[p] # {}) = (pelp] = "Done")
A (result[p] # {}) = (result[p] = known[p])

InvC is the interesting part of the inductive invariant that captures the essence of the algorithm.

InvC = Vp € Proc:
LET S result[p]
k Cardinality(S)
IN k>0=VPec PAl:
V Cardinality(UNION {P[i] : i € Nat}) >k
VvV § C UNION {P[i]: i € Nat}

e 11>

Inv is the complete inductive invariant. Its invariance trivially implies the invariance of
GFXCorrect.

Inv = TypeOK A InvB A InvC' A GFXCorrect

When we have a library of useful theorems about finite sets, we should be able to use it to prove
the following simple results that are needed for the proof. Now, we just assume them. The results
are all obvious, and they have been checked by TLC to make sure there are no silly errors in these
TLA+ versions.

THEOREM EmptySetCardinality = Cardinality({}) = 0
PROOF OMITTED

THEOREM Positive CardinalityImpliesNonEmpty =
VS : Cardinality(S) € Nat A Cardinality(S) > 0= S # {}
(1) SUFFICES ASSUME NEW S, Cardinality(S) € Nat, Cardinality(S) >0, S = {}
PROVE FALSE
OBVIOUS
(1) QED
BY EmptySetCardinality

THEOREM NonEmptySetCardinality =
VS : IsFiniteSet(S) A S # {} = (Cardinality(S) > 0)
PROOF OMITTED

A

THEOREM SingletonCardinalty = Yz : Cardinality({z}) =1
PROOF OMITTED

THEOREM SubsetFinite =
VS : IsFiniteSet(S) =V T € SUBSET S : IsFiniteSet(T)
PROOF OMITTED

THEOREM CardType = V8 : IsFiniteSet(S) = Cardinality(S) € Nat
PROOF OMITTED

THEOREM SubsetCardinality =
YV T : IsFiniteSet(T) =V S € SUBSET T :
(S # T) = (Cardinality(S) < Cardinality(T))
PROOF OMITTED

THEOREM SubsetCardinality2 =
V T : IsFiniteSet(T) =
VS € suBSET T : (Cardinality(S) < Cardinality(T))
PROOF OMITTED

THEOREM IntervalFinite = Vi, j € Int : IsFiniteSet(i .. j)
PROOF OMITTED

THEOREM IntervalCardinality =
Vi,j€Int:i<j= Cardinality(i ..j)=7—i+1

THEOREM PigeonHolePrinciple =
VS, T:
A IsFiniteSet(S) A IsFiniteSet(T)

A Cardinality(T) < Cardinality(S)
=>VfelS—T]:
dz,y € §:(z#y) N[z = fly])

PROOF OMITTED

The following is a simple corollary of Theorem PigeonHolePrinciple,

COROLLARY InjectionCardinality =
vSs, T, f:
A IsFiniteSet(S) A IsFiniteSet(T)
ANfeS—T]
AVaz,y € S:x#y= flz] # fly]
= Cardinality(S) < Cardinality(T)
BY PigeonHolePrinciple, CardType, SMT

The theorems above were checked for silly mistakes by having T'LC check that with this definition,
Test equals (TRUE, ..., TRUE).

Test =
(
EmptySetCardinality,
V.S € suBSET (0 .. 3) : NonEmptySetCardinality!(S),
SmgletonCardmalty ("abc"),
V.S € SUBSET (0 .. 3) : SubsetFinite!(S),
V.S € suBSET (0..3): CardType!(S5),
VT € SUBSET (0 .. 3) : SubsetCardinality!(T),
VT € SUBSET (0 .. 3) : SubsetCardinality2!(T),
Vi, j € ((—4)..4): IntervalFinite! (i, 7),
Vi, j € ((—4)..4): IntervalCardinality! (i, j),
VS, T € suBsET (0 .. 3) : PigeonHolePrinciple!(S, T)

)

LEMMA NotAProcProp = NotAProc ¢ Proc
BY NoSetContainsEverything DEF NotA Proc

USE DEF NUnion

The following theorem asserts the invariance of Inv. This obviously implies the invariance of
GFXCorrect.

THEOREM Invariance = Spec = Olnv
(DY1. Init = Inv
(2) USE DEF Init, Inv, TypeOK, ProcSet, ReadyToWrite, WriterAssignment, PV, PA1
(2)1. Init = TypeOK
BY SMT
(2)2. Init = InvB
(3)1. ASSUME Init
PROVE InvB!1l
Y (3)1, EmptySetCardinality, SingletonCardinalty,SMT DEF InvB

(3)2. ASSUME Init
PROVE InvB!2
(4)1. Vp € Proc: Cardinality(known[p]) = 1
BY (3)2, SingletonCardinalty SMT fails on this
(4)2. QED
BY (3)2, (4)1, SMT DEF InvB
(3)3. QED
BY (3)1, (3)2 DEF InuB
(2)3. Init = InvC
(3) SUFFICES ASSUME Init, NEW p € Proc
PROVE —(Cardinality(result[p]) > 0)
BY DEF InvC
(3) QED
BY EmptySetCardinality, SMT
(2)4. Init = GFXCorrect
BY SMT DEF GFXCorrect
(2)5. QED
BY (2)1, (2)2, (2)3, (2)4

(1)2. Inv A [Next)yars = Inv’
(2)1. Inv A UNCHANGED vars = Inv’
(3) SUFFICES ASSUME Inv, vars’' = vars
PROVE Inv'’
OBVIOUS
(3)1. TypeOK'
BY SMT DEF Inv, TypeOK, ProcSet, ReadyTo Write,
WriterAssignment, PA1, PV | vars
(3)2. InvB’
BY SMT DEF Inv, TypeOK, InvB, PAl, PV, vars
(3)3. InvC’
(4) WriterAssignment’ = WriterAssignment
BY DEF WriterAssignment, ReadyToWrite, vars
(4) QED
BY DEF Inv, InvC, PAl, PV, vars SMT Failed
(3)4. GFXCorrect’
BY DEF Inv, GFXCorrect, Done, vars
(3)5. QED
BY (3)1, (3)2, (3)3, (34 DEF Inv
(2)2. Inv A Next = Inv’
(3) SUFFICES ASSUME Inv, Next
PROVE Inv’
OBVIOUS
(3)1. IsFiniteSet(snapshot) A (snapshot C Proc)
BY ONLY TypeOK, ProcFinite, SubsetFinite, SMT DEF Inv, TypeOK, snapshot
(3)2. Vp € Proc: Cardinality(known[p]) € Nat

BY ProcFinite, SubsetFinite, CardType, SMT DEF Inv, TypeOK
(3)3. TypeOK’
(4) uSE DEF Inv, TypeOK
(4)1. ASSUME NEW p € Proc, a(p)
PROVE TypeOK'
BY (4)1, (3)1, CardType, ProcFinite, SubsetFinite, SMTT(120) DEF a
(4)2. ASSUME NEW p € Proc, b(p)
PROVE TypeOK'
BY (4)2, SMT DEF b
(4)3 QED
BY (2)1, (4)1, (4)2 DEF Next, Pr, ProcSet
<3> USE DEF Inv, ProcSet , ReadyToWrite, Potential Values, PA1
(3)4. IsFiniteSet(snapshot’) A (snapshot’ C Proc)
(4)1. snapshot’ C Proc
BY (3)3, ProcFinite, SubsetFinite, SMT DEF Inv, TypeOK, snapshot
(4)2. IsFiniteSet(snapshot’)
BY (4)1, ProcFinite, SubsetFinite DEF snapshot
(4)3. QED
BY (4)1, (4)2
(3)5. Vp € Proc: Cardinality(known'[p]) € Nat
BY (3)3, ProcFinite, SubsetFinite, CardType, SMT DEF Inv, TypeOK
(3) DEFINE InvCI(q, P) = InvC1(q)!1!2!(P)
Snapshot(P) = UNION {P[i] : i € Nat}
The following step is used only in the proof of InvC’ for a b(p) action in the proof of (3)8. It

could probably also be used to simplify the proof of one or more cases in the proof of InvC’
for an a(p) action.

(3)6. ASSUME NEW p € Proc, NEW ¢ € Proc\ {p},
Cardinality(result'[q]) > 0,
Y qq € Proc\{p}: A known'lqq] = known[qq]

el

A notKnown'[qq] = notKnown[qq]
Apc'lqq] = pelqq]
A result’[qq] = result]qq],
pc’[p] # b7,
NEW P € PAl

PROVE InvCI(q, P)’
(4) DEFINE 8 = result[q]
k = Cardinality(result]q))
(4)1. A IsFiniteSet(S’)
A k' € Nat
BY (3)3, ProcFinite, SubsetFinite, CardType, SMT DEF TypeOK
2.8 =8 Nk =k
BY (3)6, SMT DEF TypeOK
(4)3. Vi € Nat : ~ReadyToWrite(i, p)’
BY (3)6 DEF ReadyToWrite
(4Y4. Vi € Nat : {r € Proc: ReadyToWrite(i, r)'} C

{r € Proc : ReadyToWrite(i, r)}

BY (3)6, (4)3, SMT DEF ReadyToWrite, TypeOK
(4)5. result[q) = result’[q]

BY (3)6 DEF TypeOK
4)6. InvCI(q, P)

BY (3)6 DEF InvC
(4)7.cASE S C Snapshot(P)

BY (4)7, (4)2, (4)1, (4)4, (4)3, (3)6, SMT DEF TypeOK
(4)8.cASE Cardinality(UNION {P[i] : i € Nat}) > Cardinality(S)

BY (4)2, (4)8
(4)9. QED

BY (4)6, (4)7, (4)8

(3)7. ASSUME NEW p € Proc, a(p)
PROVE Inv’

(4) USE DEF Inv
(4H1. InvB’

BY (3)1, (3)2, (3)5, (3)7, SMT DEF a, TypeOK, InvB
4)2. InvC’

(5) SUFFICES ASSUME NEW ¢ € Proc, Cardinality(result’[q]) > 0,

NEW P € PAY
PROVE InvCI(q, P)
The goal is the body of the Vp € Proc : quantifier with ¢ substituted for p.

BY DEF InvC
(5) (pclp] = "a") A (A1 = A1)
BY (3)7 DEF a
(5) DEFINE § = result[q]
k = Cardinality(result]q))
InvAlq(Q) = V S C Snapshot(P)
V Cardinality(UNION {Q[i] : @ € Nat}) > Cardinality(S)
(5)1. A IsFiniteSet(S")
A k' € Nat
BY (3)3 TypeOK', ProcFinite, SubsetFinite, CardType, SMT DEF TypeOK
(5)2. Vr € Proc:
A IsFiniteSet(result]r])
A IsFiniteSet(result’[r]
A IsFiniteSet(known|r))
A IsFiniteSet(known'[r])

(
()
E

A Cardinality(result[r]) € Nat
(
(
(

r
r

A Cardinality(result’[r]) € Nat
A Cardinality(known[r]) € Nat
A Cardinality(known'[r]) € Nat
BY (3)3 TypeOK’, ProcFinite, SubsetFinite, CardType, SMT DEF TypeOK
(5)3.CASE A known’ = [known EXCEPT ![p]
= known[p] U UNION {Al[i] : i € Nat}]

A notKnown' =
[notKnown EXCEPT ![p] =
{i € 0.. (Cardinality(known'[p])) :
kmown’[p] # A1]i]}]
A notKnown'[p] # {}
A pc’ = [pc EXCEPT ![p] = “b"]
A UNCHANGED result
(6)1. ASSUME NEW @ € PAl
PROVE A IsFiniteSet(Snapshot(Q))
A Cardinality(Snapshot(Q)) € Nat
(7) PICK wa € WriterAssignment : Q = PV (wa)
BY DEF PAl
(7)1. Vi € Nat : wali] # NotAProc = wali] € Proc
BY DEF WriterAssignment
(7)2. Vi € Nat : PV (wa)[i] € SUBSET Proc
BY (7)1, (3)3 TypeOK', SMT DEF PV, TypeOK
(7)3. UNION {Q[j] : j € Nat} C Proc
BY (7)2, SMT
(7)4. IsFiniteSet(UNION {Q]j] : j € Nat})
BY (7)3, ProcFinite, SubsetFinite SMT failed on this.
(7)5. QED
BY (7)4, CardType , SMT * sm: SMT fails here
(6)2. Al € PA1
(7) DEFINE wa = [i € Nat — NotAProc|
(N)1. wa € WriterAssignment
BY SMT, NotAProcProp DEF WriterAssignment
(7)2. PV (wa) = Al
BY DEF TypeOK, PV
(7)3. QED
BY (7)1, (7)2 DEF PAl
(6)3.Ap #q
NS =5

]
BY (k' > 0), (5)1, PositiveCardinalityImpliesNonEmpty
(7)2. result’[p] = {}
BY (5)3, (8)1,(4)1 InwB’, SMT DEF TypeOK, InvB sm: triviality check doesn’t get InuB’
(7)3. QED
BY (7)1, (7)2, (5)3, SMT DEF TypeOK
(6)4. A IsFiniteSet(UNION {PJi] : i € Nat})
A Cardinality(UNION {P[i] : i € Nat}) € Nat
(7) PICK wa € WriterAssignment’ : P = PV (wa)’
BY DEF PAl
(7)1. Vi € Nat : wali] # NotAProc = wali] € Proc
BY DEF WriterAssignment
(7)2. Vi € Nat : PV (wa)'[i] € SUBSET Proc

BY (7)1, (3)3 TypeOK', SMT DEF PV, TypeOK
(7)3. UNION {P[j] : j € Nat} C Proc
BY (7)2, SMT
(4. IsFiniteSet(UNION {P[j] : j € Nat})
BY (7)3, ProcFinite, SubsetFinite SMT failed on this.
(7)5. QED
BY (7)4, CardType SMT fails here
(6)5.cASE P € PA1
(7) InvCI(q, P)
BY (6)3, (6)5, (5)3, SMT DEF InuC
(7) QED
BY (5)3, (6)3
(6)6.CASE P ¢ PAl
(7)1. PICK j € Nat : P[j] = known'[p]
(8) SUFFICES ASSUME Vi € Nat : P[i] # known/[p]
PROVE P € PAl
BY (6)6
(8) PICK wa € WriterAssignment’ : P = PV (wa)’
BY DEF PAl
(8)1. Vi € Nat : wali] # p
BY NotAProcProp, SMT DEF PV
(8)2. Vi € Nat : PV(wa) = PV (wa)
BY (8)1, (5)3, SMT DEF TypeOK, PV DEF PV added 31 May 2013
(8)3. wa € WriterAssignment
(9)1. ASSUME NEW i € Nat, wa[i] € Proc
PROVE ReadyToWrite(i, wali])
(10)1. ReadyToWrite(i, wali])’ = ReadyToWrite(i, wali])
BY (8)1, (5)3, SMT DEF TypeOK, ReadyToWrite
(10)2. QED
BY (9)1, (10)1, SMT DEF WriterAssignment
(9)2. QED
BY (9)1, SMT DEF WriterAssignment
(8)4. QED
BY (8)2, (8)3, SMT DEF PAl
(7)2. Snapshot(Al) C known'[p]
BY (5)3, SMT DEF snapshot, TypeOK
(7)3. Vv Cardinality(Snapshot(Al)) > k
V'S C Snapshot(Al)
BY (6)2, (6)3 DEF InvC, TypeOK SMT fails here
(7)4. Vv Cardinality(P[j]) > k
Vv S C Pj]
(8)1.cASE Cardinality(Snapshot(Al)) > k
(9)1. IsFiniteSet(known[p])
BY ProcFinite, SubsetFinite, SMT DEF TypeOK
(9)2. Cardinality(Snapshot(Al)) < Cardinality(known'[p])

10

BY (9)1, (7)2, (5)2, SubsetCardinality2
(9) Cardinality(known[p]) € Nat
BY (9)1, CardType
(9) Cardinality(Snapshot(Al)) € Nat
BY (6)1, (6)2, CardType
(9) k € Nat
BY (6)3, (5)1
(9)3. QED
BY (5)2, (7)1, (9)2, (8)1, SMT
(8)2.CASE S C Snapshot(Al)
BY (8)2, (6)1, (6)2, (7)1, (7)2, (7)3, CardType,
ProcFinite, SubsetFinite, SubsetCardinality2, SMT DEF TypeOK
(8)3. QED
BY (8)1, (8)2, (7)3
(7)5. P[j] C Snapshot(P)
BY (5)1, (6)3 DEF TypeOK
(7)6. QED
(8)1.cAsE Cardinality(P[j]) > k
(9) A IsFiniteSet(Snapshot(P))
A Cardinality(Snapshot(P)) € Nat
BY (6)4
(9) A Cardinality(P[j]) € Nat
BY (7)1, (3)3 TypeOK’, ProcFinite, SubsetFinite, CardType DEF TypeOK
(9) Nk € Nat
BY ProcFinite, SubsetFinite, CardType DEF TypeOK
(9) Cardinality(Pj]) < Cardinality(Snapshot(P))
BY (7)5, (6)1, SubsetCardinality2, SMT
(9) QED
BY (8)1, (7)1, (5)3, SMT DEF TypeOK
(8)2.cASE S C P[j]
BY (8)2, (7)5, (5)3, SMT DEF TypeOK
(8)3. QED
BY (8)1, (8)2, (7)4
(6)7. QED
BY (6)5, (6)6
(5)4.CASE A known' = [known EXCEPT !|[p]
= known[p] U UNION {Al[i] : i € Nat}]
A notKnown' =
[notKnown EXCEPT ![p] =
{i € 0.. (Cardinality(known'[p])) :
known'[p] # A1[i]}]
A notKnown'[p] = {}
A result’ = [result EXCEPT ![p] = known'[p]]
A pc’ = [pc EXCEPT ![p] = “Done”]
(6)2. PA1' = PA1

11

(7)1. ASSUME NEW 4 € Nat, NEW 1 € Proc
PROVE ReadyToWrite(i, r)) = ReadyToWrite(i, r)
BY (5)4, SMT DEF ReadyToWrite, TypeOK
(7)2. WriterAssignment’ = WriterAssignment
BY (7)1, SMT DEF WriterAssignment
(7)3. ASSUME NEW wa € WriterAssignment, NEW i € Nat,
wa[i] # NotAProc
PROVE known'[wa[i]] = known[wa[i]]
(8) USE (7)3
(8)1. ReadyToWrite(i, wali])
BY NotAProcProp, SMT DEF WriterAssignment
(8)2. wali] # p
BY (5)4, (8)1, SMT DEF ReadyToWrite
(8)3. wali] € Proc
BY SMT DEF WriterAssignment
(8)4. QED
BY (8)2, (8)3, (5)4, SMT DEF TypeOK
(Ty4. A1 = Al
BY (5)4
(7)5. QED
(8) SUFFICES ASSUME NEW wa € WriterAssignment,
NEW 4 € Nat
PROVE PV (wa)[i] = PV (wa)d]’
(9) ASSUME NEW wa € WriterAssignment
PROVE A PV(wa) = [i € Nat — PV (wa)li]]
A PV(wa) =[i € Nat — PV (wa)[i]]
BY DEF PV
(9) QED
BY (7)2 DEF PAl
(8)1.CASE wa[i] = NotAProc
BY (8)1, (7)4 DEF PAl, PV
(8)2.CASE wal[i] # NotAProc
BY (8)2, (7)3 DEF PAl, PV
(8)3. QED
BY (8)1, (8)2
(6)3. SUFFICES ASSUME p = ¢
PROVE InvCI(q, P)
(7) SUFFICES ASSUME p # ¢
PROVE InvCI(q, P)
OBVIOUS
(7) SUFFICES ASSUME result’[q] # {}
PROVE InvCI(q, P)
OBVIOUS
(7) Cardinality(result’[q]) > 0
BY (5)2, NonEmptySetCardinality, SMT

12

(7) result’[q] = result[q]
BY (5)4, SMT DEF TypeOK
(7y InvCI(q, P)
BY (6)2, SMT DEF InvC
(7) QED
BY (6)2, SMT
(6Y4. AV i € 0 .. Cardinality(known'[p]) : known'[p] = A1[i]
A known'[p] = NUnion(A1)
A Cardinality(known'[p]) > 0
(1. Vi € 0.. Cardinality(known’[p]) : known'[p] = Al[i]
(8) A notKnown'[p] = {i € 0 .. Cardinality(known'[p]) :
known'[p] # Al[i]}
A notKnown'[p] = {}
BY (5)4, SMT DEF TypeOK
(8) QED
OBVIOUS
(7)2. Cardinality(known'[p]) > 0
BY (5)2, (4)1 ImwB', NonEmptySetCardinality, SMT DEF InvB * sm: triviality check
(7)3. known'[p] = A1[0]
BY (5)2, (7)1, (7)2, SMT DEF TypeOK
(TY4. NUnion(A1) C known/'|p]
BY (5)4 DEF NUnion, TypeOK
(7)5. NUnion(A1l) = known'[p]
BY (7)3, (7)4 DEF NUnion
(7)6. QED
BY (7)1, (7)2, (T)5
(6)5.cASE i € 0 .. Cardinality(known'[p]) : P[i] = Al][i]
(N1. PicK i € 0 .. Cardinality(known'[p]) : P[i] = A1[i]
BY (6)5 sm: original proof, certainly a typo — BY (6)4
(7)2. Al[i] € NUnion(P)
BY (7)1, SMT DEF NUnion, TypeOK
(7)3. known'[p] C NUnion(P)
BY (7)2, (6)4
(T)Y4. result’[p] = known/'[p]
BY (5)4, SMT DEF TypeOK
(7)5. QED
BY (7)3, (7)4, (6)3
(6)6.CASE Vi € 0 .. Cardinality(known'[p]) : P[i] # Al[i]
(7) PICK wa € WriterAssignment : P = PV (wa)
BY (6)2 DEF PAl
(NH1.Vi € 0.. Cardinality(known'[p]) : A wali] # NotAProc
A Pli] = known[wali]]
BY (6)6, SMT DEF PV
(7)2. Vi € 0.. Cardinality(known'[p]) : A wali] € Proc
A ReadyToWrite(i, wali])

13

BY (7)1, NotAProcProp, SMT DEF WriterAssignment
(71)3. Vi, j €0.. Cardinality(known'[p]) : i # j = wali] # walj]
BY (5)2, (7)2, SMT DEF WriterAssignment
(M4. Vi € 0.. Cardinality(known'[p]) : wali] € Pli]
BY (7)1, (7)2, SMT DEF InvB
(7)6. A IsFiniteSet(UNION {P[i] : i € Nat})
A Cardinality(UNION {P[i] : i € Nat}) € Nat
(8)1. Vi € Nat : wali] # NotAProc = wali] € Proc
BY DEF WriterAssignment
(8)2. Vi € Nat : PV (wa)'[i] € SUBSET Proc
BY (8)1, (3)3 TypeOK', SMT DEF PV, TypeOK
(8)3. UNION {P[j] : j € Nat} C Proc
(9) SUFFICES ASSUME NEW j € NatPROVE PJ[j] C Proc
OBVIOUS
(N1. walj] = NotAProc V walj] € Proc
BY SMT DEF WriterAssignment
(9)2. QED
BY (9)1, SMT DEF TypeOK, PV
(8)4. IsFiniteSet(UNION {P[j]: j € Nat})
BY (8)3, ProcFinite, SubsetFinite SMT failed on this.
(8)5. QED
BY <8>4, CardType SMT fails here
(7)5. Cardinality(UNION {P]i] : i € Nat}) > Cardinality(known'[p]) + 1
(8) DEFINE C' = Cardinality(known'[p))

T UNION {P[i]: i € S5}
U = UNION {P[i]: i € Nat}
2 [ie0..C— wali]
(8) sUFFICES Cardinality(UU) > C +1
OBVIOUS
(8)1.A C € Nat
A SS C Nat
A IsFiniteSet(SS)
A Cardinality(SS) = C + 1
BY (5)2, IntervalCardinality, IntervalFinite, SMT
8)2.ATT C UU
A IsFiniteSet(UU)
A IsFiniteSet(TT)
BY (7)6, (8)1, SubsetFinite, Z3 SMT used to work but now fails
(8)3. f € [8S — TT)
BY (7)4, SMT
(8)4. Yz, y € 8 (a # y) = (fla] # Fly))
BY (7)3, SMT
(8) HIDE DEF SS, TT, UU, C, f
(8)5. Cardinality(SS) < Cardinality(TT)

14

BY (8)1, (8)2, (8)3, (8)4, InjectionCardinality SMT fails here
(8)6. A Cardmalzty(TT) < Cardinality(UU)
A Cardinality(UU) € Nat
A Cardinality(TT) € Nat
Y (8)2, CardType, SubsetCardinality2, SMT
(8)7. QED
BY (8)1, (8)5, (8)6, SMT
(7)7. QED
(8) result’'[p] = known'[p]
Y (5)4, SMT DEF TypeOK
(8) QED
BY (5)2, (6)3, (7)5, (7)6, SMT
(6)7. QED
BY (6)5, (6)6
(5)5. QED
BY (3)7, (5)3, (5)4 DEF a
(4)3. GFXCorrect
(5)1.CASE UNCHANGED result

This handles the IF / THEN case.

Y (5)1, SMT DEF TypeOK, GFXCorrect, Done
(5)2.CASE A known' = [known EXCEPT ![p]
= known[p] U UNION {Al[i] : i € Nat}]

A notKnown' =

[notKnown EXCEPT ![p] =

{i € 0.. (Cardinality(known'[p])) :
known'[p] # A1[i]}]
A notKnown'[p] = {}
A result’ = [result EXCEPT ![p] = known'[p]]
A pc’ = [pc EXCEPT ![p] = “Done"]
NAL = Al
This is the IF / ELSE case (simplified).

(6) SUFFICES ASSUME NEW ¢ € Proc, NEW 1 € Proc,
qFT,
Done(q)" A Done(r)’,
Cardinality(result’[q]) = Cardinality(result’[r])
PROVE result’[q] = result’[r]
BY DEF GFXCorrect
(6)1.CASE p ¢ {q, r}
(Y1, A result’[q] = result[q]
A result’[r] = result]r]
A Done(q)’ = Done(q)
A Done(r) = Done(r)
BY (5)2, (6)1 DEF TypeOK, Done
(7)2. QED

15

BY (7)1, SMT DEF GFXCorrect, TypeOK
(6)2.cASE p € {q, T}
(7) SUFFICES ASSUME NEW s € Proc,
p#s,
Done(p)" A Done(s)’,
Cardinality (result'[p]) = Cardinality(result’[s])
PROVE result’[p] = result’'[s]
Zenon or Isabelle used to prove this in one step, but on
31 May 2013 it no longer did and the proof had to be decomposed.
(8)1.cASE p = ¢
BY (8)1
(8)2.CASE p = ¢
BY (8)2
(8)3. QED
BY (8)1, (8)2, (6)2

(Y1, A result’[s] = result[s]
A Done(s)
BY (5)2 DEF TypeOK, Done
(7) DEFINE S = result[s]
k = Cardinality(result[s])
(12. Nk € Nat
ANk>0
BY (7)1, ProcFinite, SubsetFinite, CardType, NonEmptySetCardinality, SMT DEF TypeOK, Do
(7)3.V S C Snapshot(A1l)
V Cardinality(UNION {A1[i] : ¢ € Nat}) > Cardinality(S)
(8)1. InvC'1(s)!112
BY (7)2, InvC DEF InvC
(8)2. Al € PA1
(9) DEFINE wa = [i € Nat — NotAProc|
(9)1. wa € WriterAssignment
BY SMT, NotAProcProp DEF WriterAssignment
(9)2. PV (wa) = Al
BY DEF TypeOK, PV
(9)3. QED
BY (9)1, (9)2 DEF PAl
(8)3. QED
BY (8)1, (8)2
(7)4. result’[p] = A1[k]
(8)1. result’[p] = known/'[p]
BY (5)2, SMT DEF TypeOK
(8)2. k € 0.. Cardinality(known'[p])
BY (8)1, (7)1, (7)2, SMT
(8)3. Vi € 0 .. Cardinality(known’[p]) : known'[p] = Al][i]
BY (5)2, SMT DEF TypeOK

16

(8Y4. known'[p] = Al[k]
BY (8)2, (8)3, SMT DEF TypeOK
(8)5. QED
BY (8)1, (8)4
(7)5. result’[p] = UNION {A1[é] : i € Nat}
(8)1. UNION {A1[i] : i € Nat} C result’[p]
BY (5)2, (7)2, SMT DEF TypeOK
(8)2. result’[p] C UNION {Al[i] : i € Nat}
BY (7)2, (T)4, SMT
(8)3. QED
BY (8)1, (8)2
(7)6. Cardinality(UNION {A1[i] : ¢ € Nat}) =k
BY (7)1, (7)5
(7y7. S C result’[p]
BY (7)2, (T)3, (7)5, (7)6, SMT
(7)8. IsFiniteSet(result'[p])
BY (3)3 TypeOK’, ProcFinite, SubsetFinite, SMT DEF TypeOK
(7)9. S = result’[p]
(8) (Cardinality(S) = k) A (Cardinality(result’ [p]) = k)
BY <7>5, <7>6 SMT fails here
(8) =(Cardinality(S) < Cardinality(result’[p]))
BY (7)2, (7)5, ()6, (7)7, (7)8, SubsetCardinality, SMT
(8) QED
BY (7)2, (7)5, (7)6, (7)7, (7)8, SubsetCardinality, SMT
(7)10. QED
BY (7)1, (7)9
(6)3. QED
BY (6)1, (6)2
(5)3. QED
BY (5)1, (5)2, (3)7 DEF a
(4)4. QED
BY (3)3, (4)1, (4)2, (4)3 DEF Inv
(3)8. ASSUME NEW p € Proc, b(p)
PROVE Inv’
(4) USE b(p) DEF Inv
(1. InvB’
(5)1. InuB11’
BY DEF TypeOK, InuvB, b
(5)2. InvB'2’
BY (3)1, (3)2, (3)5, (3)8,SMT DEF b, TypeOK, InuvB sm: SMT fails here when given unnecessary facts
(5)3. QED
BY (5)1, (5)2 DEF InvB
(4)2. InvC’

17

Since b(p) just removes p from ReadyToWrite(neztwr[p]) and sets Al[i] to known|p],
PA1’ is a subset of PA1. Since no other relevant variables are changed, InvC!(q)!1!2(P)
is left unchanged for any P in PA1.
(5) SUFFICES ASSUME NEW ¢ € Proc, Cardinality(result’[q]) > 0,
NEW P € PAY
PROVE InvCI(q, P)
The goal is the body of the Vp € Proc : quantifier with ¢ substituted for p.
BY DEF InvC
(5)1. P € PA1
The following proof was copied with slight modification from the proof for action d in
RV 3.
(6) PICK wa € WriterAssignment’ : P = PV (wa)’
BY DEF PAl
(6)1. ASSUME NEW i € Nat, NEW ga € Proc,
ReadyToWrite(i, ga)’
PROVE ReadyToWrite(i, qa)
(T) A pc'[qa] = "b" = pc[qa] = "b"
A notKnown' = notKnown
BY SMT DEF b, TypeOK
(7) QED
BY (6)1, SMT DEF ReadyToWrite
(6)2. wa € WriterAssignment
BY (6)1, SMT DEF WriterAssignment
(6)3. PICK j € notKnown[p] : Al = [A1l EXCEPT ![j] = known[p]]
BY DEF b
(6) j € Nat
BY DEF TypeOK
(6Y4.CASE wal[j] # NotAProc
(1. PV(wa) = PV (wa)
(8)1. SUFFICES ASSUME NEW i € Nat
PROVE PV(wa)'[i] = PV (wa)[i]

BY DEF PV
(8)2.CASE wal[i] # NotAProc
(9) known'[wali]] = known[wa[i]]
BY DEF b
(9) QED

BY (8)2 DEF PV
(8)3.CASE wa[i] = NotAProc
9)i#j
BY (6)4, (8)3
(9) A1'[i] = A1]4)
BY (6)3, SMT DEF TypeOK
(9) QED
BY (8)3 DEF PV
(8)4. QED

18

BY (8)2, (8)3
(7)2. QED
BY (6)2, (7)1 DEF PAl
(6)5.CASE wa[j] = NotAProc
(7) DEFINE za = [wa EXCEPT ![j] = p]
(T)1. za € WriterAssignment
(8)1. Vi € Nat : wali] # p
(9) Vi € Nat : ~ReadyToWrite(i, p)’
BY SMT DEF b, TypeOK, ReadyToWrite
(9) QED
BY SMT DEF WriterAssignment
(8)2. ReadyToWrite(j, p)
BY DEF b, ReadyToWrite
(8)3. ASSUME NEW i € Nat, NEW k € Nat\ {i}, wa[i] € Proc
PROVE za[i] # za[k]
(9) wa € [Nat — Proc U{NotAProc}]
BY DEF WriterAssignment
(9)cAsE j ¢ {i, k}
(10) wali] # walk]
BY (8)3, SMT DEF WriterAssignment
(10) za[i] = wali] A zalk] = wa[k]
OBVIOUS
(10) QED
BY (8)1, SMT
(9)cask j € {i, k}
BY (8)1, SMT
(9) QED
OBVIOUS
(8)4. QED
BY (6)2, (8)2, (8)3, SMT DEF WriterAssignment
(7)2. PV (wa) = PV (za)
(8)1. wa = [k € Nat — walk]]
BY DEF WriterAssignment
(8)2. SUFFICES ASSUME NEW i € Nat
PROVE PV(wa)'[i] = PV (za)li]
BY DEF PV
(8)3.CASE wal[i] # NotAProc
)1 i #]
BY (6)5, (8)3
(9)2. known'[wali]] = known|wali]]
BY (9)1 DEF b
(9)3. PV (wa)'[i] = known'[wali]]
BY (8)3, SMT DEF PV
(9)4. za[i] = wali]
BY (8)1, (9)1

19

(9)5. PV (za)[i] = known|[wali]]
BY (9)4, (8)3 DEF PV
(9)6. QED
BY (9)2, (9)3, (9)5
(8)4.CASE wa[i] = NotAProc
(9)1.CASE i # j
(10) A1'[i] = Al]4)
BY (9)1, (6)3, SMT DEF TypeOK
(10) wali] = zai]
BY (8)1, (9)1
(10) QED
BY (8)4, (9)1, (6)1, SMT DEF PV
(9)2.CASE i =
(0)1. PV (wa)'[j] = A1)
BY (9)2, (8)4 DEF PV
(10)2. zalj] = p
BY (8)1, (9)2
(10)3. PV (za)[j] = known|p]
BY (10)2, NotAProcProp, SMT DEF PV
(10)4. A1'[j] = known|[p]
BY (6)3, SMT DEF TypeOK
(10) HIDE DEF za
(10)5. QED
BY (9)2, (10)1, (10)3, (10)4
(9)3. QED
BY (9)1, (9)2
(8)5. QED
BY (8)3, (8)4
(7)3. QED
BY (7)1, (7)2 DEF PAl
(6)6. QED
BY (6)4, (6)5
(5)2. Vqq € Proc\{p}: Aknown'[qq] = known|[qq]
A notKnown'[qq] = notKnown[qq]
Apc'lgg] = pelqq]
A result’[qq] = result]qq]
BY (3)8, SMT DEF b, TypeOK
(5)3. pc'[p] = "a"
BY (3)8, SMT DEF TypeOK, b
(V. g £ p
(6)1. Cardinality(result’[q]) € Nat
BY (3)3 TypeOK’, ProcFinite, SubsetFinite, CardType, SMT DEF TypeOK sm: failure of triviality c
(6)2. result’[q] # {}
BY (6)1, PositiveCardinalityImpliesNonEmpty
(6)3. pc'[q] = “Done”

20

BY <6>2, <4>1 InvB’, SMT DEF TypeOK, InvB sm: failure of triviality check
(6)4. QED
BY (6)3, (5)3
(5) HIDE DEF PAl, InvCI
(5)5. InvCI(q, P)’
BY (5)1, (5)2, (5)3, (5)4, (3)6, SMT DEF TypeOK
(5)6. QED
BY (5)5 DEF InvCI
(4)3. GFXCorrect’
BY (3)8, SMT DEF b, TypeOK, GFXCorrect, Done
(4)4. QED
BY (3)3, (4)1, (4)2, (4)3
(3) HIDE DEF Inv
(3)9. QED
BY (2)1, (3)7, (3)8 DEF Next, Pr, ProcSet
(2)3. QED
BY (2)1, (2)2

(1)3. QED

skt ko otk sk ko sk ok ko ko ko sk ok ko sk Sk sk kR SRR SRR R K PRO O
This follows from a (1)1, (1)2, and a simple TLA proof rule.
skt sk stk sk sk ks stk sk kot sk sk sk kot sk sk SRR O VT TED

! |
I 1

The following theorem combined with theorem Invariance shows that the algorithm has the desired
space complexity.
THEOREM Inv = Vi € Nat : (i > Cardinality(Proc)) = (Al[i] = {})
(1) SUFFICES ASSUME Inv, NEW i € Nat, i > Cardinality(Proc)
PROVE Al[i] = {}
OBVIOUS
(1) surrICcES —(Cardinality(Al[i]) > 4)
BY DEF Inv, InvB
(1)1. Al[i] € Proc
BY DEF Inv, TypeOK
(1)2. A Cardinality(Proc) € Nat
A Cardinality(Al[i]) € Nat
A Cardinality(A1[i]) < Cardinality(Proc)
BY ProcFinite, SubsetFinite, CardType, SubsetCardinality2, SMT DEF Inv, TypeOK
(1)3. QED
BY (1)2, SMT

! |
I 1

The Refinement Proof

pcBar = [p € Proc — 1F pc[p] = “Done” THEN “Done” ELSE “A”]

21

For every symbol F defined in module GFXSpec, this defines PS!F to have the same definition
as F except with every defined constant and variable of GFXSpec replaced by the expression
specified in the WITH clause. Constants and variables not explicitly substituted for in the WITH
clause are replaced by the symbols of the same name in module GFX.

PS £ INSTANCE GFXSpec WITH pc < pcBar

The following lemmas are the heart of the proof that algorithm GFX implements/refines algorithm
GFXSpec.

LEMMA InitImplication = Init = PS!Init

BY DEF Init, PS!Init, ProcSet, PS!ProcSet, pcBar

LEMMA StepSimulation = Inv A Inv' A [Next]yars = [PS! Next] ps ! vars
(1) SUFFICES ASSUME Inv, Inv’, [Next]yars
PROVE [PS!Next]pg!vars
OBVIOUS
(1)1.CASE UNCHANGED vars
BY (1)1, SMT DEF vars, PS!vars, pcBar
(1)2. ASSUME NEW p € Proc, a(p)
PROVE [PS!Next]pg!vars
(2) pelp] = "a"
BY (1)2 DEF a
(2)1.CASE A known' = [known EXCEPT ![p]
= known[p] U UNION {Al[i] : i € Nat}]
A notKnown' =
[notKnown EXCEPT ![p] =
{i € 0.. (Cardinality(known'[p])) : known'[p] # Al1[i]}]
A notKnown'[p] # {}

A pc’ = [pc EXCEPT ![p] = “b"]
A UNCHANGED result
NAL = Al
(3) A result’ = result
A pc’ = [pc EXCEPT ![p] = “b"]
A pe € [Proc — {"“a", “b", “Done" }]
A pelp] = “a"

BY (2)1 DEF Inv, TypeOK

(3) A pcBar € [Proc — {"A", "Done" }]
A peBar’ € [Proc — {"A", “Done" }]

BY DEF pcBar

(3) SUFFICES ASSUME NEW ¢ € Proc
PROVE pcBarlq]) = pcBar|q]

BY DEF PSlvars
(3) QED

BY DEF PS!'vars, pcBar SMT used to prove this but doesn’t now

(2)2.CASE A known' = [known EXCEPT ![p]
= known[p] U UNION {Al[i] : 4 € Nat}]
A notKnown' =

22

[notKnown EXCEPT ![p| =
{i € 0.. (Cardinality(known'[p])) : known'[p] # Al[i]}]
A notKnown'[p] = {}
A result’ = [result EXCEPT ![p] = known'[p]]
A pc’ = [pc EXCEPT ![p] = “Done"]
NAT = Al
(3)1. Vz : Cardinality(z) = PS! Cardinality(x)
BY DEF Cardinality, PS! Cardinality
(3)2. pcBar[p] = “A”
BY (2)2, SMT DEF TypeOK, pcBar
(3)3. 3P € {Q € SUBSET Proc :
ApEQ
AY q € Proc\{p}:
V Cardinality(result|q]) # Cardinality(Q)
V Q = result[q]
}:
result’ = [result EXCEPT ![p] = P]
(4) DEFINE P = known’[p]
(4) SUFFICES A P € SUBSET Proc
Ap € P
AY q € Proc\{p}:
V Cardinality(result[q]) # Cardinality(P)
V P = result|q]
BY (2)2
(4)1. P € SUBSET Proc
BY DEF TypeOK, Inv
DH2.pe P
BY DEF InvB, Inv
(4)3. ASSUME NEW ¢ € Proc\ {p}
PROVE V Cardinality(result[q]) # Cardinality(P)
V P = result|q]
(5)1. A Cardinality(P) € Nat
A Cardinality(result[q]) € Nat
A IsFiniteSet(P)
A IsFiniteSet(result]q])
BY ProcFinite, SubsetFinite, CardType, SMT DEF Inv, TypeOK
(5)2. A Cardinality(P) # 0
AP #{}
BY (4)2, (5)1, NonEmptySetCardinality, SMT DEF Done
(5)3.CASE result[q] = {}
BY (5)2, (5)3, EmptySetCardinality, SMT
(5)4.CASE result[q] # {}
(6)1. A result’[q] = result][q]
A result’[p] = known'[p]
BY (2)2, SMT DEF Inv, TypeOK

23

(6)2. QED
BY (6)1, (5)2, (5)4, SMT DEF Inv, GFXCorrect, Done
(5)5. QED
BY (5)3, (5)4
(4)4. QED
BY (4)1, (4)2, (4)3
(3)4. pcBar’ = [pcBar EXCEPT ![p] = “Done”]
(4) A pcBar € [Proc — {“A", “Done" }]
A pcBar' € [Proc — {"A”, "Done" }|
BY DEF pcBar
(4) SUFFICES ASSUME NEW ¢ € Proc
PROVE pcBar[q] =1F ¢ = p THEN “Done”
ELSE pcBar[q]
OBVIOUS
(4) A pc’ = [pc EXCEPT ![p] = “Done"|
A pc € [Proc — {"a", "b", “Done" }]
BY (2)2 DEF Inv, TypeOK
(4) QED
BY SMT DEF pcBar
(3)5. QED
BY (3)1, (3)2, (3)3, (3)4, SMT DEF PS'A, PS\Next, PS! Pr
(2)4. QED
BY (2)1, (2)2, (1)2 DEF a

(1)3. ASSUME NEW p € Proc, b(p)
PROVE UNCHANGED PS'!vars
(2) SUFFICES ASSUME NEW ¢ € Proc
PROVE pcBar[q]' = pcBar[q|
(3) result’ = result
BY (1)3 DEF b
(3) pcBar' = pcBar
BY DEF pcBar
(3) QED
BY DEF PSlvars
(2)1.CASE ¢ =p
BY (1)3, SMT DEF PS!wvars, pcBar, b, Inv, TypeOK
(2)2.CASE ¢ # p
BY (1)3, SMT DEF PS!wvars, pcBar, b, Inv, TypeOK
(2)3. QED
BY (2)1, (2)2
(1)4. QED
BY (1)1, (1)2, (1)3 DEF Neat, Pr

THEOREM Spec = PS'!Spec
3k 3k sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk sk sk sk skokosk skosk sk kok ok

24

PROOF

This theorem follows easily by simple TLA reasoning from Theorem
Invariance and Lemmas InitImplication and StepSimulation. However,
since TLAPS does not yet do temporal reasoning, it can’t check the

proof, so there’s no point writing it out.
skt of ok ok ksl ok ok ok sk sk ok kst sk sk ok stk sk sk sk sk kskokok ok VT TTED

J

\ * Modification History

\ * Last modified Fri May 31 05:07:33 PDT 2013 by lamport

\ * Last modified Thu Feb 14 18:15:21 CET 2013 by caroledelporte
\ * Last modified Thu Feb 14 14:52:13 CET 2013 by caroledelporte
\ * Last modified Wed Feb 13 13:37:38 PST 2013 by lamport

\ * Last modified Thu Jan 03 11:57:19 CET 2013 by merz

\ * Last modified Thu Jan 03 09:18:28 CET 2013 by merz

\ * Created Wed Jun 20 01:57:10 PDT 2012 by lamport

25

